JPH09229856A - Measuring method for amount of crystal defect, measuring method for injecting amount of ion, and measuring apparatus - Google Patents
Measuring method for amount of crystal defect, measuring method for injecting amount of ion, and measuring apparatusInfo
- Publication number
- JPH09229856A JPH09229856A JP3848496A JP3848496A JPH09229856A JP H09229856 A JPH09229856 A JP H09229856A JP 3848496 A JP3848496 A JP 3848496A JP 3848496 A JP3848496 A JP 3848496A JP H09229856 A JPH09229856 A JP H09229856A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- amount
- calculated
- sample
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、結晶欠陥量の測定
方法、イオン注入量測定方法、及び測定装置に係り、特
に結晶欠陥量の深さ方向の分布量を測定することができ
る結晶欠陥量、イオン注入量の測定方法及び測定装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal defect amount measuring method, an ion implantation amount measuring method, and a measuring apparatus, and more particularly to a crystal defect amount capable of measuring the distribution amount of the crystal defect amount in the depth direction. The present invention relates to a method and a measuring device for measuring an ion implantation amount.
【0002】[0002]
【従来の技術】VLSI等の半導体製造のプロセスに
は、シリコンウエハへのイオン注入、プラズマエッチン
グ等のプロセスがあり、これらのプロセスでは、イオン
注入等に起因して、シリコン結晶に結晶欠陥が生じる。2. Description of the Related Art Processes for manufacturing semiconductors such as VLSI include processes such as ion implantation into a silicon wafer and plasma etching. In these processes, a crystal defect occurs in a silicon crystal due to ion implantation or the like. .
【0003】今日、半導体デバイスの高集積化、微細
化、ウエハの大口径化とともに、上記プロセスで生じる
結晶欠陥の制御が重要な課題となっており、実際に加工
されたデバイスの結晶欠陥の及びイオン注入量の測定、
及び評価を行なうことが半導体製造工程での半導体製造
効率を高めるための重要な要素となる。Nowadays, along with high integration and miniaturization of semiconductor devices and large diameter of wafers, control of crystal defects generated in the above process has become an important issue. Measurement of ion implantation dose,
And the evaluation is an important factor for improving the semiconductor manufacturing efficiency in the semiconductor manufacturing process.
【0004】そのため、半導体製造のプロセス中には、
図4に示すようにウエハ加工プロセス60中のイオン注
入装置50(またはプラズマエッチング装置)の下流側
に、結晶欠陥量測定装置10を配置して、結晶の欠陥量
やイオン注入量を測定し、この測定値に基づいて、イオ
ン注入やプラズマエッチングの管理70を行なうものと
している。Therefore, during the semiconductor manufacturing process,
As shown in FIG. 4, the crystal defect amount measuring device 10 is arranged on the downstream side of the ion implantation device 50 (or plasma etching device) in the wafer processing process 60 to measure the crystal defect amount and the ion implantation amount, Ion implantation and plasma etching control 70 are performed based on the measured values.
【0005】従来、この結晶欠陥量の測定装置として
は、サーマルウエーブ法によるものや、音響変化測定法
によるものが使用されている。Conventionally, as a measuring device for the amount of crystal defects, a thermal wave method or an acoustic change measuring method has been used.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記サ
ーマルウエーブ法による結晶欠陥量の測定法、及び音響
変化測定法による結晶欠陥量の測定法による結晶欠陥量
の測定は、結晶欠陥量の測定個所における総量をとらえ
るものであり、また、その測定値は定量的なものではな
く、普遍的な物理量の測定ではないため、注入されるイ
オン種やイオン注入量の影響を受け、測定の信頼性に欠
ける場合がある。However, the measurement of the amount of crystal defects by the method of measuring the amount of crystal defects by the above-mentioned thermal wave method and the method of measuring the amount of crystal defects by the acoustic change measurement method is performed at the measuring point of the amount of crystal defects. It is a measure of the total amount, and its measured value is not quantitative and is not a universal measurement of physical quantity, so it is affected by the ion species to be injected and the amount of ion injection, and measurement reliability is lacking. There are cases.
【0007】また、深さ方向における結晶欠陥の分布の
測定は、ラザフォード後方散乱等の破壊検査でしか行え
ず、実デバイスではない測定用のモニターウエハについ
てしか行うことしかできない。The distribution of crystal defects in the depth direction can be measured only by a destructive inspection such as Rutherford backscattering, and can be performed only on a monitor wafer for measurement which is not an actual device.
【0008】このため、実デバイスについて、高い信頼
性を有して、かつ、非接触、非破壊で深さ方向における
結晶欠陥の分布及びイオン注入量の測定を行いたいとい
う要望がある。Therefore, there is a demand for highly reliable, non-contact, non-destructive measurement of the distribution of crystal defects and the amount of ion implantation in the depth direction of an actual device.
【0009】そこで、本発明は、高い信頼性を有し、非
接触、非破壊で、定量的に、深さ方向における結晶欠陥
の分布を測定することができる結晶欠陥量方法、イオン
注入量想定方法及び測定装置を提供することを目的とす
る。Therefore, the present invention has a high reliability, a non-contact, non-destructive, and quantitative method for quantitatively measuring the distribution of crystal defects in the depth direction. It is an object to provide a method and a measuring device.
【0010】[0010]
【課題を解決するための手段】本発明において、上記の
課題を解決するための結晶欠陥量の測定方法は、図1に
示すように、試料に光を入射し、反射光の状態を計測し
て、この計測量から試料の結晶欠陥量を測定する方法で
あって、試料に光学特性が近似した基本試料への入射光
の侵入深さを算出して、第1層から第M層までのM層
(M:3以上の整数)に分割し(S2,S3)、第1層
に起因する反射光の計測量から第1層の屈折率n1、吸
収係数k1、厚さd1をフレネルの公式から算出し(S
5)、第2層から第M層までを第2層から順次、第m層
(m:2以上、M以下の整数)に起因する反射光の計測
量から第m層の屈折率nm、吸収係数km、厚さdmを
前層までの影響を折り込んで算出し(S8,S9,S1
2)、求めた屈折率n1、吸収係数k1から、減衰率κ
1を算出し、この減衰率κ1から第1層の結晶欠陥量D
1を算出し(S6,S7)、さらに、求めた屈折率n
m、吸収係数kmから、減衰率κmを算出し、この減衰
率κmから第m層の結晶欠陥量Dmを算出し(S10,
S11)、第1層から第M層までの試料の結晶欠陥量D
1〜DMを順次算出して、試料の第1層から第M層まで
の結晶欠陥量の深さ分布を測定する試料の結晶欠陥量の
測定方法である。In the present invention, a method of measuring the amount of crystal defects for solving the above-mentioned problems is as shown in FIG. 1, in which light is incident on a sample and the state of reflected light is measured. A method of measuring the crystal defect amount of the sample from the measured amount, in which the penetration depth of incident light into the basic sample having optical characteristics similar to those of the sample is calculated, and the first layer to the M-th layer are calculated. It is divided into M layers (M: an integer of 3 or more) (S2, S3), and the refractive index n1, the absorption coefficient k1, and the thickness d1 of the first layer are calculated from Fresnel's formula based on the measurement amount of the reflected light caused by the first layer. Calculated from (S
5) From the second layer to the Mth layer, from the second layer, from the measured amount of reflected light caused by the mth layer (m: an integer of 2 or more and M or less), the refractive index nm of the mth layer and absorption The coefficient km and the thickness dm are calculated by inserting the influence up to the previous layer (S8, S9, S1).
2) From the calculated refractive index n1 and absorption coefficient k1, the attenuation rate κ
1 is calculated, and the crystal defect amount D of the first layer is calculated from this attenuation rate κ1.
1 is calculated (S6, S7), and the calculated refractive index n
The attenuation rate κm is calculated from m and the absorption coefficient km, and the crystal defect amount Dm of the m-th layer is calculated from this attenuation rate κm (S10,
S11), the crystal defect amount D of the samples from the first layer to the Mth layer
1 to DM are sequentially calculated, and the depth distribution of the crystal defect amount from the first layer to the Mth layer of the sample is measured, which is a method of measuring the crystal defect amount of the sample.
【0011】また、本発明の結晶欠陥量の測定方法は、
試料に光を入射し、反射光の状態を計測してこの計測量
から試料の結晶欠陥量を測定する方法であって、試料の
測定個所の反射光スペクトルを計測し(S1)、試料に
光学特性が近似した基本試料の基本反射光スペクトルか
ら、各波長領域における入射光の試料への侵入深さを算
出し(S2)、入射光の侵入深さを第1層から第M層ま
でのM層(M:3以上の整数)に分割し(S3)、第1
層からの反射スペクトルから第1層の屈折率n1、吸収
係数k1、厚さd1をフレネルの公式から算出し(S
4,S5)、第2層から第M層までを第2層から順次、
当該第m層(m:2以上、M以下の整数)からの反射ス
ペクトルから第m層の屈折率nm、吸収係数km、厚さ
dmを前層までの影響を折り込んでフレネルの公式から
算出し(S8,S9,S12)、求めた屈折率n1、吸
収係数k1から、減衰率κ1を算出し、この減衰率κ1
から第1層の結晶欠陥量D1を算出し(S6,S7)、
また、求めた屈折率nm、吸収係数kmから、減衰率κ
mを算出し、この減衰率κmから第m層の結晶欠陥量D
mを算出し(S10,S11)、第1層から第M層まで
の試料の結晶欠陥量D1〜DMを順次算出して、試料の
第1層から第M層までの結晶欠陥量の深さ分布を測定す
る試料の結晶欠陥量の測定方法えある。The method of measuring the amount of crystal defects of the present invention is
A method of injecting light into a sample, measuring the state of reflected light, and measuring the amount of crystal defects in the sample from this measured amount, measuring the reflected light spectrum at the measurement point of the sample (S1), and optically measuring the sample. The depth of penetration of the incident light into the sample in each wavelength region is calculated from the basic reflected light spectrum of the basic sample having similar characteristics (S2), and the penetration depth of the incident light is calculated from the first layer to the Mth layer. Divide into layers (M: integer of 3 or more) (S3), first
From the reflection spectrum from the layer, the refractive index n1, the absorption coefficient k1, and the thickness d1 of the first layer were calculated from the Fresnel formula (S
4, S5), from the second layer to the M-th layer, sequentially from the second layer,
From the reflection spectrum from the m-th layer (m: an integer of 2 or more and M or less), the refractive index nm, the absorption coefficient km, and the thickness dm of the m-th layer were calculated from the Fresnel's formula by folding in the influences up to the previous layer. (S8, S9, S12), the attenuation rate κ1 is calculated from the obtained refractive index n1 and absorption coefficient k1, and the attenuation rate κ1 is calculated.
The crystal defect amount D1 of the first layer is calculated from (S6, S7),
Further, from the obtained refractive index nm and absorption coefficient km, the attenuation rate κ
m is calculated, and the crystal defect amount D of the m-th layer is calculated from this attenuation rate κm.
m (S10, S11), the crystal defect amounts D1 to DM of the samples from the first layer to the Mth layer are sequentially calculated, and the depth of the crystal defect amount from the first layer to the Mth layer of the sample is calculated. There is a method for measuring the amount of crystal defects in the sample whose distribution is measured.
【0012】さらに、本発明の結晶欠陥量の測定方法の
反射光の計測量は、上記試料への入射光の入射角を変化
させつつ測定した反射光の偏光の状態変化であるものと
することができる。Further, the amount of reflected light measured by the method for measuring the amount of crystal defects of the present invention is assumed to be a change in the polarization state of the reflected light measured while changing the incident angle of the incident light on the sample. You can
【0013】そして、本発明の結晶欠陥量の測定方法
は、反射光の計測量は開口数NAのレンズから入射され
る入射角0〜sin-1NAの単一波長の入射光に対する
P偏光、S偏光及び全反射量であるものとすることがで
きる。According to the method of measuring the amount of crystal defects of the present invention, the measured amount of reflected light is P-polarized for incident light of a single wavelength with an incident angle of 0 to sin -1 NA which is incident from a lens with a numerical aperture NA. It may be S-polarized and the amount of total reflection.
【0014】また、本発明の結晶欠陥量の測定測定装置
は、図2に示すように、 試料1に光を入射し、反射光
の状態を計測し、この計測量に基づいて試料の結晶欠陥
量を測定する装置であって、試料に光学特性が近似した
基本試料への入射光の侵入深さを算出して、第1層から
第M層までのM層(M:3以上の整数)に分割する分割
演算手段3と、第1層に起因する計測量から第1層の屈
折率n1、吸収係数k1、厚さd1を算出する第1層屈
折率算出手段4と、第2層から第M層までを第2層から
順次、当該第m層(m:2以上、M以下の整数)に起因
する計測量から第m層の屈折率nm、吸収係数km、厚
さdmを前層までの影響を折り込んで算出する次層屈折
率算出手段5と、求めた屈折率n1、吸収係数k1か
ら、減衰率κ1を算出し、この減衰率κ1から第1層の
結晶欠陥量D1を算出し、さらに、求めた屈折率nm、
吸収係数kmから、減衰率κmを算出し、この減衰率κ
mから第m層の結晶欠陥量Dmを算出する欠陥量算出手
段6と、上記各手段を制御して第1層から第M層までの
試料の結晶欠陥量D1〜DMを順次算出させる制御手段
7とを備え、第1層から第M層までの試料の結晶欠陥量
D1〜DMを順次算出する試料の結晶欠陥量の測定装置
である。Further, as shown in FIG. 2, the measuring apparatus for measuring the amount of crystal defects of the present invention makes light incident on the sample 1 and measures the state of reflected light, and based on this measured amount, the crystal defects of the sample. A device for measuring the amount, wherein the depth of penetration of incident light into a basic sample having optical characteristics similar to those of the sample is calculated, and M layers from the first layer to the Mth layer (M: an integer of 3 or more) From the second layer, the first layer refractive index calculation unit 4 that calculates the refractive index n1, the absorption coefficient k1, and the thickness d1 of the first layer from the measurement amount caused by the first layer. From the second layer to the M-th layer in order, the refractive index nm, the absorption coefficient km, and the thickness dm of the m-th layer are calculated from the measurement amount caused by the m-th layer (m: an integer of 2 or more and M or less). The next layer refractive index calculating means 5 for calculating the influences up to and the calculated refractive index n1 and absorption coefficient k1 calculate the attenuation rate κ1. Calculates the crystal defects amount D1 of the first layer from the attenuation rate .kappa.1, further refractive index nm was determined,
The attenuation rate κm is calculated from the absorption coefficient km, and this attenuation rate κ
Defect amount calculating means 6 for calculating the crystal defect amount Dm of the m-th layer from m, and control means for controlling the above-mentioned means to sequentially calculate the crystal defect amounts D1 to DM of the samples from the first layer to the M-th layer. 7 is an apparatus for measuring the amount of crystal defects of a sample, which sequentially calculates the amount of crystal defects D1 to DM of the samples from the first layer to the Mth layer.
【0015】また、本発明の結晶欠陥量の測定装置は、
所定波長領域の光束を試料1の測定位置に入射して、反
射光を測定して、試料の結晶欠陥量を測定する結晶欠陥
量の測定装置10であって、試料1)に光学特性が近似
した基本試料の反射光スペクトルから、各波長領域にお
ける入射光の試料への侵入深さを算出する深さ算出手段
2と、入射光の侵入深さを第1層から第M層までのM層
(M:3以上の整数)に分割する分割演算手段3と、第
1層からの反射スペクトルから第1層の屈折率n1、吸
収係数k1、厚さd1をフレネルの公式から算出する第
1層屈折率算出手段4)と第2層から第M層までを第2
層から順次、第m層(m:2以上、M以下の整数)から
の反射スペクトルから第m層の屈折率nm、吸収係数k
m、厚さdmを前層までの影響を折り込んでフレネルの
公式から算出する次層屈折率算出手段5と、求めた屈折
率n1、吸収係数k1から、減衰率κ1を算出し、この
減衰率κ1から第1層の結晶欠陥量D1を算出し、ま
た、求めた屈折率nm、吸収係数kmから、減衰率κm
を算出し、この減衰率κmから第m層の結晶欠陥量Dm
を算出する結晶欠陥量算出手段6と、上記各手段を制御
して第1層から第M層までの試料の結晶欠陥量D1〜D
Mを順次算出させる制御手段7とを備え、試料の第1層
から第M層までの結晶欠陥量の深さ分布を測定する試料
の結晶欠陥量の測定装置である。The crystal defect amount measuring apparatus of the present invention is
A crystal defect amount measuring device 10 for measuring a crystal defect amount of a sample by injecting a light beam in a predetermined wavelength region into a measurement position of the sample 1 and measuring reflected light, the optical characteristic of which is similar to that of the sample 1). Depth calculation means 2 for calculating the penetration depth of the incident light into the sample in each wavelength range from the reflected light spectrum of the basic sample, and the penetration depth of the incident light from the first layer to the M-th layer (M: integer greater than or equal to 3), and a first layer for calculating the refractive index n1, the absorption coefficient k1, and the thickness d1 of the first layer from the reflection spectrum from the first layer from the Fresnel's formula. The refractive index calculating means 4) and the second to Mth layers are second
From the reflection spectrum from the m-th layer (m: an integer of 2 or more and M or less) sequentially from the layer, the refractive index nm and the absorption coefficient k of the m-th layer
m and the thickness dm are calculated from the Fresnel's formula by folding in the influences up to the front layer, and the attenuation coefficient κ1 is calculated from the calculated refractive index n1 and absorption coefficient k1. The crystal defect amount D1 of the first layer was calculated from κ1, and the attenuation rate κm was calculated from the calculated refractive index nm and absorption coefficient km.
Is calculated, and the crystal defect amount Dm of the m-th layer is calculated from this attenuation rate κm.
And a crystal defect amount calculating means 6 for calculating the crystal defect amounts D1 to D of the samples from the first layer to the Mth layer by controlling the respective means.
A device for measuring the amount of crystal defects of a sample, which comprises a control unit 7 for sequentially calculating M and measures the depth distribution of the amount of crystal defects from the first layer to the M-th layer of the sample.
【0016】また、本発明の結晶欠陥量の測定装置で
は、紫外線領域から可視領域にかけての反射スペクトル
を計測する分光器8を設けることができる。Further, in the crystal defect amount measuring device of the present invention, a spectroscope 8 for measuring the reflection spectrum from the ultraviolet region to the visible region can be provided.
【0017】そして、本発明の結晶欠陥量の測定装置で
は、反射光の計測量は上記試料への入射光の入射角を変
化させつつ測定した反射光の偏光の状態変化とすること
ができる。In the crystal defect amount measuring device of the present invention, the measurement amount of the reflected light can be a change in the polarization state of the reflected light measured while changing the incident angle of the incident light on the sample.
【0018】さらに、本発明の結晶欠陥量の測定装置で
は、反射光の計測量は開口数NAのレンズから入射され
る入射角0°〜(sin-1NA)°の単一波長の入射光
に対するP偏光、S偏光及び全反射量であるものとする
ことができる。Further, in the crystal defect amount measuring device of the present invention, the measured amount of the reflected light is the incident light of a single wavelength with an incident angle of 0 ° to (sin -1 NA) ° which is incident from a lens having a numerical aperture NA. Can be P-polarized light, S-polarized light, and total reflection amount.
【0019】さらにまた、本発明のイオン注入量測定方
法は、試料に光を入射し、反射光の状態を計測して、こ
の計測量から試料へのイオン注入量を測定する方法であ
って、試料に光学特性が近似した基本試料への入射光の
侵入深さを算出して、第1層から第M層までのM層
(M:3以上の整数)に分割し、第1層に起因する反射
光の計測量から第1層の屈折率n1、吸収係数k1、厚
さd1をフレネルの公式から算出し、第2層から第M層
までを第2層から順次、第m層(m:2以上、M以下の
整数)に起因する反射光の計測量から第m層の屈折率n
m、吸収係数km、厚さdmを前層までの影響を折り込
んで算出し、求めた屈折率n1、吸収係数k1から、減
衰率κ1を算出し、さらに、求めた屈折率nm、吸収係
数kmから、減衰率κmを算出し、この減衰率κ1〜減
衰率κmの値を加え合わせ、この値から結晶へのイオン
注入量を測定するものである。Furthermore, the ion implantation amount measuring method of the present invention is a method of measuring the ion implantation amount into the sample from the measured amount by injecting light into the sample, measuring the state of reflected light, The penetration depth of the incident light into the basic sample, which has optical characteristics similar to those of the sample, is calculated and divided into M layers (M: an integer of 3 or more) from the first layer to the Mth layer, which results from the first layer. From the measured amount of reflected light, the refractive index n1, the absorption coefficient k1, and the thickness d1 of the first layer are calculated from the Fresnel formula, and the second layer to the Mth layer are sequentially arranged from the second layer to the mth layer (m : An integer of 2 or more and M or less) from the measured amount of reflected light to the refractive index n of the m-th layer
m, the absorption coefficient km, and the thickness dm are calculated by inserting the influence up to the previous layer, and the attenuation rate κ1 is calculated from the calculated refractive index n1 and absorption coefficient k1, and the calculated refractive index nm and absorption coefficient km are calculated. Then, the attenuation rate κm is calculated, the values of the attenuation rate κ1 to the attenuation rate κm are added, and the amount of ion implantation into the crystal is measured from this value.
【0020】そして、本発明のイオン注入量の測定装置
は、試料に光を入射し、反射光の状態を計測し、この計
測量に基づいて試料へのイオン注入量を測定する装置で
あって、試料に光学特性が近似した基本試料への入射光
の侵入深さを算出して、第1層から第M層までのM層
(M:3以上の整数)に分割する分割演算手段と、第1
層に起因する計測量から第1層の屈折率n1、吸収係数
k1、厚さd1を算出する第1層屈折率算出手段と、第
2層から第M層までを第2層から順次、当該第m層
(m:2以上、M以下の整数)に起因する計測量から第
m層の屈折率nm、吸収係数km、厚さdmを前層まで
の影響を折り込んで算出する次層屈折率算出手段と、求
めた屈折率n1、吸収係数k1から、減衰率κ1を算出
し、さらに、求めた屈折率nm、吸収係数kmから、減
衰率κmを算出し、この減衰率κ1〜減衰率κmの値を
加え合わせ、この値から結晶へのイオン注入量を測定す
るイオン注入両算出手段とを備え、試料へのイオン注入
量を算出するものである。The ion implantation dose measuring device of the present invention is a device for injecting light into a sample, measuring the state of reflected light, and measuring the ion implantation dose into the sample based on this measured amount. Dividing operation means for calculating the penetration depth of incident light into a basic sample having optical characteristics similar to those of the sample and dividing the depth into M layers (M: an integer of 3 or more) from the first layer to the Mth layer, First
The first layer refractive index calculating means for calculating the refractive index n1, the absorption coefficient k1, and the thickness d1 of the first layer from the measurement amounts caused by the layers, and the second layer to the Mth layer from the second layer in order. Refractive index of the next layer calculated from the measurement amount caused by the m-th layer (m: an integer of 2 or more and M or less) by calculating the refractive index nm, the absorption coefficient km, and the thickness dm of the m-th layer by folding in the influences up to the previous layer. An attenuation rate κ1 is calculated from the calculating means and the calculated refractive index n1 and the absorption coefficient k1, and an attenuation rate κm is calculated from the calculated refractive index nm and the absorption coefficient km, and the attenuation rates κ1 to κm are calculated. And an ion implantation both-calculating means for measuring the ion implantation amount into the crystal from this value are added, and the ion implantation amount into the sample is calculated.
【0021】従って、本発明に係る結晶欠陥量の測定方
法、イオン注入量の測定方法、及び、測定装置によれ
ば、試料の所定深さまでの結晶欠陥に起因する量に基づ
いて試料の結晶欠陥量を測定し、これに基づいて光学定
数である減衰率κを求めるものであるから、イオン注入
量、イオン種に依存しない定量的な測定を行なうことが
できる。Therefore, according to the method for measuring the amount of crystal defects, the method for measuring the amount of ion implantation, and the measuring apparatus according to the present invention, the crystal defects of the sample are determined based on the amount of the crystal defects up to a predetermined depth of the sample. Since the amount is measured and the attenuation rate κ which is an optical constant is determined based on the measured amount, it is possible to perform a quantitative measurement independent of the ion implantation amount and the ion species.
【0022】そして、本発明によれば、入射光の侵入深
さを算出して、試料を第1層から第M層までのM層
(M:3以上の整数)に分割し、測定結果に基づいて、
第1層から第M層まで、順次屈折率、吸収係数、厚さを
前層までの影響を折り込んで算出し、これから、減衰率
κを算出し、この減衰率κから試料の結晶欠陥量D1〜
DMを順次算出するから、試料の第1層から第M層まで
の結晶欠陥量の深さ分布を測定することができる。そし
て試料へのイオン注入量を上記減衰率κ1〜κmの総和
を求めて、図16に示すように、予め求めておいた総減
衰率とイオン注入量との関係から、イオン注入量をもと
めることができる。Further, according to the present invention, the penetration depth of incident light is calculated, the sample is divided into M layers (M: an integer of 3 or more) from the first layer to the Mth layer, and the measurement result is obtained. On the basis of,
From the first layer to the M-th layer, the refractive index, the absorption coefficient, and the thickness are sequentially calculated by inserting the influences up to the previous layer, and the attenuation rate κ is calculated from this, and the crystal defect amount D1 of the sample is calculated from the attenuation rate κ. ~
Since DM is sequentially calculated, the depth distribution of the amount of crystal defects from the first layer to the Mth layer of the sample can be measured. Then, the ion implantation amount to the sample is calculated by summing the above attenuation rates κ1 to κm, and as shown in FIG. 16, the ion implantation amount is obtained from the relationship between the total attenuation rate and the ion implantation amount which is obtained in advance. You can
【0023】[0023]
【発明の実施の形態】以下、本発明の実施の形態にかか
る結晶欠陥量の測定方法、イオン注入量の測定方法、及
び測定装置を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION A crystal defect amount measuring method, an ion implantation amount measuring method, and a measuring apparatus according to embodiments of the present invention will be described in detail below.
【0024】〔第1の実施の形態の説明〕まず、この形
態に係る結晶欠陥量の測定方法により作動する装置につ
いて説明する。この例は、従来例に示した半導体製造の
プロセス中において、図4に示すように、イオン注入装
置50またはプラズマエッチング装置の下流側に結晶欠
陥量測定装置10を配置して、結晶の欠陥量を測定し、
この測定値に基づいて、イオン注入やプラズマエッチン
グの管理を行なうものである。[Description of First Embodiment] First, an apparatus that operates by the crystal defect amount measuring method according to this embodiment will be described. In this example, during the semiconductor manufacturing process shown in the conventional example, as shown in FIG. 4, the crystal defect amount measuring device 10 is arranged on the downstream side of the ion implantation device 50 or the plasma etching device, and the crystal defect amount is increased. Is measured
Ion implantation and plasma etching are controlled based on the measured values.
【0025】この管理は、結晶の欠陥量を測定すること
により、設定したイオン注入が正常に行われたかどうか
を確認し、イオン注入装置の異常を確認したり、イオン
注入量が不足している場合に、再度シリコンウエハにイ
オン注入等を行うようにするものである。In this control, the amount of crystal defects is measured to confirm whether the set ion implantation is normally performed, the abnormality of the ion implantation apparatus is confirmed, or the ion implantation amount is insufficient. In this case, the silicon wafer is again ion-implanted.
【0026】そして、この結晶欠陥量の測定装置は、反
射光スペクトルを検出する分光器8を備えたものであ
る。The crystal defect amount measuring apparatus is equipped with a spectroscope 8 for detecting the reflected light spectrum.
【0027】本例にかかる結晶欠陥量の測定装置10に
は、図2に示すように、試料1に光学特性が近似した一
様な光学特性を持つ基本試料の反射光スペクトルから、
各波長領域における入射光の試料への侵入深さを算出す
る深さ算出手段2と、入射光の侵入深さを第1層から第
M層までの3層に分割する分割演算手段3と、第1層か
らの反射スペクトルから第1層の屈折率n1、吸収係数
k1、厚さd1をフレネルの公式から算出する第1層屈
折率算出手段4と、第2層、第3層までを第2層から順
次、各層からの反射スペクトルから第m層の屈折率n
m、吸収係数km、厚さdmを前層までの影響を折り込
んでフレネルの公式から算出する次層屈折率算出手段5
と、求めた屈折率n1、吸収係数k1から、減衰率κ1
を算出し、この減衰率κ1から第1層の結晶欠陥量D1
を算出し、また、求めた屈折率n2,n3、吸収係数k
1,k2から、減衰率κ2,k3を算出し、この減衰率
κ2,k3から第m層の結晶欠陥量D2,D3を算出す
る結晶欠陥量算出手段6と、上記各手段を制御して第1
層から第M層までの試料の結晶欠陥量D1〜D3を順次
算出させる制御手段7とを備えている。In the crystal defect amount measuring apparatus 10 according to the present example, as shown in FIG. 2, from the reflected light spectrum of the basic sample having uniform optical characteristics similar to those of the sample 1,
Depth calculation means 2 for calculating the penetration depth of the incident light into the sample in each wavelength region, and division calculation means 3 for dividing the penetration depth of the incident light into three layers from the first layer to the Mth layer. The first layer refractive index calculating means 4 for calculating the refractive index n1, the absorption coefficient k1, and the thickness d1 of the first layer from the reflection spectrum from the first layer, and the second layer and the third layer are calculated as the first layer. The refractive index of the m-th layer n
Next layer refractive index calculating means 5 for calculating m, absorption coefficient km, and thickness dm from the Fresnel's formula by folding in the influence up to the previous layer.
From the obtained refractive index n1 and absorption coefficient k1, the attenuation rate κ1
From the attenuation factor κ1 and the crystal defect amount D1 of the first layer
And the calculated refractive index n2, n3, absorption coefficient k
1, k2, the attenuation rate κ2, k3 is calculated, and the crystal defect amount D2, D3 of the m-th layer is calculated from the attenuation rate κ2, k3. 1
And a control unit 7 for sequentially calculating the crystal defect amounts D1 to D3 of the samples from the layers to the Mth layer.
【0028】そして、本例では、この深さ算出手段2、
分割演算手段3、第1層屈折率算出手段4、次層屈折率
算出手段5、結晶欠陥量算出手段6及び制御手段7は、
具体的にはコンピュータのCPUで、予め与えられたプ
ログラムを実行することにより各機能手段として実現す
る。なお、これらの手段として専用のハードウエアを設
けて、装置を構成してもよい。In this example, the depth calculating means 2,
The division calculation means 3, the first layer refractive index calculation means 4, the next layer refractive index calculation means 5, the crystal defect amount calculation means 6 and the control means 7 are
Specifically, the CPU of the computer realizes each functional unit by executing a given program. The device may be configured by providing dedicated hardware as these means.
【0029】また、上記反射光スペクトルを検出する反
射スペクトルの分光器8は、通常の膜圧測定に使用され
るものであり、図3に示すように光源21と、集光光学
系22と、ビームスプリッタ23と、光源の雑音ゆらぎ
補正用の参照光信号を得るための参照部24と、試料か
らの反射光を分散させる回折格子25と、各波長におけ
る光強度を測定する低雑音ディテクタ26とを備える。The reflection spectrum spectroscope 8 for detecting the reflection light spectrum is used for ordinary film pressure measurement. As shown in FIG. 3, a light source 21, a condensing optical system 22, and A beam splitter 23, a reference unit 24 for obtaining a reference light signal for noise fluctuation correction of a light source, a diffraction grating 25 for dispersing reflected light from a sample, and a low noise detector 26 for measuring light intensity at each wavelength. Equipped with.
【0030】この例では、光源21として100nm〜
1000nm(紫外領域から可視領域)の波長領域で連
続波長を有するキセノンアークランプ(またはタングス
テンハロゲンランプと重水素ランプを複合したもの)を
使用し、集光光学系22は上記波長領域において使用で
きるものを使用し、回折格子としてはホログラフグレー
ティングであって収差補正能力を有した固定式のものを
使用している。そして、低雑音ディテクタとしては温度
制御機能付きのCCDアレイを使用し、各波長領域にお
ける反射率を出力するものとしている。In this example, the light source 21 has a wavelength of 100 nm
A xenon arc lamp (or a combination of a tungsten halogen lamp and a deuterium lamp) having a continuous wavelength in the wavelength range of 1000 nm (from the ultraviolet range to the visible range) is used, and the condensing optical system 22 can be used in the above wavelength range. As the diffraction grating, a fixed type holographic grating having aberration correction capability is used. A CCD array with a temperature control function is used as the low noise detector, and the reflectance in each wavelength region is output.
【0031】次に、本例に係る装置の作動の状態を本例
の測定原理とともに説明する。本例にかかる結晶欠陥量
の測定測定装置は以下のように作動する。Next, the operating state of the apparatus according to this example will be described together with the measurement principle of this example. The measurement apparatus for measuring the amount of crystal defects according to this example operates as follows.
【0032】まず、図1乃至図3に示すように、分光器
8が上記所定波長領域の光束を試料1の測定位置に入射
して、反射光を分光して、各波長領域における反射率を
計測する。First, as shown in FIGS. 1 to 3, the spectroscope 8 makes the luminous flux in the predetermined wavelength region incident on the measurement position of the sample 1 and disperses the reflected light to obtain the reflectance in each wavelength region. measure.
【0033】これにより分光器8は、図9に示すよう
に、波長に対する反射率の関係を出力する(S1)。図
9には4種類の試料について測定した例を示している。
この測定例は、基板としてp型(100)Siを用い、
イオン種としてAs+を100KeVのエネルギで注入
し、ドーズ量をそれぞれ3×1012ion/cm2 (○
印)、3×1013ion/cm2 (●印)、1×1015
ion/cm2(■印)、及び1×1016ion/cm
2 (□印)とした場合である。As a result, the spectroscope 8 outputs the relationship between the reflectance and the wavelength as shown in FIG. 9 (S1). FIG. 9 shows an example of measurement of four types of samples.
In this measurement example, p-type (100) Si is used as the substrate,
As + was ion-implanted at an energy of 100 KeV, and the dose was 3 × 10 12 ion / cm 2 (○).
Mark), 3 × 10 13 ion / cm 2 (● mark), 1 × 10 15
ion / cm 2 (■ mark), and 1 × 10 16 ion / cm
2 (square mark).
【0034】そして本装置では、試料1に光学特性が近
似した光学特性を持つ基本試料の基本反射光スペクトル
に基づいて、各波長領域における入射光の試料への侵入
深さを算出する(S2)。この場合、試料であるシリコ
ンウエハについて、イオン注入を行ったとき、密度の低
いイオン注入を行ったときには、単結晶シリコンを基本
試料とし、また密度の高い注入をおこない、密度の高い
欠陥層を有するものであると予想されるときにはアモル
ファスシリコンを基本試料とする。これらの場合、両基
本試料への侵入深さは、理論計算及び実験値とは良く一
致するため、理論計算で得た侵入深さを使用することが
できる。Then, in the present apparatus, the penetration depth of the incident light into each sample in each wavelength region is calculated based on the basic reflected light spectrum of the basic sample having the optical properties similar to those of the sample 1 (S2). . In this case, when ion implantation is performed on a sample silicon wafer, or when ion implantation with low density is performed, single crystal silicon is used as a basic sample, and implantation with high density is performed, and a defect layer with high density is provided. Amorphous silicon is used as a basic sample when it is expected to be a material. In these cases, the penetration depth into both basic samples is in good agreement with the theoretical calculation and the experimental value, so the penetration depth obtained by the theoretical calculation can be used.
【0035】図11は光入射時における各波長(30
0、400、500、600、700及び800nm)
のアモルファスシリコンでの各深さにおけるエネルギ密
度比を示したものであり、図12はアモルファスシリコ
ンへの光の貫通深さと波長との関係を示したものであ
る。これらから、長波長の光は短波長の光に比べてより
深く侵入することがわかる。FIG. 11 shows each wavelength (30
0, 400, 500, 600, 700 and 800 nm)
FIG. 12 shows the energy density ratio at each depth in amorphous silicon, and FIG. 12 shows the relationship between the penetration depth of light into amorphous silicon and the wavelength. From these, it can be seen that light of long wavelength penetrates deeper than light of short wavelength.
【0036】次に、入射光の侵入深さを表面から第1
層、第2層及び第3層までの3層に分割する(S3)。
知られているところによれば、図5に示すように、シリ
コン基板にイオン注入を行ったときの結晶欠陥量は、図
6に示すように、表面から増大しはじめ、最大点から、
減少する傾向にある。従って、図7に示すように試料を
表面から適切に少なくとも3層(第1層(複素屈折率:
n1+ik1)、第2層(複素屈折率:n2+ik
2)、第3層(複素屈折率:n3+ik3))に分割す
ることにより、この結晶欠陥量の深さ方向の分布を測定
することができる。Next, the penetration depth of the incident light is first measured from the surface.
A layer, a second layer, and a third layer are divided into three layers (S3).
It is known that, as shown in FIG. 5, the amount of crystal defects when the silicon substrate is ion-implanted begins to increase from the surface as shown in FIG.
It tends to decrease. Therefore, as shown in FIG. 7, at least three layers (first layer (complex refractive index:
n1 + ik1), the second layer (complex refractive index: n2 + ik)
2) By dividing the third layer (complex refractive index: n3 + ik3)), the distribution of the amount of crystal defects in the depth direction can be measured.
【0037】そして、表面から適切に3層に分割すれ
ば、図8示すように、例えば、波長200nm以下の光
は第1層が有する光学定数により定まるスペクトルを示
し、また波長400nm以下の光は第1層及び第2層の
光学定数により定まるスペクトルを示し、同様に更に長
波長、例えば波長800nmの光は第1層、第2層及び
第3層の光学定数により定まるスペクトルを示すものと
なる。If the surface is appropriately divided into three layers, as shown in FIG. 8, for example, light having a wavelength of 200 nm or less exhibits a spectrum determined by the optical constants of the first layer, and light having a wavelength of 400 nm or less is obtained. A spectrum determined by the optical constants of the first layer and the second layer is shown, and similarly, light having a longer wavelength, for example, a wavelength of 800 nm shows a spectrum determined by the optical constants of the first layer, the second layer, and the third layer. .
【0038】この例では、第1層を表面から25nm、
第2層を100nm、第3層を200nmとして設定
し、それぞれの層までの結晶欠陥量により影響をうける
波長として、深さ25nmに対しては波長300nm、
深さ100nmに対しては波長400nm、また、深さ
200nmに対しては波長300nm以下のデータを使
用した。これらの基準は図11に示すグラフにおいて、
各深度におけるエネルギ密度比が50%以上となるもの
を選択した。この値は、必要に応じて適宜選択すること
ができる。In this example, the first layer is 25 nm from the surface,
The second layer is set to 100 nm and the third layer is set to 200 nm, and the wavelength affected by the amount of crystal defects up to the respective layers is a wavelength of 300 nm for a depth of 25 nm,
Data with a wavelength of 400 nm was used for a depth of 100 nm, and data with a wavelength of 300 nm or less was used for a depth of 200 nm. These criteria are in the graph shown in FIG.
An energy density ratio of 50% or more at each depth was selected. This value can be appropriately selected as needed.
【0039】次に、第1層からの反射スペクトルから第
1層の屈折率n1、吸収係数k1、厚さd1をフレネル
の公式から算出する(S4,S5)。この算出は、第1
層の屈折率n1、吸収係数k1、厚さd1を適宜選択し
て、フレネルの公式Next, from the reflection spectrum from the first layer, the refractive index n1, the absorption coefficient k1, and the thickness d1 of the first layer are calculated from the Fresnel's formula (S4, S5). This calculation is the first
The refractive index n1, the absorption coefficient k1, and the thickness d1 of the layer are appropriately selected, and the Fresnel formula is used.
【0040】[0040]
【数1】 [Equation 1]
【0041】の(1)に代入し、各波長における反射率
を計算して、計算で得られたスペクトル曲線が実際に測
定で得たスペクトル曲線(図9)に一番近い分布となる
屈折率n、吸収係数k、厚さdの値を第1層の屈折率n
1、吸収係数k1、厚さd1として確定するものであ
る。Substituting in (1) of (1), the reflectance at each wavelength is calculated, and the spectral curve obtained by the calculation has a distribution that is closest to the spectral curve actually obtained by the measurement (FIG. 9). n, absorption coefficient k, and thickness d are the refractive index n of the first layer.
1, the absorption coefficient k1, and the thickness d1.
【0042】このとき、算出して求める厚さd1は、前
に定めた第1層の値(例えば25nm)とは異なるもの
となる場合があるが、これは、基本試料と当該試料との
光学定数の差により生ずるものであるので、実際のスペ
クトルのものを採用することにする。At this time, the calculated thickness d1 may be different from the previously determined value of the first layer (for example, 25 nm), which is the optical difference between the basic sample and the sample. Since it is caused by the difference in the constant, the actual spectrum is adopted.
【0043】そして、この例では、上記フレネルの公式
の(2)により屈折率n1、吸収係数k1から減衰率κ
1を求め、公知の減衰率κと結晶欠陥量Dの関係から当
該第1層の結晶欠陥量D1を求めるようにしている(S
7)。この減衰率κと結晶欠陥量Dとの間には一定の関
係があり、これは実験で求められ確定することができ
る。In this example, according to the Fresnel's formula (2), the refractive index n1 and the absorption coefficient k1 are converted to the attenuation rate κ.
1, and the crystal defect amount D1 of the first layer is calculated from the known relationship between the attenuation factor κ and the crystal defect amount D (S).
7). There is a fixed relationship between the attenuation rate κ and the crystal defect amount D, which can be determined and determined experimentally.
【0044】尚、この減衰率κと結晶欠陥量Dとの算出
は第2層、第3層の屈折率、吸収係数を計算してからま
とめて行ってもよい。The attenuation rate κ and the crystal defect amount D may be calculated collectively after calculating the refractive index and the absorption coefficient of the second layer and the third layer.
【0045】次に、第2層の屈折率n2、吸収係数k
2、厚さd2を第1層の影響を折り込んでフレネルの公
式から算出する(S8,S9,S12)。この計算は、
第1層について算出した屈折率n1、吸収係数k1、及
び厚さd1を考慮して、第2層の屈折率n2、吸収係数
k2、厚さd2を適宜選択して、これらの値を上記フレ
ネルの公式に代入し、各波長における反射率を計算し
て、計算で得られたスペクトル曲線が実際に測定で得た
スペクトル曲線に一番近い各値の組み合わせを第2層の
屈折率n2、吸収係数k2、厚さd2として確定するも
のである。Next, the second layer has a refractive index n2 and an absorption coefficient k.
2. The thickness d2 is calculated from the Fresnel formula by folding in the influence of the first layer (S8, S9, S12). This calculation is
Considering the refractive index n1, the absorption coefficient k1, and the thickness d1 calculated for the first layer, the refractive index n2, the absorption coefficient k2, and the thickness d2 of the second layer are appropriately selected, and these values are set to the Fresnel value. Substituting into the formula, the reflectance at each wavelength is calculated, and the combination of each value whose calculated spectral curve is closest to the measured spectral curve is the refractive index n2 of the second layer and absorption. The coefficient k2 and the thickness d2 are determined.
【0046】そして、本例では、この屈折率n2、吸収
係数k2、減衰率κ2を算出し、この減衰率κ2から第
2層の結晶欠陥量D2を算出する(S10,S11)。
同様に、第3層について、第1層について算出した屈折
率n1、吸収係数k1、及び厚さd1、第2層について
算出した屈折率n2、吸収係数k2、及び厚さd2を考
慮に入れ試料の結晶欠陥量D3算出する(S11)。Then, in this example, the refractive index n2, the absorption coefficient k2, and the attenuation rate κ2 are calculated, and the crystal defect amount D2 of the second layer is calculated from the attenuation rate κ2 (S10, S11).
Similarly, with respect to the third layer, the refractive index n1, the absorption coefficient k1, and the thickness d1 calculated for the first layer, and the refractive index n2, the absorption coefficient k2, and the thickness d2 calculated for the second layer are taken into consideration. The crystal defect amount D3 of is calculated (S11).
【0047】これにより、試料の第1層から第3層まで
の結晶欠陥量を測定することができ、図13至図15に
示すように深さ方向に対する結晶欠陥量Dの量を表示す
る(S13)。As a result, the crystal defect amount from the first layer to the third layer of the sample can be measured, and the amount of crystal defect amount D in the depth direction is displayed as shown in FIGS. 13 to 15. S13).
【0048】ここで、各図は、基板としてp型(10
0)Siを用い、イオン種としてAs+を100KeV
のエネルギで注入した場合について、試料の本装置での
測定結果と、当該試料のTRIM(TRansport of Ion i
n Matter)シミュレーションの結果とを示している。そ
して、図13は3×1014ion/cm2 、図14は1
×1015ion/cm2 、図15は3×1016ion/
cm2 の場合を示している。Here, each drawing shows a p-type (10
0) Si is used and As + is 100 KeV as an ion species.
Measurement results of this sample and the TRIM (TRansport of Ion i
n Matter) simulation results are shown. 13 is 3 × 10 14 ion / cm 2 , and FIG. 14 is 1
× 10 15 ion / cm 2 , FIG. 15 shows 3 × 10 16 ion / cm 2
cm 2 is shown.
【0049】各図において、●印は、公知のTRIMシ
ミュレーションにより得た試料の結晶欠陥量D(右スケ
ール)を示し、○印は本例で得た減衰率κ(左スケー
ル)を示している。このTRIMによるシミュレーショ
ンで得られた結果は、実際の結晶欠陥量の破壊検査で得
られた結果と良く一致することが知られている。In each figure, ● indicates the crystal defect amount D (right scale) of the sample obtained by known TRIM simulation, and ○ indicates the attenuation rate κ (left scale) obtained in this example. . It is known that the result obtained by this TRIM simulation is in good agreement with the result obtained by the destructive inspection of the actual amount of crystal defects.
【0050】各図において、シミュレーションの結晶欠
陥量の値と、本例で得た減衰量の値とは、その傾向が良
く一致し、適当な補正を行うことにより、本例の測定に
より、試料であるシリコンウエハの結晶欠陥量の深さ方
向の分布を測定できることがわかる。In each of the figures, the tendency of the crystal defect amount of the simulation and that of the attenuation amount obtained in this example are in good agreement, and by performing appropriate correction, the sample of the sample is obtained by the measurement of this example. It can be seen that the distribution of the amount of crystal defects in the silicon wafer in the depth direction can be measured.
【0051】以上説明したように、本実施の形態に係る
結晶欠陥量の測定方法、及び、測定装置によれば、試料
の所定深さまでの結晶欠陥に起因する量に基づいて試料
の結晶欠陥量を測定し、これに基づいて光学定数である
減衰率κを求めるものであるから、イオン注入量、イオ
ン種に依存しない定量的な測定を行なうことができる。As described above, according to the crystal defect amount measuring method and the measuring apparatus according to the present embodiment, the crystal defect amount of the sample is determined based on the amount of the crystal defect up to the predetermined depth of the sample. Is measured, and the attenuation factor κ, which is an optical constant, is determined based on the measured value. Therefore, quantitative measurement that does not depend on the ion implantation amount or ion species can be performed.
【0052】そして、本例によれば、入射光の侵入深さ
を算出して、試料を第1層から第3層までに分割し、測
定結果に基づいて、第1層から第3層まで、順次屈折
率、吸収係数、厚さを前層までの影響を折り込んで算出
し、これから、減衰率κを算出し、この減衰率κから試
料の結晶欠陥量D1〜D3を順次算出するから、試料の
第1層から第3層までの結晶欠陥量の深さ分布を測定す
ることができる。Then, according to this example, the penetration depth of the incident light is calculated, the sample is divided into the first layer to the third layer, and the first layer to the third layer are based on the measurement result. , The refractive index, the absorption coefficient, and the thickness are sequentially calculated by inserting the influences up to the previous layer, the attenuation rate κ is calculated from this, and the crystal defect amounts D1 to D3 of the sample are sequentially calculated from the attenuation rate κ. The depth distribution of the amount of crystal defects from the first layer to the third layer of the sample can be measured.
【0053】〔他の実施の形態の説明〕上記実施の形態
では、上記反射光の計測量として白色光の各波長領域の
反射率(反射スペクトル)を計測して、各層の結晶欠陥
量を測定したが、測定量は反射スペクトルに限ることな
く、本発明を適用することができる。即ち、偏光解析法
を測定原理とする方法(エプソメトリ)により、上記試
料への複数波長のレーザ入射光の入射角を変化させつつ
測定した反射光の偏光の状態変化により、これらの値か
らフレネルの公式に基づいて上述した実施の形態と同様
の手法を用いて、各層の複素屈折率(nm+ikm)、
厚さdmを求めて、減衰率κm複数層の結晶欠陥率Dm
を求めることができる。[Description of Other Embodiments] In the above embodiment, the reflectance (reflection spectrum) of each wavelength region of white light is measured as the measurement amount of the reflected light to measure the crystal defect amount of each layer. However, the present invention can be applied without limiting the measurement amount to the reflection spectrum. That is, the polarization state of the reflected light measured while changing the incident angle of the laser incident light of a plurality of wavelengths on the sample by the method using the ellipsometry as a measurement principle (epometry) changes the Fresnel's value from these values. Using the same method as in the above-described embodiment based on the formula, the complex refractive index (nm + ikm) of each layer,
The thickness dm is calculated and the attenuation rate κm is the crystal defect rate Dm of a plurality of layers.
Can be requested.
【0054】この場合には、入射光の入射角度及び波長
により、試料への光の入射深度が異なることと、試料の
複素屈折率により偏光が旋回される程度が異なることを
利用するものであるが、各層についての結晶欠陥量Dを
求める基本的な考えかたは本発明と同様である。In this case, the fact that the depth of incidence of light on the sample differs depending on the incident angle and wavelength of the incident light and that the degree of polarization rotation is different depending on the complex refractive index of the sample is utilized. However, the basic idea for obtaining the crystal defect amount D for each layer is the same as in the present invention.
【0055】また、この偏光解析方と類似の方法とし
て、反射光の計測量として、大開口数NA(例えば0.
9)の顕微鏡対物レンズから入射される入射角0°〜
(sin -1NA)°(例えば0°〜64°)の単一波長
の直線偏光である入射光に対する反射光のP偏光、S偏
光のプロファイル、及び全反射量を測定して、偏光の状
態、反射率からフレネルの公式に基づいて、上述した実
施の形態と同様の手法を用いて各層の複素屈折率(nm
+ikm)、厚さdmを求めて、複数層の結晶欠陥率D
mを求めることができる。A method similar to this ellipsometry method is used.
As a measurement amount of reflected light, a large numerical aperture NA (for example, 0.
Angle of incidence 0 ° from the microscope objective lens of 9)
(Sin -1NA) ° (eg 0 ° to 64 °) single wavelength
P polarization and S polarization of the reflected light with respect to the incident light that is the linearly polarized light of
The profile of light and the amount of total reflection are measured to determine the polarization state.
Based on Fresnel's formula from
The complex refractive index of each layer (nm
+ Ikm) and the thickness dm, and the crystal defect rate D of the multiple layers
m can be obtained.
【0056】この場合には入射光の入射角度により、試
料への光の入射深度が異なることと、試料の複素屈折率
により偏光が旋回される程度が異なることを利用するも
のであるが、基本的な考えかたは本発明と同様である。In this case, the fact that the incident depth of light on the sample differs depending on the incident angle of the incident light and the degree to which the polarized light is rotated depending on the complex refractive index of the sample is utilized. The basic idea is the same as that of the present invention.
【0057】〔イオン注入量測定装置の説明〕一般に図
16に示すように結晶の総減衰率κとイオンのドーズ量
とには、一定の関係があることが知られている。このた
め、上述した結晶欠陥量測定装置に、各層における減衰
量κ1〜κmを加算する加算手段を設け、この加算手段
で求めた総減衰率κを基に、上記図16に示した関係を
適用するイオン注入量算出装置を設けることにより、試
料のイオン注入量を測定することができる。これは、上
述した結晶欠陥量測定装置を構成する計算機のプログラ
ムの一部を変更することにより、実現することができ
る。[Explanation of Ion Implantation Quantity Measuring Device] It is generally known that there is a certain relationship between the total attenuation κ of crystals and the dose of ions, as shown in FIG. Therefore, the above-described crystal defect amount measuring device is provided with an adding means for adding the attenuation amounts κ1 to κm in each layer, and the relationship shown in FIG. 16 is applied based on the total attenuation rate κ obtained by the adding means. The ion implantation amount of the sample can be measured by providing the ion implantation amount calculation device. This can be realized by changing a part of the program of the computer that constitutes the above-mentioned crystal defect amount measuring device.
【0058】なお、上記各実施の形態では、結晶の反射
光の測定を波長による反射率、反射光の偏光の変化、及
び入射光のレンズの開口数を利用した方法についてて説
明したが、これらの計測量は試料の所定深さまでの結晶
欠陥に起因して変化する量であればどのような量でも採
用することができる。In each of the above-mentioned embodiments, the method of measuring the reflected light of the crystal by using the reflectance according to the wavelength, the change of the polarization of the reflected light, and the numerical aperture of the lens of the incident light has been described. Any measured amount can be adopted as long as it changes due to crystal defects up to a predetermined depth of the sample.
【0059】そして、本発明に係る結晶欠陥量の測定方
法、イオン注入量測定方法、及び、測定装置をイオン注
入装置50またはプラズマエッチング装置の下流側に結
晶欠陥量測定装置10を配置して、結晶の欠陥量を測定
し、この測定値に基づいて、イオン注入やプラズマエッ
チングの管理を行なうことができる。この管理は、結晶
の欠陥量、イオン注入量を測定することにより、設定し
たイオン注入が正常に行われたかどうかを確認し、イオ
ン注入装置の異常を確認したり、イオン注入量が不足し
ている場合に、再度シリコンウエハにイオン注入等を行
うようにするものや、イオン注入中やプラズマエッチン
グ中にこのような測定を行いイオン注入やプラズマエッ
チングの自動制御を行なうことができる。The crystal defect amount measuring method, the ion implantation amount measuring method, and the measuring device according to the present invention are arranged on the downstream side of the ion implantation device 50 or the plasma etching device. The amount of crystal defects can be measured, and ion implantation and plasma etching can be controlled based on the measured value. This management checks the amount of crystal defects and the amount of ion implantation to check whether the set ion implantation is normally performed, confirms that the ion implantation system is abnormal, or that the amount of ion implantation is insufficient. In such a case, ion implantation or the like may be performed again on the silicon wafer, or such measurement may be performed during ion implantation or plasma etching to automatically control ion implantation or plasma etching.
【0060】[0060]
【発明の効果】以上説明したように、本発明に係る結晶
欠陥量の測定方法、イオン注入量の測定方法、及び、測
定装置によれば、試料の所定深さまでの結晶欠陥に起因
する量に基づいて試料の結晶欠陥量を測定し、これに基
づいて光学定数である減衰率κを求めるものであるか
ら、イオン注入量、イオン種に依存しない定量的な測定
を行なうことができるという効果を奏する。As described above, according to the method for measuring the amount of crystal defects, the method for measuring the amount of ion implantation, and the measuring apparatus according to the present invention, the amount of crystal defects due to the crystal defects up to a predetermined depth of the sample can be determined. The amount of crystal defects in the sample is measured based on this, and the attenuation factor κ, which is the optical constant, is determined based on this, so the effect of being able to perform quantitative measurement that does not depend on the ion implantation amount or ion species is obtained. Play.
【0061】また、本発明によれば、入射光の侵入深さ
を算出して、試料を第1層から第M層までのM層に分割
し、測定結果に基づいて、第1層から第M層まで、順次
屈折率、吸収係数、厚さを前層までの影響を折り込んで
算出し、これから、減衰率κを算出し、この減衰率κか
ら試料の結晶欠陥量D1〜DMを順次算出するから、試
料の第1層から第M層までの結晶欠陥量の深さ分布、及
びイオン注入量を測定することができるという効果を奏
する。Further, according to the present invention, the penetration depth of the incident light is calculated, the sample is divided into M layers from the first layer to the Mth layer, and the first layer to the Mth layer are determined based on the measurement result. Up to the M layer, the refractive index, the absorption coefficient, and the thickness are sequentially calculated by inserting the influences up to the previous layer, the attenuation rate κ is calculated, and the crystal defect amounts D1 to DM of the sample are sequentially calculated from the attenuation rate κ. Therefore, it is possible to measure the depth distribution of the crystal defect amount from the first layer to the M-th layer of the sample and the ion implantation amount.
【図1】本発明に係る結晶欠陥量の測定方法の実施の形
態を示すフローチャートである。FIG. 1 is a flowchart showing an embodiment of a crystal defect amount measuring method according to the present invention.
【図2】本発明に係る結晶欠陥量の測定装置の実施の形
態を示すブロック図である。FIG. 2 is a block diagram showing an embodiment of a crystal defect amount measuring device according to the present invention.
【図3】図2に示した結晶欠陥量の測定装置の分光器の
光学系を示す図である。3 is a diagram showing an optical system of a spectroscope of the crystal defect amount measuring device shown in FIG.
【図4】本発明にかかる結晶欠陥量の測定装置の半導体
製造プロセス中の配置位置を示す図である。FIG. 4 is a diagram showing an arrangement position of a crystal defect amount measuring device according to the present invention during a semiconductor manufacturing process.
【図5】シリコン基板へのイオン注入の状態を示す概略
断面図である。FIG. 5 is a schematic cross-sectional view showing a state of ion implantation into a silicon substrate.
【図6】イオン注入された試料の深さと結晶欠陥量との
関係を示すグラフである。FIG. 6 is a graph showing the relationship between the depth of an ion-implanted sample and the amount of crystal defects.
【図7】イオン注入された試料の複素屈折率の分布状態
を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing the distribution state of the complex refractive index of the ion-implanted sample.
【図8】試料への光の侵入状態を示す概略断面図であ
る。FIG. 8 is a schematic cross-sectional view showing how light enters a sample.
【図9】試料の反射スペクトルの例を示すグラフであ
る。FIG. 9 is a graph showing an example of a reflection spectrum of a sample.
【図10】試料の深さと減衰率との関係を示すグラフで
ある。FIG. 10 is a graph showing the relationship between sample depth and attenuation rate.
【図11】アモルファスシリコン試料の深さと光のエネ
ルギ密度比を示すグラフである。FIG. 11 is a graph showing the depth of an amorphous silicon sample and the energy density ratio of light.
【図12】アモルファスシリコンへの波長による貫通深
さを示すグラフである。FIG. 12 is a graph showing a penetration depth depending on a wavelength into amorphous silicon.
【図13】測定の評価を行うための深さと減衰率および
結晶欠陥量との関係を示すグラフである。FIG. 13 is a graph showing the relationship between the depth and the attenuation rate and the amount of crystal defects for evaluation of measurement.
【図14】測定の評価を行うための深さと減衰率および
結晶欠陥量との関係を示すグラフである。FIG. 14 is a graph showing the relationship between the depth and the attenuation rate and the amount of crystal defects for evaluation of measurement.
【図15】測定の評価を行うための深さと減衰率および
結晶欠陥量との関係を示すグラフである。FIG. 15 is a graph showing the relationship between the depth and the attenuation rate and the amount of crystal defects for evaluating the measurement.
【図16】総減衰率κとイオン注入量(ドーズ量)との
関係を示すグラフである。FIG. 16 is a graph showing the relationship between the total attenuation rate κ and the ion implantation amount (dose amount).
1 試料 2 深さ算出手段 3 分割演算手段 4 第1層屈折率算出手段 5 次層屈折率算出手段 6 結晶欠陥量算出手段 7 制御手段 8 分光器 10 結晶欠陥測定装置 DESCRIPTION OF SYMBOLS 1 sample 2 depth calculating means 3 division calculating means 4 first layer refractive index calculating means 5 next layer refractive index calculating means 6 crystal defect amount calculating means 7 control means 8 spectroscope 10 crystal defect measuring device
Claims (11)
して、この計測量から試料の結晶欠陥量を測定する方法
であって、 試料に光学特性が近似した基本試料への入射光の侵入深
さを算出して、第1層から第M層までのM層(M:3以
上の整数)に分割し(S2,S3)、 第1層に起因する反射光の計測量から第1層の屈折率n
1、吸収係数k1、厚さd1をフレネルの公式から算出
し(S5)、 第2層から第M層までを第2層から順次、第m層(m:
2以上、M以下の整数)に起因する反射光の計測量から
第m層の屈折率nm、吸収係数km、厚さdmを前層ま
での影響を折り込んで算出し(S8,S9,S12)、 求めた屈折率n1、吸収係数k1から、減衰率κ1を算
出し、この減衰率κ1から第1層の結晶欠陥量D1を算
出し(S6,S7)、さらに、求めた屈折率nm、吸収
係数kmから、減衰率κmを算出し、この減衰率κmか
ら第m層の結晶欠陥量Dmを算出し(S10,S1
1)、 第1層から第M層までの試料の結晶欠陥量D1〜DMを
順次算出して、試料の第1層から第M層までの結晶欠陥
量の深さ分布を測定する試料の結晶欠陥量の測定方法。1. A method for injecting light into a sample, measuring the state of reflected light, and measuring the amount of crystal defects in the sample from this measured amount, which is incident on a basic sample having optical characteristics similar to those of the sample. The penetration depth of light is calculated and divided into M layers (M: an integer of 3 or more) from the first layer to the Mth layer (S2, S3), and the measured amount of reflected light caused by the first layer is calculated. Refractive index n of the first layer
1, the absorption coefficient k1 and the thickness d1 were calculated from the Fresnel formula (S5), and the second layer to the Mth layer were sequentially arranged from the second layer to the mth layer (m:
From the measured amount of reflected light due to (integer of 2 or more and M or less), the refractive index nm, the absorption coefficient km, and the thickness dm of the m-th layer are calculated by folding in the influences up to the previous layer (S8, S9, S12). From the calculated refractive index n1 and absorption coefficient k1, the attenuation rate κ1 is calculated, and the crystal defect amount D1 of the first layer is calculated from this attenuation rate κ1 (S6, S7). The attenuation rate κm is calculated from the coefficient km, and the crystal defect amount Dm of the m-th layer is calculated from this attenuation rate κm (S10, S1).
1), the crystal of the sample from which the crystal defect amounts D1 to DM of the samples from the first layer to the M-th layer are sequentially calculated to measure the depth distribution of the crystal defect amount from the first layer to the M-th layer of the sample Defect amount measurement method.
してこの計測量から試料の結晶欠陥量を測定する方法で
あって、 試料の測定個所の反射光スペクトルを計測し(S1)、 試料に光学特性が近似した基本試料の基本反射光スペク
トルから、各波長領域における入射光の試料への侵入深
さを算出し(S2)、 入射光の侵入深さを第1層から第M層までのM層(M:
3以上の整数)に分割し(S3)、 第1層からの反射スペクトルから第1層の屈折率n1、
吸収係数k1、厚さd1をフレネルの公式から算出し
(S4,S5)、 第2層から第M層までを第2層から順次、当該第m層
(m:2以上、M以下の整数)からの反射スペクトルか
ら第m層の屈折率nm、吸収係数km、厚さdmを前層
までの影響を折り込んでフレネルの公式から算出し(S
8,S9,S12)、 求めた屈折率n1、吸収係数k1から、減衰率κ1を算
出し、この減衰率κ1から第1層の結晶欠陥量D1を算
出し(S6,S7)、また、求めた屈折率nm、吸収係
数kmから、減衰率κmを算出し、この減衰率κmから
第m層の結晶欠陥量Dmを算出し(S10,S11)、 第1層から第M層までの試料の結晶欠陥量D1〜DMを
順次算出して、試料の第1層から第M層までの結晶欠陥
量の深さ分布を測定する試料の結晶欠陥量の測定方法。2. A method of injecting light into a sample, measuring the state of reflected light, and measuring the amount of crystal defects in the sample from this measured amount, wherein the reflected light spectrum at the measurement point of the sample is measured (S1). ), The penetration depth of the incident light into the sample in each wavelength region is calculated from the basic reflected light spectrum of the basic sample whose optical characteristics are similar to those of the sample (S2), and the penetration depth of the incident light is calculated from the first layer to the first layer. M layers up to M layer (M:
(Integer of 3 or more) (S3), and from the reflection spectrum from the first layer, the refractive index n1 of the first layer,
The absorption coefficient k1 and the thickness d1 are calculated from the Fresnel's formula (S4, S5), and the second layer to the Mth layer are sequentially arranged from the second layer to the mth layer (m: an integer of 2 or more and M or less). The refractive index nm, the absorption coefficient km, and the thickness dm of the m-th layer are calculated from the reflection spectrum from (3) using the Fresnel formula (S
8, S9, S12), the attenuation rate κ1 is calculated from the obtained refractive index n1 and absorption coefficient k1, and the crystal defect amount D1 of the first layer is calculated from this attenuation rate κ1 (S6, S7), and also calculated. The attenuation rate κm is calculated from the refractive index nm and the absorption coefficient km, and the crystal defect amount Dm of the m-th layer is calculated from this attenuation rate κm (S10, S11). A method of measuring the amount of crystal defects in a sample, which sequentially calculates the amount of crystal defects D1 to DM and measures the depth distribution of the amount of crystal defects from the first layer to the M-th layer of the sample.
光の入射角を変化させつつ測定した反射光の偏光の状態
変化である請求項1記載の結晶欠陥量の測定方法3. The method for measuring a crystal defect amount according to claim 1, wherein the measurement amount of the reflected light is a change in the polarization state of the reflected light measured while changing the incident angle of the incident light on the sample.
ズから入射される入射角0〜sin-1NAの単一波長の
入射光に対するP偏光、S偏光及び全反射量である請求
項1記載の結晶欠陥量の測定方法。4. The measured amount of the reflected light is P-polarized light, S-polarized light and total reflection amount with respect to incident light of a single wavelength having an incident angle of 0 to sin −1 NA which is incident from a lens having a numerical aperture NA. 1. The method for measuring the amount of crystal defects according to 1.
を計測し、この計測量に基づいて試料の結晶欠陥量を測
定する装置であって、 試料に光学特性が近似した基本試料への入射光の侵入深
さを算出して、第1層から第M層までのM層(M:3以
上の整数)に分割する分割演算手段(3)と、 第1層に起因する計測量から第1層の屈折率n1、吸収
係数k1、厚さd1を算出する第1層屈折率算出手段
(4)と、 第2層から第M層までを第2層から順次、当該第m層
(m:2以上、M以下の整数)に起因する計測量から第
m層の屈折率nm、吸収係数km、厚さdmを前層まで
の影響を折り込んで算出する次層屈折率算出手段(5)
と、 求めた屈折率n1、吸収係数k1から、減衰率κ1を算
出し、この減衰率κ1から第1層の結晶欠陥量D1を算
出し、さらに、求めた屈折率nm、吸収係数kmから、
減衰率κmを算出し、この減衰率κmから第m層の結晶
欠陥量Dmを算出する欠陥量算出手段(6)と、 上記各手段を制御して第1層から第M層までの試料の結
晶欠陥量D1〜DMを順次算出させる制御手段(7)と
を備え、 第1層から第M層までの試料の結晶欠陥量D1〜DMを
順次算出する試料の結晶欠陥量の測定装置。5. A device for measuring the state of reflected light by injecting light into a sample (1) and measuring the amount of crystal defects in the sample based on the measured amount, which has a basic optical property similar to that of the sample. A division calculation means (3) for calculating the penetration depth of the incident light to the sample and dividing it into M layers (M: an integer of 3 or more) from the first layer to the Mth layer, and the division calculation means (3). The first layer refractive index calculating means (4) for calculating the refractive index n1, the absorption coefficient k1, and the thickness d1 of the first layer from the measured amount, and the second layer to the Mth layer from the second layer in order. Next layer refractive index calculation that calculates the refractive index nm, absorption coefficient km, and thickness dm of the mth layer from the measurement amount caused by the m layer (m: an integer of 2 or more and M or less) by folding in the influence on the previous layer Means (5)
Then, the attenuation rate κ1 is calculated from the obtained refractive index n1 and the absorption coefficient k1, the crystal defect amount D1 of the first layer is calculated from this attenuation rate κ1, and further, from the obtained refractive index nm and the absorption coefficient km,
Defect amount calculating means (6) for calculating the attenuation rate κm and calculating the crystal defect amount Dm of the m-th layer from the attenuation rate κm, and the above-mentioned means for controlling each of the samples from the first layer to the M-th layer A control device (7) for sequentially calculating the crystal defect amounts D1 to DM, and a device for measuring the crystal defect amount of the samples, which sequentially calculates the crystal defect amounts D1 to DM of the samples from the first layer to the Mth layer.
位置に入射して、反射光を測定して、試料の結晶欠陥量
を測定する結晶欠陥量の測定装置(10)であって、 試料(1)に光学特性が近似した基本試料の反射光スペ
クトルから、各波長領域における入射光の試料への侵入
深さを算出する深さ算出手段(2)と、 入射光の侵入深さを第1層から第M層までのM層(M:
3以上の整数)に分割する分割演算手段(3)と、 第1層からの反射スペクトルから第1層の屈折率n1、
吸収係数k1、厚さd1をフレネルの公式から算出する
第1層屈折率算出手段(4)と、 第2層から第M層までを第2層から順次、第m層(m:
2以上、M以下の整数)からの反射スペクトルから第m
層の屈折率nm、吸収係数km、厚さdmを前層までの
影響を折り込んでフレネルの公式から算出する次層屈折
率算出手段(5)と、 求めた屈折率n1、吸収係数k1から、減衰率κ1を算
出し、この減衰率κ1から第1層の結晶欠陥量D1を算
出し、また、求めた屈折率nm、吸収係数kmから、減
衰率κmを算出し、この減衰率κmから第m層の結晶欠
陥量Dmを算出する結晶欠陥量算出手段(6)と、 上記各手段を制御して第1層から第M層までの試料の結
晶欠陥量D1〜DMを順次算出させる制御手段(7)と
を備え、 試料の第1層から第M層までの結晶欠陥量の深さ分布を
測定する試料の結晶欠陥量の測定装置。6. A crystal defect amount measuring device (10) for measuring a crystal defect amount of a sample by injecting a light beam in a predetermined wavelength region into a measurement position of the sample (1) and measuring reflected light. Depth calculation means (2) for calculating the penetration depth of the incident light into the sample in each wavelength region from the reflected light spectrum of the basic sample having optical characteristics similar to those of the sample (1), and the penetration depth of the incident light From the first layer to the Mth layer (M:
A division calculation unit (3) for dividing the first layer into a refractive index n1 of the first layer,
The first layer refractive index calculating means (4) for calculating the absorption coefficient k1 and the thickness d1 from the Fresnel's formula, and the second to Mth layers from the second layer to the mth layer (m:
From the reflection spectrum from 2 or more and M or less)
From the next layer refractive index calculation means (5) for calculating the refractive index nm, the absorption coefficient km, and the thickness dm of the layer from the Fresnel's formula by incorporating the influence up to the previous layer, and the calculated refractive index n1 and absorption coefficient k1, The attenuation rate κ1 is calculated, the crystal defect amount D1 of the first layer is calculated from this attenuation rate κ1, the attenuation rate κm is calculated from the obtained refractive index nm and the absorption coefficient km, and this attenuation rate κm is calculated as A crystal defect amount calculating means (6) for calculating the crystal defect amount Dm of the m layer, and a control means for controlling the respective means to sequentially calculate the crystal defect amounts D1 to DM of the samples from the first layer to the Mth layer. (7) An apparatus for measuring a crystal defect amount of a sample, comprising: (1) measuring the depth distribution of the crystal defect amount from the first layer to the Mth layer of the sample.
スペクトルを計測する分光器(8)を設けた請求項6記
載の結晶欠陥量の測定装置。7. The crystal defect amount measuring device according to claim 6, further comprising a spectroscope (8) for measuring a reflection spectrum from an ultraviolet region to a visible region.
光の入射角を変化させつつ測定した反射光の偏光の状態
変化である請求項5記載の結晶欠陥量の測定装置。8. The crystal defect amount measuring device according to claim 5, wherein the measurement amount of the reflected light is a change in the polarization state of the reflected light measured while changing the incident angle of the incident light on the sample.
ズから入射される入射角0°〜(sin-1NA)°の単
一波長の入射光に対するP偏光、S偏光及び全反射量で
ある請求項5記載の結晶欠陥量の測定装置9. The measurement amount of the reflected light is P-polarized light, S-polarized light and total reflection amount with respect to a single wavelength incident light having an incident angle of 0 ° to (sin −1 NA) °, which is incident from a lens having a numerical aperture NA. 6. The apparatus for measuring the amount of crystal defects according to claim 5.
測して、この計測量から試料へのイオン注入量を測定す
る方法であって、 試料に光学特性が近似した基本試料への入射光の侵入深
さを算出して、第1層から第M層までのM層(M:3以
上の整数)に分割し、 第1層に起因する反射光の計測量から第1層の屈折率n
1、吸収係数k1、厚さd1をフレネルの公式から算出
し、 第2層から第M層までを第2層から順次、第m層(m:
2以上、M以下の整数)に起因する反射光の計測量から
第m層の屈折率nm、吸収係数km、厚さdmを前層ま
での影響を折り込んで算出し、 求めた屈折率n1、吸収係数k1から、減衰率κ1を算
出し、さらに、求めた屈折率nm、吸収係数kmから、
減衰率κmを算出し、この減衰率κ1〜減衰率κmの値
を加え合わせ、この値から結晶へのイオン注入量を測定
する試料へのイオン注入量の測定方法。10. A method for measuring a state of reflected light by injecting light into a sample, and measuring an amount of ion implantation into the sample from the measured amount, which comprises: The penetration depth of the incident light is calculated and divided into M layers (M: an integer of 3 or more) from the first layer to the Mth layer, and the first layer is calculated from the measured amount of the reflected light caused by the first layer. Refractive index n
1, the absorption coefficient k1 and the thickness d1 were calculated from the Fresnel's formula, and from the second layer to the M-th layer, from the second layer to the m-th layer (m:
(Integer of 2 or more and M or less), the refractive index nm, the absorption coefficient km, and the thickness dm of the m-th layer are calculated by folding in the influences up to the previous layer from the measured amount of reflected light, and the obtained refractive index n1, From the absorption coefficient k1, the extinction coefficient κ1 is calculated, and from the obtained refractive index nm and absorption coefficient km,
A method for measuring the amount of ion implantation into a sample in which the attenuation rate κm is calculated, the values of the attenuation rate κ1 to the attenuation rate κm are added together, and the amount of ion implantation into the crystal is measured from this value.
測し、この計測量に基づいて試料へのイオン注入量を測
定する装置であって、 試料に光学特性が近似した基本試料への入射光の侵入深
さを算出して、第1層から第M層までのM層(M:3以
上の整数)に分割する分割演算手段と、 第1層に起因する計測量から第1層の屈折率n1、吸収
係数k1、厚さd1を算出する第1層屈折率算出手段
と、 第2層から第M層までを第2層から順次、当該第m層
(m:2以上、M以下の整数)に起因する計測量から第
m層の屈折率nm、吸収係数km、厚さdmを前層まで
の影響を折り込んで算出する次層屈折率算出手段と、 求めた屈折率n1、吸収係数k1から、減衰率κ1を算
出し、さらに、求めた屈折率nm、吸収係数kmから、
減衰率κmを算出し、この減衰率κ1〜減衰率κmの値
を加え合わせ、この値から結晶へのイオン注入量を測定
するイオン注入両算出手段とを備え、 試料へのイオン注入量を算出する試料へのイオン注入量
測定装置。11. A device for injecting light into a sample, measuring the state of reflected light, and measuring the amount of ion implantation into the sample based on the measured amount, wherein the sample is a basic sample having optical characteristics similar to those of the sample. Of the incident light is calculated and divided into M layers (M: an integer of 3 or more) from the first layer to the Mth layer, and a first amount is calculated from the measurement amount caused by the first layer. The first layer refractive index calculating means for calculating the refractive index n1, the absorption coefficient k1, and the thickness d1 of the layer, and the second layer to the Mth layer from the second layer sequentially from the mth layer (m: 2 or more, Next layer refractive index calculating means for calculating the refractive index nm, the absorption coefficient km, and the thickness dm of the m-th layer from the measurement amount caused by (the integer less than or equal to M), and calculating the calculated refractive index n1. , The attenuation coefficient κ1 is calculated from the absorption coefficient k1, and the calculated refractive index nm and the absorption coefficient km are
The attenuation rate κm is calculated, the values of the attenuation rate κ1 to the attenuation rate κm are added together, and an ion implantation both-calculation means for measuring the ion implantation amount into the crystal from this value is provided, and the ion implantation amount into the sample is calculated. Device for measuring the amount of ion implantation into a sample.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3848496A JPH09229856A (en) | 1996-02-26 | 1996-02-26 | Measuring method for amount of crystal defect, measuring method for injecting amount of ion, and measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3848496A JPH09229856A (en) | 1996-02-26 | 1996-02-26 | Measuring method for amount of crystal defect, measuring method for injecting amount of ion, and measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09229856A true JPH09229856A (en) | 1997-09-05 |
Family
ID=12526542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3848496A Pending JPH09229856A (en) | 1996-02-26 | 1996-02-26 | Measuring method for amount of crystal defect, measuring method for injecting amount of ion, and measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09229856A (en) |
-
1996
- 1996-02-26 JP JP3848496A patent/JPH09229856A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7181211B2 (en) | Metrology method and system for thick films and high aspect ratio structures | |
CN109690235B (en) | Infrared spectroscopic reflectometer for measuring high aspect ratio structures | |
US10732515B2 (en) | Detection and measurement of dimensions of asymmetric structures | |
US7951672B2 (en) | Measurement and control of strained devices | |
US6665071B2 (en) | Method for determining ion concentration and energy of shallow junction implants | |
KR102518214B1 (en) | Mid-infrared Spectroscopy for Measurement of High Aspect Ratio Structures | |
US9470639B1 (en) | Optical metrology with reduced sensitivity to grating anomalies | |
US7327475B1 (en) | Measuring a process parameter of a semiconductor fabrication process using optical metrology | |
US6535285B1 (en) | Combination thermal wave and optical spectroscopy measurement system | |
KR20130113923A (en) | Method for measuring film thickness distribution of wafer having thin film | |
JP2005062188A (en) | Thickness measuring apparatus and thickness measuring method | |
CN111183509B (en) | Optical measurement system and method for high absorption film layer on high reflection film stack | |
TWI766116B (en) | Film thickness measurement device, film thickness measurement method, film thickness measurement program, and recording medium for recording film thickness measurement program | |
JP2003243467A (en) | Ellipsometry | |
US5717490A (en) | Method for identifying order skipping in spectroreflective film measurement equipment | |
JP3520379B2 (en) | Optical constant measuring method and device | |
JPH09229856A (en) | Measuring method for amount of crystal defect, measuring method for injecting amount of ion, and measuring apparatus | |
JPH10206354A (en) | Method for measuring density of thin film | |
US20100290046A1 (en) | Method and apparatus for determining the layer thickness and the refractive index of a sample | |
Bigault et al. | Recent polarizing supermirror projects at the ILL | |
US6605482B2 (en) | Process for monitoring the thickness of layers in a microelectronic device | |
JPH0521566A (en) | Measuring method for ion implantation amount in semiconductor crystal | |
US20070178611A1 (en) | Semiconductor wafer having measurement area feature for determining dielectric layer thickness | |
Delphin et al. | Recent polarizing supermirror projects at the ILL | |
JPH0479405B2 (en) |