JPH09222118A - Bearing device - Google Patents
Bearing deviceInfo
- Publication number
- JPH09222118A JPH09222118A JP2939396A JP2939396A JPH09222118A JP H09222118 A JPH09222118 A JP H09222118A JP 2939396 A JP2939396 A JP 2939396A JP 2939396 A JP2939396 A JP 2939396A JP H09222118 A JPH09222118 A JP H09222118A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- dynamic pressure
- radial
- shaft
- bearing member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920005989 resin Polymers 0.000 claims abstract description 43
- 239000011347 resin Substances 0.000 claims abstract description 43
- 230000002093 peripheral effect Effects 0.000 claims abstract description 24
- 238000001746 injection moulding Methods 0.000 abstract description 14
- 238000003754 machining Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 24
- 238000000465 moulding Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- 239000000945 filler Substances 0.000 description 14
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 12
- 239000004810 polytetrafluoroethylene Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 239000012530 fluid Substances 0.000 description 11
- 230000001050 lubricating effect Effects 0.000 description 11
- 229920002292 Nylon 6 Polymers 0.000 description 10
- 229920013716 polyethylene resin Polymers 0.000 description 8
- 229920000049 Carbon (fiber) Polymers 0.000 description 7
- 239000004734 Polyphenylene sulfide Substances 0.000 description 7
- 239000004917 carbon fiber Substances 0.000 description 7
- 229920000069 polyphenylene sulfide Polymers 0.000 description 7
- -1 polytetrafluoroethylene Polymers 0.000 description 7
- 230000005291 magnetic effect Effects 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000011342 resin composition Substances 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229930182556 Polyacetal Natural products 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 239000012778 molding material Substances 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
Landscapes
- Sliding-Contact Bearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、レーザプリンタ、
磁気ディスク装置などの情報機器に用いられる軸受装置
に関する。TECHNICAL FIELD The present invention relates to a laser printer,
The present invention relates to a bearing device used for an information device such as a magnetic disk device.
【0002】[0002]
【従来の技術】従来、情報機器であるレーザプリンタの
ポリゴンミラー用スキャナモータには、図5に示すよう
な軸受装置が用いられている。この軸受装置は、円筒形
状の部材であるスリーブ1に、外周面に動圧発生用の溝
3が形成された軸2が挿入されていて、スリーブ1及び
軸2の相対回転時に動圧発生用の溝3によって発生する
空気圧を利用して、スリーブ1を軸2に対してラジアル
方向に支持するラジアル動圧空気軸受を構成している。
また、この図5の例では、スリーブ1の軸2挿入側とは
逆側の端部をスラスト板4によって閉塞し、さらに、軸
2の端面と該端面に対向するスラスト板4の内面とに互
いに反発力が発生するように一対の永久磁石5,6を固
定しており、かかる永久磁石5,6の反発力によって、
スリーブ1を軸2に対して軸方向に支持するスラスト磁
気軸受を構成している。2. Description of the Related Art Conventionally, a bearing device as shown in FIG. 5 has been used for a scanner motor for a polygon mirror of a laser printer which is an information device. In this bearing device, a shaft 2 having a groove 3 for generating a dynamic pressure formed on an outer peripheral surface thereof is inserted into a sleeve 1 which is a cylindrical member, and the dynamic pressure is generated when the sleeve 1 and the shaft 2 rotate relative to each other. The air pressure generated by the groove 3 is used to form a radial dynamic pressure air bearing that supports the sleeve 1 in the radial direction with respect to the shaft 2.
In the example of FIG. 5, the end of the sleeve 1 opposite to the shaft 2 insertion side is closed by the thrust plate 4, and the end face of the shaft 2 and the inner face of the thrust plate 4 facing the end face are closed. The pair of permanent magnets 5 and 6 are fixed so that repulsive force is generated between them, and the repulsive force of the permanent magnets 5 and 6 causes
A thrust magnetic bearing that axially supports the sleeve 1 with respect to the shaft 2 is configured.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、図5に
示したような軸受装置にあっては、潤滑流体として粘度
が低く且つ潤滑性のない空気を用いる構造であるため、
スリーブ1内周面や軸2外周面等の軸受面を極めて高精
度に仕上げる必要があり、しかもその軸受面には良好な
摺動性まで要求されていた。従って、一般的に構造用鋼
製のスリーブ1の内周面を研削又はホーニング加工した
後に、耐蝕性を上げ且つ摺動性を確保するために、その
内周面に対してニッケルにポリふっ化エチレン系樹脂を
含浸させた複合メッキを施し、さらに寸法精度を確保す
るために再び研削又はホーニング加工を行っていた。こ
のように、スリーブ1については、メッキ処理が必要で
あるし、そのメッキ処理の前後それぞれに研削又はホー
ニング加工が必要であるため、加工コストが嵩むという
問題点がある。However, since the bearing device as shown in FIG. 5 has a structure in which air having low viscosity and no lubricity is used as the lubricating fluid,
The bearing surface such as the inner peripheral surface of the sleeve 1 and the outer peripheral surface of the shaft 2 needs to be finished with extremely high precision, and the bearing surface is also required to have good slidability. Therefore, generally, after grinding or honing the inner peripheral surface of the structural steel sleeve 1, nickel is polyfluorinated on the inner peripheral surface in order to improve corrosion resistance and ensure slidability. A composite plating impregnated with an ethylene resin was applied, and grinding or honing was performed again in order to secure dimensional accuracy. As described above, since the sleeve 1 needs to be plated and grinding or honing is required before and after the plating, there is a problem that the processing cost increases.
【0004】また、軸2の外周面には動圧発生用の溝3
を形成する必要があるが、この軸2は通常ステンレス鋼
製であったため、動圧発生用の溝3をエッチングにより
加工しなければならず、その工程が複雑で時間がかか
り、しかもコスト高になるという問題点がある。しか
も、図5の例では、永久磁石5,6の反発力を利用して
スラスト磁気軸受を構成していたため、それだけ構造が
複雑で部品点数も多く、これもコスト高の一要因となっ
ていた。また、特に永久磁石5,6の反発力が作用する
結果、このままではスリーブ1が軸2から脱落し易いの
で、輸送時等にはその脱落を防止するための押さえが必
要であり、その組立に手間を要していた。さらに、取付
誤差等によって永久磁石5,6が僅かでも回転軸中心か
ら偏心してしまうと、回転時にラジアル軸受面に偏荷重
が加わり、ラジアル軸受面の耐久性劣化の原因となって
いた。A groove 3 for generating dynamic pressure is formed on the outer peripheral surface of the shaft 2.
However, since the shaft 2 is usually made of stainless steel, the groove 3 for generating the dynamic pressure must be processed by etching, and the process is complicated and time-consuming, and the cost is high. There is a problem that Moreover, in the example of FIG. 5, since the thrust magnetic bearing is configured by utilizing the repulsive force of the permanent magnets 5 and 6, the structure is complicated and the number of parts is large, which is also a factor of the high cost. . Further, as a result of the repulsive force of the permanent magnets 5 and 6, the sleeve 1 is likely to fall off the shaft 2 as it is. Therefore, it is necessary to hold the sleeve 1 during transportation or the like to prevent it from falling off. It took time. Further, if the permanent magnets 5 and 6 are slightly eccentric from the center of the rotation shaft due to mounting error or the like, an eccentric load is applied to the radial bearing surface during rotation, which causes deterioration of durability of the radial bearing surface.
【0005】本発明は、このような従来の軸受装置が有
する種々の課題に着目してなされたものであって、高精
度で且つ耐久性に優れ、しかも加工が容易で低コストで
製造することができる軸受装置を提供することを目的と
している。The present invention has been made by paying attention to various problems that such a conventional bearing device has, and is to manufacture with high accuracy and excellent durability, easy processing, and low cost. An object of the present invention is to provide a bearing device capable of
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明に係る軸受装置は、軸が挿入される円筒形状
の軸受孔の内周面をラジアル軸受面とすると共に、該ラ
ジアル軸受面に動圧発生用の溝を設け、且つ、該ラジア
ル軸受面が前記軸の外周面に対向してラジアル動圧軸受
を構成するラジアル動圧軸受部材と、該ラジアル動圧軸
受部材の軸方向の端部に固定されて前記軸受孔に挿入さ
れた前記軸の先端面と対向する部分をスラスト軸受面と
し、且つ、該スラスト軸受面が前記軸の先端面に対向し
てスラストすべり軸受を構成するスラストすべり軸受部
材とを備え、前記ラジアル動圧軸受部材と前記スラスト
すべり軸受部材とを互いに異なる材質の樹脂で形成した
ことを特徴としている。In order to achieve the above object, the bearing device according to the present invention is such that the inner peripheral surface of a cylindrical bearing hole into which a shaft is inserted is a radial bearing surface and the radial bearing is A radial dynamic pressure bearing member having a groove for generating a dynamic pressure on its surface, and the radial bearing surface facing the outer peripheral surface of the shaft to form a radial dynamic pressure bearing, and an axial direction of the radial dynamic pressure bearing member. A portion which is fixed to the end portion of the shaft and faces the tip end surface of the shaft inserted into the bearing hole is a thrust bearing surface, and the thrust bearing surface faces the tip end surface of the shaft to form a thrust slide bearing. And a thrust sliding bearing member, wherein the radial dynamic pressure bearing member and the thrust sliding bearing member are made of different resins.
【0007】この発明の軸受装置においては、動圧発生
用の溝を備え且つラジアル軸受面を有するラジアル動圧
軸受部材、及びスラスト軸受面を有するスラストすべり
軸受部は共に樹脂を材料とした射出成形等によって形成
可能である。この結果、各軸受部材の加工が容易になる
と共に、軸受装置の部品点数が減少してコスト低減を図
ることが可能になる。また、ラジアル軸受面に動圧発生
用の溝を形成することにより、従来のように、軸の外周
面に動圧発生用の溝を設けなくて済む。In the bearing device of the present invention, the radial dynamic pressure bearing member having a groove for generating a dynamic pressure and having a radial bearing surface, and the thrust slide bearing portion having a thrust bearing surface are both injection-molded using a resin material. And the like. As a result, the processing of each bearing member is facilitated, and the number of parts of the bearing device is reduced, so that the cost can be reduced. Further, by forming the dynamic pressure generating groove on the radial bearing surface, it is not necessary to provide the dynamic pressure generating groove on the outer peripheral surface of the shaft as in the conventional case.
【0008】また、ラジアル動圧軸受部材とスラストす
べり軸受部材とを互いに異なる材質の樹脂で形成してい
るため、各軸受部材に要求される性能により、ラジアル
動圧軸受部材については流動性が良く、成形収縮が小さ
く、かつ、強度があって耐磨耗性に優れた樹脂を、スラ
ストすべり軸受部材については摺動性と耐磨耗性に特に
優れた樹脂を別々に選定でき、したがって、選定した樹
脂を材料として各軸受部材を射出成形等で形成すること
により、高精度で且つ耐久性に優れたものとすることが
可能になる。Further, since the radial dynamic pressure bearing member and the thrust slide bearing member are made of resins of different materials, the fluidity of the radial dynamic pressure bearing member is good because of the performance required for each bearing member. , It is possible to select a resin that has a small molding shrinkage and is strong and has excellent wear resistance, and a thrust sliding bearing member that has particularly excellent slidability and wear resistance. By forming each bearing member by injection molding or the like using the above resin as a material, it becomes possible to make the bearing highly accurate and excellent in durability.
【0009】この場合、ラジアル軸受面の軸方向の両端
部に、該ラジアル軸受面より大径で且つ動圧発生用の溝
に連続する油溜まりを周方向に沿って形成するのが好ま
しい。このようにすると、潤滑流体としての油を該油溜
まりからラジアル軸受面に補給することができるので、
ラジアル動圧軸受部材のより耐久性の向上を図ることが
可能になる。In this case, it is preferable that oil reservoirs having a diameter larger than that of the radial bearing surface and continuous with the groove for dynamic pressure generation are formed along the circumferential direction at both axial end portions of the radial bearing surface. By doing so, the oil as the lubricating fluid can be replenished from the oil reservoir to the radial bearing surface,
It is possible to further improve the durability of the radial dynamic pressure bearing member.
【0010】また、前記ラジアル動圧軸受部材の樹脂材
料として、ポリフェニレンサルファイド樹脂(PPS)
に炭素繊維(CF)を充填したものを用いるのが好まし
い。このような樹脂材料を用いてラジアル動圧軸受部材
を射出成形等で形成することにより、該ラジアル動圧軸
受部材の成形を容易にすることができると共に、耐摩耗
性、耐久性及び強度の向上を図ることが可能になる。As a resin material for the radial dynamic pressure bearing member, polyphenylene sulfide resin (PPS) is used.
It is preferable to use carbon fiber (CF) filled in. By forming a radial dynamic pressure bearing member by injection molding or the like using such a resin material, molding of the radial dynamic pressure bearing member can be facilitated, and wear resistance, durability and strength are improved. Can be achieved.
【0011】なお、上記ポリフェニレンサルファイド樹
脂(PPS)に充填する充填材は、前記炭素繊維単体で
あってもよいし、ポリテトラフロロエチレン(PTF
E)等のその他の充填材を混入してもよい。ここで、上
記ポリフェニレンサルファイド樹脂(PPS)に対して
炭素繊維の他に別の充填材を充填する場合には、充填材
の合計を20〜50重量%の範囲に限定することが好ま
しい。充填材の合計が20重量%より少ないと、成形時
の成形収縮が大きくなって所定の成形精度や強度を確保
できない場合があり、一方、50重量%より多くなる
と、樹脂の流動性が悪くなって成形精度を確保できない
場合がある。The filler to be filled in the polyphenylene sulfide resin (PPS) may be the carbon fiber alone or polytetrafluoroethylene (PTF).
Other fillers such as E) may be mixed. Here, when the polyphenylene sulfide resin (PPS) is filled with another filler in addition to the carbon fibers, it is preferable to limit the total amount of the fillers to the range of 20 to 50% by weight. If the total amount of the fillers is less than 20% by weight, the molding shrinkage at the time of molding may be large and the predetermined molding accuracy and strength may not be ensured. Molding accuracy may not be ensured.
【0012】そして、上記充填材にポリテトラフロロエ
チレン(PTFE)を充填する場合は、5〜20重量%
だけ充填するのが好ましい。ポリテトラフロロエチレン
を充填することで、ラジアル軸受面の摺動性の向上を図
ることが可能になる。ここで、上記5重量%より少ない
と摺動性が悪くなり、一方、上記20重量%より多くな
ると、PTFEは線膨張係数が大きく又射出成形時に偏
析し易いために成形精度を確保できない場合がある。When the above-mentioned filler is filled with polytetrafluoroethylene (PTFE), it is 5 to 20% by weight.
It is preferable to fill only. Filling with polytetrafluoroethylene makes it possible to improve the slidability of the radial bearing surface. Here, if the amount is less than 5% by weight, the slidability deteriorates. On the other hand, if the amount is more than 20% by weight, PTFE has a large linear expansion coefficient and segregates easily during injection molding, so that molding accuracy may not be ensured. is there.
【0013】さらに、スラストすべり軸受部材の樹脂材
料としては、ポリアミド6樹脂(PA6)とポリエチレ
ン樹脂(PE)とを有する樹脂組成物を用いるのが好ま
しい。このような樹脂組成物を用いてスラストすべり軸
受部材を成形することにより、摺動性に優れると共に、
特に高面圧の耐磨耗性に優れたものとすることが可能に
なる。Further, as the resin material of the thrust slide bearing member, it is preferable to use a resin composition containing polyamide 6 resin (PA6) and polyethylene resin (PE). By molding a thrust sliding bearing member using such a resin composition, the sliding property is excellent and
In particular, it becomes possible to make it excellent in abrasion resistance under high surface pressure.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態の一例
を図1〜図3を参照して説明する。図1は本発明の実施
の形態の一例である軸受装置を説明するための説明的断
面図、図2は動圧発生用の溝の拡大断面図、図3は本実
施の形態の軸受装置をポリゴンスキャナ用のスピンドル
モータに組み込んだ状態を示す縦断面図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is an explanatory sectional view for explaining a bearing device as an example of an embodiment of the present invention, FIG. 2 is an enlarged sectional view of a groove for generating a dynamic pressure, and FIG. 3 shows a bearing device of the present embodiment. It is a longitudinal cross-sectional view showing a state of being incorporated in a spindle motor for a polygon scanner.
【0015】先ず、構成を説明すると、本実施の形態に
おける軸受装置は、ラジアル動圧軸受部材10とスラス
トすべり軸受部材13aとを備えたもので、各軸受部材
10,13aはいずれも射出成形により形成されたプラ
スチック製のものである。ラジアル動圧軸受部材10の
内部には、円筒形状の軸受孔10Aが軸線を上下方向に
向けて形成されている。軸受孔10Aの上端側は開放さ
れ、下端側は圧入等により嵌合固定されたスラストすべ
り軸受部材13aによって閉塞されている。また、ラジ
アル動圧軸受部材10の下端部外周面には、このラジア
ル動圧軸受部材10にステータ等を固定する際に利用さ
れるボルト挿通孔10a等が形成されたフランジ10B
が一体に形成されている。First, the structure will be described. The bearing device according to the present embodiment includes a radial dynamic pressure bearing member 10 and a thrust slide bearing member 13a, and each of the bearing members 10 and 13a is formed by injection molding. It is made of molded plastic. A cylindrical bearing hole 10A is formed inside the radial dynamic pressure bearing member 10 with its axis extending vertically. The upper end side of the bearing hole 10A is open, and the lower end side is closed by a thrust slide bearing member 13a fitted and fixed by press fitting or the like. A flange 10B is formed on the outer peripheral surface of the lower end portion of the radial dynamic pressure bearing member 10 with bolt insertion holes 10a and the like used when fixing the stator and the like to the radial dynamic pressure bearing member 10.
Are integrally formed.
【0016】また、軸受孔10Aの内周面には軸受孔1
0Aに挿入される軸15の外周面15bと対向してラジ
アル動圧軸受を構成するラジアル軸受面12が設けられ
ており、このラジアル軸受面12には動圧発生用の溝1
1が形成されている。なお、この実施の形態では、動圧
発生用の溝11を二つのヘリングボーン溝としている
が、これに限定されるものではなく、一つのヘリングボ
ーン溝であってもよいし、その他の形式であってもよ
い。Further, the bearing hole 1 is formed on the inner peripheral surface of the bearing hole 10A.
A radial bearing surface 12 constituting a radial dynamic pressure bearing is provided so as to face the outer peripheral surface 15b of the shaft 15 inserted into the shaft 0A, and the radial bearing surface 12 has a groove 1 for generating dynamic pressure.
1 is formed. In this embodiment, the dynamic pressure generating grooves 11 are two herringbone grooves. However, the present invention is not limited to this, and one herringbone groove may be used, or another type. It may be.
【0017】ラジアル軸受面12の軸方向の上下端部
は、潤滑流体としての油をラジアル軸受面12に補給し
てその耐久性を向上させるのに利用される油溜まり14
A,14Bに接続されている。これら油溜まり14A,
14Bは、周方向に連続しており、上端側の油溜まり1
4Aはラジアル軸受面12より大径の円筒状とされ、下
端側の油溜まり14Bは円周溝とされている。上端側の
油溜まり14Aは動圧発生用の溝11の上端と通じ、下
端側の油溜まり14Bはスラストすべり軸受部材13a
の上方に位置して動圧発生用の溝11の下端と通じてい
る。The upper and lower ends of the radial bearing surface 12 in the axial direction are used as an oil sump 14 for replenishing the radial bearing surface 12 with oil as a lubricating fluid to improve its durability.
It is connected to A and 14B. These oil sumps 14A,
14B is continuous in the circumferential direction, and the oil sump 1 on the upper end side
4A has a cylindrical shape with a diameter larger than that of the radial bearing surface 12, and the oil sump 14B on the lower end side is a circumferential groove. The oil sump 14A on the upper end side communicates with the upper end of the groove 11 for dynamic pressure generation, and the oil sump 14B on the lower end side thrust thrust bearing member 13a.
Is located above and communicates with the lower end of the groove 11 for generating dynamic pressure.
【0018】油溜まり14A,14Bの深さHは、図2
に軸線を左右方向に向けて拡大図示した動圧発生用の溝
11の深さh0 と略等しくしている。その理由は、潤滑
流体の補給という点からは油溜まり14A,14Bは容
量が大きい即ち深い程好ましいのに対し、プラスチック
射出成形する際に、成形されたラジアル動圧軸受部材1
0から金型のコアピンを無理に抜く必要があるため、下
端側の油溜まり14Bの深さHを動圧発生用の溝11の
深さh0 よりも深くすると金型を抜く際にラジアル軸受
面12が損傷する可能性があるからである。しかし、上
端側の油溜まり14Aは金型を抜く方向側にあるので必
要によりh0 より深くできる。また、上端側の油溜まり
14Aは上方に向けて拡径する大径の円錐面でもよい。
また、上端側の油溜まり14Aはh0 の深さの円周溝で
もよい。The depth H of the oil sumps 14A and 14B is shown in FIG.
Further, the depth is made substantially equal to the depth h 0 of the groove 11 for dynamic pressure generation, which is enlarged and shown with the axis thereof in the left-right direction. The reason is that the oil reservoirs 14A and 14B preferably have a large capacity, that is, a deeper depth, from the viewpoint of replenishing the lubricating fluid, while the molded radial dynamic bearing member 1 is used in plastic injection molding.
Since it is necessary to forcibly remove the core pin of the mold from 0, if the depth H of the oil sump 14B on the lower end side is made deeper than the depth h 0 of the groove 11 for dynamic pressure generation, the radial bearing is used when the mold is removed. This is because the surface 12 may be damaged. However, since the oil sump 14A on the upper end side is on the side where the mold is removed, it can be deeper than h 0 if necessary. Further, the oil sump 14A on the upper end side may be a large-diameter conical surface whose diameter increases upward.
Further, the oil sump 14A on the upper end side may be a circumferential groove having a depth of h 0 .
【0019】また、金型を抜く方向を上記と逆にする
と、下端側の油溜まり14Bは金型を抜く方向側にある
ので必要により動圧発生用の溝の深さh0 より深くされ
うる。また、スラストすべり軸受部材13aを取付ける
取付孔13bを射出成形時に形成できる。そして、油溜
まり14A及び14Bをラジアル軸受面12の両端部に
形成しているのは、軸受部材10をプラスチック射出成
形する場合、配向性や固化速度の影響を受けやすい軸受
孔10Aの上端開口部近傍及びフランジ10Bの影響を
受けやすい軸受孔10Aの下端内周面は、樹脂の温度低
下による収縮の際に熱収縮速度の位置による差の影響を
受けるため、成形精度を確保することが難しいからであ
る。つまり、成形精度を確保するのが難しい位置に、成
形精度があまり重要でない油溜まり14A,14Bを形
成すれば、加工精度上の問題点を解決しつつ、潤滑流体
の補給経路を確保することができるのである。If the direction of removing the mold is reversed from that described above, the oil sump 14B on the lower end side is on the side of the direction of removing the mold, so that it can be made deeper than the depth h 0 of the groove for dynamic pressure generation, if necessary. . Further, the mounting hole 13b for mounting the thrust slide bearing member 13a can be formed at the time of injection molding. The oil sumps 14A and 14B are formed at both ends of the radial bearing surface 12 when the bearing member 10 is molded by plastic injection, the upper end opening of the bearing hole 10A that is easily affected by orientation and solidification speed. Since the vicinity and the inner peripheral surface of the lower end of the bearing hole 10A, which is easily affected by the flange 10B, is affected by the difference in the heat shrinkage speed depending on the position when shrinking due to the temperature decrease of the resin, it is difficult to secure the molding accuracy. Is. That is, by forming the oil reservoirs 14A and 14B in which the molding accuracy is not so important at a position where it is difficult to ensure the molding accuracy, it is possible to secure the lubricating fluid replenishment route while solving the problem in the processing accuracy. You can do it.
【0020】なお、この実施の形態では、図1に示すよ
うに、ヘリングボーン溝を軸方向に二つ接続して動圧発
生用の溝11を形成しており、しかも各ヘリングボーン
溝の屈曲点を境にした軸方向端部側部分の幅A,Bを、
軸方向内側部分の幅a,bよりも広い所謂非対称溝とし
ている。これは、ラジアル軸受面12の寸法精度や形状
が多少悪くても、ポンプ作用による潤滑流体の流れのう
ち、軸方向中央部に向かって押し込むように働く流れの
方が軸方向外側に向かう流れよりも強くなり、潤滑流体
がラジアル軸受面12から外部に漏れるのを防止するこ
とができるので、耐久性の確保上好ましいからである。In this embodiment, as shown in FIG. 1, two herringbone grooves are axially connected to each other to form a groove 11 for generating a dynamic pressure, and each herringbone groove is bent. Widths A and B of the end portion in the axial direction with respect to the point,
It is a so-called asymmetric groove wider than the widths a and b of the axially inner portion. This is because even if the dimensional accuracy and shape of the radial bearing surface 12 are slightly poor, the flow of the lubricating fluid due to the pump action, which works to push it toward the central portion in the axial direction, is more than the flow toward the outer side in the axial direction. This is because it becomes stronger, and the lubricating fluid can be prevented from leaking from the radial bearing surface 12 to the outside, which is preferable for ensuring durability.
【0021】スラストすべり軸受部材13aは、軸受孔
10Aより大径の円板状部材からなり、軸受孔10Aの
下端に連続して形成された取付孔13bに圧入によって
嵌合固定されて、該軸受孔10Aの下端を閉塞してい
る。なお、この実施の形態では、スラストすべり軸受部
材13aを圧入しているが、必ずしもこれに限定する必
要はなく、例えば圧入に代えて接着あるいはねじ止めで
もよく、要はラジアル動圧軸受部材10に固定できれば
よい。The thrust slide bearing member 13a is made of a disk-shaped member having a diameter larger than that of the bearing hole 10A, and is fitted and fixed by press fitting into a mounting hole 13b formed continuously at the lower end of the bearing hole 10A. The lower end of the hole 10A is closed. In addition, in this embodiment, the thrust slide bearing member 13a is press-fitted, but it is not necessarily limited to this. For example, instead of press-fitting, it may be bonded or screwed. It just needs to be fixed.
【0022】スラストすべり軸受部材13aの上面中央
部は凸球面状に盛り上がっていて、このスラストすべり
軸受部材13aの上面がスラスト軸受面13となってい
る。具体的には、図3に示すように軸受孔10Aに挿入
されて該スラスト軸受面13と対向する軸15の平面状
の下端面(先端面)15aがスラスト軸受面13の凸球
面に点接触することにより、回転時の摩擦トルクを小さ
く抑えることができるスラスト滑り軸受が構成される。
なお、アキシアル荷重が大きい場合には、スラスト軸受
面13あるいはこれに対向する軸15の下端面15aに
動圧発生用の溝(図示せず。)を設け、軸15のラジア
ル動圧軸受部材10に対する回転に伴う動圧効果で浮力
を発生させることにより、スラスト軸受面13の磨耗を
軽減するようにしてもよい。また、スラスト軸受面13
は凸球面状の代わりに凸平面の出っ張りでもよく、又は
スラスト軸受面13の上面を平面状として相手となる軸
15の下端面15aを凸球面状若しくは凸平面状として
もよい。要は、回転時摩擦が小さくでき、軸15との片
あたりが防げる形状であればよい。The central portion of the upper surface of the thrust slide bearing member 13a is raised in a convex spherical shape, and the upper surface of the thrust slide bearing member 13a is the thrust bearing surface 13. Specifically, as shown in FIG. 3, the flat lower end surface (tip surface) 15a of the shaft 15 inserted into the bearing hole 10A and facing the thrust bearing surface 13 is in point contact with the convex spherical surface of the thrust bearing surface 13. By doing so, a thrust slide bearing that can suppress the friction torque during rotation is configured.
When the axial load is large, a groove (not shown) for generating dynamic pressure is provided on the thrust bearing surface 13 or the lower end surface 15a of the shaft 15 facing the thrust bearing surface 13, and the radial dynamic pressure bearing member 10 of the shaft 15 is provided. The wear of the thrust bearing surface 13 may be reduced by generating buoyancy due to the dynamic pressure effect that accompanies the rotation of the. In addition, the thrust bearing surface 13
In place of the convex spherical surface, a convex flat surface may be projected, or the upper surface of the thrust bearing surface 13 may be flat and the lower end surface 15a of the opposite shaft 15 may be a convex spherical surface or a convex flat surface. In short, any shape may be used as long as the friction during rotation can be reduced and partial contact with the shaft 15 can be prevented.
【0023】また、スラストすべり軸受部材13aに
は、凸球面から径方向外側に離れた位置に、つまり、軸
15の下端面15aと接触しない位置に、貫通孔10b
が形成されている。この貫通孔10bは、軸15を軸受
孔10Aに挿入する際に空気抜き用の孔として利用され
るものであって、これにより組立作業の容易化を図って
いる。なお、貫通孔10bの位置は、必ずしもスラスト
すべり軸受部材13aに形成する必要はなく、例えば、
ラジアル動圧軸受部材10の底部に形成してもよい。要
は、相手軸15を挿入する時に、軸受孔10A内の空気
を外部に押し出せる位置にあればよい。また、組立後、
上記貫通孔10bをテープ等で封止してもよい。なお、
潤滑流体の粘度が低いとか軸15とラジアル動圧軸受部
材10との間の隙間が大きくて、軸15の軸受孔10A
への挿入時に軸受孔10A内の空気が外部に押し出され
る場合は貫通孔10bはなくても良い。The thrust slide bearing member 13a has a through hole 10b at a position radially outward from the convex spherical surface, that is, at a position where it does not contact the lower end surface 15a of the shaft 15.
Are formed. The through hole 10b is used as an air vent hole when the shaft 15 is inserted into the bearing hole 10A, thereby facilitating the assembling work. The position of the through hole 10b does not necessarily have to be formed in the thrust slide bearing member 13a.
It may be formed on the bottom of the radial dynamic pressure bearing member 10. The point is that when the mating shaft 15 is inserted, it may be at a position where the air in the bearing hole 10A can be pushed out. Also, after assembly,
The through hole 10b may be sealed with a tape or the like. In addition,
If the viscosity of the lubricating fluid is low, or the gap between the shaft 15 and the radial dynamic pressure bearing member 10 is large, the bearing hole 10A of the shaft 15
When the air in the bearing hole 10A is pushed out at the time of insertion into the hole, the through hole 10b may be omitted.
【0024】ここで、この実施の形態では、ラジアル動
圧軸受部材10を形成する樹脂材料として、強度があ
り、成形が容易で、しかも良好な潤滑性を確保するため
に、例えば、ポリフェニレンサルファイド樹脂(PPS
樹脂)に、充填材として炭素繊維及び5〜20重量%の
ポリテトラフロロエチレン(PTFE)を充填し、充填
量の合計を20〜50重量%としたものを用い、一方、
スラストすべり軸受部材13aを形成する樹脂材料とし
て、摺動性と、特に高面圧の耐磨耗性とを十分に確保す
るために、ポリアミド6樹脂(PA6)とポリエチレン
樹脂(PE)とを有する樹脂組成物を用いている。Here, in this embodiment, for example, polyphenylene sulfide resin is used as the resin material for forming the radial dynamic pressure bearing member 10 in order to ensure strength, easy molding, and good lubricity. (PPS
Resin) with carbon fiber and 5 to 20% by weight of polytetrafluoroethylene (PTFE) as a filler, and the total amount of the filler is 20 to 50% by weight.
As a resin material for forming the thrust slide bearing member 13a, a polyamide 6 resin (PA6) and a polyethylene resin (PE) are provided in order to sufficiently secure slidability and abrasion resistance particularly at high surface pressure. A resin composition is used.
【0025】ラジアル動圧軸受部材10を形成する樹脂
材料については、上記充填材の充填量が多過ぎると成形
が困難になり、逆に少な過ぎると強度が確保できないこ
とから、両方の要求を満足するために充填材の充填量は
上記のような範囲が好ましいこととした。また、ポリテ
トラフロロエチレンの充填量が20重量%よりも多過ぎ
ると、成形時にこれが偏析し易くなり、逆に、5重量%
よりも少な過ぎると、摺動性が悪くなるため、両方の要
求を満足するためにポリテトラフロロエチレンの充填量
は上記のような範囲が好ましいこととした。With respect to the resin material forming the radial dynamic pressure bearing member 10, if the filling amount of the above-mentioned filling material is too large, molding becomes difficult, and conversely, if it is too small, the strength cannot be secured, so both requirements are satisfied. Therefore, the filling amount of the filler is preferably set in the above range. If the filling amount of polytetrafluoroethylene is more than 20% by weight, it tends to segregate during molding, and conversely 5% by weight.
If the amount is less than the above range, the slidability deteriorates. Therefore, in order to satisfy both requirements, the filling amount of polytetrafluoroethylene is preferably in the above range.
【0026】ここで、上記のような充填材の他に、強
度、寸法安定性、摺動性などを向上するために、ガラス
繊維や二硫化モリブデン等の充填材を別途,充填しても
よい。また、上記充填材の充填量は、合計で20〜50
重量%の範囲になることが好ましい。充填材の合計が2
0重量%より少ないと、射出成形の際の成形収縮が大き
くなり所望の成形精度が確保できず、また、50重量%
よりも多くなると、射出成形の際の樹脂の流動性が悪く
なり所望の成形精度が確保できないおそれがある。Here, in addition to the above-mentioned filler, a filler such as glass fiber or molybdenum disulfide may be separately filled in order to improve strength, dimensional stability, slidability and the like. . In addition, the filling amount of the filling material is 20 to 50 in total.
It is preferably in the range of% by weight. The total number of fillers is 2
If it is less than 0% by weight, the molding shrinkage at the time of injection molding becomes large and desired molding accuracy cannot be secured.
If the amount is larger than the above range, the fluidity of the resin during injection molding deteriorates, and the desired molding accuracy may not be ensured.
【0027】なお、ラジアル動圧軸受部材10を形成す
る樹脂材料としては、上記の他に、強度や寸法安定性を
良好にするためのガラス繊維や炭素繊維と、摺動性を良
好にするためのポリテトラフロロエチレンや二硫化モリ
ブデン等の固体潤滑剤とを添加したポリアセタール樹脂
やナイロン樹脂等であってもよい。また、ラジアル動圧
軸受部材10の経時変形を防ぐためには、高温で加熱処
理する所謂アニーリング処理を必要に応じて行うことが
好ましい。As the resin material forming the radial dynamic pressure bearing member 10, in addition to the above, glass fiber or carbon fiber for improving strength and dimensional stability, and for improving slidability. It may be a polyacetal resin or a nylon resin to which a solid lubricant such as polytetrafluoroethylene or molybdenum disulfide is added. Further, in order to prevent the radial dynamic pressure bearing member 10 from being deformed with time, it is preferable to perform a so-called annealing process in which a heat treatment is performed at a high temperature, if necessary.
【0028】このアニーリング処理方法としては、例え
ば、フリーで加熱保持する方法、又は内径寸法変化や形
状変化を抑えるために、軸受穴10Aにロッドを挿入し
て加熱する強制アニールなどがある。次に、この実施の
形態の作用効果を説明する。即ち、上記のような構成の
ラジアル動圧軸受部材10の軸受孔10Aに軸15を挿
入するとともに、ラジアル動圧軸受部材10及び軸15
間の隙間に潤滑流体としての油を介在させた状態で、ラ
ジアル動圧軸受部材10及び軸15間に相対回転が生じ
れば、動圧発生用の溝11によってラジアル軸受面12
と軸15の外周面との間の隙間に高圧が発生して軸15
が半径方向に支持されるともに、軸15の下端面15a
と対向するスラスト軸受面13の凸球面と軸15の下端
面15aとが点接触であるため両者間の摩擦トルクは十
分に小さくなっているから、ラジアル動圧軸受部材10
及び軸15間のスムーズな相対回転が確保される。As this annealing treatment method, for example, there is a method of heating and holding it free, or a forced annealing in which a rod is inserted into the bearing hole 10A and heated in order to suppress a change in inner diameter and a change in shape. Next, the function and effect of this embodiment will be described. That is, the shaft 15 is inserted into the bearing hole 10A of the radial dynamic pressure bearing member 10 having the above-described configuration, and the radial dynamic pressure bearing member 10 and the shaft 15 are inserted.
If relative rotation occurs between the radial dynamic pressure bearing member 10 and the shaft 15 with oil as a lubricating fluid interposed in the gap between the radial dynamic pressure bearing groove 10 and the radial bearing surface 12 by the dynamic pressure generating groove 11.
High pressure is generated in the gap between the shaft 15 and the outer peripheral surface of the shaft 15,
Is supported in the radial direction, and the lower end surface 15a of the shaft 15 is
Since the convex spherical surface of the thrust bearing surface 13 and the lower end surface 15a of the shaft 15 are in point contact with each other, the friction torque between the two is sufficiently small. Therefore, the radial dynamic pressure bearing member 10
A smooth relative rotation between the shaft 15 and the shaft 15 is ensured.
【0029】また、潤滑流体としては油を用いているた
め粘度が高く且つ潤滑性があり、これによっても軸受孔
10A表面を極端に高精度に仕上げる必要がなくなり、
低コスト化が図られるし、ラジアル軸受面12の軸方向
上下両端部は油溜まり14A,14Bに接続し、これに
より潤滑流体を補給できるようにしたため、特にラジア
ル軸受面12の耐久性が向上する。Further, since oil is used as the lubricating fluid, it has high viscosity and lubricity, which also eliminates the need for finishing the surface of the bearing hole 10A with extremely high precision.
The cost is reduced, and the axial upper and lower ends of the radial bearing surface 12 are connected to the oil sumps 14A and 14B so that the lubricating fluid can be replenished, so that the durability of the radial bearing surface 12 is particularly improved. .
【0030】そして、上記のような構成であれば、動圧
発生用の溝11を備え且つラジアル軸受面12を有する
ラジアル動圧軸受部材10、及びスラスト軸受面13を
有するスラストすべり軸受部材13aを、いずれも樹脂
を材料とした射出成形により形成することができるか
ら、その製造コストを安価に抑えることができる。ま
た、軸15の外周面には特に動圧発生用の溝を形成しな
くてもよいから、その軸の製造コストも低減できるし、
スラスト軸受を上述のようなすべり軸受としているた
め、これによっても構造が簡単となって部品点数が少な
くなるから低コスト化が図られる。With the above structure, the radial dynamic pressure bearing member 10 having the groove 11 for generating dynamic pressure and having the radial bearing surface 12 and the thrust slide bearing member 13a having the thrust bearing surface 13 are provided. Since both can be formed by injection molding using resin as a material, the manufacturing cost thereof can be kept low. Further, since it is not necessary to form a groove for generating dynamic pressure on the outer peripheral surface of the shaft 15, the manufacturing cost of the shaft can be reduced, and
Since the thrust bearing is the slide bearing as described above, the structure is simplified and the number of parts is reduced, so that the cost can be reduced.
【0031】さらに、ラジアル動圧軸受部材10とスラ
ストすべり軸受部材13aとを互いに異なる材質の樹脂
を用いて射出成形しているため、各軸受部材10,13
aに要求される性能により、ラジアル動圧軸受部材10
については流動性が良く、成形収縮が小さく、かつ、強
度があって耐磨耗性に優れた樹脂を、スラストすべり軸
受13aについては摺動性と耐磨耗性に特に優れた樹脂
を別々に選定することができるので、各軸受部材10
a,13aを高精度で且つ耐久性に優れたものとするこ
とができる。Further, since the radial dynamic pressure bearing member 10 and the thrust slide bearing member 13a are injection molded using resins made of different materials, each bearing member 10, 13 is formed.
Depending on the performance required for a, the radial dynamic pressure bearing member 10
Is a resin with good fluidity, small molding shrinkage, strength, and excellent wear resistance. For thrust slide bearing 13a, a resin with particularly good slidability and wear resistance is separately prepared. Each bearing member 10 can be selected.
It is possible to make a and 13a highly accurate and excellent in durability.
【0032】図3は、上記軸受部材10の実際の装置へ
の応用例を示す図であって、ポリゴンスキャナ用のスピ
ンドルモータの縦断面図である。即ち、ラジアル動圧軸
受部材10は、その軸心を上下に向けた状態であり、こ
のラジアル動圧軸受部材10のフランジ10Bの上面に
強磁性体のバックヨーク21が固定されている。ラジア
ル動圧軸受部材10の外周にはバックヨーク21と所定
距離隔ててリング状の基板20が同軸に配設され、それ
ら基板20及びバックヨーク21間にはコイル22が配
設されていて、これら基板20,バックヨーク21及び
コイル22によって平面対向形モータのステータが構成
される。FIG. 3 is a view showing an example of application of the bearing member 10 to an actual device, which is a vertical sectional view of a spindle motor for a polygon scanner. That is, the radial dynamic pressure bearing member 10 is in a state in which its axis is oriented vertically, and the ferromagnetic back yoke 21 is fixed to the upper surface of the flange 10B of the radial dynamic pressure bearing member 10. A ring-shaped substrate 20 is coaxially arranged on the outer periphery of the radial dynamic pressure bearing member 10 with a predetermined distance from the back yoke 21, and a coil 22 is arranged between the substrate 20 and the back yoke 21. The substrate 20, the back yoke 21, and the coil 22 constitute a stator of a plane facing motor.
【0033】また、ラジアル動圧軸受部材10の軸受孔
10A内には軸15が挿入されていて、かかる軸15に
は、強磁性体のヨーク23が固定され、このヨーク23
の下面に永久磁石のロータ磁石24が固定される。ヨー
ク23の上側では、軸15に取付フランジ25を介して
ポリゴンミラー26が同軸に固定されていて、ヨーク2
3及びロータ磁石24によってステータに軸方向に対向
する平面対向形モータのロータが構成されている。A shaft 15 is inserted in the bearing hole 10A of the radial dynamic pressure bearing member 10, and a yoke 23 made of a ferromagnetic material is fixed to the shaft 15.
A permanent magnet rotor magnet 24 is fixed to the lower surface of the. On the upper side of the yoke 23, a polygon mirror 26 is coaxially fixed to the shaft 15 via a mounting flange 25.
3 and the rotor magnet 24 constitute a rotor of a plane-opposed motor that axially faces the stator.
【0034】そして、このような構成のスピンドルモー
タであれば、上述したような軸受装置での作用効果が得
られる一方で、モータの非駆動時等にあっても、ロータ
磁石24の磁力はステータを軸方向に吸引し、輸送時等
に軸15が軸受孔10Aから抜け難くなっているから、
従来のようにその抜け落ちを防止するために押さえ等を
別途設ける必要がなく、組立時の手間等が簡略化される
という利点がある。なお、ロータ磁石24の磁力だけで
は吸引力が不足する場合には、ヨーク23と基板20と
に互いに吸引するように永久磁石をそれぞれ固定するよ
うにしてもよいし、或いは基板20にヨーク23に対向
するように永久磁石を固定してその永久磁石が強磁性体
のヨーク23を吸引する力を利用して軸15の抜け落ち
を防止するようにしてもよい。With the spindle motor having such a structure, while the above-described effects of the bearing device can be obtained, even when the motor is not driven, the magnetic force of the rotor magnet 24 is the stator. Is sucked in the axial direction, and it is difficult for the shaft 15 to come out of the bearing hole 10A during transportation,
There is no need to separately provide a press or the like in order to prevent the dropout as in the related art, and there is an advantage that the labor and the like during assembly are simplified. When the attractive force is insufficient only by the magnetic force of the rotor magnet 24, the permanent magnets may be fixed to the yoke 23 and the substrate 20 so as to attract each other, or the yoke 23 may be attached to the substrate 20. The permanent magnets may be fixed so as to face each other, and the force of the permanent magnets to attract the ferromagnetic yoke 23 may be used to prevent the shaft 15 from coming off.
【0035】なお、上記実施の形態では、本発明に係る
軸受装置をポリゴンスキャナモータに適用した場合につ
いて説明しているが、本発明の適用対象はこれに限定さ
れるものではなく、磁気ディスク装置や光ディスク装置
等のスピンドルモータとしても当然に適用可能である。
また、平面対向型モータで説明したが、軸15が軸受部
材10から抜けないように、ロータ磁石をステータに対
して軸方向に偏位した周対向型モータでもよい。In the above embodiment, the bearing device according to the present invention is applied to a polygon scanner motor, but the application of the present invention is not limited to this, and a magnetic disk device is used. Of course, it can also be applied as a spindle motor for an optical disk device or the like.
Further, although the plane-opposed motor has been described, a circumferentially-opposed motor in which the rotor magnet is axially displaced with respect to the stator so that the shaft 15 does not come off from the bearing member 10 may be used.
【0036】[0036]
【実施例】前記のような軸受装置のラジアル動圧軸受部
材10とスラストすべり軸受部材13aとを、次の条件
の基に製造をした。ラジアル動圧軸受部材10を、PP
Sに炭素繊維を30重量%、PTFEを15重量%、そ
の他グラファイト等の充填材を数%充填した樹脂を成形
材料として、射出成形により作製した。なお、上記充填
材の合計は50重量%以下とした。EXAMPLE The radial dynamic pressure bearing member 10 and the thrust slide bearing member 13a of the bearing device as described above were manufactured under the following conditions. The radial dynamic pressure bearing member 10 is
A resin obtained by filling S with 30% by weight of carbon fiber, 15% by weight of PTFE, and several% of other filler such as graphite was used as a molding material, and was produced by injection molding. The total amount of the above fillers was 50% by weight or less.
【0037】一方、スラストすべり軸受部材13aを、
PA6とPEとを有する樹脂組成物を成形材料として、
射出成形により作製した。ラジアル動圧軸受部材10
は、内径4mmφ、外径7mmφで肉厚が1.5mmであり、
軸方向の長さが12mmの円筒形状に成形した。但し、軸
受孔10Aに設ける油溜まり14A,14B及び動圧発
生用の溝11の各深さを約8μmに設定した。On the other hand, the thrust slide bearing member 13a is
Using a resin composition containing PA6 and PE as a molding material,
It was made by injection molding. Radial dynamic pressure bearing member 10
Has an inner diameter of 4 mmφ, an outer diameter of 7 mmφ and a wall thickness of 1.5 mm,
It was formed into a cylindrical shape having a length of 12 mm in the axial direction. However, the depths of the oil reservoirs 14A and 14B and the dynamic pressure generating groove 11 provided in the bearing hole 10A were set to about 8 μm.
【0038】図4(a)は、上記条件で製造したラジア
ル動圧軸受部材10の軸受孔10Aの内周面の真円度を
測定した図であり、この図から本発明に基づく軸受孔1
0Aの内周面は2μm以下の真円度となることが分か
る。また、図4(b)は、円筒度を測定した図であり、
この図から、動圧発生用の溝11を設けた軸受孔10A
の内周面の形状精度は2μm以下の円筒度となっている
ことが分かる。FIG. 4 (a) is a diagram in which the circularity of the inner peripheral surface of the bearing hole 10A of the radial dynamic pressure bearing member 10 manufactured under the above conditions is measured. From this figure, the bearing hole 1 according to the present invention is shown.
It can be seen that the inner peripheral surface of 0 A has a roundness of 2 μm or less. Further, FIG. 4B is a diagram in which the cylindricity is measured,
From this figure, a bearing hole 10A provided with a groove 11 for generating a dynamic pressure is shown.
It can be seen that the inner peripheral surface has a cylindricity of 2 μm or less.
【0039】このように、ラジアル動圧軸受部材10の
軸受孔10Aは、動圧発生用の溝11も精度良く成形さ
れるなど、動圧軸受として必要な成形精度を十分満足し
ている。次に、スラストすべり軸受部材13aに用いる
樹脂(PA6とPE樹脂組成物)と他の樹脂で製作した
試験片の比較試験結果を表1に示す。試験はピン−平板
形摩擦磨耗試験機を用いて行い、本実施例の樹脂で製作
した試験片と比較樹脂の試験片とについて、それぞれ無
潤滑状態と潤滑状態での摺動特性、摩擦特性を評価し
た。As described above, the bearing hole 10A of the radial dynamic pressure bearing member 10 sufficiently satisfies the molding precision required for the dynamic pressure bearing, such that the groove 11 for generating the dynamic pressure is also precisely molded. Next, Table 1 shows the comparison test results of the resin (PA6 and PE resin composition) used for the thrust slide bearing member 13a and the test piece made of other resin. The test was performed using a pin-plate type friction and wear tester, and the sliding characteristics and the friction characteristics in the unlubricated state and the lubricated state were measured for the test piece made of the resin of this example and the test piece of the comparative resin, respectively. evaluated.
【0040】試験条件は、負荷荷重:400gf、すべ
り速度:100m/min、回転半径:16mm、相手
材:SUS304,面粗さ0.1Ra、潤滑油:鉱油、
試験片:射出成形により製作、直径6mm、凸球面SR
5mmとし、各試験片の樹脂材を次のようにした。 実施例:ポリアミド6樹脂(PA6)とポリエチレン樹
脂(PE)とを有する樹脂組成物 比較例1:ワックス添加ポリアセタール 比較例2:ポリアミド6樹脂(PA6) 比較例3:超高分子ポリエチレン(押出し成形した丸棒
に機械加工を施して製作) なお、無潤滑状態の磨耗は、試験片の先端が0.1mm
の高さ磨耗するまでのすべり距離とし、動摩擦係数μk
はその時点での試験片に生じるトルク値より求めた。ま
た、潤滑状態の磨耗は、すべり距離1000km経過後
の試験片先端の磨耗高さとし、動摩擦係数μkはその時
点での試験片に生じるトルク値より求めた。The test conditions are as follows: applied load: 400 gf, sliding speed: 100 m / min, turning radius: 16 mm, mating material: SUS304, surface roughness 0.1 Ra, lubricating oil: mineral oil,
Test piece: manufactured by injection molding, diameter 6 mm, convex spherical surface SR
The resin material of each test piece was as follows. Example: Resin composition having polyamide 6 resin (PA6) and polyethylene resin (PE) Comparative example 1: Wax-added polyacetal Comparative example 2: Polyamide 6 resin (PA6) Comparative example 3: Ultra high molecular weight polyethylene (extruded) It is manufactured by machining a round bar) In addition, the wear of non-lubricated state is 0.1mm at the tip of the test piece.
Height is the sliding distance until wear and the dynamic friction coefficient μk
Was determined from the torque value generated on the test piece at that time. The wear in the lubricated state was the wear height of the tip of the test piece after a sliding distance of 1000 km, and the dynamic friction coefficient μk was calculated from the torque value of the test piece at that time.
【0041】[0041]
【表1】 [Table 1]
【0042】表1から明らかなように、本実施例のスラ
ストすべり軸受は、他の樹脂で形成されたものに比べ
て、摺動性、耐磨耗性に優れており、特に耐磨耗性に優
れていることが分かる。このように、本発明に係る軸受
装置の各軸受部材10,13aは摺動性、耐磨耗性に優
れた樹脂軸受であるから、起動時及び停止時に軸に接触
した時の衝撃や損傷を抑えることができ、しかも、スラ
ストすべり軸受部材13aは、特に摩耗しやすいスラス
ト軸受面に要求される耐摩耗性を十分に備えている。As is clear from Table 1, the thrust slide bearing of this embodiment is superior in slidability and wear resistance to those made of other resins, and particularly wear resistance. It turns out that it is excellent. As described above, since the bearing members 10 and 13a of the bearing device according to the present invention are the resin bearings having excellent slidability and abrasion resistance, the bearings 10 and 13a are protected from impact and damage when they come into contact with the shaft at the time of starting and stopping. The thrust slide bearing member 13a, which can be suppressed, has sufficient wear resistance required for the thrust bearing surface, which is particularly susceptible to wear.
【0043】[0043]
【発明の効果】上記の説明から明らかなように、本発明
によれば、動圧発生用の溝を備え且つラジアル軸受面を
有するラジアル動圧軸受部材、及びスラスト軸受面を有
するスラストすべり軸受部材を、いずれも樹脂を材料と
した射出成形等により形成することができるので、その
製造コストを安価に抑えることができる。As is apparent from the above description, according to the present invention, a radial dynamic pressure bearing member having a groove for dynamic pressure generation and having a radial bearing surface, and a thrust slide bearing member having a thrust bearing surface are provided. Can be formed by injection molding or the like using a resin as a material, so that the manufacturing cost thereof can be kept low.
【0044】また、軸受孔に挿入される軸の外周面には
特に動圧発生用の溝を形成しなくてもよいから、その軸
の製造コストも低減でき、しかもスラスト軸受をすべり
軸受としているため、これによっても構造が簡単となっ
て部品点数が少なくなるから低コスト化が図られる。さ
らに、ラジアル動圧軸受部材とスラストすべり軸受部材
とを互いに異なる材質の樹脂で構成しているため、各軸
受部材に要求される性能により、各軸受部材に最適な樹
脂を別々に選定することができるので、各軸受部材を高
精度で且つ耐久性に優れたものとすることができる。Further, since it is not necessary to form a groove for generating a dynamic pressure on the outer peripheral surface of the shaft to be inserted into the bearing hole, the manufacturing cost of the shaft can be reduced, and the thrust bearing is a slide bearing. Therefore, this also simplifies the structure and reduces the number of parts, so that the cost can be reduced. Furthermore, since the radial dynamic pressure bearing member and the thrust sliding bearing member are made of resins of different materials, it is possible to select the optimum resin for each bearing member separately depending on the performance required for each bearing member. Therefore, each bearing member can be made highly precise and excellent in durability.
【0045】さらに、各軸受部材は摺動性、耐磨耗性に
優れた樹脂軸受であることから、起動時及び停止時に軸
に接触した時の衝撃や損傷を抑えることができる。Further, since each bearing member is a resin bearing having excellent slidability and abrasion resistance, it is possible to suppress impact and damage when it comes into contact with the shaft during starting and stopping.
【図1】本発明の実施の形態の一例である軸受装置を説
明するための説明的断面図である。FIG. 1 is an explanatory cross-sectional view for explaining a bearing device that is an example of an embodiment of the present invention.
【図2】動圧発生用の溝の拡大断面図である。FIG. 2 is an enlarged sectional view of a groove for generating dynamic pressure.
【図3】本実施の形態の軸受装置をポリゴンスキャナ用
のスピンドルモータに組み込んだ状態を示す縦断面図で
ある。FIG. 3 is a vertical cross-sectional view showing a state in which the bearing device of the present embodiment is incorporated in a spindle motor for a polygon scanner.
【図4】実施例におけるラジアル動圧軸受部材を測定し
た結果を示す図であり、(a)は真円度を測定したも
の、(b)は円筒度を測定したものである。4A and 4B are diagrams showing the results of measurement of the radial dynamic pressure bearing member in the example, where FIG. 4A shows the roundness measured, and FIG. 4B shows the cylindricity measured.
【図5】従来の軸受装置の一例を説明するための説明的
断面図である。FIG. 5 is an explanatory sectional view for explaining an example of a conventional bearing device.
10 ラジアル動圧軸受部材 10A 軸受孔 11 動圧発生用の溝 12 ラジアル軸受面 13 スラスト軸受面 13a スラストすべり軸受部材 14A,14B 油溜まり 15 軸 15a 下端面(軸の先端面) 15b 軸の外周面 10 radial dynamic pressure bearing member 10A bearing hole 11 dynamic pressure generating groove 12 radial bearing surface 13 thrust bearing surface 13a thrust slide bearing member 14A, 14B oil sump 15 shaft 15a lower end surface (tip end surface) 15b outer peripheral surface of shaft
Claims (1)
面をラジアル軸受面とすると共に、該ラジアル軸受面に
動圧発生用の溝を設け、且つ、該ラジアル軸受面が前記
軸の外周面に対向してラジアル動圧軸受を構成するラジ
アル動圧軸受部材と、該ラジアル動圧軸受部材の軸方向
の端部に固定されて前記軸受孔に挿入された前記軸の先
端面と対向する部分をスラスト軸受面とし、且つ、該ス
ラスト軸受面が前記軸の先端面に対向してスラストすべ
り軸受を構成するスラストすべり軸受部材とを備え、 前記ラジアル動圧軸受部材と前記スラストすべり軸受部
材とを互いに異なる材質の樹脂で形成したことを特徴と
する軸受装置。1. A radial bearing surface is formed on the inner peripheral surface of a cylindrical bearing hole into which the shaft is inserted, and a groove for generating dynamic pressure is provided on the radial bearing surface, and the radial bearing surface is the shaft. A radial dynamic pressure bearing member facing the outer peripheral surface of the radial dynamic pressure bearing, and a tip end surface of the shaft fixed to an axial end of the radial dynamic pressure bearing member and inserted into the bearing hole. The thrust dynamic bearing member and the thrust plain bearing, wherein the facing portions are thrust bearing surfaces, and the thrust bearing surface faces the tip end surface of the shaft to form a thrust plain bearing. A bearing device characterized in that the member and the member are formed of different resins.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2939396A JPH09222118A (en) | 1996-02-16 | 1996-02-16 | Bearing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2939396A JPH09222118A (en) | 1996-02-16 | 1996-02-16 | Bearing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09222118A true JPH09222118A (en) | 1997-08-26 |
Family
ID=12274905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2939396A Pending JPH09222118A (en) | 1996-02-16 | 1996-02-16 | Bearing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09222118A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007029510A1 (en) * | 2005-09-05 | 2007-03-15 | Ntn Corporation | Method of forming dynamic pressure groove |
JP2007255450A (en) * | 2006-03-20 | 2007-10-04 | Ntn Corp | Dynamic pressure bearing device and method for manufacturing the same |
WO2013168604A1 (en) * | 2012-05-07 | 2013-11-14 | 株式会社エンプラス | Dynamic pressure fluid bearing |
-
1996
- 1996-02-16 JP JP2939396A patent/JPH09222118A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007029510A1 (en) * | 2005-09-05 | 2007-03-15 | Ntn Corporation | Method of forming dynamic pressure groove |
JP2007069393A (en) * | 2005-09-05 | 2007-03-22 | Ntn Corp | Method for forming dynamic pressure groove |
JP2007255450A (en) * | 2006-03-20 | 2007-10-04 | Ntn Corp | Dynamic pressure bearing device and method for manufacturing the same |
WO2013168604A1 (en) * | 2012-05-07 | 2013-11-14 | 株式会社エンプラス | Dynamic pressure fluid bearing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5683183A (en) | Spindle device and bearing device therefor | |
US7147376B2 (en) | Dynamic bearing device | |
US6390681B1 (en) | Dynamic pressure bearing-unit | |
US6074098A (en) | Hydro-dynamic fluid bearing device and manufacturing method of the same | |
KR101519426B1 (en) | Fluid dynamic-pressure bearing device | |
KR20030084623A (en) | Fluid bearing device | |
US8356938B2 (en) | Fluid dynamic bearing apparatus | |
US5697709A (en) | Dynamic pressure type bearing device | |
KR20080079242A (en) | Fluid bearing device | |
US8616771B2 (en) | Fluid dynamic bearing device | |
US6609829B2 (en) | Hydrodynamic bearing for motor | |
US8052328B2 (en) | Bearing device with sliding bearing | |
US20070274617A1 (en) | Fluid Dynamic Bearing Device | |
WO2008065855A1 (en) | Dynamic-pressure bearing device, and bearing member manufacturing method | |
JPH09222118A (en) | Bearing device | |
KR20070052684A (en) | Dynamic pressure bearing device | |
US7431505B2 (en) | Fluid lubrication bearing apparatus | |
JPH1037947A (en) | Bearing device | |
JPH09105409A (en) | Bearing device | |
JP2008144847A (en) | Dynamic pressure bearing device | |
JP4689283B2 (en) | Hydrodynamic bearing device | |
JP4794964B2 (en) | Bearing device and motor equipped with the same | |
JP4794966B2 (en) | Bearing device, motor provided with the same, and method for manufacturing bearing device | |
KR100453332B1 (en) | Fluid dynamic bearing spindle motor | |
JP4739030B2 (en) | Hydrodynamic bearing device |