[go: up one dir, main page]

JPH0923174A - Power line carrier communication equipment - Google Patents

Power line carrier communication equipment

Info

Publication number
JPH0923174A
JPH0923174A JP16946395A JP16946395A JPH0923174A JP H0923174 A JPH0923174 A JP H0923174A JP 16946395 A JP16946395 A JP 16946395A JP 16946395 A JP16946395 A JP 16946395A JP H0923174 A JPH0923174 A JP H0923174A
Authority
JP
Japan
Prior art keywords
power line
line carrier
output signals
carrier communication
despreading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16946395A
Other languages
Japanese (ja)
Other versions
JP3309035B2 (en
Inventor
Masami Wada
正己 和田
Hideyuki Ando
英行 安藤
Satoshi Shinozaki
聡 篠崎
Yukio Kawasaki
幸男 川崎
Satoru Yoneya
悟 米家
Masaya Takashima
正也 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Panasonic Holdings Corp
Original Assignee
Kansai Electric Power Co Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Matsushita Electric Industrial Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP16946395A priority Critical patent/JP3309035B2/en
Publication of JPH0923174A publication Critical patent/JPH0923174A/en
Application granted granted Critical
Publication of JP3309035B2 publication Critical patent/JP3309035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable power line carrier communication equipment even in the case of a power line in an inferior transmission environment in respect to communication data demodulation applying spread spectrum communication technology to a power line carrier communication equipment. SOLUTION: An SS communication type receiving means is constituted of plural BPFs 51 to 53 having respectively different pass frequency bands, amplifying means 61 to 63, inverse diffusion means 71 to 73 and data demodulating means 81 to 83 which correspond to the number of BPFs 51 to 53, and a majority means 9. Since each frequency band is sufficiently amplified in accordance with the levels of a signal and a noise, data corresponding to the SN ratio of the band are demodulated and the majority of the whole frequency bands is found out, accurate data demodulation can be attained even when the SN ratio of a partial frequency band with a high signal level is deteriorated and a signal level is low in other frequency bands having sufficiently high SN ratios, so that the SN ratio of the whole bands can be improved and highly reliable communication can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力線搬送通信装置に
スペクトラム拡散通信技術を応用した通信のデータ復調
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to data demodulation of communication in which spread spectrum communication technology is applied to a power line carrier communication device.

【0002】[0002]

【従来の技術】従来の電力線搬送(以下、PLCと略
す)通信は、電力線(以下、PLと略す)が通常の通信
専用線と異なってインピーダンス(以下、imp.と略
す)整合が不可能であることとPLに任意に接続運転さ
れる機器の強大なノイズのために、その通信信頼性は著
しく低下していた。そこで、近年、前記問題点を克服す
べく、スペクトラム拡散(以下、SSと略す)通信の技
術がPLC通信に適用されるようになってきた。
2. Description of the Related Art In conventional power line carrier (hereinafter abbreviated as PLC) communication, impedance matching (hereinafter abbreviated as imp.) Is impossible in a power line (hereinafter abbreviated as PL) unlike a normal communication dedicated line. Due to a certain thing and a strong noise of a device which is arbitrarily connected to the PL, the communication reliability thereof has been remarkably lowered. Therefore, in recent years, in order to overcome the above-mentioned problems, spread spectrum (hereinafter abbreviated as SS) communication technology has been applied to PLC communication.

【0003】SS通信は、図5に示すように、送信側で
は拡散符号発生手段2で生成した拡散符号と入力データ
とを第1の変調手段3で乗算し、更に、第2の変調手段
4で発信手段1が生成したキャリアとの乗算をした結果
得られる広帯域変調信号を送出し、受信側では送信信号
の周波数帯域に合わせたバンドパスフィルタ(以下、B
PFと略す)50を介して取り込んだ受信信号を増幅手
段60で増幅し逆拡散手段70で普通の狭帯域信号に戻
したものからデータ復調手段80によって復調データを
得るものである。
In SS communication, as shown in FIG. 5, on the transmission side, the spreading code generated by the spreading code generating means 2 and the input data are multiplied by the first modulating means 3, and further the second modulating means 4 is used. At the receiving side, a wideband modulated signal obtained as a result of multiplication with the carrier generated by the transmitting means 1 is transmitted, and at the receiving side, a bandpass filter (hereinafter, referred to as B
The received signal received via the PF (abbreviated as PF) 50 is amplified by the amplifying means 60 and returned to an ordinary narrow band signal by the despreading means 70, and demodulated data is obtained by the data demodulating means 80.

【0004】[0004]

【発明が解決しようとする課題】ところが、PLの伝送
路としての特性は図6(a)に例示するように、ノイズ
は輝線スペクトラムのものが支配的であり、しかも、図
6(b)に例示するように発生源の種類により、低周波
数域中心のもの、中間周波数域中心のもの、高周波数域
中心のものとに分けられ、また、減衰も図7に例示する
ように周波数に反比例した単純減衰とimp.不整合に
よる周波数選択性の共振減衰との合成されたものとなっ
ているために、全体的に見ると受信信号のS/Nは必ず
しも良くない場合が多く、また受信信号を増幅してもS
/Nの改善は図れないので、SS方式を採用しているに
もかかわらず通信信頼性の向上は期待できない。
However, as shown in FIG. 6 (a), the characteristics of the PL as a transmission line are such that the noise in the bright line spectrum is dominant, and in FIG. 6 (b). As illustrated, depending on the type of source, it is divided into a low frequency center, an intermediate frequency center, and a high frequency center, and the attenuation is inversely proportional to the frequency as illustrated in FIG. Simple decay and imp. Since it is a combination of frequency selective resonance attenuation due to mismatch, the S / N of the received signal is often not good as a whole, and even if the received signal is amplified, the S / N ratio is not always good.
Since / N cannot be improved, communication reliability cannot be expected to improve even though the SS method is adopted.

【0005】本発明は上記課題を解決するもので、劣悪
な特性のPLにおいても信頼性の高い電力線搬送通信装
置を提供することを目的とする。
The present invention solves the above problems, and an object of the present invention is to provide a power line carrier communication device having high reliability even in a PL having poor characteristics.

【0006】[0006]

【課題を解決するための手段】前記目的達成のために、
本発明の電力線搬送通信装置は、SS通信方式を採用し
た送信手段と、通過周波数帯域の異なる複数のBPF
と、BPFと同数の増幅手段と逆拡散手段およびデータ
復調手段と、一つの多数決手段とを有する受信手段とで
構成することを基本としている。
To achieve the above object,
The power line carrier communication device of the present invention includes a transmitting means adopting an SS communication system and a plurality of BPFs having different pass frequency bands.
And the receiving means having the same number of amplifying means, despreading means and data demodulating means as the BPF, and one majority decision means.

【0007】更に、複数のBPFは高域側の遮断周波数
が総て同一で低域側の遮断周波数が各々異なるものと
し、多数決手段は加算手段と比較手段とで構成して、実
現性をより高めている。
Further, it is assumed that the plurality of BPFs have the same cutoff frequency on the high frequency side and have different cutoff frequencies on the low frequency side, and the majority decision means is composed of an addition means and a comparison means to improve the feasibility. I am raising.

【0008】[0008]

【作用】前記構成により、各周波数帯域毎に信号および
ノイズのレベルに応じた充分な増幅ができ、かつ、その
S/Nに応じたデータを復調し全体の多数決を採るの
で、一部の高い信号レベルの周波数帯域でS/Nが劣化
していても、S/Nに余裕のある他の周波数帯域ではた
とえ信号レベルが低くても充分な増幅が可能で正確なデ
ータ復調ができるので、全体としてS/Nの改善が成さ
れたのと等価になり、信頼性の高い通信が成り立つこと
になる。
With the above construction, sufficient amplification can be performed according to the signal and noise levels for each frequency band, and the data corresponding to the S / N can be demodulated to take the majority decision, so that some Even if the S / N is degraded in the signal level frequency band, sufficient amplification is possible and accurate data demodulation can be performed in other frequency bands with a sufficient S / N even if the signal level is low. As a result, it is equivalent to the improvement of S / N, and highly reliable communication is established.

【0009】[0009]

【実施例】本発明の実施例を図面を参照しながら説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings.

【0010】図1は本発明の第1の実施例を示すブロッ
ク図である。送信側は前述の従来例と同様の構成なので
説明を省く。受信側の、5はBPF部で第1のBPF5
1、第2のBPF52、第3のBPF53から成り、6
は増幅部で第1の増幅手段61、第2の増幅手段62、
第3の増幅手段63から成り、7は逆拡散部で第1の逆
拡散手段71、第2の逆拡散手段72、第3の逆拡散手
段73から成り、8はデータ復調部で第1のデータ復調
手段81、第2のデータ復調手段82、第3のデータ復
調手段83から成り、9は多数決手段である。
FIG. 1 is a block diagram showing a first embodiment of the present invention. Since the transmitting side has the same configuration as the above-mentioned conventional example, description thereof will be omitted. On the receiving side, 5 is a BPF section, which is the first BPF 5.
1, 2nd BPF52, 3rd BPF53, 6
Is an amplifying section, which is a first amplifying means 61, a second amplifying means 62,
The third amplifying means 63 comprises a despreading section 7 which comprises a first despreading means 71, a second despreading means 72 and a third despreading means 73, and 8 a data demodulation section. The data demodulation means 81, the second data demodulation means 82, and the third data demodulation means 83, and 9 is a majority decision means.

【0011】以上のように構成された電力線搬送通信装
置の動作について、図2のスペクトラム波形図を参照し
て説明する。
The operation of the power line carrier communication apparatus configured as described above will be described with reference to the spectrum waveform diagram of FIG.

【0012】今、送信信号出力が図2(b)の破線のス
ペクトラム波形で送信されたとすると、その信号はPL
上を伝わって受信側に到達する間に減衰して同図の受信
信号スペクトラム波形のようになるとともに同図のよう
なノイズも加わってくる。この減衰した信号とノイズと
の和が受信側のBPF部5に入力されると、図2(a)
に示す帯域通過特性を有する第1のBPF51、第2の
BPF52、第3のBPF53によって周波数帯域が3
分割され、次に、第1の増幅手段61、第2の増幅手段
62、第3の増幅手段63によって図2(c)の増幅手
段出力のように各々の周波数帯域毎に適切な増幅がなさ
れ、続いて、第1の逆拡散手段71、第2の逆拡散手段
72、第3の逆拡散手段73によって各々の周波数帯域
毎に狭帯域信号に戻したものから第1のデータ復調手段
81、第2のデータ復調手段82、第3のデータ復調手
段83によってデータを復調し、最後に、多数決手段9
によって3系統の復調データから多数決によってもっと
もらしいデータを得る。従来例であれば図2(b)のよ
うにS/Nの悪い受信信号とノイズの和とから一つのデ
ータを復調するので通信の信頼性は乏しいものとなる
が、本実施例によれば、図2(c)の増幅手段出力を見
て明らかなように、帯域分割後に各々独立した増幅、逆
拡散、データ復調の過程を経るので、信号のS/Nの悪
い第1のBPF51の系統の復調データは誤っている可
能性が高いが、第2のBPF52や第3のBPF53の
系統は信号のS/Nが良好なのでその復調データは正し
いものであると言え、それら3つのデータの多数決結果
は、極めて高い信頼性を有することになる。
Now, assuming that the output of the transmission signal is transmitted with the spectrum waveform of the broken line in FIG. 2 (b), the signal is PL
While passing through the upper part and reaching the receiving side, the signal is attenuated to form the received signal spectrum waveform shown in the figure, and noise as shown in the figure is also added. When the sum of the attenuated signal and the noise is input to the BPF unit 5 on the receiving side, FIG.
The frequency band is 3 by the first BPF 51, the second BPF 52, and the third BPF 53 having the bandpass characteristics shown in FIG.
Then, the first amplification means 61, the second amplification means 62, and the third amplification means 63 perform appropriate amplification for each frequency band like the output of the amplification means of FIG. 2C. Then, the first despreading means 71, the second despreading means 72, and the third despreading means 73 restore the narrow band signal for each frequency band to the first data demodulating means 81. The data is demodulated by the second data demodulation means 82 and the third data demodulation means 83, and finally, the majority decision means 9
The plausible data is obtained from the demodulated data of the three systems by majority voting. In the case of the conventional example, as shown in FIG. 2B, since one data is demodulated from the received signal having a poor S / N and the sum of noise, the reliability of communication becomes poor, but according to the present embodiment. As is apparent from the output of the amplifying means of FIG. 2C, since the independent amplification, despreading and data demodulation processes are performed after the band division, the system of the first BPF 51 having a poor signal S / N ratio. The demodulated data of is likely to be incorrect, but it can be said that the demodulated data of the second BPF 52 and the third BPF 53 are correct because the S / N of the signal is good. The result will be extremely reliable.

【0013】次に、本発明の第2の実施例を図3および
図4のブロック図を参照して説明する。
Next, a second embodiment of the present invention will be described with reference to the block diagrams of FIGS. 3 and 4.

【0014】図3(b)はBPF5の実施例で、一つの
ハイパスフィルタ(以下、HPFと略す)54と第1の
ローパスフィルタ(以下、LPFと略す)55、第2の
LPF56、第3のLPF57という遮断周波数の異な
る3つのLPFから成り、その帯域通過特性は、図3
(a)に示すように、高域側の遮断周波数が総て同一で
低域側の遮断周波数が各々異なっている。今、図6のノ
イズを考えるとき、ノイズは周波数に反比例しているの
で、本来低周波数帯域のみを通過させるべきところを中
間周波数帯域や高周波数帯域までも通過させてもその系
統のS/Nには大きな影響は無く、また、本来中間周波
数帯域のみを通過させるべきところを高周波数帯域まで
も通過させてもその系統のS/Nには大きな影響は無
く、ノイズの少ない帯域をも若干取り込むことでかえっ
てS/Nの改善が期待でき、かつ、構成が簡単になる。
FIG. 3B shows an embodiment of the BPF 5, which is one high-pass filter (hereinafter abbreviated as HPF) 54, a first low-pass filter (hereinafter abbreviated as LPF) 55, a second LPF 56, and a third LPF 56. The LPF 57 is composed of three LPFs having different cutoff frequencies, and its bandpass characteristic is shown in FIG.
As shown in (a), the cutoff frequencies on the high frequency side are all the same, and the cutoff frequencies on the low frequency side are different from each other. Now, considering the noise in FIG. 6, since the noise is inversely proportional to the frequency, even if the intermediate frequency band or the high frequency band is originally allowed to pass only the low frequency band, the S / N of the system is passed. Does not have a large effect on the S / N of the system even if the high frequency band is allowed to pass where only the intermediate frequency band should be allowed to pass, and a small amount of noise is taken in. On the contrary, improvement of S / N can be expected, and the configuration becomes simple.

【0015】図4は多数決手段9の実施例で、同図
(a)の91は加算手段、92は比較手段である。前述
の3系統の復調データは加算手段91で加算された後に
比較手段92によってデータの「0」「1」が判定され
る。但し、PL上の輝線スペクトラムノイズの復調デー
タへの影響の特徴は、データの「0」「1」が全く反転
してしまうのではなく、データ復調出力信号電圧の中心
値が「0」か「1」へ多少シフトするというものである
から、各データ復調手段には、データの「0」「1」を
判定するデータ判定手段が含まれていないほうが多数決
後のデータの信頼性が増す。例えば、3系統中2系統ま
でがノイズの影響でデータ復調出力信号電圧の中心値が
ずれてしまった場合でも、残りの1系統のデータ復調出
力信号電圧がしっかりしていて他の2系統のずれを補っ
て余りあるものならば、最終データは正しいものとなる
訳である。そこで、このことを考慮して図4(a)をよ
り具体化すると図4(b)のようになる。93、94、
95は各々第1第2第3の抵抗、96は遮断周波数をデ
ータ伝送速度に合わせたの第4のLPF、97はコンパ
レータICである。3本の抵抗93、94、95および
第4のLPF96は加算手段を構成しており、その加算
出力をコンパレータIC97に入力し、基準電圧98と
の比較の結果を最終データとして出力するものである。
このようにすることによって、簡易な構成でありなが
ら、一段と信頼性の高い最終復調データを得ることがで
きる。
FIG. 4 shows an embodiment of the majority decision means 9. In FIG. 4A, 91 is an addition means and 92 is a comparison means. The demodulated data of the three systems described above are added by the adding means 91, and then the comparing means 92 determines whether the data is "0" or "1". However, the characteristic of the influence of the bright line spectrum noise on the PL on the demodulated data is that "0" and "1" of the data are not completely inverted, but the central value of the data demodulated output signal voltage is "0" or " Since each data demodulation means does not include a data determination means for determining "0" or "1" of the data, the reliability of the data after the majority decision is increased. For example, even if the center value of the data demodulation output signal voltage shifts up to 2 out of 3 systems due to noise, the data demodulation output signal voltage of the remaining 1 system is firm and the shift of the other 2 systems If there is a surplus of the above, the final data will be correct. Therefore, in consideration of this, FIG. 4A is more concretely shown in FIG. 4B. 93, 94,
Reference numeral 95 is a first, second and third resistance, 96 is a fourth LPF for adjusting the cutoff frequency to the data transmission rate, and 97 is a comparator IC. The three resistors 93, 94, 95 and the fourth LPF 96 constitute an adding means, and the added output is input to the comparator IC 97 and the result of comparison with the reference voltage 98 is output as final data. .
By doing so, it is possible to obtain the final demodulated data with a much higher reliability even with a simple configuration.

【0016】[0016]

【発明の効果】以上のように本発明は、SS通信方式を
採用した送信手段と、通過周波数帯域の異なる複数のB
PFと、BPFと同数の増幅手段と逆拡散手段およびデ
ータ復調手段と、一つの多数決手段とを有する受信手段
とで構成することを基本とし、更に、複数のBPFは高
域側の遮断周波数が総て同一で低域側の遮断周波数が各
々異なるものとし、多数決手段は加算手段と比較手段と
で構成することにより、簡易な構成でありながら、S/
Nの悪い受信信号からでも、充分に信頼性の高い復調デ
ータを得ることができる優れた電力線搬送通信装置を実
現できる。
As described above, according to the present invention, the transmitting means adopting the SS communication system and the plurality of B's having different pass frequency bands are provided.
It is basically composed of a PF, a receiving means having a same number of amplifying means, despreading means and data demodulating means as the BPF, and one majority decision means. Furthermore, a plurality of BPFs have cutoff frequencies on the high frequency side. It is assumed that all are the same but have different cut-off frequencies on the low frequency side, and the majority means is composed of an adding means and a comparing means, so that S /
It is possible to realize an excellent power line carrier communication device capable of obtaining demodulated data with sufficiently high reliability even from a received signal with a poor N.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例のブロック図FIG. 1 is a block diagram of a first embodiment of the present invention.

【図2】第1の実施例を説明するための信号スペクトラ
ム波形図 (a)は第1の実施例のバンドパスフィルタの帯域通過
特性図 (b)は第1の実施例の送信信号および受信信号図 (c)は第1の実施例の各増幅手段の出力図
FIG. 2 is a signal spectrum waveform diagram for explaining the first embodiment. FIG. 2A is a bandpass characteristic diagram of the bandpass filter of the first embodiment. FIG. 2B is a transmission signal and reception of the first embodiment. Signal diagram (c) is an output diagram of each amplifying means of the first embodiment.

【図3】(a)は第2の実施例のバンドパスフィルタの
帯域通過特性図 (b)は第2の実施例のバンドパスフィルタのブロック
FIG. 3A is a bandpass characteristic diagram of the bandpass filter of the second embodiment. FIG. 3B is a block diagram of the bandpass filter of the second embodiment.

【図4】(a)は第2の実施例の多数決手段のブロック
図 (b)は第2の実施例の多数決手段の回路図
FIG. 4A is a block diagram of a majority decision means of the second embodiment, and FIG. 4B is a circuit diagram of a majority decision means of the second embodiment.

【図5】従来のSS通信方式電力線搬送通信装置の例を
示すブロック図
FIG. 5 is a block diagram showing an example of a conventional SS communication type power line carrier communication device.

【図6】(a)は電力線上のノイズスペクトラム波形図 (b)は電力線上の発生源別ノイズ分布図FIG. 6A is a noise spectrum waveform diagram on the power line, and FIG. 6B is a noise distribution diagram by source on the power line.

【図7】電力線の信号伝送特性図FIG. 7 is a signal transmission characteristic diagram of a power line.

【符号の説明】[Explanation of symbols]

1 発信手段 2 拡散符号発生手段 3 第1の変調手段 4 第2の変調手段 5 バンドパスフィルタ部 6 増幅部 7 逆拡散部 8 データ復調部 9 多数決手段 50 バンドパスフィルタ 51 第1のバンドパスフィルタ 52 第2のバンドパスフィルタ 53 第3のバンドパスフィルタ 54 ハイパスフィルタ 55 第1のローパスフィルタ 56 第2のローパスフィルタ 57 第3のローパスフィルタ 60 増幅手段 61 第1の増幅手段 62 第2の増幅手段 63 第3の増幅手段 70 逆拡散手段 71 第1の逆拡散手段 72 第2の逆拡散手段 73 第3の逆拡散手段 81 データ復調手段 82 第1のデータ復調手段 83 第2のデータ復調手段 84 第3のデータ復調手段 91 加算手段 92 比較手段 93 第1の抵抗 94 第2の抵抗 95 第3の抵抗 96 第4のローパスフィルタ 97 コンパレータIC 98 基準電圧 1 Transmitting Means 2 Spreading Code Generating Means 3 First Modulating Means 4 Second Modulating Means 5 Bandpass Filters 6 Amplifiers 7 Despreaders 8 Data Demodulators 9 Majority Means 50 Bandpass Filters 51 First Bandpass Filters 52 Second Band Pass Filter 53 Third Band Pass Filter 54 High Pass Filter 55 First Low Pass Filter 56 Second Low Pass Filter 57 Third Low Pass Filter 60 Amplifying Means 61 First Amplifying Means 62 Second Amplifying Means 63 third amplification means 70 despreading means 71 first despreading means 72 second despreading means 73 third despreading means 81 data demodulating means 82 first data demodulating means 83 second data demodulating means 84 Third data demodulation means 91 Addition means 92 Comparison means 93 First resistance 94 Second resistance 95 Third resistance Resistor 96 Fourth low-pass filter 97 Comparator IC 98 Reference voltage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠崎 聡 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 川崎 幸男 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 米家 悟 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 高嶋 正也 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Satoshi Shinozaki Satoshi Shinozaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Incorporated (72) Inventor Satoru Yoneya 3-22 Nakanoshima, Kita-ku, Osaka, Osaka Prefecture 3-22 Kansai Electric Power Co., Inc. Masaya Takashima 3-22 Nakanoshima, Kita-ku, Osaka, Osaka Kansai Electric Power Co., Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電力線を高周波信号の伝送媒体として共用
する電力線搬送通信装置であって、 スペクトラム拡散通信方式を用いた送信手段と、 電力線からスペクトラム拡散された情報信号を抽出して
復調する受信手段とからなり、 前記受信手段は、 通過周波数帯域の異なる複数のバンドパスフィルタと、 前記複数のバンドパスフィルタの出力信号を、各バンド
パスフィルタの通過周波数帯域に応じて増幅する複数の
増幅手段と、 前記複数の増幅手段の出力信号を逆拡散する複数の逆拡
散手段と、 前記複数の逆拡散手段の出力信号を復調する複数の復調
手段と、 前記複数の復調手段の出力信号の多数決を採って一つの
復調データを出力する多数決手段とを有することを特徴
とする電力線搬送通信装置。
1. A power line carrier communication device that shares a power line as a transmission medium for high-frequency signals, comprising: a transmitting means using a spread spectrum communication system; and a receiving means for extracting and demodulating a spread spectrum information signal from the power line. The receiving means comprises a plurality of bandpass filters having different pass frequency bands, and a plurality of amplifying means for amplifying the output signals of the plurality of bandpass filters according to the pass frequency bands of the respective bandpass filters. , A plurality of despreading means for despreading the output signals of the plurality of amplification means, a plurality of demodulation means for demodulating the output signals of the plurality of despreading means, and a majority decision of the output signals of the plurality of demodulation means And a majority decision unit for outputting one demodulated data as a power line carrier communication device.
【請求項2】電力線を高周波信号の伝送媒体として共用
する電力線搬送通信装置であって、 電力線からスペクトラム拡散された情報信号を抽出して
復調する受信手段を備え、 前記受信手段は、 通過周波数帯域の異なる複数のバンドパスフィルタと、 前記複数のバンドパスフィルタの出力信号を、各バンド
パスフィルタの通過周波数帯域に応じて増幅する複数の
増幅手段と、 前記複数の増幅手段の出力信号を逆拡散する複数の逆拡
散手段と、 前記複数の逆拡散手段の出力信号を復調する複数の復調
手段と、 前記複数の復調手段の出力信号の多数決を採って一つの
復調データを出力する多数決手段とを有することを特徴
とする電力線搬送通信装置。
2. A power line carrier communication device that shares a power line as a transmission medium for high frequency signals, comprising: receiving means for extracting and demodulating a spectrum spread information signal from the power line, wherein the receiving means is a pass frequency band. A plurality of different bandpass filters, a plurality of amplification means for amplifying the output signals of the plurality of bandpass filters according to the pass frequency band of each bandpass filter, and despreading the output signals of the plurality of amplification means A plurality of despreading means, a plurality of demodulation means for demodulating the output signals of the plurality of despreading means, and a majority decision means for taking a majority decision of the output signals of the plurality of demodulation means and outputting one demodulated data. An electric power line carrier communication device having.
【請求項3】複数のバンドパスフィルタは、高域側の遮
断周波数が総て同一で、かつ低域側の遮断周波数が各々
異なることを特徴とする請求項1または2記載の電力線
搬送通信装置。
3. The power line carrier communication device according to claim 1, wherein the plurality of bandpass filters have the same cutoff frequency on the high frequency side and have different cutoff frequencies on the low frequency side. .
【請求項4】多数決手段は、 複数の復調手段の出力信号を加算する加算手段と、 前記加算手段の出力信号と所定の基準信号とを比較する
比較手段とを有することを特徴とする請求項1、2また
は3記載の電力線搬送通信装置。
4. The majority decision means includes an addition means for adding the output signals of a plurality of demodulation means, and a comparison means for comparing the output signal of the addition means with a predetermined reference signal. The power line carrier communication device according to 1, 2, or 3.
JP16946395A 1995-07-05 1995-07-05 Power line carrier communication device Expired - Fee Related JP3309035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16946395A JP3309035B2 (en) 1995-07-05 1995-07-05 Power line carrier communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16946395A JP3309035B2 (en) 1995-07-05 1995-07-05 Power line carrier communication device

Publications (2)

Publication Number Publication Date
JPH0923174A true JPH0923174A (en) 1997-01-21
JP3309035B2 JP3309035B2 (en) 2002-07-29

Family

ID=15887043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16946395A Expired - Fee Related JP3309035B2 (en) 1995-07-05 1995-07-05 Power line carrier communication device

Country Status (1)

Country Link
JP (1) JP3309035B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040019133A (en) * 2002-08-21 2004-03-05 조은기술 주식회사 Multi-carrier wave modulation/demodulation method characterized by power line and system thereof
WO2004075433A1 (en) * 2003-02-20 2004-09-02 Hitachi, Ltd. Power line carrier communication device and power line carrier communication method
KR100518968B1 (en) * 2002-08-03 2005-10-06 넷디바이스 주식회사 Power line communication modem
KR100669829B1 (en) * 2005-07-19 2007-01-16 성균관대학교산학협력단 Variable Channel Environment Tracking Power Line Communication System by Load Variation
KR100911727B1 (en) * 2007-11-23 2009-08-10 한국전기연구원 Dual Mode Power Line Communication System
US8526483B2 (en) 2008-08-28 2013-09-03 Korea Electrotechnology Research Institute Power line channel-adaptive communications system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518968B1 (en) * 2002-08-03 2005-10-06 넷디바이스 주식회사 Power line communication modem
KR20040019133A (en) * 2002-08-21 2004-03-05 조은기술 주식회사 Multi-carrier wave modulation/demodulation method characterized by power line and system thereof
WO2004075433A1 (en) * 2003-02-20 2004-09-02 Hitachi, Ltd. Power line carrier communication device and power line carrier communication method
KR100669829B1 (en) * 2005-07-19 2007-01-16 성균관대학교산학협력단 Variable Channel Environment Tracking Power Line Communication System by Load Variation
KR100911727B1 (en) * 2007-11-23 2009-08-10 한국전기연구원 Dual Mode Power Line Communication System
US8526483B2 (en) 2008-08-28 2013-09-03 Korea Electrotechnology Research Institute Power line channel-adaptive communications system and method

Also Published As

Publication number Publication date
JP3309035B2 (en) 2002-07-29

Similar Documents

Publication Publication Date Title
US3943293A (en) Stereo sound reproducing apparatus with noise reduction
EP0632611B1 (en) Spread spectrum communication system
US6658245B2 (en) Radio receiver having a dynamic bandwidth filter and method therefor
US20030007570A1 (en) Apparatus for modulating and demodulating multiple channel FSK in power line communication system
JP3434141B2 (en) Synchronous dual channel QPSK modulation / demodulation device and method for CDMA system
US4192970A (en) Reduction of adjacent channel interference
JPS6039962A (en) Radio receiver
SE520791C2 (en) Receiver integrated circuit for mobile phone
US5151921A (en) Spread spectrum communication device
JPH0923174A (en) Power line carrier communication equipment
US7418027B2 (en) Method and apparatus for ultra wideband communications system employing a spread spectrum technique transmitting a baseband signal over a wide frequency band
EP0094417A1 (en) Random frequency offsetting apparatus for multi-transmitter simulcast radio communications systems
EP0684703A1 (en) Circuit for removing random fm noise
JP3428846B2 (en) Time diffusion root Nyquist filter
JP2556141B2 (en) Spread spectrum communication system
JP3748983B2 (en) Power line carrier communication device and high-speed transmission device
JP2703371B2 (en) Data receiving device for data communication system
JPH0344125A (en) Power line carrier communication equipment
JP3264188B2 (en) Spread spectrum communication equipment
Sunde et al. Comments on" digital transmission capabilities of a transportable troposcatter system."
JPH07135481A (en) Reference signal synchronization form spread spectrum communication system
JPS6343026B2 (en)
JPH0256131A (en) Diversity communication method
JP2000244446A (en) Testing method and apparatus for OFDM communication equipment
JPS639698B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees