[go: up one dir, main page]

JPH09222440A - Electricity detection method in case of system failure - Google Patents

Electricity detection method in case of system failure

Info

Publication number
JPH09222440A
JPH09222440A JP3173096A JP3173096A JPH09222440A JP H09222440 A JPH09222440 A JP H09222440A JP 3173096 A JP3173096 A JP 3173096A JP 3173096 A JP3173096 A JP 3173096A JP H09222440 A JPH09222440 A JP H09222440A
Authority
JP
Japan
Prior art keywords
time
current
component
calculated
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3173096A
Other languages
Japanese (ja)
Inventor
Masanori Toi
雅則 戸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3173096A priority Critical patent/JPH09222440A/en
Publication of JPH09222440A publication Critical patent/JPH09222440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

(57)【要約】 【課題】 故障電流に含まれる直流成分を、演算により
精度良く除去できるようにする。 【解決手段】 系統の基本周波数で1周期相当の時間
の、電流の各サンプリング値の平均値を、故障電流に含
まれる直流成分として算出し(ステップS1,S2参
照)、これを各サンプリング値から減算することによ
り、直流分を含まない電流値を求め、これにもとづきイ
ンピーダンスを含む各種の電気量を算出する(ステップ
S4,S5参照)。このとき、上記直流成分をその変動
が収束する時点で求めることにより、精度を向上させる
(ステップS3参照)。
(57) Abstract: A DC component included in a fault current can be accurately removed by calculation. SOLUTION: The average value of each sampling value of the current for a time corresponding to one cycle at the fundamental frequency of the system is calculated as a DC component included in the fault current (see steps S1 and S2), and this is calculated from each sampling value. By subtracting, a current value that does not include a direct current component is obtained, and various electric quantities including impedance are calculated based on the current value (see steps S4 and S5). At this time, the accuracy is improved by obtaining the DC component at the time when the variation converges (see step S3).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、系統故障時の電
流実効値やインピーダンスなどの各種電気量を、リアル
タイムではないが一定の遅れ時間を許容してでも、正確
にディジタル演算にて算出されることを要求される装
置、例えば故障点標定装置における系統故障時の電気量
検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention accurately calculates various electric quantities such as a current effective value and impedance at the time of a system failure by a digital operation even if a certain delay time is allowed although not in real time. The present invention relates to a device that is required to do so, for example, a method for detecting the amount of electricity when a system fault occurs in a fault location device.

【0002】[0002]

【従来の技術】系統故障発生期間中の系統電圧・電流
を、サンプリング技術,A/D(アナログ/ディジタ
ル)変換技術によってディジタルデータに変換した後、
ディジタル演算手法にて各種電気量を算出し系統の保護
や制御を行なう装置は、ディジタルリレーや故障点標定
装置(フォルトロケータ)を始めとして各種実用化され
ている。これらの装置で行なわれている各種電気量演算
のうち、系統電流,電圧量の基本波成分に着目して演算
する方法も多数あるが、これらの演算式の多くが演算式
の入力量(電圧,電流)として系統基本波成分のみを前
提としており、入力量にDC(直流)分や高調波成分が
含まれると、算出した電気量に誤差を含むことになる。
2. Description of the Related Art A system voltage / current during a system failure occurrence period is converted into digital data by a sampling technique and an A / D (analog / digital) conversion technique,
A variety of devices have been put to practical use, including digital relays and fault locators (fault locators), which calculate various amounts of electricity using digital arithmetic techniques to protect and control the system. Of the various electric quantity calculations performed by these devices, there are many methods that focus on the fundamental wave components of the system current and voltage quantity, but most of these calculation expressions are input quantity (voltage , Current), only the system fundamental wave component is assumed, and if the input amount includes a DC (direct current) component or a harmonic component, the calculated electricity amount will include an error.

【0003】例えば、90°電気角離れた2点のサンプ
リング値(=I1,I2)を用いて入力量の実効値Ir
msを算出する算出式として、次の(1)式がある。 Irms=√(I12 +I22 ) …(1) いま、入力量が基本波(ω=2πf)成分のみの大きさ
Aの、次式(2)で示される正弦波とすると、 I1=Asin(ωt) I2=Asin(ωt+90°)=Acos(ωt) …(2) となり、(2)式を(1)式に代入すると、次式より実
効値が求まる。 Irms=√(I12 +I22 ) =√〔A2 {sin2 (ωt)+cos2 (ωt)}〕 =A …(3)
For example, by using sampling values (= I1, I2) at two points separated by 90 ° electrical angle, the effective value Ir of the input amount
As a calculation formula for calculating ms, there is the following formula (1). Irms = √ (I1 2 + I2 2 ) (1) Now, assuming that the input amount is a sine wave represented by the following equation (2) having a magnitude A of only the fundamental wave (ω = 2πf) component, I1 = Asin ( ωt) I2 = Asin (ωt + 90 °) = Acos (ωt) (2) and substituting the equation (2) into the equation (1), the effective value is obtained from the following equation. Irms = √ (I1 2 + I2 2 ) = √ [A 2 {sin 2 (ωt) + cos 2 (ωt)}] = A (3)

【0004】しかるに、入力量に大きさがAのX倍のD
C分が重畳された場合、上記(2)式のI1,I2は、 I1=A{sin(ωt)+X} I2=Asin{(ωt+90°)+X}=A{cos(ωt)+X} …(4) となり、実効値は、 Irms=√(I12 +I22 ) =√〔A2 {sin2 (ωt)+cos2 (ωt)} =+2X{sin(ωt)+cos(ωt)}〕 =A√{1+2√2Xsin(ωt+45°)} …(5) のように、基本波周波数に同期して正弦波状に変化する
誤差量(2√2Xsin(ωt+45°))が含まれる
ことになる。
However, the input amount is D times X times A.
When C components are superposed, I1 and I2 in the equation (2) are as follows: I1 = A {sin (ωt) + X} I2 = Asin {(ωt + 90 °) + X} = A {cos (ωt) + X} ( 4) and the effective value is: Irms = √ (I1 2 + I2 2 ) = √ [A 2 {sin 2 (ωt) + cos 2 (ωt)} = + 2X {sin (ωt) + cos (ωt)}] = A√ As shown in {1 + 2√2Xsin (ωt + 45 °)} (5), the error amount (2√2Xsin (ωt + 45 °)) that changes sinusoidally in synchronization with the fundamental frequency is included.

【0005】ところで、実際の系統故障においては、故
障電流に最大で基本波分の100%ものDC分が含まれ
る場合があるので、(5)式中の誤差量を軽減するため
にフィルタ回路、例えば図5に示すようなバンドパス特
性を持つフィルタBP1,BP2を設けて入力量のDC
分を減衰させるようにしている。
By the way, in an actual system fault, the fault current may include DC component as much as 100% of the fundamental wave. Therefore, in order to reduce the error amount in the equation (5), a filter circuit, For example, by providing filters BP1 and BP2 having bandpass characteristics as shown in FIG.
I am trying to attenuate the minutes.

【0006】[0006]

【発明が解決しようとする課題】すなわち、高精度な電
気量を得るためには、基本波分以外の周波数成分、例え
ばDC分をフィルタにて極力減衰させた方が良いのは、
上記(5)式からも明らかである。そのためには、例え
ば図5に示す2つのフィルタBP1,BP2を比較する
と、BP2の方が低周波数領域の減衰が大きいことから
DC分の減衰も大きく、(5)式の誤差項が小さくなる
ことが容易に予測できる。一般に、BP1とBP2が同
じ次数の伝達関数式にてその特性が表現される場合、B
P2の方が応答が鈍くなる。このことは、系統故障の発
生時間が短い(すなわち、短時間で遮断器が開放され
る)故障では、フィルタの過渡変化が完了しない内に故
障が除去されてしまい、結果として正確な電気量の算出
が、フィルタ過渡変化に起因する誤差のために不可能に
なるというおそれがある。
That is, in order to obtain a highly accurate quantity of electricity, it is better to attenuate the frequency components other than the fundamental wave component, for example, the DC component as much as possible with a filter.
It is also clear from the above equation (5). For that purpose, for example, comparing the two filters BP1 and BP2 shown in FIG. 5, since BP2 has a larger attenuation in the low frequency region, the DC component also has a larger attenuation and the error term in the equation (5) becomes smaller. Can be easily predicted. In general, when the characteristics of BP1 and BP2 are expressed by transfer function equations of the same order, B
The response of P2 is slower. This means that in the case of a fault in which the occurrence time of the system fault is short (that is, the circuit breaker is opened in a short time), the fault is eliminated before the transient change of the filter is completed, and as a result, an accurate electric quantity Calculations may be impossible due to errors due to filter transients.

【0007】このため、短時間での遮断器開放を想定し
た場合、装置にはBP1のような低周波数領域の減衰度
の少ないフィルタを使用せざるを得ないことになるが、
こうすると、上記(5)式の誤差項はBP2フィルタ使
用時よりも大きくなるという問題が生じることになる。
したがって、この発明の課題は低周波数領域の減衰度の
小さいフィルタを使用したときの、電流に含まれるDC
分に起因する電気量演算誤差を低減することにある。
For this reason, when it is assumed that the circuit breaker is opened in a short time, it is unavoidable to use a filter such as BP1 having a low attenuation in the low frequency region.
This causes a problem that the error term in the equation (5) becomes larger than that when the BP2 filter is used.
Therefore, an object of the present invention is to reduce the DC contained in the current when using a filter with low attenuation in the low frequency region.
The purpose is to reduce the electric quantity calculation error caused by the minute.

【0008】[0008]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、系統電流をサンプリング
しディジタル量に変換した量にもとづきそれぞれ所定の
ディジタル演算をして各種電気量を求めるに当たり、系
統故障時の故障電流中に含まれる直流成分を、基本波周
波数で1周期相当の時間の各サンプリング値の平均をと
ることによって算出し、各時刻の電流サンプリング値か
ら前記算出された直流分を引き算し、その結果の値を用
いて各種電気量を検出するようにしている。前記直流成
分を、その変動が収束する時点で算出することができる
(請求項2)。すなわち、故障電流に含まれる直流(D
C)分を、フィルタを用いて除去するのではなく演算を
利用して除去するものであり、これにより、高精度化を
図るようにしている。
In order to solve such a problem, according to the invention of claim 1, various electric quantities are obtained by performing predetermined digital calculations on the basis of the quantities obtained by sampling the system current and converting it into digital quantities. In obtaining, the DC component contained in the fault current at the time of system fault was calculated by taking the average of each sampling value at the fundamental frequency for one period, and was calculated from the current sampling value at each time. The direct current component is subtracted and the resulting value is used to detect various amounts of electricity. The DC component can be calculated when the fluctuation converges (claim 2). That is, the direct current (D
The C) component is not removed by using a filter but is removed by using an arithmetic operation, whereby the accuracy is improved.

【0009】[0009]

【発明の実施の形態】図1はこの発明の第1の実施の形
態を示す概略フローチャート、図2はその詳細図、図3
はこの発明による処理方法を説明するための波形図、図
4はこの発明が適用されるシステム構成を示す概要図で
ある。すなわち、この実施例では図4に示すように、電
力系統に対し絶縁トランス2および前処理部3(フィル
タおよびA/D変換器などからなる)を介してディジタ
ル演算部4を設け、ここで所定の演算をしてDC分の減
衰を図るようにしている。なお、図4の符号1は保護リ
レーを示し、故障が検出されたら遮断器(CB)に対し
てトリップ指令を出力するので、これにより遮断器CB
が開放され、故障点が除去される。また、前処理部3で
用いるフィルタとしては、図5のBP1の如く低周波数
領域の減衰度の小さいフィルタが用いられる。
1 is a schematic flow chart showing a first embodiment of the present invention, FIG. 2 is a detailed view thereof, and FIG.
Is a waveform diagram for explaining a processing method according to the present invention, and FIG. 4 is a schematic diagram showing a system configuration to which the present invention is applied. That is, in this embodiment, as shown in FIG. 4, a digital arithmetic unit 4 is provided in the electric power system via an insulating transformer 2 and a preprocessing unit 3 (consisting of a filter and an A / D converter, etc.), where a predetermined value is set. Is calculated to reduce the DC component. Note that reference numeral 1 in FIG. 4 indicates a protection relay, which outputs a trip command to the circuit breaker (CB) when a failure is detected.
Is opened and the fault point is removed. Further, as the filter used in the pre-processing unit 3, a filter having a small attenuation in the low frequency region like BP1 in FIG. 5 is used.

【0010】図1,図2は図4のディジタル演算部4に
て行なわれる処理手順を示す。まず、ステップS1では
故障発生時点からCB開放時点までの電流データI
(t)を、サンプリング手法により収集する。故障発生
時点,CB開放時点を図3(イ)ではそれぞれt1,t
2として示している。なお、サンプリング間隔をΔtと
し、この間に(m+1)回サンプリングするものとする
と、t2=t1+mΔtと表現できる。
FIGS. 1 and 2 show the processing procedure performed in the digital arithmetic section 4 of FIG. First, in step S1, the current data I from the failure occurrence time to the CB opening time
(T) is collected by a sampling method. In FIG. 3A, the failure occurrence time and the CB release time are t1 and t, respectively.
It is shown as 2. If the sampling interval is Δt and sampling is performed (m + 1) times during this period, then t2 = t1 + mΔt can be expressed.

【0011】ステップS2では、例えば時刻t1とt2
間の或る時点t0を基準として、それ以前の1周期分の
n回のサンプリング値の平均を求め、これを直流(D
C)分とする。いま、1周期をT(=1/f,f:系統
の基本周波数)とすると、DC分IDC(t0)は、 となる。これを展開すると、図2のステップS2にも示
すように、 IDC(t0)={I(t0)+I(t0−Δt)+I(t0−2Δt)+… +I(t0−(n−1)Δt)}/n …(7) となる。
In step S2, for example, times t1 and t2
With reference to a certain point in time t0, an average of n sampling values for one cycle before that is calculated, and this is calculated as a direct current (D
C) Minutes. Now, assuming that one cycle is T (= 1 / f, f: fundamental frequency of system), DC component I DC (t0) is Becomes When this is expanded, as shown in step S2 of FIG. 2, I DC (t0) = {I (t0) + I (t0-Δt) + I (t0-2Δt) + ... + I (t0- (n-1) Δt)} / n (7)

【0012】次のステップS3では、各時刻におけるI
DC(t)の収束演算を行なう。具体的には図2のステッ
プS3に示すように、各時刻のIDC(t)の時間当たり
の変化を、例えば次式で示すようにΔ(tx )とし、 Δ(tx )=|IDC(tx −Δt)−IDC(tx )|+|IDC(tx ) −IDC(tx +Δt)| …(8) この値が最小となる時刻(tx =t0’)に、I
DC(t)が収束したものと推定する。このようにするの
は、故障電流に含まれるDC分が、故障発生直後の時刻
ではフィルタの過渡変化のため正確なDC分検出ができ
ないこと、また、時間毎のDC分常時変化し或る減衰時
定数を以て減衰して行くことによるものである。つま
り、系統故障発生から時間が経つとフィルタの過渡変化
は収まり、DC分の時間変化量は少なくなって安定する
からである。すなわち、DC分が指数関数exp(−t
/τ)(τ:減衰時定数)ならば、 〔exp{−(t0−Δt)/τ}−exp{−(t
0)/τ}〕>〔exp{−(t0)/τ}−exp
{−(t0+Δt)/τ}〕 であり、時間の経過とともに変化量は小さくなる。
In the next step S3, I at each time
DC (t) convergence calculation is performed. Specifically, as shown in step S3 of FIG. 2, the change in I DC (t) at each time point per unit time is represented by Δ (t x ), for example, as shown in the following equation, and Δ (t x ) = | I DC (t x -Δt) -I DC (t x) | + | I DC (t x) -I DC (t x + Δt) | ... (8) the time when this value is the minimum (t x = t0 ' ), I
It is estimated that DC (t) has converged. This is because the DC component contained in the fault current cannot be accurately detected due to the transient change of the filter at the time immediately after the occurrence of the fault, and the DC component is constantly changed every hour to cause a certain attenuation. This is due to the decay with a time constant. That is, as time elapses after the occurrence of the system failure, the transient change of the filter subsides, and the time change amount of DC becomes small and becomes stable. That is, the DC component is the exponential function exp (-t
/ Τ) (τ: decay time constant), [exp {-(t0-Δt) / τ} -exp {-(t
0) / τ}]> [exp {-(t0) / τ} -exp
{-(T0 + Δt) / τ}], and the amount of change decreases with the passage of time.

【0013】そして、上記時刻t0’でのDC値I
DC(t0’)を補正値とし、各時刻のサンプリング値か
ら引き算して、真値とする(ステップS4参照)。演算
式としては、 I(t)←I(t)−IDC(t0’) …(9) であり、これを展開すると図2のステップS4に示すよ
うに、 I(t1)←I(t1)−IDC(t0’) I(t1+Δt)←I(t1+Δt)−IDC(t0’) ・ ・ ・ I(t1+mΔt)←I(t1+mΔt)−IDC(t0’) …(10) となる。以上のようにして求められた電流I(t)を用
いて、従来と同様の演算式により、実効値,インピーダ
ンス等の算出が行なわれる(ステップS5参照)。
Then, the DC value I at the time t0 '
DC (t0 ') is used as a correction value and subtracted from the sampling value at each time to obtain a true value (see step S4). The arithmetic expression, an I (t) ← I (t ) -I DC (t0 ') ... (9), when deploying it as shown in step S4 in FIG. 2, I (t1) ← I (t1 ) -I DC (t0 ') I (t1 + Δt) ← I (t1 + Δt) -I DC (t0') · · · I (t1 + mΔt) ← I (t1 + mΔt) -I DC (t0 ') ... is (10). Using the current I (t) obtained as described above, the effective value, impedance, etc. are calculated by the same arithmetic expression as in the conventional case (see step S5).

【0014】以上のようにすることで、例えば系統の故
障電流が図3(イ)の如く示されるものとすると、収束
点(時刻t0’)のDC分が図3(ニ)の如く求めら
れ、この値を用いて各時刻の電流値から引き算をするこ
とにより、図3(ホ)の如く次第に安定して行くことに
なる。なお、図3(ハ)はこの発明のような処理をしな
い場合の電流実効値を示し、時間の経過によっても安定
しないことが分かる。また、図3(ロ)は同(イ)の如
き波形を図5に示すような特性を持つフィルタBP1を
通した波形を示している。
By the above, if the fault current of the system is shown as shown in FIG. 3 (a), the DC component at the convergence point (time t0 ') is obtained as shown in FIG. 3 (d). By subtracting from the current value at each time using this value, it becomes gradually stable as shown in FIG. It should be noted that FIG. 3C shows the effective current value when the process of the present invention is not performed, and it can be seen that the current is not stable over time. Further, FIG. 3B shows a waveform obtained by passing the waveform shown in FIG. 3B through the filter BP1 having the characteristic shown in FIG.

【0015】[0015]

【発明の効果】この発明によれば、フィルタ作用を利用
するのではなく演算により、故障電流に含まれる直流
(DC)分を求めて、各時点の電流サンプリング値から
減算するようにしたので、比較的精度の高い電気量を得
ることができるという利点が得られる。特に、上記DC
分を、それが収束すると考えられる時点で求めること
で、より精度を高めることができる。なお、この発明に
より低次の周波数成分の影響は除去できるが、整数調波
を除く高次の周波数成分の影響は排除できないので、図
4の前処理部3には高次成分除去用フィルタが必要とな
るのは勿論である。
According to the present invention, the direct current (DC) component included in the fault current is obtained by calculation instead of utilizing the filter action, and is subtracted from the current sampling value at each time point. The advantage is that a relatively accurate amount of electricity can be obtained. In particular, the DC
By obtaining the minute at the time when it is considered to converge, the accuracy can be further improved. Although the present invention can remove the influence of low-order frequency components, it cannot eliminate the influence of high-order frequency components except integer harmonics. Therefore, the pre-processing unit 3 in FIG. Of course, it is necessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による実施の形態を示す概略フローチ
ャートである。
FIG. 1 is a schematic flowchart showing an embodiment according to the present invention.

【図2】図1の詳細フローチャートである。FIG. 2 is a detailed flowchart of FIG.

【図3】この発明による処理方法を説明するための波形
図である。
FIG. 3 is a waveform diagram for explaining a processing method according to the present invention.

【図4】この発明が適用されるシステム構成図である。FIG. 4 is a system configuration diagram to which the present invention is applied.

【図5】フィルタ特性例を説明するための説明図であ
る。
FIG. 5 is an explanatory diagram for explaining an example of filter characteristics.

【符号の説明】[Explanation of symbols]

1…保護リレー、2…絶縁トランス、3…前処理部、4
…ディジタル演算部、CB…遮断器。
1 ... Protective relay, 2 ... isolation transformer, 3 ... pretreatment section, 4
... Digital operation unit, CB ... Circuit breaker.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 系統電流をサンプリングしディジタル量
に変換した量にもとづきそれぞれ所定のディジタル演算
をして各種電気量を求めるに当たり、 系統故障時の故障電流中に含まれる直流成分を、基本波
周波数で1周期相当の時間の各サンプリング値の平均を
とることによって算出し、各時刻の電流サンプリング値
から前記算出された直流分を引き算し、その結果の値を
用いて各種電気量を検出することを特徴とする系統故障
時の電気量検出方法。
1. A direct current component included in a fault current at the time of a system fault is calculated based on a fundamental frequency when a systematic current is sampled and converted into a digital amount to obtain various kinds of electricity by performing predetermined digital operations respectively. Calculated by averaging each sampled value for a period corresponding to 1 cycle, subtracting the calculated direct current component from the current sampled value at each time, and using the resulting value to detect various amounts of electricity. An electric quantity detection method in the event of a system failure.
【請求項2】 前記直流成分を、その変動が収束する時
点で算出することを特徴とする請求項1に記載の系統故
障時の電気量検出方法。
2. The method for detecting an electric quantity at the time of a system failure according to claim 1, wherein the DC component is calculated at the time when the fluctuation converges.
JP3173096A 1996-02-20 1996-02-20 Electricity detection method in case of system failure Pending JPH09222440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3173096A JPH09222440A (en) 1996-02-20 1996-02-20 Electricity detection method in case of system failure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3173096A JPH09222440A (en) 1996-02-20 1996-02-20 Electricity detection method in case of system failure

Publications (1)

Publication Number Publication Date
JPH09222440A true JPH09222440A (en) 1997-08-26

Family

ID=12339169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3173096A Pending JPH09222440A (en) 1996-02-20 1996-02-20 Electricity detection method in case of system failure

Country Status (1)

Country Link
JP (1) JPH09222440A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259312A (en) * 2007-04-04 2008-10-23 Kyuki:Kk Protection relay and accident point locating device for power transmission and distribution system and transient component elimination method thereof
CN103308812A (en) * 2012-03-06 2013-09-18 富士施乐株式会社 Electric device and electrical method
CN107294049A (en) * 2017-06-19 2017-10-24 华中科技大学 A kind of short circuit electric current fast prediction and guard method and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259312A (en) * 2007-04-04 2008-10-23 Kyuki:Kk Protection relay and accident point locating device for power transmission and distribution system and transient component elimination method thereof
CN103308812A (en) * 2012-03-06 2013-09-18 富士施乐株式会社 Electric device and electrical method
CN107294049A (en) * 2017-06-19 2017-10-24 华中科技大学 A kind of short circuit electric current fast prediction and guard method and system
CN107294049B (en) * 2017-06-19 2019-02-26 华中科技大学 A method and system for fast prediction and protection of circuit short-circuit current

Similar Documents

Publication Publication Date Title
US11016136B2 (en) Method and control system for fault direction detection
CN110024249B (en) Method for detecting faults in power transmission lines and protection system using the same
US10338122B2 (en) Method and device for detecting a fault in an electrical network
Kundu et al. Real-time analysis of power system protection schemes using synchronized data
JPS59226615A (en) Offset compensator
Reis et al. Influence of instrument transformers and anti-aliasing filters on the performance of fault locators
Lian et al. An overview of digital fault location algorithms for power transmission lines using transient waveforms
JPH09222440A (en) Electricity detection method in case of system failure
Kusljevic A simple method for design of adaptive filters for sinusoidal signals
KR100232764B1 (en) Apparatus and method for measuring impedance of a digital distance relay
Baeckeland et al. Novel fault distance estimation method for lines connected to converter-based generation
JP2014050284A (en) Waveform processor
Sidhu et al. A fast distance relay using adaptive data window filters
Tajdinian et al. Comprehensive and innovative method for dynamic phasor and frequency estimation
KR101463045B1 (en) Method for Removing DC component of fault current
Buryanina et al. High-speed relay equipment protection
US7206177B2 (en) Device and method for protection against overcurrents in an electrical energy distribution cabinet
EP1159627A1 (en) Reach-measurement method for power transmission lines
Kong et al. Study on effects of DSE-Based instrumentation channel error correction on protective relays
JPH05207640A (en) Digital relay for protection of higher harmonic filter facility
JP2020150655A (en) Protection / control device and protection / control method
JP3360447B2 (en) Method of removing transient DC component and protection relay employing this method
JP5664166B2 (en) Current differential protection relay device
JP5078133B2 (en) Protection relay and accident point locating device for power transmission and distribution system and transient component elimination method thereof
Hashimoto The graduate project of Xiuzhong Yang is approved by