[go: up one dir, main page]

JPH09221377A - Single crystal growth method and apparatus - Google Patents

Single crystal growth method and apparatus

Info

Publication number
JPH09221377A
JPH09221377A JP2491596A JP2491596A JPH09221377A JP H09221377 A JPH09221377 A JP H09221377A JP 2491596 A JP2491596 A JP 2491596A JP 2491596 A JP2491596 A JP 2491596A JP H09221377 A JPH09221377 A JP H09221377A
Authority
JP
Japan
Prior art keywords
quartz glass
ceramic support
growth container
metal wire
glass growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2491596A
Other languages
Japanese (ja)
Other versions
JP3159030B2 (en
Inventor
Seiji Mizuniwa
清治 水庭
Michinori Wachi
三千則 和地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP02491596A priority Critical patent/JP3159030B2/en
Publication of JPH09221377A publication Critical patent/JPH09221377A/en
Application granted granted Critical
Publication of JP3159030B2 publication Critical patent/JP3159030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】 【課題】石英ガラス成長容器中に入れたGaAs融液を
下部から上部に向かって徐々に固化させる垂直ブリッジ
マン法に使用する石英ガラス成長容器が、成長中の高温
時にも変形せず、成長後の冷却時にも破損しないように
する。 【解決手段】結晶成長を行なう筒状の石英ガラス成長容
器1の外周を筒状のセラミックス製支持具5で支持す
る。この筒状セラミックス製支持具5は、筒状に組立可
能なように軸方向に少なくとも3つに分割しておく。成
長中は、石英ガラス成長容器1の熱変形を防止するため
に、分割されたセラミックス製支持具5の外周に耐熱性
の金属ワイヤ6が巻回され、その締付力によりセラミッ
クス製支持具5を石英ガラス成長容器1の外周に固定す
る。金属ワイヤ6は、結晶固化後の冷却時に、セラミッ
クス製支持具5と石英ガラス成長容器1との熱収縮率の
差によりセラミックス製支持具5に加えられる径方向外
方の外力により、締付力が解除されるようにする。
(57) 【Abstract】 PROBLEM TO BE SOLVED: To provide a silica glass growth container used in the vertical Bridgman method in which a GaAs melt placed in a silica glass growth container is gradually solidified from a lower part to an upper part, even at a high temperature during growth. It should not be deformed and should not be damaged during cooling after growth. SOLUTION: The outer periphery of a cylindrical quartz glass growth container 1 for crystal growth is supported by a cylindrical ceramic supporter 5. The tubular ceramic support 5 is axially divided into at least three parts so that it can be assembled into a tubular shape. During the growth, in order to prevent thermal deformation of the quartz glass growth container 1, a heat-resistant metal wire 6 is wound around the outer periphery of the divided ceramic support tool 5, and the clamping force of the metal wire 6 causes the ceramic support tool 5 to grow. Is fixed to the outer circumference of the quartz glass growth container 1. The metal wire 6 is tightened by a radially outward external force applied to the ceramic support 5 due to a difference in thermal contraction rate between the ceramic support 5 and the quartz glass growth container 1 during cooling after crystal solidification. To be released.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、垂直ブリッジマン
法による単結晶成長方法およびその装置に係り、特に石
英ガラス成長容器の変形を防止するために石英ガラス成
長容器を支持する支持方法および支持具を改善したもの
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a single crystal by a vertical Bridgman method and an apparatus therefor, and more particularly to a supporting method and a supporting tool for supporting a quartz glass growth container in order to prevent deformation of the quartz glass growth container. It relates to the improved one.

【0002】[0002]

【従来の技術】近年、φ3インチを超える大型で、しか
も低転位密度のGaAs結晶が得られる方法として、液
体封止引上法(LEC法)に代わって、垂直ブリッジマ
ン法が注目されている。この方法は、成長容器の下部に
種結晶を設置し、その上にGaAs原料を置き、上部が
高く下部が低い温度分布を設けた縦型電気炉の中で、種
結晶側の下部から上部に向って結晶固化させる方法であ
る。
2. Description of the Related Art In recent years, a vertical Bridgman method has been attracting attention as a method for obtaining a GaAs crystal having a large size exceeding φ3 inches and a low dislocation density, instead of the liquid sealing pulling method (LEC method). . In this method, a seed crystal is placed in the lower part of the growth vessel, a GaAs raw material is placed on it, and in a vertical electric furnace in which the temperature distribution is high in the upper part and low in the lower part, from the lower part to the upper part on the seed crystal side This is a method of solidifying the crystals.

【0003】垂直ブリッジマン法そのものは、GaAs
以外の例えばII−IV族の結晶成長用に古くから知られて
いた方法である。この垂直ブリッジマン法は、パイロリ
ティック窒化硼素(pBN)の開発により、LEC法で
アンドープの半絶縁性GaAs結晶が得られることが分
かったため、成長容器にpBNを使うことによって、さ
らに低転位化技術の有力な方法として見直され、現在各
方面で検討が行なわれている。
The vertical Bridgman method itself is based on GaAs
Other than the above, it is a method that has been known for a long time for growing crystals of group II-IV. In the vertical Bridgman method, it was found that an undoped semi-insulating GaAs crystal was obtained by the LEC method by the development of pyrolytic boron nitride (pBN). Has been reviewed as a leading method, and is currently being studied in various fields.

【0004】しかし、現在検討が行なわれてい垂直ブリ
ッジマン法は、もともと半絶縁性結晶を得ることが目的
であったため、ほとんどの垂直ブリッジマン法では、p
BN成長容器を用いている(下記文献(1) 〜(3) 参
照)。
However, the vertical Bridgman method, which is currently under study, was originally intended to obtain a semi-insulating crystal.
A BN growth container is used (see the following documents (1) to (3)).

【0005】(1)J.Cryst.Growth 74, 491(1986) (2)J.Mater.Res.Vol.5,No.7,1468(1990) (3)J.Cryst.Growth 94, 643(1989) しかし、pBN成長容器は、(1) 非常に高価である、
(2) B2 3 で覆わないとpBNからの不純物が結晶中
に混入する、(3) 同じく結晶表面のpBNとの境界に気
泡等が発生し結晶表面が凸凹になりこの部分からの結晶
欠陥が発生しやすくなる、(4) B2 3 で覆うとB2
3 から還元されたB(硼素)がかなり高濃度でGaAs
結晶中に混入してしまう、という種々の欠点があった。
(1) J. Cryst. Growth 74 , 491 (1986) (2) J. Mater. Res. Vol. 5, No. 7, 1468 (1990) (3) J. Cryst. Growth 94 , 643 ( 1989) However, pBN growth vessels are (1) very expensive,
(2) Impurities from pBN are mixed into the crystal unless it is covered with B 2 O 3 , (3) Similarly, bubbles are generated at the boundary with pBN on the crystal surface and the crystal surface becomes uneven, and crystals from this part defects are likely to occur, when covered with (4) B 2 O 3 B 2 O
B (boron) reduced from 3 has a fairly high concentration of GaAs
There were various drawbacks that it was mixed in the crystal.

【0006】[0006]

【発明が解決しようとする課題】ところで最近、半絶縁
性結晶だけでなく、導電性結晶の需要が増えている。こ
れはSiドープ、Znドープ等の導電性結晶が半導体レ
ーザーや発光ダイオード用の基板として用いられるよう
になったからである。垂直ブリッジマン法で、導電性結
晶を得るにはpBN容器は必要なく、石英ガラス成長容
器で充分である。石英ガラス成長容器は石英ボートとし
て水平ブリッジマン法(HB法)で既に多くの実績があ
る。
Recently, demand for not only semi-insulating crystals but also conductive crystals has been increasing. This is because conductive crystals such as Si-doped and Zn-doped have come to be used as substrates for semiconductor lasers and light-emitting diodes. In the vertical Bridgman method, a pBN container is not necessary to obtain a conductive crystal, and a quartz glass growth container is sufficient. The quartz glass growth vessel has already been used as a quartz boat by the horizontal Bridgman method (HB method).

【0007】しかし、HB法と同様に石英ガラス成長容
器を用いて結晶成長を行なおうとすると、GaAs成長
温度(融点1238℃)領域では、石英ガラス成長容器
が変形を起こしてしまう。すなわち、GaAs融液を入
れた大型の石英ガラス成長容器を高温中に置くと熱によ
り変形してしまうため、石英ガラス成長容器を立てたま
ま保持することは不可能である。特に、結晶長を100
mmから更に長くしていく場合に、石英ガラス成長容器の
変形は顕著に現れ、結晶成長そのものが不能になる場合
がでてくる。
However, when crystal growth is attempted using a quartz glass growth container as in the HB method, the quartz glass growth container is deformed in the GaAs growth temperature region (melting point 1238 ° C.). That is, if a large quartz glass growth container containing a GaAs melt is placed at a high temperature, it will be deformed by heat, so it is impossible to hold the quartz glass growth container in an upright position. Especially, the crystal length is 100
When the length is further increased from mm, the deformation of the quartz glass growth container becomes remarkable, and the crystal growth itself may become impossible.

【0008】そこで、石英ガラス成長容器に変形を発生
させないように、石英ガラス成長容器の外側を何等かの
支持部材で囲む方法が考えられるが、この方法は結晶固
化後の冷却過程において、熱収縮率の差(石英ガラスは
熱収縮率が非常に小さい)により、支持部材や石英ガラ
ス成長容器を破損させてしまう。
Therefore, it is conceivable to enclose the outside of the quartz glass growth container with some kind of support member so as not to cause deformation of the quartz glass growth container, but this method involves heat shrinkage during the cooling process after solidification of the crystal. The difference in the rate (the thermal contraction rate of quartz glass is very small) damages the support member and the quartz glass growth container.

【0009】本発明の目的は、上述した従来技術の問題
点を解消して、石英ガラス成長容器が成長中の高温時に
も変形せず、成長後の冷却時にも破損しない単結晶成長
方法およびその装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, a single crystal growth method in which a quartz glass growth container is not deformed even at a high temperature during growth, and is not damaged during cooling after growth, and a method thereof. To provide a device.

【0010】[0010]

【課題を解決するための手段】本発明の単結晶成長方法
は、垂直ブリッジマン法によって単結晶を成長する方法
において、あらかじめ軸方向に少なくとも3つに分割し
た筒状のセラミックス製支持具を用意し、該分割された
セラミックス製支持具を筒状の石英ガラス成長容器を取
り囲むように設置すると共に、上記セラミックス製支持
具をその外周に巻回された耐熱性の金属ワイヤの締付力
により固定し、上記石英ガラス成長容器中に入れた原料
融液を下部から上部に向かって徐々に結晶固化させ、結
晶固化後の冷却時において、セラミックス製支持具と石
英ガラス成長容器との熱収縮率の差により石英ガラス成
長容器からセラミック製支持具に与えられる径方向外方
の外力により、セラミックス製支持具を固定していた金
属ワイヤの締付力を解除するようにしたものである。
A method for growing a single crystal according to the present invention is a method for growing a single crystal by the vertical Bridgman method, in which a cylindrical ceramic supporter divided in advance into at least three parts is prepared. Then, the divided ceramic support tool is installed so as to surround the cylindrical quartz glass growth vessel, and the ceramic support tool is fixed by the tightening force of the heat-resistant metal wire wound around the outer circumference thereof. Then, the raw material melt placed in the quartz glass growth container is gradually crystallized from the lower part to the upper part, and at the time of cooling after the crystal solidification, the thermal contraction rate of the ceramic support and the quartz glass growth container Due to the external force in the radial direction given to the ceramic support from the quartz glass growth container due to the difference, the clamping force of the metal wire that fixed the ceramic support. In which it was to be released.

【0011】ここに垂直ブリッジマン法には、温度降下
のみで成長させるバーチカルグラジエントフリージング
法(VGF法)、成長容器を相対的に降下させて成長さ
せるバーチカルブリッジマン(VB法)、さらにAs圧
を制御する方式、B2 3 で融液表面を覆いAsの揮散
を防ぐ方式のいずれの方法も含まれる。
The vertical Bridgman method includes a vertical gradient freezing method (VGF method) in which growth is performed only by a temperature drop, a vertical Bridgman method (VB method) in which a growth container is relatively lowered to grow, and an As pressure. Both the control method and the method of covering the surface of the melt with B 2 O 3 to prevent the volatilization of As are included.

【0012】また、本発明の単結晶成長装置は、筒状の
石英ガラス成長容器を縦型に配置し、該石英ガラス成長
容器中に入れた原料融液を下部から上部に向かって徐々
に結晶固化させる単結晶成長装置において、軸方向に少
なくとも3つに分割され、上記石英ガラス成長容器の外
周を支持する筒状のセラミックス製支持具と、該分割さ
れたセラミックス製支持具の外周から締付力を付与し、
かつ結晶固化後の冷却時に、セラミックス製支持具と石
英ガラス成長容器との熱収縮率の差により石英ガラス成
長容器からセラミック製支持具に与えられる径方向外方
の外力により切断されるか、または伸びる耐熱性の金属
ワイヤとを備えたものである。
Further, in the single crystal growth apparatus of the present invention, a cylindrical quartz glass growth container is arranged vertically, and the raw material melt placed in the quartz glass growth container is gradually crystallized from the lower part to the upper part. In a single crystal growth apparatus for solidifying, a cylindrical ceramic supporter that is divided into at least three in the axial direction and supports the outer periphery of the quartz glass growth container, and tightens from the outer periphery of the divided ceramic supporter. Give power,
And at the time of cooling after crystal solidification, the ceramic support is cut by the external force in the radial direction given to the ceramic support from the quartz glass growth container due to the difference in thermal shrinkage between the support and the quartz glass growth container, or And a heat-resistant metal wire that extends.

【0013】この場合、セラミックス製支持具と金属ワ
イヤの材質としては、グラファイト製支持具とMoワイ
ヤ、またはSiC支持具とカンタル線等の組合わせがあ
る。
In this case, as the material of the ceramic support tool and the metal wire, there are combinations of graphite support tool and Mo wire, or SiC support tool and Kanthal wire.

【0014】[0014]

【発明の実施の形態】以下に本発明の単結晶成長方法お
よびその装置の実施の形態を詳細に説明する。図1は本
実施の形態の単結晶成長装置の概略縦断面図、図2は石
英ガラス成長容器を支持するセラミックス製支持具の斜
視図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the single crystal growth method and apparatus of the present invention will be described in detail below. FIG. 1 is a schematic vertical cross-sectional view of a single crystal growth apparatus of this embodiment, and FIG. 2 is a perspective view of a ceramic supporter that supports a quartz glass growth container.

【0015】図1において、石英ガラス成長容器1は縦
型電気炉10内に配置され、駆動架台7に載せられて、
回転しながら下降するようになっている。縦型電気炉1
0内には、横方向に3分割された電気炉発熱体8が設け
られ、各電気炉発熱体8は、下部で低温、中間部で単結
晶3の固化温度、上部で原料融液4を保持する高温にな
るように制御されている。
In FIG. 1, a quartz glass growth container 1 is placed in a vertical electric furnace 10 and mounted on a drive stand 7.
It is designed to descend while rotating. Vertical electric furnace 1
The electric furnace heating elements 8 which are divided into three in the horizontal direction are provided in 0, and each electric furnace heating element 8 has a low temperature in the lower part, a solidification temperature of the single crystal 3 in the intermediate part, and a raw material melt 4 in the upper part. It is controlled to maintain a high temperature.

【0016】石英ガラス成長容器1は円筒形をしてお
り、下部に肩部と種結晶2を載置する小径の種結晶載置
部とを有し、肩部を駆動架台7上に設けた肩部サセプタ
9に載せて、炉内に縦型に配置される。石英ガラス成長
容器1内の種結晶載置部に載置された種結晶2の上にG
aAsなどの結晶原料が入れられる。
The quartz glass growth container 1 has a cylindrical shape, and has a shoulder portion and a small-diameter seed crystal mounting portion for mounting the seed crystal 2 on the lower portion, and the shoulder portion is provided on the drive frame 7. It is placed on the shoulder susceptor 9 and vertically arranged in the furnace. G on the seed crystal 2 mounted on the seed crystal mounting part in the quartz glass growth container 1
A crystal raw material such as aAs is added.

【0017】肩部サセプタ9を含めた石英ガラス成長容
器1の全外周には、円筒状で内径が石英ガラス成長容器
1の外径とほぼ同一で、石英ガラス成長容器1を取り囲
んで支持するセラミックス製支持具5が設置される。こ
の筒状セラミックス製支持具5は、軸方向に分割されて
おり、その外周の数箇所に金属ワイヤ6を巻回され、そ
の締付力で石英ガラス成長容器1の外周に固定される。
金属ワイヤ6は1回以上巻回した後縛るようにしても、
あるいは、2回以上巻回したまま縛らないでそのままの
状態としてもよい。金属ワイヤ6は結晶成長時の高温に
耐える耐熱性をもち、結晶固化後の冷却時に、セラミッ
クス製支持具5と石英ガラス成長容器1との熱収縮率の
差により石英ガラス成長容器1からセラミックス製支持
具5に与えられる径方向外方の外力により、その締付力
が解除されるような強度をもつ。図2に示すように、セ
ラミックス製支持具5は軸方向に少なくとも3分割され
た弧状セグメント5aから構成し、セグメント5aの分
割端12は互いにかみ合うように段差が設けられ、円筒
形に組み立てたとき、円筒形がずれないようにして石英
ガラス成長容器1の外周を確実に囲繞して支持できるよ
うになっている。また、円筒形に組み立てたセラミック
ス製支持具5には、その外周に縛りつける金属ワイヤ6
を納めるためのリング状のワイヤ溝11が、軸方向に間
隔を開けて数本(図示例では上、中、下に3本)形成さ
れ、金属ワイヤ6の縛りを容易にし、位置ずれを防止し
ている。
The entire circumference of the quartz glass growth container 1 including the shoulder susceptor 9 is cylindrical and has an inner diameter substantially equal to the outer diameter of the quartz glass growth container 1 and surrounds and supports the quartz glass growth container 1. The supporting tool 5 is installed. This cylindrical ceramic supporter 5 is divided in the axial direction, a metal wire 6 is wound around several points on its outer circumference, and it is fixed to the outer circumference of the quartz glass growth container 1 by its clamping force.
Even if the metal wire 6 is tied after being wound one or more times,
Alternatively, it may be left as it is without being tied while being wound twice or more. The metal wire 6 has heat resistance to withstand the high temperature during crystal growth, and during cooling after crystal solidification, due to the difference in thermal contraction rate between the ceramic support 5 and the quartz glass growth container 1, the quartz glass growth container 1 is made of ceramics. The support 5 has such strength that the tightening force is released by an external force in the radial direction applied to the support 5. As shown in FIG. 2, the ceramic support 5 is composed of an arc-shaped segment 5a that is divided into at least three parts in the axial direction, and the divided ends 12 of the segment 5a are provided with steps so that they are meshed with each other, and when assembled into a cylindrical shape. The cylindrical shape can be securely supported by surrounding the outer periphery of the quartz glass growth container 1 without being displaced. Further, the ceramic support 5 assembled in a cylindrical shape has a metal wire 6 bound to the outer periphery thereof.
A plurality of ring-shaped wire grooves 11 for accommodating the wires are formed at intervals in the axial direction (three upper, middle, and lower in the illustrated example) to facilitate binding of the metal wire 6 and prevent misalignment. doing.

【0018】このように石英ガラス成長容器1の変形防
止用にセラミックス製支持具5を用い、石英ガラス成長
容器1の外周を支持しているので、結晶成長中は、セラ
ミックス製支持具5によって石英ガラス成長容器1が熱
変形するのを有効に防止できる。このため100mmを超
える長さの成長容器でも成長が可能となる。
As described above, since the ceramic support 5 is used to prevent the deformation of the quartz glass growth container 1 and supports the outer circumference of the quartz glass growth container 1, the quartz is supported by the ceramic support 5 during crystal growth. It is possible to effectively prevent the glass growth container 1 from being thermally deformed. Therefore, it is possible to grow even in a growth container having a length of more than 100 mm.

【0019】また、セラミックス製支持具5を縦方向に
分割し、その周りを金属ワイヤ6により縛り、石英ガラ
ス成長容器1の外周に固定していると、セラミックス製
支持具5よりも石英ガラス成長容器1の熱収縮率が小さ
いため、結晶固化後の冷却時は、石英ガラス成長容器1
の外径が僅かしか縮径しないのに対し、セラミックス製
支持具5の方は大きく縮径するため、セラミックス製支
持具5は石英ガラス成長容器1から外側に押し出される
外力を受ける。その時、その力に抗しきれず、セラミッ
クス製支持具5を固定していた金属ワイヤ6の締付力が
解除される結果、金属ワイヤ6が縛られている場合には
切断し、2回以上巻回したままの状態の場合には緩むの
で、セラミックス製支持具5および石英ガラス成長容器
1は破損から免れる。
Further, when the ceramic support 5 is divided in the vertical direction, and the periphery thereof is bound by the metal wire 6 and fixed to the outer periphery of the quartz glass growth container 1, the quartz support grows more than the ceramic support 5. Since the thermal contraction rate of the container 1 is small, the quartz glass growth container 1 is not cooled during cooling after crystal solidification.
Although the outer diameter of the ceramic support 5 is slightly reduced, the ceramic support 5 is significantly reduced in diameter, so that the ceramic support 5 receives an external force pushed outward from the quartz glass growth container 1. At that time, the force cannot be resisted and the tightening force of the metal wire 6 fixing the ceramic support 5 is released. As a result, if the metal wire 6 is bound, it is cut and wound twice or more. In the case of being kept rotated, it loosens, so that the ceramic support 5 and the quartz glass growth container 1 are free from damage.

【0020】[0020]

【表1】 [Table 1]

【0021】ここで金属ワイヤ6が切断されるメカニズ
ムについて説明する。表1に示すように、石英ガラスの
熱膨張率(約5×10-7(K-1))に対し、セラミック
スも金属ワイヤも、1桁以上熱膨張率が大きい。すなわ
ち、昇温時には石英ガラスに対しセラミックスも金属ワ
イヤも緩む方向になる。ただし、結晶成長中に石英ガラ
ス成長容器1が熱変形し(石英ガラスそのものの重量に
よる熱変形と、結晶融液の重量による熱変形の両方によ
る)、セラミックス製支持具5を通し金属ワイヤ6を押
し広げる方向の力を与えるため、金属ワイヤ6に緩みが
なくなる。この状態から室温まで冷却すると、セラミッ
クス製支持具5は縦3分割されているため、応力的な問
題はないが、金属ワイヤ6のみが収縮が大きく、縛って
あれば最終的に切断されてしまう。ただし、金属ワイヤ
6が延展性の高いものであれば、切れずに伸びることに
なる。
Here, a mechanism of cutting the metal wire 6 will be described. As shown in Table 1, both the ceramics and the metal wires have a coefficient of thermal expansion larger by one digit or more than the coefficient of thermal expansion of quartz glass (about 5 × 10 −7 (K −1 )). That is, when the temperature is raised, both the ceramics and the metal wire are loosened with respect to the quartz glass. However, during the crystal growth, the quartz glass growth container 1 is thermally deformed (due to both the thermal deformation due to the weight of the quartz glass itself and the thermal deformation due to the weight of the crystal melt), and the metal wire 6 is passed through the ceramic support tool 5. Since the force in the pushing-out direction is applied, the metal wire 6 is not loosened. When cooled from this state to room temperature, the ceramic support 5 is vertically divided into three parts, so there is no stress-related problem, but only the metal wire 6 contracts greatly, and if it is tied, it will eventually be cut. . However, if the metal wire 6 has a high malleability, it will stretch without being cut.

【0022】なお、金属ワイヤ6が切断される時、もし
セラミックス製支持具5が2分割の場合には、2分割の
継ぎ目に対応する石英ガラス成長容器1の直径方向の両
端から、石英ガラス成長容器1に中心向きの応力がかか
り、石英ガラス成長容器1を割る可能性が大きい。3分
割以上であれば、セラミックス製支持具5の収縮応力
は、外側に逃げてしまい、石英ガラスを割る可能性はな
くなる。
When the metal wire 6 is cut, if the ceramic support 5 is divided into two parts, quartz glass growth is performed from both ends in the diameter direction of the quartz glass growth container 1 corresponding to the joint of the two parts. A stress toward the center is applied to the container 1, and there is a high possibility of breaking the quartz glass growth container 1. If it is divided into three or more, the contraction stress of the ceramic support tool 5 escapes to the outside and there is no possibility of breaking the quartz glass.

【0023】[0023]

【実施例】【Example】

(実施例1)GaAs単結晶成長を例にとり、図1を参
照しながら説明する。石英ガラス成長容器1の中に種結
晶2とGaAs原料3000グラムを入れた後、石英ガ
ラス成長容器1を真空で封じる。縦方向に3分割したグ
ラファイト製支持具で、肩部サセプタ9とともに石英ガ
ラス成長容器1を囲み、φ0.3の細いモリブデンワイ
ヤで周りから縛り固定したものを、駆動架台7の上に設
置する。炉内雰囲気をArガスに置換した後、縦型電気
炉10を昇温する。種結晶部を約1200℃、上部原料
部を約1245℃に調整する。原料を溶かし込んで融液
4とした後、固液界面の温度勾配を約4℃/cmに調整し
ながら石英ガラス成長容器1を回転上昇させ、種付けを
行なう。その後回転させたまま3mm/hの速度で石英ガ
ラス成長容器1を矢印で示すように下降させて結晶固化
を行なう。全体を固化した後、約100℃/hで室温ま
で冷却し、石英ガラス成長容器1をグラファイト製支持
具とともに電気炉から取り出す。
(Example 1) A GaAs single crystal growth will be described as an example with reference to FIG. After the seed crystal 2 and 3000 g of the GaAs raw material are placed in the quartz glass growth container 1, the quartz glass growth container 1 is sealed in vacuum. A graphite support, which is divided into three parts in the vertical direction, surrounds the quartz glass growth container 1 together with the shoulder susceptor 9, and is tied and fixed with a thin molybdenum wire of φ0.3 from the periphery and installed on the drive frame 7. After replacing the atmosphere in the furnace with Ar gas, the temperature of the vertical electric furnace 10 is raised. The seed crystal part is adjusted to about 1200 ° C, and the upper raw material part is adjusted to about 1245 ° C. After melting the raw materials to form a melt 4, the quartz glass growth vessel 1 is rotated and raised while seeding is performed while adjusting the temperature gradient at the solid-liquid interface to about 4 ° C./cm. Thereafter, while rotating, the quartz glass growth container 1 is lowered at a speed of 3 mm / h as shown by an arrow to solidify the crystal. After the whole is solidified, it is cooled to room temperature at about 100 ° C./h, and the quartz glass growth container 1 is taken out from the electric furnace together with the graphite support.

【0024】石英ガラス成長容器1よりもグラファイト
製支持具の方が熱収縮率が大きいため、室温までの冷却
途中にグラファイト製支持具が石英ガラス成長容器1に
より押し広げられるが、このときモリブデンワイヤのみ
が切断することにより、石英ガラス成長容器1、グラフ
ァイト製支持具の両方とも破損は免れた。この方法で直
径約φ80mm、直胴部長さ約100mmのGaAs単結晶
が得られた。
Since the graphite support has a higher thermal shrinkage than the quartz glass growth container 1, the graphite support is pushed out by the quartz glass growth container 1 during cooling to room temperature. By cutting only the quartz glass growth container 1 and the graphite support, damage was avoided. By this method, a GaAs single crystal with a diameter of about 80 mm and a straight body length of about 100 mm was obtained.

【0025】(実施例2)セラミックス製支持具とし
て、SiC製支持具を用い、モリブデンワイヤの代りに
φ0.5mmのカンタル線を用いて、実施例1と同じ手順
で、空気中での結晶成長を行なった。この場合も、石英
ガラス成長容器、SIC製支持具の破損は発生せずに、
結晶を取り出すことができた。
(Example 2) A SiC support was used as a ceramic support, and a kathal wire having a diameter of 0.5 mm was used in place of the molybdenum wire, and the crystal growth in air was performed in the same procedure as in Example 1. Was done. Also in this case, the quartz glass growth container and the SIC supporting tool are not damaged,
The crystals could be taken out.

【0026】なお、上述した実施例では、石英ガラス成
長容器そのものを成長用ルツボとみなして成長を行なっ
た場合について説明したが、例えばpBN製ルツボの中
で成長を行ない、ルツボ全体を石英アンプルで覆った場
合でも、その石英アンプルを実施例と同様に分割型のセ
ラミックス製支持具で周りを支持することにより、成長
時の変形を防止し、しかも結晶固化後は石英アンプルを
破損させないで炉から取り出すことができる。
In the above-mentioned embodiment, the case where the quartz glass growth container itself was regarded as the growth crucible for the growth was explained. Even when covered, the quartz ampoule is supported around the same by a split-type ceramic support as in the example to prevent deformation during growth, and after crystal solidification, the quartz ampoule is not damaged from the furnace. You can take it out.

【0027】また、金属ワイヤの縛り方は、実施例のよ
うにセラミックス製支持具に横方向に巻きつける他、斜
め方向に巻きつけてもよい。また、金属線ワイヤには、
全体がリボン状で、部分的にくびれを形成し、そこで切
断するようにしたものも含まれる。また、本実施例で
は、GaAsの単結晶成長について述べたが、GaAs
の他に、例えばInP、GAP等の単結晶成長に応用す
ることも可能である。
The metal wire may be tied in a lateral direction on the ceramic support as in the embodiment, or in a diagonal direction. Also, for metal wire,
It also includes a ribbon-shaped part, which is partially constricted and is cut at that part. In addition, although the GaAs single crystal growth is described in the present embodiment, the GaAs
Besides, it can be applied to the growth of single crystal such as InP and GAP.

【0028】[0028]

【発明の効果】本発明によれば、石英ガラス成長容器の
中で垂直ブリッジマン法により単結晶を成長する際、石
英ガラス成長容器をセラミックス製支持具で支持するよ
うにしたので、石英ガラス成長容器の成長中の変形を有
効に防ぐことができる。また、セラミックス製支持具を
少なくとも3分割して、これを金属ワイヤの締付力で石
英ガラス成長容器に固定し、冷却時にセラミックス製支
持具に加えられる外力により金属ワイヤの締付力が解除
されるようにしたので、石英ガラス成長容器およびセラ
ミックス製支持具の破損を有効に防止できる。
According to the present invention, when a single crystal is grown in a quartz glass growth container by the vertical Bridgman method, the quartz glass growth container is supported by a ceramic support tool. The deformation during the growth of the container can be effectively prevented. Further, the ceramic support is divided into at least three parts, which are fixed to the quartz glass growth container by the metal wire tightening force, and the metal wire tightening force is released by the external force applied to the ceramic support during cooling. Since this is done, it is possible to effectively prevent damage to the quartz glass growth container and the ceramic support.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態による垂直ブリッジマン法
を実施するための単結晶成長装置の概略縦断面図であ
る。
FIG. 1 is a schematic vertical sectional view of a single crystal growth apparatus for carrying out a vertical Bridgman method according to an embodiment of the present invention.

【図2】本実施の形態の分割型のセラミックス製支持具
を示す斜視図である。
FIG. 2 is a perspective view showing a split type ceramic support of the present embodiment.

【符号の説明】[Explanation of symbols]

1 石英ガラス成長容器 3 単結晶 4 原料融液 5 セラミックス製支持具 6 金属ワイヤ 10 縦型電気炉 1 Quartz Glass Growth Container 3 Single Crystal 4 Raw Material Melt 5 Ceramic Support 6 Metal Wire 10 Vertical Electric Furnace

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】垂直ブリッジマン法によって単結晶を成長
する方法において、あらかじめ軸方向に少なくとも3つ
に分割した筒状のセラミックス製支持具を用意し、該分
割されたセラミックス製支持具を筒状の石英ガラス成長
容器を取り囲むように設置すると共に、上記セラミック
ス製支持具をその外周に巻回された耐熱性の金属ワイヤ
の締付力により固定し、上記石英ガラス成長容器中に入
れた原料融液を下部から上部に向かって徐々に結晶固化
させ、結晶固化後の冷却時において、セラミックス製支
持具と石英ガラス成長容器との熱収縮率の差により石英
ガラス成長容器からセラミック製支持具に与えられる径
方向外方の外力により、セラミックス製支持具を固定し
ていた金属ワイヤの締付力を解除するようにしたことを
特徴とする単結晶成長方法。
1. A method for growing a single crystal by the vertical Bridgman method, in which at least three cylindrical ceramic supports are prepared in advance in the axial direction, and the divided ceramic supports are cylindrical. The quartz glass growth container is placed so as to surround it, and the ceramic support is fixed by the tightening force of the heat-resistant metal wire wound around the outer circumference of the quartz support, and the raw material melted in the quartz glass growth container is fixed. The liquid is gradually crystallized and solidified from the lower part to the upper part, and during cooling after the solidification, it is given to the ceramic support from the quartz glass growth container due to the difference in thermal shrinkage between the ceramic support and the quartz glass growth container. A single crystal characterized in that the tightening force of the metal wire fixing the ceramic support tool is released by an external force in the radially outward direction. Long way.
【請求項2】筒状の石英ガラス成長容器を縦型に配置
し、該石英ガラス成長容器中に入れた原料融液を下部か
ら上部に向かって徐々に結晶固化させる単結晶成長装置
において、軸方向に少なくとも3つに分割され、上記石
英ガラス成長容器の外周を支持する筒状のセラミックス
製支持具と、該分割されたセラミックス製支持具の外周
から締付力を付与し、かつ結晶固化後の冷却時に、セラ
ミックス製支持具と石英ガラス成長容器との熱収縮率の
差により石英ガラス成長容器からセラミック製支持具に
与えられる径方向外方の外力により切断されるか、また
は伸びる耐熱性の金属ワイヤとを備えたことを特徴とす
る単結晶成長装置。
2. A single crystal growth apparatus in which a cylindrical quartz glass growth container is vertically arranged, and a raw material melt placed in the quartz glass growth container is gradually crystallized and solidified from a lower part to an upper part. A cylindrical ceramic support that is divided into at least three parts in the direction and supports the outer periphery of the quartz glass growth container, and a clamping force is applied from the outer periphery of the divided ceramic support, and after crystal solidification At the time of cooling, due to the difference in the thermal contraction rate between the ceramic support and the quartz glass growth container, the heat resistance which is cut or extended by the external force in the radial direction given to the ceramic support from the quartz glass growth container A single crystal growth apparatus comprising: a metal wire.
【請求項3】上記セラミックス製支持具としてグラファ
イト製支持具を用い、金属ワイヤとしてMoワイヤを用
いた請求項2に記載の単結晶成長装置。
3. The single crystal growth apparatus according to claim 2, wherein a graphite support is used as the ceramic support and a Mo wire is used as the metal wire.
【請求項4】上記セラミックス製支持具としてシリコン
カーバイド(SiC)製支持具を用い、金属ワイヤとし
てカンタル線を用いた請求項2に記載の単結晶成長装
置。
4. The single crystal growth apparatus according to claim 2, wherein a silicon carbide (SiC) support is used as the ceramic support, and a Kanthal wire is used as the metal wire.
JP02491596A 1996-02-13 1996-02-13 Single crystal growth method and apparatus Expired - Fee Related JP3159030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02491596A JP3159030B2 (en) 1996-02-13 1996-02-13 Single crystal growth method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02491596A JP3159030B2 (en) 1996-02-13 1996-02-13 Single crystal growth method and apparatus

Publications (2)

Publication Number Publication Date
JPH09221377A true JPH09221377A (en) 1997-08-26
JP3159030B2 JP3159030B2 (en) 2001-04-23

Family

ID=12151469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02491596A Expired - Fee Related JP3159030B2 (en) 1996-02-13 1996-02-13 Single crystal growth method and apparatus

Country Status (1)

Country Link
JP (1) JP3159030B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402838B1 (en) 1999-08-02 2002-06-11 Sumitomo Electric Industries, Ltd. Crystal growth vessel and crystal growth method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402838B1 (en) 1999-08-02 2002-06-11 Sumitomo Electric Industries, Ltd. Crystal growth vessel and crystal growth method
US6758899B2 (en) 1999-08-02 2004-07-06 Sumitomo Electric Industries, Ltd. Crystal growth vessel and crystal growth method

Also Published As

Publication number Publication date
JP3159030B2 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
EP0927777A1 (en) Semiconductor crystal, and method and apparatus of production
US20030172870A1 (en) Apparatus for growing monocrystalline group II-VI and III-V compounds
EP1114884B1 (en) Process for producing compound semiconductor single crystal
JPH09221377A (en) Single crystal growth method and apparatus
JP3567662B2 (en) Single crystal growth method and apparatus
JPH11349392A (en) Method and apparatus for producing single crystal
JP2004099390A (en) Method for producing compound semiconductor single crystal and compound semiconductor single crystal
JP2004203687A (en) Compound semiconductor manufacturing equipment
Capper Bulk Crystal Growth–Methods and Materials
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JP2001080987A (en) Compound semiconductor crystal manufacturing apparatus and manufacturing method using the same
JP2612897B2 (en) Single crystal growing equipment
JP3700397B2 (en) Method for producing compound semiconductor crystal
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JP2004107099A (en) Method for producing semi-insulating gallium arsenide single crystal
JPS60239389A (en) Pulling device for single crystal
JP2004026577A (en) Compound semiconductor single crystal growth apparatus and compound semiconductor single crystal growth method
JP2003335598A (en) Apparatus for preparing compound semiconductor single crystal
JPH0867593A (en) Single crystal growth method
JP3557690B2 (en) Crystal growth method
JP2004018319A (en) Compound semiconductor crystal growth equipment
JPH0559873B2 (en)
JPH10182277A (en) Single crystal manufacturing apparatus and single crystal manufacturing method using the same
JP2004161559A (en) Compound semiconductor manufacturing equipment

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080216

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees