[go: up one dir, main page]

JPH09224488A - Container for raising seedling - Google Patents

Container for raising seedling

Info

Publication number
JPH09224488A
JPH09224488A JP8033785A JP3378596A JPH09224488A JP H09224488 A JPH09224488 A JP H09224488A JP 8033785 A JP8033785 A JP 8033785A JP 3378596 A JP3378596 A JP 3378596A JP H09224488 A JPH09224488 A JP H09224488A
Authority
JP
Japan
Prior art keywords
container
polymer
crystal
crystallization
seedling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8033785A
Other languages
Japanese (ja)
Other versions
JP3687171B2 (en
Inventor
Masao Matsui
雅男 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP03378596A priority Critical patent/JP3687171B2/en
Publication of JPH09224488A publication Critical patent/JPH09224488A/en
Application granted granted Critical
Publication of JP3687171B2 publication Critical patent/JP3687171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a container for raising a seedling composed of a polyester polymer whose main component is lactic acid and having specified properties suppressing the proliferation of bad pathogenic bacteria, accelerating the growth of plants, having a long life, being naturally decomposed with improved environmental contamination resistance and being useful for the agriculture and horticulture. SOLUTION: This container is composed of a polyester polymer whose main component is lactic acid and is crystallized so as to (i) turn the melting point 3 of the crystal of the polymer to be equal to or higher than 120 deg.C, preferably equal to or higher than 130 deg.C, and (ii) turn the heat of fusion of the crystal to be equal to or more than 10J/g, preferably equal to or more than 20J/g, and also, (iii) the crystal is practically unoriented. Also, it is preferable that the container for raising the seedling is molded from the polymer containing a crystalline nucleus agent (talc or the like, for instance) and/or the one for which a crystallization acceleration component (polybutylene terephthalate or the like, for instance) is copolymerized or/and mixed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、植物の苗をその中
で育てる育苗容器であって、しかも育てた苗をその容器
ごと植付けできる、育苗容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seedling raising container for growing seedlings of a plant in which the raised seedling can be planted together with the container.

【0002】[0002]

【従来の技術】そのまま植付けできる育苗容器は、植付
けが容易で労力が省け、しかも苗を傷めないので植付け
の活着率が高いという特徴があり、園芸、農業、林業、
土木などの分野で広く要望されている。しかし、従来の
合成樹脂のポットや植木鉢などは、植付け後土壌中で分
解しないので環境汚染の問題があり、また植物の根の成
長も阻害するという問題がある。
2. Description of the Related Art Seedling raising containers that can be planted as they are are characterized by high planting survival rate because planting is easy and labor-saving and the seedlings are not damaged.
It is widely demanded in fields such as civil engineering. However, conventional synthetic resin pots and flower pots have a problem of environmental pollution because they are not decomposed in soil after planting, and also have a problem of inhibiting root growth of plants.

【0003】近年、脂肪族ポリエステルなどの自然分解
性樹脂が開発され、それを育苗ポットに応用することも
既によく知られている(PETROTEC 第18巻第
3号197ページ(1995))。脂肪族ポリエステル
の中でもポリ乳酸およびそれを主成分とする変性ポリ乳
酸は、強度、耐熱性、溶融成型容易性などの特性が優
れ、しかも将来量産すればコストも安くなる可能性が高
く、最も実用化が期待されている。
In recent years, naturally decomposable resins such as aliphatic polyesters have been developed, and it is already well known to apply them to seedling raising pots (PETROTEC Vol. 18, No. 3, page 197 (1995)). Among the aliphatic polyesters, polylactic acid and modified polylactic acid containing it as the main component are excellent in properties such as strength, heat resistance, and melt-moldability, and are likely to be cheaper in mass production in the future. Is expected.

【0004】いうまでもなく、育苗容器は、苗を育てて
いる間および植付け作業までの期間は、十分な強度を保
持していなければならない。育苗期間は植物や苗の種類
により異なるが、短いものでは3〜6ケ月程度、やや長
いもので1〜2年、特に長いものでは3〜5年である。
脂肪族ポリエステルの自然分解速度は、温度、湿度、土
壌の性質、土壌菌の種類などにより異なるが、従来の脂
肪族ポリエステル容器の寿命は6ケ月程度以下と短いも
のが多く、定植までに長期間例えば1年以上を要する目
的には、不適当なものが多い。
Needless to say, the seedling-growing container must maintain sufficient strength while growing the seedlings and during the period until the planting work. The period for raising seedlings varies depending on the type of plant or seedling, but is short for about 3 to 6 months, slightly long for 1 to 2 years, and particularly long for 3 to 5 years.
The natural decomposition rate of aliphatic polyester varies depending on temperature, humidity, soil properties, types of soil bacteria, etc., but the life of conventional aliphatic polyester containers is often as short as about 6 months or less, and it takes a long time before planting. For example, many of them are unsuitable for purposes that require one year or more.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、自然
環境下で完全に分解可能であり、且つより長い育苗期間
に耐えるように改良された、新規な育苗容器を提供する
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel seedling raising container which is completely degradable in a natural environment and improved to withstand a longer seedling raising period.

【0006】[0006]

【課題を解決するための手段】本発明の目的は、(1)
乳酸を主成分とするポリエステル重合体からなり、
(2)重合体の結晶の融点が120℃以上であり、且つ
(3)該結晶の溶融吸熱量が10ジュール/グラム以上
となるように結晶化されており、且つ(4)該結晶が実
質的に配向していないことを特徴とする、成型された新
規育苗用容器によって達成される。
The object of the present invention is (1).
Consisting of a polyester polymer whose main component is lactic acid,
(2) The melting point of the crystal of the polymer is 120 ° C. or higher, (3) the crystal is crystallized so that the melting endotherm of the crystal is 10 Joule / gram or higher, and (4) the crystal is substantially Achieved by a molded new container for raising seedlings, which is characterized in that it is not orientated.

【0007】ここで、乳酸を主成分とするポリエステル
重合体とは、L−乳酸または/及びD−乳酸に由来する
成分が50重量%以上のポリエステル重合体組成物で、
ポリL−乳酸ホモポリマー、ポリD−乳酸ホモポリマ
ー、ポリL/D乳酸共重合体、及びそれらに他の成分を
50重量%以下共重合体又は/及び混合したものをすべ
て包含する。
Here, the polyester polymer containing lactic acid as a main component is a polyester polymer composition containing 50% by weight or more of components derived from L-lactic acid and / or D-lactic acid.
It includes all poly L-lactic acid homopolymers, poly D-lactic acid homopolymers, poly L / D lactic acid copolymers, and copolymers containing 50% by weight or less of other components or a mixture thereof.

【0008】共重合する成分としては、エステル結合形
成性のものが好ましく、例えば(1)グリコール酸、ヒ
ドロキシブチルカルボン酸などのような脂肪族ヒドロキ
シカルボン酸、(2)グリコリド、ブチロラクトン、カ
プロラクトンなどの脂肪族ラクトン、(3)エチレング
リコール、プロピレングリコール、ブタンジオール、ヘ
キサンジオールなどのような脂肪族ジオール、(4)ジ
エチレングリコール、トリエチレングリコール、ポリエ
チレングリコール(PEG)、ポリプロピレングリコー
ル(PPG)、ポリブチレンエーテル、PEG/PPG
共重合体などの脂肪族エーテルグリコールおよびそのオ
リゴマー、(5)ポリブチレンカーボネートグリコー
ル、ポリヘキサンカーボネートグリコール、ポリオクタ
ンカーボネートグリコールなどのポリアルキレンカーボ
ネートグリコール及びそのオリゴマー、(6)コハク
酸、アジピン酸、アゼライン酸、セバシン酸、デカンジ
カルボン酸などの脂肪族ジカルボン酸などが挙げられ
る。この他にテレフタル酸、イソフタル酸、フタル酸、
ナフタレンジカルボン酸などの芳香族成分も応用可能で
ある。 上記ポリエステル重合原料は、ポリ乳酸にラン
ダム共重合又は/及びブロック共重合することが出来
る。一般に、ランダム共重合ではポリマーの結晶性が損
なわれる傾向が強く、共重合比率(重量比)は20%程
度以下、特に1〜10%程度が好ましいことが多い。一
方ブロック共重合では、あまり結晶性を損なわずに例え
ば耐衝撃性などを改良することが出来、共重合比率は5
0%以下、特に1〜40%程度とすることが出来、3〜
35%の範囲が広く用いられる。
As the components to be copolymerized, those capable of forming an ester bond are preferable. For example, (1) an aliphatic hydroxycarboxylic acid such as glycolic acid or hydroxybutylcarboxylic acid, (2) glycolide, butyrolactone or caprolactone. Aliphatic lactone, (3) Aliphatic diol such as ethylene glycol, propylene glycol, butanediol, hexanediol, etc., (4) Diethylene glycol, triethylene glycol, polyethylene glycol (PEG), polypropylene glycol (PPG), polybutylene ether , PEG / PPG
Aliphatic ether glycols such as copolymers and oligomers thereof, (5) polybutylene carbonate glycols, polyhexane carbonate glycols, polyalkylene carbonate glycols such as polyoctane carbonate glycols and oligomers thereof, (6) succinic acid, adipic acid, azelaine Examples thereof include acids, sebacic acid, and aliphatic dicarboxylic acids such as decanedicarboxylic acid. Besides this, terephthalic acid, isophthalic acid, phthalic acid,
Aromatic components such as naphthalenedicarboxylic acid are also applicable. The polyester polymerization raw material can be randomly copolymerized and / or block copolymerized with polylactic acid. Generally, in random copolymerization, the crystallinity of the polymer tends to be impaired, and the copolymerization ratio (weight ratio) is preferably about 20% or less, particularly about 1 to 10%. On the other hand, in block copolymerization, impact resistance and the like can be improved without impairing crystallinity, and the copolymerization ratio is 5
It can be 0% or less, particularly about 1 to 40%, and 3 to
A range of 35% is widely used.

【0009】また、上記ポリエステル重合原料以外に、
例えばイソシアネート化合物、エポキシ化合物、単官能
化合物、3官能以上の多官能化合物を副次的に用いるこ
とも出来る。
In addition to the above polyester polymerization raw materials,
For example, an isocyanate compound, an epoxy compound, a monofunctional compound, or a trifunctional or higher-functional compound can be used as a subordinate.

【0010】ポリ乳酸を共重合や混合によって変性する
目的は、融点の低下(重合温度や成型温度の低下)、溶
融流動性、成型性、強靭性、衝撃強度、柔軟性や弾性回
復性の改良、接着性、結晶化温度の低下、親水性や撥水
性の改良、透明性の改良、分解性の向上または抑制など
が挙げられる。
The purpose of modifying polylactic acid by copolymerization or mixing is to improve melting point (polymerization temperature and molding temperature), melt fluidity, moldability, toughness, impact strength, flexibility and elastic recovery. , Adhesion, reduction of crystallization temperature, improvement of hydrophilicity and water repellency, improvement of transparency, improvement or suppression of decomposability, and the like.

【0011】脂肪族ポリエステルの中でもポリ乳酸(ホ
モポリマー)およびそれを主成分とする変性ポリ乳酸
は、強度、耐熱性、溶融成型容易性などの特性が優れ、
しかも将来量産すればコストも安くなる可能性が高く、
最も実用化が期待されている。またポリ乳酸系ポリマー
は、自然環境下(土壌中、淡水中、海水中、堆肥中な
ど)での分解速度が他の脂肪族ポリエステルに比べて小
さく、長寿命という特徴があり、育苗に長期間を要する
用途に適している。本発明は、そのポリ乳酸系ポリマー
の分解性を一層低下させ、長期の育苗期間に耐えるよう
改良するものである。 ポリ乳酸ホモポリマーは、ガラ
ス転移点が約58℃と高く、昇温時の結晶化開始温度は
約90℃、結晶化ピーク(中心)温度は115〜125
℃であり、例えば射出成型したものは急冷されるため、
ほぼ非結晶(非晶)状態である。非晶品は、透明で柔ら
かいが、強度が低く、分解速度も早く比較的短寿命であ
る。押出し成型されたシートなども急冷されるので非晶
性であり、それを真空や圧空成型したものも非晶性であ
る。本発明は、これらの成型品のポリマーを結晶化させ
ることにより、その分解速度を抑制し寿命を延長するも
のである。結晶化による寿命の延長効果は、分解条件、
成型品の厚さ、形などで異なるが、10%以上、多くの
場合20%〜200%(3倍)程度となることが認めら
れる。
Among the aliphatic polyesters, polylactic acid (homopolymer) and modified polylactic acid containing it as a main component are excellent in properties such as strength, heat resistance and ease of melt molding,
Moreover, if mass production is performed in the future, the cost is likely to be low,
The most practical application is expected. In addition, polylactic acid-based polymer has a characteristic that its decomposition rate under natural environment (in soil, fresh water, seawater, in compost, etc.) is smaller than that of other aliphatic polyesters and that it has a long life, so that it can be grown for a long time. Suitable for applications that require The present invention further reduces the degradability of the polylactic acid-based polymer and improves it so that it can withstand a long seedling raising period. The polylactic acid homopolymer has a high glass transition point of about 58 ° C., the crystallization start temperature at the time of heating is about 90 ° C., and the crystallization peak (center) temperature is 115 to 125.
℃, for example, injection molded products are cooled rapidly,
It is almost in an amorphous state. Amorphous products are transparent and soft, but have low strength, fast decomposition rate, and relatively short life. Extruded sheets and the like are also rapidly cooled, so they are amorphous, and those obtained by vacuum or pressure molding them are also amorphous. The present invention suppresses the decomposition rate and prolongs the life by crystallizing the polymer of these molded products. The effect of extending the life due to crystallization depends on the decomposition conditions,
Although it varies depending on the thickness and shape of the molded product, it is recognized that it is 10% or more, and in most cases, about 20% to 200% (3 times).

【0012】図1及び2は、結晶性ポリ乳酸系ポリマー
の走査型示差熱量計(DSC)による昇温時の吸熱、発
熱曲線(DSC曲線)の例である。図1はあまり結晶化
していない成型品の測定例で、1はガラス転移によるベ
ースラインの変化、2は結晶化による発熱ピーク、3は
溶融による吸熱ピークである。発熱または吸熱ピークの
熱量はポリマーの結晶性の大きさを示す。発熱量および
吸熱量は図の斜線部の面積に比例する。成型品の結晶化
度が低ほど、結晶化による発熱量(ピーク2)が大き
い。図2は十分に結晶化した成型品のDSC曲線で、ガ
ラス転移によるベースラインの変化1及び結晶化による
発熱ピーク2は見られず、結晶の溶融による吸熱ピーク
3のみが観測されている。
FIGS. 1 and 2 are examples of endothermic and exothermic curves (DSC curves) of crystalline polylactic acid type polymers when heated by a scanning differential calorimeter (DSC). FIG. 1 shows a measurement example of a molded product which is not so much crystallized, 1 is a change in baseline due to glass transition, 2 is an exothermic peak due to crystallization, and 3 is an endothermic peak due to melting. The amount of heat of the exothermic or endothermic peak indicates the crystallinity of the polymer. The amount of heat generation and the amount of heat absorption are proportional to the area of the shaded area in the figure. The lower the crystallinity of the molded product, the larger the amount of heat generated by crystallization (peak 2). FIG. 2 is a DSC curve of a sufficiently crystallized molded product. Baseline change 1 due to glass transition and exothermic peak 2 due to crystallization are not observed, but only endothermic peak 3 due to melting of crystals is observed.

【0013】成型品のDSC分析(昇温法)において、
溶融吸熱量H3(絶対値)と結晶化発熱量H2の差Hd
=H3−H2は、成型品の結晶化度に比例的であり、完
全に非晶性であればH3=H2となり、Hdはゼロであ
る。図2の例では、H2=0であり、H3=Hdであ
る。本発明の目的には、Hd(絶対値)が10ジュール
(J)/グラム(g)以上である必要があり、20J/
g以上が好ましく、30J/g以上が特に好ましく、4
0J/g以上が最も好ましい。なお十分に結晶化したポ
リ乳酸ホモポリマーの溶融吸熱量は50J/g程度であ
る。
In the DSC analysis (heating method) of the molded product,
Difference Hd between melting endotherm H3 (absolute value) and crystallization exotherm H2
= H3-H2 is proportional to the crystallinity of the molded product, and if completely amorphous, H3 = H2 and Hd is zero. In the example of FIG. 2, H2 = 0 and H3 = Hd. For the purpose of the present invention, Hd (absolute value) must be 10 Joules (J) / gram (g) or more, and 20 J /
g or more, particularly preferably 30 J / g or more, 4
Most preferably, it is 0 J / g or more. The melting endotherm of the fully crystallized polylactic acid homopolymer is about 50 J / g.

【0014】なおDSC測定は、窒素ガス中で、試料量
は約10mg、昇温速度は10℃/minとする。ま
た、第2成分などの混合や共重合で融点のピークが2個
以上観測されるときは、融点は最高温度のピークの中心
値(極値)とし、溶融吸熱量は全部の溶融吸熱ピークの
吸熱量の合計とする。
In the DSC measurement, the amount of sample is about 10 mg and the rate of temperature rise is 10 ° C./min in nitrogen gas. Further, when two or more melting point peaks are observed by mixing or copolymerization of the second component, the melting point is the center value (extreme value) of the peak of the maximum temperature, and the melting endothermic amount of all melting endothermic peaks. The total amount of heat absorption.

【0015】ポリ乳酸系ポリマーの成型品を十分結晶化
させるには、(1)成型品を結晶化温度以上で熱処理す
る、(2)重合体組成物に結晶核剤を混合しておき結晶
化し易くする、(3)重合体組成物に結晶化を促進する
成分を混合又は/及び共重合する、などの方法がある。
(1)の熱処理温度は、ポリ乳酸ホモポリマーでは90
℃以上、特に100〜140℃が好ましい(あまり高温
では、成型品が軟化する)。熱処理時間は、1分間でも
効果は有るが、通常は3分間以上、とくに5分〜2時間
程度とすることが多い。(2)結晶核剤は結晶化を早く
且つ十分にさせるもので、例えばタルク、珪酸カルシウ
ム、チタン酸カルシウム、窒化ボロン、酸化チタン、酸
化亜鉛、シリカ、炭酸カルシュムその他の無機粒子で、
例えば径10μm以下、特に5μm以下、多くの場合5
nm〜2μm程度のもの、同様にサッカリンのナトリウ
ム塩、安息香酸ナトリウム、ポリ乳酸系ポリマーよりも
融点の高いポリブチレンテレフタレート、ポリプロピレ
ンなどのポリマーその他の有機化合物の微粒子が挙げら
れる。これらの核剤は、結晶化を効果的に促進し結晶化
に必要な時間を短縮するが、昇温時の結晶化温度を大き
く変えることは出来ない。(3)結晶化促進成分は、共
重合や混合により、結晶化温度を低下させたり結晶化速
度を増進するもので、例えばガラス転移点が常温以下特
に0℃以下のポリマー又は/及び可塑剤が挙げられる。
特にガラス転移点が0℃以下脂肪族ポリエステルは、混
合やブロック共重合により、効果的に結晶化温度を低下
させ、さらに成型品の耐衝撃性を改善できるので、本発
明の目的に最も好ましい。
In order to sufficiently crystallize the molded product of the polylactic acid type polymer, (1) heat the molded product at a crystallization temperature or higher, and (2) crystallize it by mixing a crystal nucleating agent with the polymer composition. And (3) mixing or / and copolymerizing a component that promotes crystallization into the polymer composition.
The heat treatment temperature of (1) is 90 for polylactic acid homopolymer.
C. or higher, particularly 100 to 140.degree. C. is preferable (the molded product is softened if the temperature is too high). Although the heat treatment time is effective even for 1 minute, it is usually 3 minutes or more, especially about 5 minutes to 2 hours. (2) The crystal nucleating agent is one that makes crystallization fast and sufficient, and includes, for example, talc, calcium silicate, calcium titanate, boron nitride, titanium oxide, zinc oxide, silica, calcium carbonate and other inorganic particles,
For example, the diameter is 10 μm or less, particularly 5 μm or less, and often 5
Examples thereof include those having a particle size of about nm to 2 μm, similarly sodium salts of saccharin, sodium benzoate, polybutylene terephthalate having a melting point higher than that of polylactic acid-based polymers, fine particles of polymers such as polypropylene and other organic compounds. These nucleating agents effectively promote crystallization and shorten the time required for crystallization, but the crystallization temperature at the time of heating cannot be changed significantly. (3) The crystallization-accelerating component lowers the crystallization temperature or increases the crystallization rate by copolymerization or mixing, and for example, a polymer or / and a plasticizer having a glass transition temperature of room temperature or lower, particularly 0 ° C. or lower is used. Can be mentioned.
In particular, an aliphatic polyester having a glass transition point of 0 ° C. or lower is most preferable for the purpose of the present invention because it can effectively lower the crystallization temperature by mixing or block copolymerization and further improve the impact resistance of the molded product.

【0016】ポリ乳酸系ポリマーブロック共重合又は/
及び混合するに適した、ガラス転移点が低い脂肪族ポリ
エステルとしては、ポリカプロラクトン、ポリエチレン
アジペート、ポリエチレンスベレート、ポリエチレンア
ゼレート、ポリエチレンセバケート、ポリエチレンデカ
メチレート、ポリブチレンサクシネート、ポリブチレン
アジペート、ポリブチレンセバケート、ポリブチレンデ
カメチレート、ポリヘキサンアジペート、ポリヘキサン
セバケート、など炭素数2〜20程度のジカルボン酸、
ジオール、ラクトンなどの重合体が挙げられる。また、
それらのランダム又はブロック共重合体も同様に応用出
来る。共重合又は混合比率は、1〜50%、特に3〜4
0%が好ましく、5〜30%が最も広く用いられる。
Polylactic acid type polymer block copolymer or /
And, suitable as a mixture, aliphatic polyester having a low glass transition point, polycaprolactone, polyethylene adipate, polyethylene suberate, polyethylene azelate, polyethylene sebacate, polyethylene decamethylate, polybutylene succinate, polybutylene adipate, Dicarboxylic acid having about 2 to 20 carbon atoms, such as polybutylene sebacate, polybutylene decametylate, polyhexane adipate, polyhexane sebacate,
Examples include polymers such as diols and lactones. Also,
Their random or block copolymers are likewise applicable. The copolymerization or mixing ratio is 1 to 50%, especially 3 to 4
0% is preferred and 5-30% is most widely used.

【0017】ポリ乳酸とのブロック共重合は、L−ラク
チド、D−ラクチド、L/Dラクチド混合物などの溶融
重合時に、上記ポリマーを混合し反応させればよい。反
応させるには、ポリマーの末端や側鎖などに水酸基をも
つものを用いることが効果的である。反応温度が高過ぎ
たりく反応時間が長すぎると、エステル交換反応が進
み、ランダム共重合へ移行するので、注意が必要であ
る。ブロック共重合の別の方法としては、末端などに水
酸基を持つポリ乳酸と、同じく末端などに水酸基を持つ
脂肪族ポリマー(共重合成分)とを、溶融状態または溶
剤中で混合し、ジイソシアネート、ジカルボン酸ジクロ
ライド、ジカルボン酸無水物などの多官能化合物を反応
させればよい。
Block copolymerization with polylactic acid may be carried out by mixing and reacting the above-mentioned polymers during melt polymerization of L-lactide, D-lactide, L / D lactide mixture and the like. For the reaction, it is effective to use a polymer having a hydroxyl group at the terminal or side chain. If the reaction temperature is too high or the reaction time is too long, transesterification proceeds and random copolymerization proceeds, so caution is required. As another method of block copolymerization, polylactic acid having a hydroxyl group at the terminal or the like and an aliphatic polymer (copolymerization component) having a hydroxyl group at the terminal or the like are mixed in a molten state or in a solvent to prepare diisocyanate or dicarboxylic acid. A polyfunctional compound such as acid dichloride or dicarboxylic acid anhydride may be reacted.

【0018】同様に、末端などに水酸基を持つポリエチ
レングリコール、ポリプロピレングリコール、ポリブチ
レングリコール、それらの共重合物、及び末端などに水
酸基を持つ脂肪族ポリカーボネートを、ポリ乳酸または
ラクチドと反応、共重合させて、結晶化促進効果を得る
ことが出来る。これらの成分の混合でも、同じような結
晶化促進効果が得られる。
Similarly, polyethylene glycol, polypropylene glycol, polybutylene glycol having a hydroxyl group at the terminal or the like, a copolymer thereof, and an aliphatic polycarbonate having a hydroxyl group at the terminal or the like are reacted and copolymerized with polylactic acid or lactide. Thus, a crystallization promoting effect can be obtained. Similar crystallization promoting effect can be obtained by mixing these components.

【0019】これらの方法で得られる変性ポリ乳酸は、
ガラス転移点が20〜50℃または常温以下に低下し、
同じく昇温時の結晶化温度(中心値)も50〜100℃
程度まで低下し、成型時の温度や常温での保存中でも結
晶化可能となる。また、熱処理が必要であっても、熱処
理温度をより低く、例えば50〜120℃程度とするこ
とが出来、結晶化された製品を容易に得ることが出来
る。
The modified polylactic acid obtained by these methods is
The glass transition point is lowered to 20 to 50 ° C or below room temperature,
Similarly, the crystallization temperature (center value) when raising the temperature is 50 to 100 ° C.
It is reduced to a certain degree, and it becomes possible to crystallize even during storage at molding temperature or normal temperature. Further, even if the heat treatment is necessary, the heat treatment temperature can be lowered to, for example, about 50 to 120 ° C., and a crystallized product can be easily obtained.

【0020】上記の(1)熱処理、(2)核剤、(3)
結晶化促進剤の他に、成型品を延伸配向することにより
結晶化させることが出来るが、特殊な工程を用いたり工
程が増えて不利である。本発明は、例えば射出成型した
後、熱処理するなどにより、実質的に延伸配向しないで
結晶化させるもので、本発明による製品は、結晶配向度
は40%以下、多くの場合30%以下である。(十分に
延伸配向した製品の結晶配向度は、50%以上、多くの
場合60%以上である)。結晶配向度OR(%)は、X
線回折法において主たる回折ピークの半値幅(角度)を
θ°としたとき、OR(%)=(180°−θ°)×1
00/180°の近似式で求める。
The above (1) heat treatment, (2) nucleating agent, (3)
In addition to the crystallization accelerator, the molded product can be crystallized by stretching and orientation, but this is disadvantageous because a special process is used or the number of processes is increased. The present invention is, for example, injection-molded and then heat-treated to crystallize without substantially stretching orientation. The product according to the present invention has a crystal orientation degree of 40% or less, often 30% or less. . (The crystal orientation of a fully stretched product is 50% or more, often 60% or more). The crystal orientation degree OR (%) is X
When the half-value width (angle) of the main diffraction peak in the line diffraction method is θ °, OR (%) = (180 ° −θ °) × 1
It is calculated by an approximate expression of 00/180 °.

【0021】育苗容器は、製造(成型)、運搬、育苗、
苗の運搬、保存および植付け(定植)作業の間、十分な
強度を保持し、破損などしないことが必要である。この
ため、引張り強度、曲げ強度、衝撃強度などが十分高い
ことが好ましい。特にポリ乳酸ホモポリマーは、衝撃強
度が2kg・cm/cm程度と低いので、上記のような
ガラス転移点の低い成分を混合又は/及びブロック共重
合して、衝撃強度を3kg・cm/cm以上としたもの
が好ましく、衝撃強度4kg・cm/cm以上のものが
最も好ましい。ここで衝撃強度(衝撃値)は、ASTM
D256の方法に準じ、幅0.635mm,厚さ1
2.7mmで深さ2.54mmのノッチ付き試験片を用
い、ノッチ方向から衝撃を加えて衝撃エネルギー(単位
kg・cm)を求め、幅1cm当たりに換算して求め
る。
The seedling raising container is manufactured (molded), transported, raised,
It is necessary to maintain sufficient strength and prevent damage during transportation, storage and planting (planting) of seedlings. Therefore, it is preferable that the tensile strength, bending strength, impact strength and the like are sufficiently high. In particular, since polylactic acid homopolymer has a low impact strength of about 2 kg · cm / cm, the components having a low glass transition point as described above are mixed or / and block copolymerized to give an impact strength of 3 kg · cm / cm or more. Those having an impact strength of 4 kg · cm / cm or more are most preferable. Here, the impact strength (impact value) is ASTM
According to the method of D256, width 0.635mm, thickness 1
Using a notched test piece of 2.7 mm and a depth of 2.54 mm, impact is applied from the notch direction to obtain impact energy (unit: kg · cm), which is converted per 1 cm width.

【0022】本発明育苗容器に好ましい強度を与えるた
めに、重合体は十分な分子量を持つことが必要である。
本発明に用いる重合体の重量平均分子量は、5万以上が
必要であり、7万以上が好ましく、8〜30万の範囲が
最も広く用いられる。
The polymer must have a sufficient molecular weight in order to impart the desired strength to the container for raising seedlings of the present invention.
The weight average molecular weight of the polymer used in the present invention must be 50,000 or more, preferably 70,000 or more, and the range of 80 to 300,000 is most widely used.

【0023】容器の成型方法は特に限定されないが、溶
融射出成型、押出し成型、及び成型したものを更に加熱
下で型や気体圧力などで変形させる方法などが好ましく
用いられる。
The molding method of the container is not particularly limited, but melt injection molding, extrusion molding, and a method of deforming the molded product under heating with a mold or gas pressure are preferably used.

【0024】本発明育苗容器の形状は特に限定されない
が、植物の根とそれを取り巻く土壌や堆肥などを効果的
に包み保護する形が好ましい。普通の植木鉢状、植木ポ
ット状、かめ状、袋状、かご状、それらを2つ以上に分
割したもの(組み合わせて使用する)、その他任意であ
る。しかし、本発明育苗容器が長寿命であることを考慮
し、定植後、根が外部へ伸びる孔などを複数個、特に3
〜30個程度設けることが好ましい。
The shape of the container for raising seedlings of the present invention is not particularly limited, but a shape that effectively wraps and protects the roots of plants and the soil and compost surrounding them is preferable. An ordinary flower pot shape, a flower pot shape, a sack shape, a bag shape, a cage shape, a combination of these divided into two or more (used in combination), and any other. However, considering that the container for raising seedlings of the present invention has a long life, after planting, a plurality of holes or the like through which the roots extend to the outside, especially 3
It is preferable to provide about 30 pieces.

【0025】本発明容器を形成する重合体には、必要に
応じ、顔料、染料などの着色剤、金属粒子、無機系また
は有機系粒子その他の充填剤、結晶核剤、酸化防止剤、
紫外線吸収剤などの安定剤、帯電防止剤、滑剤、離型
剤、撥水剤、可塑剤、その他の添加剤を配合することが
出来る。
If desired, the polymer forming the container of the present invention may include coloring agents such as pigments and dyes, metal particles, inorganic or organic particles and other fillers, crystal nucleating agents, antioxidants, and the like.
Stabilizers such as ultraviolet absorbers, antistatic agents, lubricants, release agents, water repellents, plasticizers and other additives can be added.

【0026】以下の実施例において、%、部は特に断ら
ない限り重量比である。脂肪族ポリエステルの分子量
は、試料の0.1%クロロホルム溶液のGPC分析にお
いて、分子量1000以下の成分を除く高分子成分の分
散の重量平均値である。
In the following examples,% and parts are weight ratios unless otherwise specified. The molecular weight of the aliphatic polyester is the weight average value of the dispersion of the polymer component excluding the component having a molecular weight of 1000 or less in GPC analysis of a 0.1% chloroform solution of the sample.

【0027】[0027]

【実施例】【Example】

[実施例1]光学純度99.5%以上のL−ラクチドに
対し、触媒としてオクチル酸錫50ppmを混合し、2
軸混練押出機に連続供給し188℃で12分間反応した
後、口金より押し出し水で冷却後切断してポリL−乳酸
ホモポリマーのチップC1を得た。チップC1を、乾燥
後、140℃の窒素気流中で4時間熱処理(固相重合)
したのち、塩酸を0.1%含むアセトンで洗浄し、さら
に塩酸を含まぬアセトンで5回洗浄し、触媒および残存
モノマーを完全に除去し、チップC2を得た。チップC
2の分子量は17.6万で、それを射出成型した試験片
の衝撃強度は2.2kg・cm/cmである。チップC
2を210℃のT型口金より押出し、20℃の冷却ロー
ルで冷却して、厚さ0.4mmの未延伸シートS1を製
造した。シートS1を60分間で徐々に昇温し120℃
で2時間熱処理してシートS2を得た。シートから幅1
cm,長さ10cmの試験片を作成し、土壌中深さ10
cmに埋設し、1ケ月ごとに取り出し強度を測定し、強
度が未埋設品のそれの半分になる期間(半減期)を求め
た。実験データを表1に示す。表1に見るように、熱処
理による結晶化によって、半減期は約2倍に伸びてい
る。
[Example 1] L-lactide having an optical purity of 99.5% or more was mixed with 50 ppm of tin octylate as a catalyst, and 2
After continuously supplying to a shaft kneading extruder and reacting at 188 ° C. for 12 minutes, it was extruded from a die and cooled with water, and then cut to obtain a chip C1 of poly L-lactic acid homopolymer. After drying, the chip C1 is heat-treated in a nitrogen stream at 140 ° C. for 4 hours (solid-state polymerization).
After that, it was washed with acetone containing 0.1% of hydrochloric acid, and further washed 5 times with acetone containing no hydrochloric acid to completely remove the catalyst and the residual monomer to obtain a chip C2. Chip C
The molecular weight of 2 is 176,000, and the impact strength of the injection-molded test piece is 2.2 kg · cm / cm. Chip C
2 was extruded from a T-shaped die at 210 ° C. and cooled by a cooling roll at 20 ° C. to produce an unstretched sheet S1 having a thickness of 0.4 mm. Heat the sheet S1 gradually over 60 minutes to 120 ° C.
Sheet S2 was obtained by heat treatment for 2 hours. Width from sheet 1
cm, 10 cm in length to make a test piece, soil depth 10
The sample was embedded in a cm and the strength taken out was measured every month, and the period (half-life) at which the strength was half that of the unembedded product was determined. Experimental data are shown in Table 1. As can be seen from Table 1, the half-life is extended by about 2 times due to crystallization by heat treatment.

【0028】同様に、チップC2を用い射出成型した植
木鉢(直径10cm,側部厚み約0.5mm)で未熱処
理品および熱処理したものを、土壌中に埋設試験を行な
ったところ、強度半減期が未熱処理品で約7ケ月、熱処
理品で約1.2年で、シートの実験結果と良く一致し
た。この植木鉢は、1年以上の育苗期間に耐える。
Similarly, when an unheated product and a heat-treated product in a flower pot (diameter 10 cm, side thickness about 0.5 mm) injection molded using the chip C2 were subjected to an embedding test in soil, a strength half-life was found. The unheated product was about 7 months and the heat-treated product was about 1.2 years, which was in good agreement with the experimental results of the sheet. This flower pot withstands a seedling raising period of one year or more.

【0029】[0029]

【表1】 [実施例2]光学純度99.5%以上のL−ラクチド8
1部、ポリブチレンサクシネート/ポリブチレンアジペ
ートランダム=4/1(モル比)共重合体で分子量1
2.5万のもの20部、オクチル酸錫50ppm、結晶
核剤として直径0.7μmのタルクを1.5%混合し、
以下実施例1のチップC2と同様にして、チップC3を
得た。この重合体3は、ポリブチレンアジペート/サク
シネート共重合体が約20%ブロック共重合された変性
ポリ乳酸であり、分子量15.1万、衝撃強度は4.7
kg・cm/cmと優れ、融点は169℃と80℃の二
つがあるが、169℃を代表値とする。またガラス転移
点は43℃、結晶化温度(中心値)は103℃と低下し
ている。このポリマーから、実施例1と同様にして得た
未熱処理シートをS3、100℃で熱処理したものをS
4とする。各シートの結晶の溶融吸熱量は、S3が1.
9J/g.S4が48J/gであった。
[Table 1] [Example 2] L-lactide 8 having an optical purity of 99.5% or more
1 part, polybutylene succinate / polybutylene adipate random = 4/1 (molar ratio) copolymer with a molecular weight of 1
20 parts of 25,000, tin octylate 50 ppm, and 1.5% of talc having a diameter of 0.7 μm as a crystal nucleating agent,
Thereafter, a chip C3 was obtained in the same manner as the chip C2 of Example 1. This polymer 3 is a modified polylactic acid obtained by block copolymerizing about 20% of polybutylene adipate / succinate copolymer, and has a molecular weight of 151,000 and an impact strength of 4.7.
It has a high melting point of 169 ° C and 80 ° C, with 169 ° C being a typical value. The glass transition temperature is 43 ° C., and the crystallization temperature (center value) is 103 ° C. An unheated sheet obtained from this polymer in the same manner as in Example 1 was subjected to S3 and heat treatment at 100 ° C. to obtain S3.
4 is assumed. The melting endotherm of the crystals of each sheet was 1.
9 J / g. S4 was 48 J / g.

【0030】チップC3とほぼ同様にして、但しポリブ
チレンアジペート/サクシネート共重合体を約30%ブ
ロック共重合して得たものをチップC4とする。チップ
C4は分子量14.3万、融点166℃と83℃、ガラ
ス転移点は不明瞭で20℃前後、結晶化温度90℃、衝
撃強度4.9kg・cm/cmである。このポリマーか
ら、実施例1と同様にして得た未熱処理シートをS5、
100℃で熱処理したものをS6とする。各シートの結
晶の溶融吸熱量は、S5が3.8J/g.S6が46J
/gであった。
Chip C4 was prepared in substantially the same manner as chip C3 except that a polybutylene adipate / succinate copolymer was block-copolymerized at about 30%. Chip C4 has a molecular weight of 143,000, a melting point of 166 ° C. and 83 ° C., a glass transition point is unclear, a temperature of about 20 ° C., a crystallization temperature of 90 ° C., and an impact strength of 4.9 kg · cm / cm. An unheated sheet obtained from this polymer in the same manner as in Example 1 was treated with S5,
What was heat-treated at 100 ° C. is designated as S6. The melting endothermic amount of the crystal of each sheet was 3.8 J / g. S6 is 46J
/ G.

【0031】シートS3〜S6を用い、実施例1と同様
にして土壌中の強度の半減期を測定したところ、S3は
5.5月、S4は10.4月、S5は3.7月、S6は
10.1月で、いずれも熱処理(結晶化)によって長寿
命化していることが示された。
Using the sheets S3 to S6, the half-life of strength in soil was measured in the same manner as in Example 1. S3 was 5.5 months, S4 was 10.4 months, and S5 was 3.7 months. S6 was 10.1 months, and it was shown that the lifespan was extended by heat treatment (crystallization).

【0032】[0032]

【発明の効果】本発明によって、より分解速度が遅く長
寿命の育苗用容器が得られ、育苗に長い期間(例えば1
年以上)を要する植物、例えば樹木類の育苗に極めて有
用である。さらに、本発明の容器に他の分解抑制手段た
とえば撥水剤(シリコン化合物、フッ素化合物、油脂類
など)を混合したり塗布する方法を併用することによ
り、一層長寿命化することが出来、2年以上の育苗期間
が必要なものにも応用可能である。本発明によって、育
苗の管理や苗の保管、運搬、植付けが極めて容易かつ広
い範囲で応用可能になり、農業、林業、園芸、土木など
の分野に、福音をもたらす。また、乳酸を主成分とする
重合体の分解物(乳酸など)は、悪い病原バクテリアの
増殖を抑制しさらに植物の成長を促進する効果があり、
上記用途に最も適している。
INDUSTRIAL APPLICABILITY According to the present invention, a container for raising seedlings having a slower decomposition rate and a longer life can be obtained, and a long period (eg 1
It is extremely useful for raising seedlings of plants that require more than one year), such as trees. Furthermore, by using other decomposition suppressing means such as a method of mixing or applying a water repellent (silicon compound, fluorine compound, oils and fats) in the container of the present invention, the life can be further extended. It can also be applied to those requiring a seedling raising period of one year or more. INDUSTRIAL APPLICABILITY According to the present invention, management of raising seedlings, storage, transportation, and planting of seedlings can be applied very easily and in a wide range, and brings the gospel to fields such as agriculture, forestry, horticulture, and civil engineering. In addition, degradation products of polymers containing lactic acid as the main component (lactic acid etc.) have the effect of suppressing the growth of bad pathogenic bacteria and further promoting the growth of plants,
Most suitable for the above applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】走査型示差熱量計によって、結晶化度の低いポ
リマー試料の昇温時の吸発熱量を測定したDSC曲線の
例である。
FIG. 1 is an example of a DSC curve in which the endothermic and exothermic amount of a polymer sample having low crystallinity at the time of temperature increase was measured by a scanning differential calorimeter.

【図2】十分に結晶しているポリマー試料の昇温時のD
SC曲線の例である。
FIG. 2 D of a fully crystallized polymer sample at elevated temperature
It is an example of an SC curve.

【符号の説明】[Explanation of symbols]

1ガラス転移によるベースラインの変化 2試料の昇温に伴う結晶化による発熱ピーク 3試料の結晶の溶融による吸熱ピーク 1 Change of baseline due to glass transition 2 Exothermic peak due to crystallization accompanying temperature rise of sample 3 Endothermic peak due to melting of crystal of sample

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(1)乳酸を主成分とするポリエステル重
合体からなり、(2)重合体の結晶の融点が120℃以
上であり、(3)該結晶の溶融吸熱量が10ジュール/
グラム以上となるように結晶化されており、且つ(4)
該結晶が実質的に配向していないことを特徴とする育苗
用容器。
(1) A polyester polymer containing lactic acid as a main component, (2) the melting point of crystals of the polymer is 120 ° C. or higher, and (3) the melting endotherm of the crystals is 10 joules /
It is crystallized so that it is more than gram, and (4)
A container for raising seedlings, characterized in that the crystals are not substantially oriented.
【請求項2】重合体の結晶の融点が130℃以上であ
り、その溶融吸熱量が20ジュール/グラム以上であ
る、請求項1記載の育苗用容器。
2. The seedling-growing container according to claim 1, wherein the polymer has a melting point of 130 ° C. or higher and a melting endotherm of 20 joules / gram or higher.
【請求項3】結晶核剤を含有する又は/及び結晶化促進
成分が共重合又は/及び混合されている重合体からな
る、請求項1記載の育苗用容器。
3. The seedling-growing container according to claim 1, which is made of a polymer containing a crystal nucleating agent and / or a crystallization promoting component copolymerized and / or mixed.
JP03378596A 1996-02-21 1996-02-21 Nursery container Expired - Fee Related JP3687171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03378596A JP3687171B2 (en) 1996-02-21 1996-02-21 Nursery container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03378596A JP3687171B2 (en) 1996-02-21 1996-02-21 Nursery container

Publications (2)

Publication Number Publication Date
JPH09224488A true JPH09224488A (en) 1997-09-02
JP3687171B2 JP3687171B2 (en) 2005-08-24

Family

ID=12396133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03378596A Expired - Fee Related JP3687171B2 (en) 1996-02-21 1996-02-21 Nursery container

Country Status (1)

Country Link
JP (1) JP3687171B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422044A1 (en) * 2001-07-19 2004-05-26 Toyo Seikan Kaisya, Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
JP2007086062A (en) * 2005-08-26 2007-04-05 Shiseido Co Ltd Method of evaluating permeability of fluid through material containing resin, method of treating material containing biodegradable resin, material containing biodegradable resin, and biodegradable resin molding
JP2011255624A (en) * 2010-06-10 2011-12-22 Fujifilm Corp Polyester film laminate, and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422044A1 (en) * 2001-07-19 2004-05-26 Toyo Seikan Kaisya, Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
EP1422044A4 (en) * 2001-07-19 2004-12-29 Toyo Seikan Kaisha Ltd MOLD OBJECT OBTAINED BY STRETCHING AND HEAT FASTENING AND PROCESS FOR PRODUCING THE SAME
US7390543B2 (en) 2001-07-19 2008-06-24 Toyo Seikan Kaisha Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
JP2007086062A (en) * 2005-08-26 2007-04-05 Shiseido Co Ltd Method of evaluating permeability of fluid through material containing resin, method of treating material containing biodegradable resin, material containing biodegradable resin, and biodegradable resin molding
JP2011255624A (en) * 2010-06-10 2011-12-22 Fujifilm Corp Polyester film laminate, and its manufacturing method

Also Published As

Publication number Publication date
JP3687171B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
EP0428620B1 (en) A method of plasticizing lactide polymers.
US5424346A (en) Biodegradable replacement of crystal polystyrene
US5180765A (en) Biodegradable packaging thermoplastics from lactides
JP3687354B2 (en) Polylactic acid stereocomplex polymer composition
EP1484356B1 (en) Polylactic acid molding and process for producing the same
JP3610780B2 (en)   Method for producing polylactic acid stereocomplex polymer molding
US7825212B2 (en) Polylactic acid resin and composition and molded article of the same
KR100261833B1 (en) Iljection-molded product of polyglycolic acid having degradability in soil and production process thereof
WO1992004413A1 (en) Packaging thermoplastics from lactic acid
CA1339026C (en) Degradable thermoplastics from lactides
KR20010023260A (en) Condensation Copolymers having Surpressed Crystallinity
CN107522852A (en) The biodegradable three block of bio-based of segment containing dimer acid polyester a kind of, segmented copolymer and its preparation method and application
JP3789217B2 (en) Molded body and manufacturing method thereof
JP4020441B2 (en) Polylactic acid block copolymer, production method thereof and molded product thereof
JP3347440B2 (en) Agricultural film
JP4493993B2 (en) Biodegradable polyester resin composition, molded article and agricultural multi-film
JP2003003053A (en) Aliphatic polyester biodegradable resin film-shaped molding
JP3687171B2 (en) Nursery container
KR0163495B1 (en) Method for preparing flat yarn of aliphatic copolyester
JP2005089537A (en) Biodegradable resin composition, agricultural multi-film, molded product, and method for inhibiting degradability in soil
JP3913332B2 (en) Molded body and manufacturing method thereof
JP2003231799A (en) Polylactic acid-based resin composition, molded article and method for producing the same
KR101406908B1 (en) Method of manufacturing biodegradable polyester resin
AU634723B2 (en) Degradable thermoplastic from lactides
JP2002293893A (en) Lactone-containing resin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees