[go: up one dir, main page]

JPH09221354A - Wear resistant aluminous ceramics and its production - Google Patents

Wear resistant aluminous ceramics and its production

Info

Publication number
JPH09221354A
JPH09221354A JP8025218A JP2521896A JPH09221354A JP H09221354 A JPH09221354 A JP H09221354A JP 8025218 A JP8025218 A JP 8025218A JP 2521896 A JP2521896 A JP 2521896A JP H09221354 A JPH09221354 A JP H09221354A
Authority
JP
Japan
Prior art keywords
weight
less
wear
mgo
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8025218A
Other languages
Japanese (ja)
Other versions
JP3080873B2 (en
Inventor
Koji Onishi
宏司 大西
Tsuguhiro Oonuma
継浩 大沼
Toshio Kawanami
利夫 河波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12159832&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09221354(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP08025218A priority Critical patent/JP3080873B2/en
Priority to TW86100526A priority patent/TW448135B/en
Priority to CN97102439A priority patent/CN1081175C/en
Publication of JPH09221354A publication Critical patent/JPH09221354A/en
Priority to HK98101602A priority patent/HK1002557A1/en
Application granted granted Critical
Publication of JP3080873B2 publication Critical patent/JP3080873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain aluminous ceramics capable of sintering at a low temp., free from unevenness in characteristics and excellent in wear resistance with low-cost starting materials. SOLUTION: Alumina is used by 88 to <95wt.% as the principal component of aluminous ceramics and 3.6-10wt.% SiO2 , 0.2-2.5wt.% MgO and 0.2-2.5wt.% CaO are added by 5-12wt.%, in total, as subsidiary components to the alumina. When the total amt. of the SiO2 , MgO and CaO is represented by 100wt.%, the amts. of the SiO2 , MgO and CaO are 72-85wt.%, 3-25wt.% and 3-25wt.%, respectively. The amt. of inevitable impurities is reduced to <=0.5wt.%, the amt. of defects is limited to <=5% and ZrO2 may further be added by 0.01-15wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は耐摩耗性アルミナ質
セラミックス、特に、耐摩耗性部材材料として有用な耐
摩耗性アルミナ質セラミックス及びその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to wear resistant alumina ceramics, and more particularly to wear resistant alumina ceramics useful as a material for wear resistant members and a method for producing the same.

【0002】[0002]

【従来の技術】近年、セラミックスは、耐摩耗性及び耐
食性において金属材料よりも優れていることが着目さ
れ、従来の金属に代わる耐摩耗部材材料として使用され
てきている。この種のセラミックスとしては、通常、ア
ルミナ、ジルコニア、窒化珪素、炭化珪素などが知られ
ているが、それらの中でも、硬度が高く、耐食性に優
れ、安価であるアルミナを主体とするアルミナ質セラミ
ックスが広く使用されている。通常、アルミナ質セラミ
ックスは、アルミナ単体のみでは焼結性が悪いため生産
性に欠けることから、焼結助剤その他の添加剤を加えて
焼成することが行われている。
2. Description of the Related Art In recent years, attention has been paid to the fact that ceramics are superior in wear resistance and corrosion resistance to metal materials, and ceramics have been used as wear resistant member materials in place of conventional metals. Alumina, zirconia, silicon nitride, silicon carbide and the like are generally known as ceramics of this type. Among them, alumina-based ceramics mainly composed of alumina, which have high hardness, excellent corrosion resistance and are inexpensive, are known. Widely used. Normally, alumina-based ceramics are poor in productivity because they have poor sinterability when only alumina is used alone. Therefore, sintering is performed by adding a sintering aid and other additives.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
アルミナ質セラミックスでは、Al23の含有量が90
〜95重量%になる程度に多量の添加剤を添加している
ため、アルミナ結晶粒界にアルミナ結晶以外の第2相及
びガラス相が多量に生成し、アルミナ本来の硬度及び強
度が得られず、十分な耐摩耗性が得られないという問題
があった。この問題を解決するため、Al23 95〜
98重量%を主成分とし、これにSiO2 40〜85重量
%、MgO 10〜55重量%、CaO 5〜50重量%から
なる焼結助剤を2〜5重量%添加してなるアルミナ質セ
ラミックスが特開平7-206514号公報にて提案さ
れている他、特開平7-237961号公報にて、Al2
390〜95重量%を主成分とし、これにSiO2 3.0
〜5.0重量%、MgO 1.0〜1.5重量%及びB23
0.5〜3.5重量%を添加してなるアルミナ質セラミッ
クスが提案されている。
However, in the conventional alumina ceramics, the Al 2 O 3 content is 90%.
Since a large amount of additives is added to the extent of up to 95% by weight, a large amount of second phase and glass phase other than alumina crystals are generated at the alumina grain boundaries, and the original hardness and strength of alumina cannot be obtained. However, there is a problem that sufficient abrasion resistance cannot be obtained. In order to solve this problem, Al 2 O 3 95-
98% by weight as the main component, and 40 to 85% by weight of SiO 2
%, MgO 10 to 55% by weight, CaO 5 to 50% by weight, and an alumina ceramics containing 2 to 5% by weight of a sintering aid is proposed in JP-A-7-206514. In Japanese Patent Application Laid-Open No. 7-237961, Al 2
90 to 95% by weight of O 3 is the main component, and SiO 2 3.0
~ 5.0 wt%, MgO 1.0-1.5 wt% and B 2 O 3
Alumina-based ceramics prepared by adding 0.5 to 3.5% by weight have been proposed.

【0004】特開平7-206514号公報に記載のも
のは、焼結助剤の添加量を少なくすることにより耐摩耗
性を向上させたものであるが、アルミナ含有量が多くな
るほど焼結性が低下するため高温で焼成しなければなら
ず、しかも、焼成温度によっては結晶粒度分布が広くな
り易く耐摩耗性の低下をきたし易いという問題がある。
また、このアルミナ質セラミックスを粉砕用ボールとし
て用いた場合、空ずり摩耗、即ち、ボールミルに粉砕用
ボールと水のみを入れて回転させた時の摩耗では優れた
特性を示すが、実際にアルミナ等の粉体を粉砕した場合
の実摩耗では未だ満足できるものではないのが明らかと
なった。
The one disclosed in Japanese Patent Laid-Open No. 7-206514 has improved wear resistance by reducing the addition amount of a sintering aid. However, as the alumina content increases, the sinterability increases. Therefore, there is a problem in that it has to be fired at a high temperature because it lowers, and the grain size distribution tends to be broadened depending on the firing temperature, and the wear resistance tends to be lowered.
In addition, when this alumina ceramics is used as a grinding ball, it shows excellent characteristics in dry wear, that is, wear when only the grinding ball and water are put into a ball mill and rotated, but actually alumina etc. It has become clear that the actual wear of the crushed powder is not yet satisfactory.

【0005】また、特開平7-237961号公報に記
載のものは、Al23含有量が90〜95重量%と従来
のものと同程度でも優れた耐摩耗性を示すが、粒子成長
の抑制及び焼成温度の低温化を目的として添加されるB
23は1000℃でもかなりの蒸気圧を示し、焼成中に
蒸発し易いため組成に変動を生じ易く、必然的に特性に
バラツキを生じ、しかもB23の蒸発に起因してセラミ
ックス内部に空孔を生じ、耐摩耗性の低下を招く恐れが
ある。
Further, the one described in Japanese Patent Laid-Open No. 237961/1990, which has an Al 2 O 3 content of 90 to 95% by weight, shows excellent wear resistance even at the same level as the conventional one, but it is B added for the purpose of suppressing and lowering the firing temperature
2 O 3 represents a significant vapor pressure even 1000 ° C., tend to cause variations in the composition liable to evaporate during firing, inevitably cause variations in properties, moreover ceramics inside due to the evaporation of B 2 O 3 There is a risk that voids will be formed in the surface and the wear resistance will be reduced.

【0006】従って、本発明は、低温焼結可能で特性の
バラツキが少なく、耐摩耗性に優れたアルミナ質セラミ
ックスを安価に得ることを目的とするものである。
Therefore, an object of the present invention is to obtain at low cost alumina ceramics which can be sintered at a low temperature, have less variation in characteristics, and are excellent in wear resistance.

【0007】[0007]

【課題を解決するための手段】本発明は、前記目的を達
成するための手段として、基本的には、Al23 88重
量%以上95重量%未満をアルミナ質セラミックスの主成
分とし、これにSiO272〜85重量%、MgO 3〜2
5重量%及びCaO 3〜25重量%からなる副成分を、該
副成分の各成分の含有量がSiO2 3.6〜10重量%、
MgO 0.2〜2.5重量%及びCaO 0.2〜2.5重量%
で、それらの合計量が5〜12重量%となるように添加
する一方、不可避的不純物を0.5重量%以下に抑制
し、かつ、セラミックスの欠陥量を5%以下に抑制する
ようにしたものである。
As a means for achieving the above-mentioned object, the present invention basically comprises Al 2 O 3 in an amount of 88% by weight or more and less than 95% by weight as a main component of alumina ceramics. 72 to 85% by weight of SiO 2 and 3 to 2 of MgO
5% by weight and 3 to 25% by weight of CaO are added as auxiliary components, and the content of each component of the auxiliary component is SiO 2 3.6 to 10% by weight,
0.2 to 2.5% by weight of MgO and 0.2 to 2.5% by weight of CaO
Then, while adding them so that the total amount thereof becomes 5 to 12% by weight, inevitable impurities are suppressed to 0.5% by weight or less, and the defect amount of ceramics is suppressed to 5% or less. It is a thing.

【0008】本明細書において、セラミックスの欠陥量
とは、平面研削盤を用いてセラミックスを下記条件によ
り研削加工した後、研磨加工して鏡面仕上げし、その鏡
面仕上げした面(以下、鏡面仕上げ面という。)を所定
の倍率(通常、500倍)の走査電子顕微鏡で写真撮影
を行い、その写真を画像解析にて欠陥部分と欠陥でない
部分とを二値化により分離して、その欠陥部分が画像全
体に占める面積の割合(即ち、面積率(%))をいう。こ
の欠陥部分には、気孔だけでなく、焼結体の研削及び研
磨加工して鏡面仕上げする際に発生する脱粒の後、及び
焼結体のかさ密度値に影響を与えないレベルの欠陥も含
まれる。
In the present specification, the defect amount of ceramics means that the ceramics are ground by a surface grinder under the following conditions, then polished and mirror-finished, and the mirror-finished surface (hereinafter, mirror-finished surface). Is photographed with a scanning electron microscope at a predetermined magnification (usually 500 times), and the photograph is subjected to image analysis to separate the defective portion and the non-defective portion by binarization, and the defective portion is The ratio of the area occupied in the entire image (that is, the area ratio (%)). This defect part includes not only pores, but also defects after grain removal that occurs during grinding and polishing of the sintered body and mirror finishing, and at a level that does not affect the bulk density value of the sintered body. Be done.

【0009】前記鏡面仕上げは、平面研削盤とレジンボ
ンドタイプのダイヤモンド砥石を用い、まず、粒度#1
40のダイヤモンド砥石で、その砥石の周速を1500
m/sec、切込み深さを8μm、非研削物であるセラミック
ス(以下、ワークという。)の左右の送り速度(以下、
ワーク送りという。)を17m/secとして約80μm研削
した後、切込みを止めて砥石を5往復させ、次に、砥石
を#400のダイヤモンド砥石に取り替え、周速150
0m/sec、切込み深さ5μm、ワーク送り13m/secの条
件下で約50μm研削した後、切込みを止めて砥石を1
0往復させ、更に、砥石を#600のダイヤモンド砥石
に取り替え、周速1500m/sec、切込み深さ2μm、ワ
ーク送り10m/secの条件下で約20〜30μm研削した
後、切込みを止めて砥石を15往復させることにより研
削を行い、その後、研削加工したセラミックスの研削面
に、40μmのダイヤモンド砥粒を埋め込んだダイヤモ
ンドパッドを2.6kgf/cm2で加圧して3分研磨し、更
に、6μmのダイヤモンド砥粒で2.6kgf/cm2に加圧し
て5分研磨した後、3μmのダイヤモンド砥粒で2.6kg
f/cm2に加圧して15分間研磨し、最後に1μmのダイヤ
モンド砥粒で1.3kgf/cm2に加圧して5分研磨すること
により行う。
For the mirror finish, a surface grinder and a resin-bond type diamond grindstone are used.
Forty diamond whetstones, and the peripheral speed of the whetstone is 1500
m / sec, depth of cut 8 μm, left and right feed rate of ceramics (hereinafter referred to as work), which is a non-ground object
It is called work feeding. ) At 17 m / sec for about 80 μm, stop the incision, move the grindstone back and forth 5 times, and then replace the grindstone with a # 400 diamond grindstone with a peripheral speed of 150
After grinding about 50 μm under the conditions of 0 m / sec, depth of cut 5 μm, and work feed of 13 m / sec, stop the depth of cut and set the grindstone to 1
Reciprocate 0 times and replace the grindstone with a # 600 diamond grindstone. Grind approximately 20 to 30 μm under the conditions of peripheral speed of 1500 m / sec, depth of cut of 2 μm, and work feed of 10 m / sec. Grinding is performed by reciprocating 15 times, and then, a diamond pad in which 40 μm diamond abrasive grains are embedded is pressed at 2.6 kgf / cm 2 and ground for 3 minutes on the ground surface of the ground ceramics. 2.6 kgf / cm 2 of diamond abrasive grains are pressed and polished for 5 minutes, then 3 μm diamond abrasive grains of 2.6 kg
It is carried out by pressurizing to f / cm 2 and polishing for 15 minutes, and finally pressurizing to 1.3 kgf / cm 2 with 1 μm diamond abrasive grains and polishing for 5 minutes.

【0010】即ち、本発明に係る耐摩耗性アルミナ質セ
ラミックスは、Al23 88重量%以上95重量%未満、
SiO2 3.6〜10重量%、MgO 0.2〜2.5重量%、
CaO 0.2〜2.5重量%、残部実質的に不可避的不純
物からなり、前記SiO2、MgO及びCaOの含有量の和
が5〜12重量%であって、該SiO2、MgO及びCaO
の含有量の和を100としたとき各成分の割合がSiO2
72〜85重量%、MgO 3〜25重量%、CaO 3〜
25重量%で、前記不可避的不純物が0.5重量%以下、
欠陥量が5%以下であることを特徴とするものである。
That is, the wear-resistant alumina ceramics according to the present invention comprises Al 2 O 3 of 88% by weight or more and less than 95% by weight,
SiO 2 3.6-10% by weight, MgO 0.2-2.5% by weight,
CaO 0.2-2.5% by weight, the balance consisting essentially of inevitable impurities, the sum of the contents of SiO 2 , MgO and CaO being 5-12% by weight, said SiO 2 , MgO and CaO
When the sum of the contents of is 100, the ratio of each component is SiO 2
72 to 85% by weight, MgO 3 to 25% by weight, CaO 3 to
25% by weight, the unavoidable impurities are 0.5% by weight or less,
The feature is that the amount of defects is 5% or less.

【0011】前記主成分であるAl23の含有量は、9
0〜94.5重量%の範囲がより好適である。また、前記
副成分の含有量は、SiO2 5〜10重量%、MgO 0.
4〜1.5重量%、CaO 0.3〜1.5重量%で、それら
の含有量の和を100としたときの各成分の割合がSi
2 73〜84重量%、MgO 3.5〜1重量%、CaO 4
〜15重量%の範囲であるのがより好適である。
The content of Al 2 O 3 which is the main component is 9
The range of 0-94.5% by weight is more preferable. Further, the contents of the subcomponents are 5 to 10% by weight of SiO 2 , and MgO 0.
4 to 1.5% by weight and CaO 0.3 to 1.5% by weight, and the proportion of each component is Si when the sum of their contents is 100.
O 2 73-84% by weight, MgO 3.5-1% by weight, CaO 4
More preferably, it is in the range of ˜15% by weight.

【0012】また、本発明は、前記アルミナ質セラミッ
クスの強度及び靭性を一段と向上させると共に、そのマ
クロ組織をより均一化するため、前記成分組成からなる
基本組成物100重量部に対してZrO2を0.01〜1
5重量部、好ましくは0.05〜10重量部、より好ま
しくは、0.1〜8重量部含有させるようにしたもので
ある。
Further, in the present invention, in order to further improve the strength and toughness of the alumina-based ceramics and further homogenize the macrostructure thereof, ZrO 2 is added to 100 parts by weight of the basic composition having the above-mentioned composition. 0.01-1
5 parts by weight, preferably 0.05 to 10 parts by weight, more preferably 0.1 to 8 parts by weight.

【0013】更に、本発明は、原料粉末を所定の割合で
配合し、その混合物を平均粒径0.5〜1.0μm粉末に
微粉砕し、得られた微粉末を所定形状に成形してかさ密
度1.90〜2.10g/cm3の成形体を得、これを焼成す
ることを特徴とする耐摩耗性アルミナ質セラミックスの
製造方法を提供するものである。この場合、粉砕後の微
粉末の比表面積は8m2/g〜15m2/gが好ましく、また、
成形体の焼成温度としては1350〜1600℃が好適
である。
Further, in the present invention, the raw material powders are mixed in a predetermined ratio, the mixture is finely pulverized to a powder having an average particle size of 0.5 to 1.0 μm, and the fine powder thus obtained is molded into a predetermined shape. The present invention provides a method for producing wear-resistant alumina-based ceramics, characterized by obtaining a molded body having a bulk density of 1.90 to 2.10 g / cm 3 and firing it. In this case, the specific surface area of fine powder after pulverization is preferably 8m 2 / g~15m 2 / g, also,
The firing temperature of the molded body is preferably 1350 to 1600 ° C.

【0014】前記不可避的不純物の含有量は0.5重量
%以下になるように設定されるが、その中でも、Na2
やK2Oなどのアルカリ金属酸化物の含有量は0.45重
量%以下、好ましくは、0.4重量%以下、また、TiO
2の含有量は0.2重量%以下、好ましくは0.15%以
下に抑制するのが好適である。
The content of the unavoidable impurities is set to 0.5% by weight or less. Among them, Na 2 O
The content of alkali metal oxides such as K 2 O and 0.45 wt% or less, preferably 0.4 wt% or less, and TiO 2
The content of 2 is preferably suppressed to 0.2% by weight or less, preferably 0.15% or less.

【0015】また、前記欠陥量は、セラミックスの耐摩
耗性に非常に大きな影響を与えるため、鏡面仕上げ面で
の欠陥量は5%以下が好ましい。これは、欠陥量が5%を
超えるとこれらの欠陥が摩耗の起点なって摩耗が促進さ
れ、耐摩耗性の低下を招く同時に耐衝撃強度の低下が起
こるので好ましくないからである。この欠陥量は好まし
くは3%以下、より好ましくは2%以下が好適である。
Since the amount of defects has a great influence on the wear resistance of ceramics, the amount of defects on the mirror-finished surface is preferably 5% or less. This is because if the amount of defects exceeds 5%, these defects are the starting points of wear and promote wear, leading to a decrease in wear resistance and at the same time a drop in impact strength, which is not desirable. The amount of this defect is preferably 3% or less, more preferably 2% or less.

【0016】[0016]

【発明の実施の形態】本発明に係る耐摩耗性アルミナ質
セラミックスは、前記の如く、原料を前記組成になるよ
うに配合し、その混合物を粉砕して平均粒径1.0μm以
下、比表面積8m2/g以上、より具体的には、平均粒径が
0.5〜1.0μm、比表面積が8m2/g〜15m2/gの原料
粉末を調製し、得られた原料粉末を所定形状に成形し
て、かさ密度が1.90〜2.10g/cm3の成形体を得、
これを1350〜1600℃の温度で焼成することによ
り製造されるが、具体的には、例えば、次の方法により
製造できる。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the wear-resistant alumina ceramics according to the present invention is prepared by mixing the raw materials so as to have the above composition and crushing the mixture to obtain an average particle size of 1.0 μm or less and a specific surface area. 8m 2 / g or more, more specifically, an average particle diameter of 0.5 to 1.0 [mu] m, a specific surface area to prepare a raw material powder of 8m 2 / g~15m 2 / g, a predetermined raw material powder obtained Molded into a shape to obtain a molded body having a bulk density of 1.90 to 2.10 g / cm 3 ,
It is produced by firing this at a temperature of 1350 to 1600 ° C., and specifically, for example, it can be produced by the following method.

【0017】(1)まず、アルミナ質セラミックスを構
成する各構成元素の化合物を前記組成比になるように配
合し、必要に応じてZrO2原料を添加し、水または有機
溶媒中で湿式によってボールミル、アトリッションミル
等の公知の粉砕機を用いて粉砕、混合、分散し、原料粉
末の調製を行う。
(1) First, compounds of the respective constituent elements constituting the alumina-based ceramics are blended so as to have the above composition ratio, ZrO 2 raw material is added if necessary, and a ball mill is wet-processed in water or an organic solvent. A raw material powder is prepared by pulverizing, mixing and dispersing using a known pulverizer such as an attrition mill.

【0018】主成分のアルミナ原料としては、アルミナ
純度が99.7重量%以上、比表面積2m2/g以上、平均粒
径が3μm以下、好ましくは0.5〜3μmのものが適当
である。また、このアルミナ原料は明ばん法等により製
造されたものでも良いが、バイヤー法によるアルミナ原
料を使用することが好ましく、安価に作ることができる
利点がある。
As the alumina raw material as the main component, those having an alumina purity of 99.7% by weight or more, a specific surface area of 2 m 2 / g or more and an average particle diameter of 3 μm or less, preferably 0.5 to 3 μm are suitable. Further, this alumina raw material may be one manufactured by the alum method or the like, but it is preferable to use the alumina raw material by the Bayer method, and there is an advantage that it can be manufactured at low cost.

【0019】副成分のうちMgOおよびCaOの原料とし
ては、酸化物、水酸化物、炭酸塩等の塩類を使用できる
が、平均粒径3.0μm以下、より好ましくは、0.5〜
3.0μmのものを使用するのが適当である。また、Si
2原料としては、珪石、石英、シリカゾル、エチルシ
リケート等を使用でき、またカオリン等の粘土鉱物やZ
rO2にY23等の希土類元素を安定化剤として固溶させ
た正方晶系ジルコニアを使用しても良い。このZrO2
原料としては、平均粒径が1.0μm以下、より好ましく
は、0.5〜1.0μmで、比表面積5m2/g以上、より好
ましくは、5〜16m2/gのものが好適であり、Y23
の安定化剤を固溶させた正方晶系ジルコニアを原料とし
て用いた場合には応力誘起相変態効果による靭性の向上
を図ることができる。
Of the subcomponents, salts such as oxides, hydroxides and carbonates can be used as raw materials for MgO and CaO, but the average particle size is 3.0 μm or less, more preferably 0.5 to 0.5 μm.
It is suitable to use one having a thickness of 3.0 μm. Also, Si
As the O 2 raw material, silica stone, quartz, silica sol, ethyl silicate, etc. can be used, and clay minerals such as kaolin and Z
Tetragonal zirconia in which a rare earth element such as Y 2 O 3 is dissolved in rO 2 as a stabilizer may be used. As the raw material of the ZrO 2, average particle diameter of 1.0μm or less, more preferably, at 0.5 to 1.0 [mu] m, a specific surface area of 5 m 2 / g or more, more preferably, those 5~16m 2 / g Is preferable, and when tetragonal zirconia in which a stabilizer such as Y 2 O 3 is dissolved is used as a raw material, the toughness can be improved by the stress-induced phase transformation effect.

【0020】前記アルミナ質セラミックスの原料には、
通常、不可避的不純物、例えば、Fe23、Na2O、K2
O及びTiO2等が含まれるが、不可避的不純物のうちア
ルカリ金属酸化物及びTiO2は第2相を生成したり異常
粒成長をきたすので、不可避的不純物の含有量が可能な
限り少ないものを使用し、特に、Na2O及びK2OはSi
2等と容易にガラス相を形成するため、アルカリ金属
酸化物の含有量が0.45重量%以下に、また、TiO2
は結晶成長を促進させたり異常粒成長の原因となること
から、その含有量が0.2重量%以下、好ましくは0.1
5%以下になるように原料を選択して配合される。
As the raw material of the alumina ceramics,
Usually, unavoidable impurities such as Fe 2 O 3 , Na 2 O, K 2
O and TiO 2 etc. are contained, but among the unavoidable impurities, alkali metal oxides and TiO 2 form the second phase or cause abnormal grain growth, so that the content of the unavoidable impurities is as small as possible. Used, especially Na 2 O and K 2 O are Si
In order to easily form a glass phase with O 2 etc., the content of alkali metal oxides should be 0.45% by weight or less, and TiO 2
Since it promotes crystal growth and causes abnormal grain growth, its content is 0.2% by weight or less, preferably 0.1% by weight or less.
The raw materials are selected and blended so as to be 5% or less.

【0021】粉砕、混合及び分散は、水または有機溶媒
中で湿式にて行われるが、その際のスラリーの粘性は5
0〜1500cpsが好適である。粘性が高い場合には、
アクリル酸ソーダ、ポリカルボン酸塩等の分散剤を適宜
添加して粘性を調製するのが好ましい。粉砕により得ら
れる粉体の平均粒径は1.0μm以下、比表面積は5m2/g
以上、より具体的には、平均粒径0.5〜1.0μm、比
表面積8m2/g〜15m2/gになるように粉砕される。所定
の粒度への粉砕は、例えば、ボールミルを用いて20mm
φのアルミナ製ボールで96時間粉砕することにより行
うことができる。
Grinding, mixing and dispersion are carried out in water or an organic solvent by a wet method, and the viscosity of the slurry at that time is 5
0-1500 cps is preferred. If the viscosity is high,
It is preferable to adjust the viscosity by appropriately adding a dispersant such as sodium acrylate or a polycarboxylic acid salt. The powder obtained by crushing has an average particle size of 1.0 μm or less and a specific surface area of 5 m 2 / g.
Or, more specifically, an average particle diameter of 0.5 to 1.0 [mu] m, is ground to be a specific surface area of 8m 2 / g~15m 2 / g. Grinding to a specified particle size is done with a ball mill, for example, 20 mm
It can be performed by pulverizing with a φ alumina ball for 96 hours.

【0022】(2)このようにして得たスラリーを乾燥
及び造粒することにより造粒粉末が得られる。乾燥方法
は、使用する成形方法に応じて選択され、通常、成形法
として金型プレス若しくはCIP(冷間等方圧プレス)成
形法を採用する場合にはスプレードライヤーによる乾燥
を、また、鋳込み成形及び転動造粒成形を採用する場合
あるいは押出成形及び射出成形を採用する場合には乾燥
器による乾燥を選択するのが好ましい。
(2) A granulated powder is obtained by drying and granulating the slurry thus obtained. The drying method is selected according to the molding method used. Usually, when a die press or CIP (cold isotropic pressure press) molding method is used as the molding method, drying with a spray dryer is used, and also casting molding is performed. And, when rolling granulation molding is adopted or when extrusion molding and injection molding are adopted, it is preferable to select drying by a dryer.

【0023】造粒した粉体は次工程の成形において低圧
力でも潰れることが重要で、潰れ性の悪い造粒粉体は焼
結体に含まれる欠陥量の増加につながる。潰れ性の良好
な造粒粉体は、スラリーに添加するバインダーの種類と
量及びスプレードライヤー処理時の諸条件を適宜選択す
ることによって得られる。なお、バインダーとしては、
ポリビニルアルコール(PVA)、アクリル樹脂、パラフ
ィンワックスエマルジョン等従来使用されている任意の
ものを使用すれば良く、また、分散剤としてはアクリル
酸ソーダ、ポリカルボン酸塩等を使用すれば良い。
It is important for the granulated powder to be crushed even in a low pressure in the molding in the next step, and the granulated powder having poor crushability leads to an increase in the amount of defects contained in the sintered body. The granulated powder having good crushability can be obtained by appropriately selecting the type and amount of the binder to be added to the slurry and various conditions during the spray dryer treatment. As a binder,
Any conventionally used polyvinyl alcohol (PVA), acrylic resin, paraffin wax emulsion or the like may be used, and as the dispersant, sodium acrylate, polycarboxylic acid salt or the like may be used.

【0024】例えば、スプレードライヤーを用いて乾燥
する場合、前記工程で粉砕したスラリーに、その固形分
(原料粉末)に対して1〜5重量%のバインダーを添加
するれば良い。バインダを添加した際、その粘性が50
0cpsを越える場合には、分散剤を添加して粘性を50
0cps以下に調製する。得られたスラリーをスプレード
ライヤーにより温度150〜250゜Cの温度で噴霧乾
燥、造粒する。この成形用粉体は、通常、含水率0.2
〜2%、粒子径40〜100μmの範囲に調製される。次
いでこの粉体を用いてセラミックスの製造における常法
に従って金型プレス、CIP等により成形圧500〜20
00kgf/cm2で所定の形状に成形する。
For example, in the case of drying with a spray dryer, 1 to 5% by weight of binder with respect to the solid content (raw material powder) may be added to the slurry crushed in the above step. When the binder is added, its viscosity is 50
If it exceeds 0 cps, add a dispersant to increase the viscosity to 50
Adjust to 0 cps or less. The obtained slurry is spray-dried and granulated at a temperature of 150 to 250 ° C by a spray dryer. This molding powder usually has a water content of 0.2.
˜2%, particle size 40 to 100 μm. Then, using this powder, a molding pressure of 500 to 20 is applied by a die press, CIP, or the like according to a conventional method in the production of ceramics.
It is molded into a predetermined shape at 00 kgf / cm 2 .

【0025】また、転動造粒、鋳込成形、押出成形、射
出成形等の成形方法によって成形する場合、スプレード
ライヤー工程を省略し、スラリーのまま、或いは単に乾
燥して成形用原料としたものでも使用できる。例えば、
成形方法として鋳込み成形を用いる場合、粉砕したスラ
リーをアクリル酸ソーダ、ポリカルボン酸塩等の分散剤
を用いて150cps以下の粘性に調製し、石膏型を用い
て成形する。
When molding is carried out by a molding method such as rolling granulation, cast molding, extrusion molding, injection molding, the spray dryer step is omitted, and it is used as a raw material for molding as a slurry or simply by drying. But you can use it. For example,
When cast molding is used as the molding method, the crushed slurry is adjusted to have a viscosity of 150 cps or less by using a dispersant such as sodium acrylate or polycarboxylic acid salt, and molded using a gypsum mold.

【0026】成形方法として転動造粒成形を用いる場
合、粉砕したスラリーにバインダーを添加し、これを乾
燥器により80〜120゜Cで乾燥させ、乾燥粉体をアト
マイザー等の粉砕機で粉砕し、#40〜#80メッシュの
篩いを通して篩下の粉体を得る。この粉体をそのまま用
いて転動造粒成形する。
When rolling granulation is used as the molding method, a binder is added to the crushed slurry, which is dried at 80 to 120 ° C. by a dryer, and the dry powder is crushed by a crusher such as an atomizer. , # 40 to # 80 mesh sieve to obtain powder under the sieve. This powder is used as it is for rolling granulation.

【0027】更に、成形方法として押出成形又は射出成
形を採用する場合、粉砕したスラリーを乾燥器で80〜
120゜Cで乾燥させ、乾燥粉体をアトマイザー等の粉砕
機で粉砕し、#40〜#80メッシュの篩いを通して篩下
の粉体を得、これにバインダを押出成形の場合は3〜1
0%、射出成形の場合は15〜30%添加して混合機で混
合し、成形用坏土を調製し、押出成形又は射出成形す
る。
Further, when extrusion molding or injection molding is adopted as the molding method, the crushed slurry is dried at 80 to 80
After drying at 120 ° C, the dry powder is crushed by a crusher such as an atomizer and passed through a # 40 to # 80 mesh sieve to obtain powder under the sieve.
0%, in the case of injection molding, 15-30% is added and mixed by a mixer to prepare a kneaded material for molding, and extrusion molding or injection molding is performed.

【0028】前記成形方法に拘わらず、得られた成形体
は、かさ密度が1.90g/cm3以上であることが必要であ
り、より好ましくは1.95g/cm3以上であるのが望まし
い。かさ密度が1.90g/cm3未満では、得られる焼結体
中の欠陥が増えるので好ましくない。
Regardless of the above-mentioned molding method, the obtained molded body needs to have a bulk density of 1.90 g / cm 3 or more, and more preferably 1.95 g / cm 3 or more. . When the bulk density is less than 1.90 g / cm 3 , defects in the obtained sintered body increase, which is not preferable.

【0029】この様にして得られた成形体を1350〜
1600℃、より好ましくは1400〜1550℃の温
度で焼成することによって、目的とする耐摩耗性アルミ
ナ質セラミックスが得られる。
The molded product obtained in this manner is
By firing at a temperature of 1600 ° C., more preferably 1400 to 1550 ° C., the target wear-resistant alumina ceramics can be obtained.

【0030】本発明に係る耐摩耗性アルミナ質セラミッ
クスを前記範囲内の組成に限定したのは次の理由によ
る。即ち、Al23の含有量を88重量%以上95重量%
未満としたのは、Al23含有量が88重量%未満では、
焼結体内部に生成するガラス相や第2相の量が多くな
り、焼結体の強度、硬度が低下し、耐衝撃性及び耐摩耗
性が低下するので好ましくない。また、Al23含有量
が95重量%以上では、焼結体内部に生成するガラス相
の量が少なくなり過ぎて焼結性が低下するだけでなく、
焼成温度の上昇に伴いアルミナ結晶粒界にガラス相の偏
析を生じ易く、異常粒成長の原因になったり、硬度、靭
性、強度の低下をきたすので好ましくないからである。
The wear-resistant alumina ceramics according to the present invention is limited to the composition within the above range for the following reason. That is, the content of Al 2 O 3 is 88% by weight or more and 95% by weight or more.
When the Al 2 O 3 content is less than 88% by weight,
The amounts of the glass phase and the second phase generated inside the sintered body increase, the strength and hardness of the sintered body decrease, and the impact resistance and wear resistance decrease, which is not preferable. Further, when the Al 2 O 3 content is 95% by weight or more, not only the amount of the glass phase generated inside the sintered body becomes too small and the sinterability decreases, but
This is because the segregation of the glass phase is likely to occur in the alumina crystal grain boundaries with the increase of the firing temperature, which causes abnormal grain growth and causes a decrease in hardness, toughness, and strength, which is not preferable.

【0031】また、前記副成分であるSiO2、MgO及
びCaOは、焼結助剤として添加されるが、これらの副
成分はアルミナ結晶粒界に主としてガラス相として存在
し、その結晶粒成長を抑制し、かさ密度の向上及び内部
欠陥を抑制して耐摩耗性を向上させる。副成分の各成分
の含有量を前記範囲に限定したのは、次の理由による。
Further, the above-mentioned sub-components SiO 2 , MgO and CaO are added as sintering aids, but these sub-components exist mainly in the alumina crystal grain boundaries as a glass phase, and the crystal grain growth is caused. Suppresses to improve bulk density and internal defects to improve wear resistance. The reason for limiting the content of each of the subcomponents to the above range is as follows.

【0032】即ち、SiO2、MgO及びCaOの含有量が
SiO2 3.6〜10重量%、MgO0.2〜2.5重量%、
CaO 0.2〜2.5重量%の範囲では、Al23結晶との
熱膨張差、濡れ性が適度になり、結晶粒径及び分布のコ
ントロールが容易となるだけでなく、アルミナ結晶粒界
強度、靭性が高くなり、耐衝撃及び耐摩耗性を向上させ
る。しかし、SiO2、MgO及びCaOの含有量が一つで
も前記範囲から外れると、アルミナ結晶粒界強度が低く
なったり、第2相粒子が生成し、相手材との衝撃や摩擦
により結晶粒径の脱粒、靭性の低下を招くほか、結晶が
焼成段階で大きくなったり、異常粒成長を生じ易く、必
然的に結晶粒径の均一性が乏しくなり、耐衝撃性及び耐
摩耗性の低下をきたすので好ましくないので前記範囲と
した。
That is, the contents of SiO 2 , MgO and CaO are 3.6 to 10% by weight of SiO 2, 0.2 to 2.5% by weight of MgO,
When the content of CaO is 0.2 to 2.5% by weight, the difference in thermal expansion from Al 2 O 3 crystals and the wettability are appropriate, and not only the control of the crystal grain size and distribution becomes easy, but also the alumina crystal grains Increases field strength and toughness, and improves impact resistance and wear resistance. However, if even one of the contents of SiO 2 , MgO and CaO deviates from the above range, the alumina grain boundary strength becomes low, or the second phase particles are generated, and the crystal grain size due to impact or friction with the counterpart material. In addition to causing grain breakage and toughness of the crystal, the crystal tends to grow during the firing stage and abnormal grain growth is likely to occur, which inevitably results in poor uniformity of the crystal grain size, resulting in reduced impact resistance and wear resistance. Since it is not preferable because it is not preferable.

【0033】具体的には、SiO2の含有量が3.6重量
%未満では、焼結性が低下し、また、10重量%を越え
ると、アルミナ結晶粒界強度の低下が起こるので前記範
囲とした。また、MgOの含有量が0.2重量%未満で
は、結晶粒径の均一性が乏しくなり、その含有量が2.
5重量%を越えると、第2相が析出するので、MgOの含
有量は0.2〜2.5重量%とした。更に、CaOの含有量
が0.2重量%未満では、焼結性が低下し、その含有量が
2.5重量%を越えると、焼結性の低下と異常粒成長を招
くので、CaOの含有量は0.2〜2.5重量%とした。
Specifically, if the content of SiO 2 is less than 3.6% by weight, the sinterability is lowered, and if it exceeds 10% by weight, the grain boundary strength of alumina is lowered, so that the above range is satisfied. And Further, if the content of MgO is less than 0.2% by weight, the uniformity of the crystal grain size becomes poor, and the content is 2.
When it exceeds 5% by weight, the second phase is precipitated, so the content of MgO was set to 0.2 to 2.5% by weight. Further, if the content of CaO is less than 0.2% by weight, the sinterability is lowered, and if the content exceeds 2.5% by weight, the sinterability is lowered and abnormal grain growth is caused. The content was 0.2 to 2.5% by weight.

【0034】また、SiO2、MgO及びCaOの含有量の
含有量の和、即ち、副成分の含有量を5〜12重量%と
したのは、5重量%未満ではアルミナ結晶粒界に存在す
るガラス相の量が少なくなってガラス相の存在が不均一
となり、焼結性の低下や結晶の異常粒成長を生じ、耐衝
撃性及び耐摩耗性の低下が起こるので好ましくない。他
方、副成分の含有量が12重量%を越えると、ガラス相
が多くなりすぎて硬度、靭性及び強度の低下をきたし、
耐衝撃性及び耐摩耗性が低下するので前記範囲とした。
Further, the sum of the contents of SiO 2 , MgO and CaO, that is, the content of the accessory component is set to 5 to 12% by weight means that if it is less than 5% by weight, it exists in the alumina crystal grain boundary. The amount of the glass phase becomes small, the presence of the glass phase becomes non-uniform, the sinterability is lowered, abnormal grain growth of crystals is caused, and the impact resistance and the abrasion resistance are lowered, which is not preferable. On the other hand, when the content of the subcomponent exceeds 12% by weight, the glass phase becomes too much and the hardness, toughness and strength are deteriorated.
Since the impact resistance and wear resistance are reduced, the above range is set.

【0035】更に、SiO2、MgO及びCaOの含有量の
和を100としたときの各成分の割合割合、即ち、副成
分の組成をSiO2 72〜85重量%、MgO 3〜25重
量%、CaO 3〜25重量%としたのは、次の理由によ
る。即ち、副成分中のSiO2が72重量%未満では、焼
結性が低下し、85重量%を越えると、ガラス相量が増
加するので、前記範囲とした。また、MgOの含有量が
3重量%未満では、結晶粒径の均一性が乏しくなり、そ
の含有量が25重量%を越えると、第2相が析出するの
で、副成分中のMgOの割合は前記範囲とした。更に、
副成分中のCaOの割合が3重量%未満では、焼結性が低
下し、その含有量が25重量%を越えると、焼結性が低
下するだけでなく結晶が成長し易いので、CaOの含有
量は前記範囲とした。
Furthermore, when the sum of the contents of SiO 2 , MgO and CaO is 100, the ratio of each component, that is, the composition of the sub-components is 72 to 85% by weight of SiO 2 , 3 to 25% by weight of MgO, The reason why the CaO content is 3 to 25% by weight is as follows. That is, if the amount of SiO 2 in the subcomponents is less than 72% by weight, the sinterability will decrease, and if it exceeds 85% by weight, the glass phase content will increase, so the above range was made. Further, if the content of MgO is less than 3% by weight, the uniformity of the crystal grain size becomes poor, and if the content exceeds 25% by weight, the second phase precipitates, so the proportion of MgO in the subcomponents is The above range was set. Furthermore,
When the proportion of CaO in the subcomponents is less than 3% by weight, the sinterability is lowered, and when the content exceeds 25% by weight, not only the sinterability is lowered but also crystals are easily grown. The content was within the above range.

【0036】本発明の耐摩耗性アルミナ質セラミックス
は、前記成分組成の基本組成物に100重量部に対し
0.01〜15重量部のZrO2を添加することにより、
一段と強度及び靭性を向上させると同時に、アルミナ粒
界ガラス相を均一に分散させると共に、結晶粒径分布を
狭し、焼結体の組織を均一にすることができる。このZ
rO2の添加量を前記範囲としたのは、その添加量が基本
組成物100重量部に対して0.01重量部未満では、
十分な添加効果が得られず、15重量部を超えると、硬
度の低下を生じ、特に安定化剤の添加されていないZr
2粉体を用いると焼結体に単斜晶系ジルコニアが存在
しやすくなり、マイクロクラックの発生が起こって耐摩
耗性、耐衝撃性の低下につながるので好ましくない。前
記ZrO2の添加量は、通常、前記基本組成100重量部
に対して0.01〜15重量部であるが、好ましくは0.
05〜10重量部、より好ましくは0.1〜8重量部が
適当である。
The wear-resistant alumina ceramics of the present invention is prepared by adding 0.01 to 15 parts by weight of ZrO 2 to 100 parts by weight of the basic composition having the above-mentioned composition.
It is possible to further improve strength and toughness, at the same time uniformly disperse the alumina grain boundary glass phase, narrow the crystal grain size distribution, and make the structure of the sintered body uniform. This Z
The amount of rO 2 added is in the above range because when the amount added is less than 0.01 parts by weight per 100 parts by weight of the basic composition,
If the addition effect is not sufficient and the amount exceeds 15 parts by weight, the hardness is lowered, and Zr containing no stabilizer is added.
If O 2 powder is used, monoclinic zirconia is likely to exist in the sintered body, and microcracks are generated, which leads to deterioration in wear resistance and impact resistance, which is not preferable. The additive amount of ZrO 2 is usually the is a 0.01 to 15 parts by weight with respect to the basic composition 100 parts by weight, preferably 0.
The appropriate amount is from 05 to 10 parts by weight, more preferably from 0.1 to 8 parts by weight.

【0037】この場合、添加するZrO2原料はその平均
粒径が1.0μm以下のものを使用するのが好適である。
これは、ZrO2原料の平均粒径が1.0μmを超えると、
焼結体に単斜晶系ジルコニアが存在しやすくなり、マイ
クロクラックの発生が起こって耐摩耗性、耐衝撃性の低
下につながるので好ましくない。また、ZrO2原料とし
ては、希土類元素酸化物等の安定化剤を固溶させたもの
を用いることもできる。この場合、希土類元素酸化物、
例えば、Y23を安定化剤として含むZrO2原料の場
合、Y23の含有量は5モル%以下のものを使用するの
が好ましく、これによりジルコニアの応力誘起変態効果
により靭性の向上を図ることができる。
In this case, as the ZrO 2 raw material to be added, it is preferable to use one having an average particle diameter of 1.0 μm or less.
This is because when the average particle size of the ZrO 2 raw material exceeds 1.0 μm,
Monoclinic zirconia is likely to exist in the sintered body, and microcracks are generated, which leads to deterioration in wear resistance and impact resistance, which is not preferable. Further, as the ZrO 2 raw material, a solid solution of a stabilizer such as rare earth element oxide may be used. In this case, the rare earth element oxide,
For example, in the case of a ZrO 2 raw material containing Y 2 O 3 as a stabilizer, it is preferable to use a Y 2 O 3 content of 5 mol% or less, which makes it possible to improve the toughness due to the stress-induced transformation effect of zirconia. It is possible to improve.

【0038】本発明によれば、前記の如く、主成分のA
l23に特定の副成分を所定の割合で所定量だけ添加す
ると共に、原料中に含まれる不可避的不純物の量を抑制
することにより、1.0〜5.0μmの範囲内の平均結晶
粒径と、3.60g/cm3以上のかさ密度を有し、しかも、
気孔、仕上げ加工による脱粒などの欠陥が5%以下と少
なく、耐摩耗性に優れたアルミナ質セラミックスを得る
ことができる。
According to the present invention, as described above, the main component A
The average crystal within the range of 1.0 to 5.0 μm is obtained by adding a specific subcomponent to l 2 O 3 in a predetermined ratio in a predetermined amount and suppressing the amount of unavoidable impurities contained in the raw material. It has a particle size and a bulk density of 3.60 g / cm 3 or more, and
Defects such as porosity and shedding due to finishing are less than 5%, and it is possible to obtain an alumina ceramic having excellent wear resistance.

【0039】なお、焼結体の平均結晶粒径が5μmを越
えると硬度の低下等が起こり、耐摩耗性の低下をきたす
ので好ましくない。この焼結体の平均結晶粒径は、好ま
しくは3μm以下、より好ましくは2.5μm以下であ
る。また、耐チッピング性が問題となる場合には耐摩耗
性とのバランスを考慮して5μm以下の範囲内で適宜設
定すれば良い。更に、最大径(累積容積が100%の時の
結晶粒径)が10μmを超える場合には結晶粒径分布が広
く、硬度の低下が起こり、その結果、耐摩耗性の低下に
つながるので好ましくないので、最大径が10μm以
下、より好ましくは8μm以下が好適である。
If the average crystal grain size of the sintered body exceeds 5 μm, hardness is lowered and abrasion resistance is lowered, which is not preferable. The average crystal grain size of this sintered body is preferably 3 μm or less, more preferably 2.5 μm or less. If chipping resistance is a problem, it may be appropriately set within the range of 5 μm or less in consideration of the balance with abrasion resistance. Furthermore, when the maximum diameter (crystal grain size when the cumulative volume is 100%) exceeds 10 μm, the crystal grain size distribution is wide and hardness is lowered, resulting in a reduction in wear resistance, which is not preferable. Therefore, the maximum diameter is preferably 10 μm or less, more preferably 8 μm or less.

【0040】また、かさ密度を3.60g/cm3以上とした
のは、かさ密度が3.60g/cm3未満では焼結度が不十分
であると共に欠陥となるポアーが多く存在することにな
り、強度、硬度及び靭性の低下を引き起こすだけでな
く、摩耗が促進されるので好ましくないからである。か
さ密度は、3.65g/cm3以上が好適である。
The bulk density is set to 3.60 g / cm 3 or more because the bulk density of less than 3.60 g / cm 3 results in insufficient sintering degree and many defective pores. This is not preferable because not only the strength, hardness and toughness are deteriorated, but also wear is accelerated. The bulk density is preferably 3.65 g / cm 3 or more.

【0041】本願発明に係るアルミナ質セラミックス
は、結晶粒径が小さく、緻密で欠陥が少ないことから耐
衝撃性、耐摩耗性にすぐれた特性を示す。そのため従来
のAl23含有量が同レベルの焼結体に比べて高強度、
高硬度及び高靭性である。本願発明のアルミナ質セラミ
ックスのビッカース硬さは荷重10kgfにおいて110
0以上の高硬度を示し、また、曲げ強さはじS1601
に規定する3点曲げ法において40kgf/mm2以上の高強
度を有する。更に、粉砕用ボールの様に球状の場合は、
ボール1個を超硬合金板にはさんで応力をかけて測定し
た圧壊強さが25kgf/mm2以上である。この圧壊強さ(σ
c)は式:σc=4×P/(π×D2)(kgf/mm)で得
られる。式中、Pは破壊強度(kgf)、Dはボール直径(mm)
である。
The alumina-based ceramics according to the present invention exhibit excellent impact resistance and wear resistance because they have a small crystal grain size, are dense and have few defects. Therefore, it has higher strength than the conventional sintered body with the same level of Al 2 O 3 content,
High hardness and high toughness. The Vickers hardness of the alumina ceramics of the present invention is 110 at a load of 10 kgf.
It shows high hardness of 0 or more, and bending strength is S1601.
It has a high strength of 40 kgf / mm 2 or more in the three-point bending method specified in 1. Furthermore, if it is spherical like a ball for crushing,
The crushing strength measured by applying stress by sandwiching one ball between cemented carbide plates is 25 kgf / mm 2 or more. This crushing strength (σ
c) is obtained by the formula: σc = 4 × P / (π × D2) (kgf / mm 2 ). In the formula, P is the breaking strength (kgf), D is the ball diameter (mm)
It is.

【0042】ビッカース硬さが1100未満の場合には
耐摩耗性の低下をきたすので好ましくない。また、曲げ
強さが40kgf/mm2未満もしくは圧壊強さが25kgf/mm2
未満の場合には耐衝撃性及び耐摩耗性の低下につながる
ので好ましくない。さらに、破壊靭性はJIS1607(IF
法)に規定する測定方法において3.0MPa√m以上であ
る。
If the Vickers hardness is less than 1100, the abrasion resistance is deteriorated, which is not preferable. Also, the bending strength is less than 40 kgf / mm 2 or the crush strength is 25 kgf / mm 2
If it is less than 100%, impact resistance and abrasion resistance are deteriorated, which is not preferable. Furthermore, fracture toughness is JIS 1607 (IF
In the measuring method specified in (Method), it is 3.0 MPa√m or more.

【0043】[0043]

【実施例1】各原料を表1,表2に示す組成の焼結体が
得られるように配合し、得られた各混合物を92%アル
ミナ製ポットミル(内容積7.2リットル)と20mmφ
の92%アルミナ製粉砕ボールを用いて濃度60%で4
8時間湿式粉砕し、表3,表4に示す平均粒径を有し比
表面積が8m2/g以上の微粉末を含むスラリーを得た。得
られたスラリーにポリビニルアルコール水溶液を3〜5
重量%バインダとして添加して粘度を350cpsに調整
し、これを200゜Cに維持したスプレードライヤーで乾
燥・造粒して成形用粉体を得た。この成形用粉体を成形
圧力1tonf/cm2(試料No.20および38のみ成形圧
力:300kgf/cm2)でCIP成形法により球状及び板状に
成形した。得られた成形体を1380〜1600゜Cで焼
成して、直径10mmのボール及び50×50×4mmの板
を得た。ボールはバレル研磨して粉砕用ボールとし、板
は切断及び研削加工を行ってJIS1601に規定する
曲げ強さ測定用テストピースとした。
Example 1 Each raw material was blended so as to obtain a sintered body having a composition shown in Tables 1 and 2, and each mixture obtained was mixed with a 92% alumina pot mill (internal volume 7.2 liter) and 20 mmφ.
4 using a 92% alumina crushing ball of 60% concentration
It was wet-ground for 8 hours to obtain a slurry containing fine powder having an average particle size shown in Tables 3 and 4 and a specific surface area of 8 m 2 / g or more. To the obtained slurry, add polyvinyl alcohol aqueous solution to 3 to 5
The viscosity was adjusted to 350 cps by adding as a binder by weight%, and this was dried and granulated with a spray dryer maintained at 200 ° C to obtain a molding powder. This molding powder was molded into a spherical shape and a plate shape by the CIP molding method at a molding pressure of 1 tonf / cm 2 (molding pressure of only sample Nos. 20 and 38: 300 kgf / cm 2 ). The obtained molded body was fired at 1380 to 1600 ° C to obtain a ball having a diameter of 10 mm and a plate having a size of 50 x 50 x 4 mm. The ball was barrel-polished to be a crushing ball, and the plate was cut and ground to be a bending strength measuring test piece defined in JIS1601.

【0044】アルミナ原料としては、試料No.1〜2
1、24〜39については、凝集した二次粒径45μ
m、比表面積2.5m2/g、純度99.6%のバイヤー法より
作製されたローソーダアルミナ原料を、また、試料No.
22については平均粒径1.0μm、比表面積6m2/g、純
度99.8%のリアクティブアルミナ原料を、更に、試料
No.23については二次粒径55μm、比表面積1.5m2/
g、純度99.7%のバイヤー法により作製されたローソ
ーダアルミナ原料をそれぞれ用いた。
Sample Nos. 1 and 2 were used as the alumina raw material.
For 1 and 24 to 39, the aggregated secondary particle size is 45 μ
m, a specific surface area of 2.5 m 2 / g, and a raw soda alumina raw material manufactured by the Bayer method with a purity of 99.6%.
For No. 22, a reactive alumina raw material having an average particle size of 1.0 μm, a specific surface area of 6 m 2 / g and a purity of 99.8% was further prepared as a sample.
No. 23 has a secondary particle size of 55 μm and a specific surface area of 1.5 m 2 /
Raw soda alumina raw materials having a purity of 99.7% and a purity of 99.7% were used.

【0045】また、MgO及びCaOの原料としては、純
度99.5%の炭酸塩を使用し、SiO2の原料としては
カオリンを使用した。また、ZrO2の原料としては試料
5、8、10、15及び25については平均粒径1.0
μm、比表面積12m2/g、純度99.9%の二酸化ジルコ
ニウムを用い、試料13についてはY23を2.8モル%
含有する平均粒径0.5μm、比表面積18m2/gの二酸化
ジルコニウムを用いた。
As a raw material of MgO and CaO, a carbonate having a purity of 99.5% was used, and as a raw material of SiO 2 , kaolin was used. As the ZrO 2 raw material, Samples 5, 8, 10, 15 and 25 had an average particle size of 1.0.
μm, specific surface area 12 m 2 / g, zirconium dioxide having a purity of 99.9% was used, and for sample 13, 2.8 mol% of Y 2 O 3 was used.
Zirconium dioxide having an average particle size of 0.5 μm and a specific surface area of 18 m 2 / g was used.

【0046】更に、得られた各粉砕用ボールを用いて下
記の方法により耐摩耗テストした。即ち、粉砕用ボール
を容量2リットルのアルミナ製(純度92%)ボールミル
中にその容積の半分まで入れ、平均粒径25μm、比表
面積1.2m2/gのアルミナ原料粉体900gと水0.7リ
ットルを入れて、ボールミル回転数100rpmで24時
間粉砕した。テスト前後のボール重量差をテスト前のボ
ール重量に対する百分率で求め、これを摩耗率とした。
得られた結果を、粉砕用ボールのかさ密度、結晶粒径、
欠陥量、ビッカース硬さ及び曲げ強さ、並びに成形体の
かさ密度、粉砕粉体の平均粒径及び比表面積と共に表
3,表4に示す。曲げ強さは板より加工したテストピー
スにより測定した。
Further, each of the obtained balls for grinding was subjected to an abrasion resistance test by the following method. That is, the crushing balls were put into a ball mill made of alumina (purity 92%) having a capacity of 2 liters to a half of the volume, and 900 g of alumina raw material powder having an average particle diameter of 25 μm and a specific surface area of 1.2 m 2 / g and water of 0. 7 liters were put and pulverized at a ball mill rotation speed of 100 rpm for 24 hours. The difference in ball weight before and after the test was calculated as a percentage of the ball weight before the test, and this was taken as the wear rate.
The obtained results are the bulk density of the grinding balls, the crystal grain size,
Tables 3 and 4 show the amount of defects, Vickers hardness and bending strength, the bulk density of the molded product, the average particle size of the pulverized powder and the specific surface area. The bending strength was measured by a test piece processed from the plate.

【0047】[0047]

【表1】 [Table 1]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【表4】 [Table 4]

【0049】表1,表2中、ZrO2の量はアルミナ、焼
結助剤及び不可避的不純物からなる基本組成物100重
量部に対する添加量(重量部)で示してある。また、表
1,表2及び表3,表4中、試料No.1〜17の焼結体
は本発明の条件を満足するものであり、試料No.18〜
39は本発明において規定する条件を少なくとも1つを
満たしていない本発明の範囲外のものである。
In Tables 1 and 2 , the amount of ZrO 2 is shown by the amount (parts by weight) added to 100 parts by weight of the basic composition consisting of alumina, a sintering aid and inevitable impurities. In addition, in Tables 1, 2 and 3, and Table 4, the sintered bodies of Sample Nos. 1 to 17 satisfy the conditions of the present invention.
39 is out of the scope of the present invention that does not satisfy at least one of the conditions specified in the present invention.

【0050】平均結晶粒径は、焼結体をダイヤモンド砥
石で#140→#400→#600の順に研削加工した
後、更にダイヤモンド砥粒で40μm→6μm→3μm→
1μmと順に研磨加工して鏡面に仕上げ、これを熱エッ
チングし、ついで走査電子顕微鏡で視野に結晶が100
個以上観察できる倍率で観察して写真撮影し、その写真
から画像解析により1個の結晶の面積を測定し、等価円
直径(D)に換算してD×1.5をその結晶の粒径とし、こ
の様にして100個の結晶の結晶粒径を測定し、この値
に基づいて結晶の容積を算出し、累積容積が50%の時
の結晶粒径を平均結晶粒径とした。
The average crystal grain size is obtained by grinding the sintered body with a diamond grindstone in the order of # 140 → # 400 → # 600, and then further grinding with diamond abrasive grains of 40 μm → 6 μm → 3 μm →
Polishing is performed in order of 1 μm to finish it into a mirror surface, which is heat-etched, and then a scanning electron microscope shows 100 crystals in the visual field.
Take a photograph by observing at a magnification that allows you to observe more than one piece, measure the area of one crystal by image analysis from the photograph, convert it to the equivalent circular diameter (D), and calculate D × 1.5 as the grain size of the crystal. The crystal grain size of 100 crystals was measured in this way, and the volume of the crystal was calculated based on this value. The crystal grain size when the cumulative volume was 50% was taken as the average crystal grain size.

【0051】また、焼結体の欠陥量は、測定に供する試
料は結晶粒径測定と同じようにして鏡面仕上げし、この
鏡面仕上げした面をそのままの状態で走査電子顕微鏡に
て500倍の倍率で観察して写真撮影を行い、その写真
を画像解析にて欠陥部分と欠陥でない部分とに二値化し
て分離し、欠陥部分が占める面積率(%)を求め、これを
焼結体の欠陥量とした。この欠陥には、気孔だけでな
く、焼結体を前記研削及び研磨加工仕上げする際に発生
する脱粒の後や、焼結体密度に影響を与えないレベルの
欠陥も含まれる。本発明に係るアルミナ質セラミックス
(試料No.1)及び本発明の範囲外のアルミナ質セラミ
ックス(試料No.22)の鏡面仕上げした面の走査電子
顕微鏡写真を画像解析にて欠陥部分と欠陥でない部分と
に二値化した図を図1及び図2にそれぞれ示す。図中、
黒い部分が欠陥を示す。
The amount of defects in the sintered body was mirror-finished on the sample to be measured in the same manner as in the measurement of crystal grain size, and the mirror-polished surface was left as it was with a scanning electron microscope at a magnification of 500 times. The photograph is taken by observing with, and the image is binarized into defect and non-defect by image analysis, and the area ratio (%) occupied by the defect is calculated. And quantity. The defects include not only pores but also defects after grain removal that occur when the sintered body is finished by grinding and polishing, and at a level that does not affect the density of the sintered body. Defective and non-defective parts of a scanning electron micrograph of a mirror-finished surface of the alumina-based ceramics (Sample No. 1) according to the present invention and the alumina-based ceramics (Sample No. 22) outside the scope of the present invention by image analysis. The binarized figures are shown in FIGS. 1 and 2, respectively. In the figure,
Black areas indicate defects.

【0052】表3,表4に示す結果から明らかなよう
に、本発明に係るアルミナ質セラミックス製粉砕用ボー
ルは、摩耗率が0.1%以下と優れた耐摩耗性を示し、ま
た、図1及び2に示す結果から、本発明に係るアルミナ
質セラミックスは欠陥量が0.5%と極めて少ないのに対
し、試料No.22は欠陥量が9.6%と極めて大きいこと
がわかる。また、試料番号38及び39の結果から、成
分組成が本発明の範囲内であっても欠陥量が多ければ耐
摩耗性が低下し、また、その欠陥量はその製造過程での
粉砕後の平均粒径及び成形体のかさ密度に左右されるこ
とがわかる。
As is clear from the results shown in Tables 3 and 4, the alumina-based ceramic pulverizing balls according to the present invention have an excellent wear resistance with a wear rate of 0.1% or less. From the results shown in 1 and 2, it can be seen that the alumina ceramics according to the present invention has an extremely small defect amount of 0.5%, while the sample No. 22 has an extremely large defect amount of 9.6%. Further, from the results of sample numbers 38 and 39, even if the component composition is within the range of the present invention, if the amount of defects is large, the wear resistance decreases, and the amount of defects is the average after grinding in the manufacturing process. It can be seen that it depends on the particle size and the bulk density of the molded body.

【0053】[0053]

【発明の効果】以上の説明から明らかなように、本発明
によれば、a)強度、硬度、靭性及び耐衝撃性が優れてい
るので高負荷での耐摩耗性が良好である、b)粉砕機用部
材として使用した場合に耐摩耗性に優れているため、被
粉砕物への摩耗粉の混入が少なく、また摩耗粉が混入す
る場合にも、摩耗粉が微細な ため被粉砕物の均一性を
害することが少ない、c)原料として安価なアルミナを使
用できるなど優れた性質を有する耐摩耗性アルミナ質セ
ラミックスが得られる。
As is apparent from the above description, according to the present invention, a) the strength, hardness, toughness and impact resistance are excellent, and thus the wear resistance under high load is good, b) When used as a member for a crusher, it has excellent wear resistance, so less abrasion powder is mixed into the material to be ground. It is possible to obtain wear-resistant alumina-based ceramics having excellent properties such as less deterioration of uniformity and c) use of inexpensive alumina as a raw material.

【0054】従って、本発明に係る耐摩耗性アルミナ質
セラミックスは、粉砕・分散用メディア、粉砕機の内張
材、容器、撹拌機等の粉砕機用部材だけでなく、各種産
業用耐摩耗部材として最適である。
Therefore, the wear-resistant alumina ceramics according to the present invention can be used not only for crushing / dispersing media, lining materials for crushers, containers, crusher members such as stirrers, but also for various industrial wear-resistant members. As is the best.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る耐摩耗性アルミナ質セラミック
スの鏡面仕上げした面の二値化像を示す説明図
FIG. 1 is an explanatory view showing a binarized image of a mirror-finished surface of wear-resistant alumina ceramics according to the present invention.

【図2】 本発明の範囲外の耐摩耗性アルミナ質セラミ
ックスの鏡面仕上げした面の二値化像を示す説明図
FIG. 2 is an explanatory view showing a binarized image of a mirror-finished surface of wear-resistant alumina ceramics outside the scope of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年3月8日[Submission date] March 8, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】また、前記欠陥量は、セラミックスの耐摩
耗性に非常に大きな影響を与えるため、鏡面仕上げ面で
の欠陥量は5%以下が必要である。これは、欠陥量が5%
を超えるとこれらの欠陥が摩耗の起点なって摩耗が促進
され、耐摩耗性の低下を招く同時に耐衝撃強度の低下が
起こるので好ましくないからである。この欠陥量は好ま
しくは3%以下、より好ましくは2%以下が好適である。
Since the amount of defects has a great influence on the wear resistance of ceramics, the amount of defects on the mirror-finished surface is required to be 5% or less. This has a defect amount of 5%
If it exceeds, these defects are the starting points of wear and promote wear, leading to a drop in wear resistance and, at the same time, a drop in impact strength. The amount of this defect is preferably 3% or less, more preferably 2% or less.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Al23 88重量%以上95重量%未満、
SiO2 3.6〜10重量%、MgO 0.2〜2.5重量%、
CaO 0.2〜2.5重量%、残部実質的に不可避的不純
物からなり、前記SiO2、MgO及びCaOの含有量の和
が5〜12重量%であって、該SiO2、MgO及びCaO
の含有量の和を100としたとき各成分の割合がSiO2
72〜85重量%、MgO 3〜25重量%、CaO 3〜
25重量%で、前記不可避的不純物が0.5重量%以下、
欠陥量が5%以下であることを特徴とする耐摩耗性アル
ミナ質セラミックス。
1. Al 2 O 3 88% by weight or more and less than 95% by weight,
SiO 2 3.6-10% by weight, MgO 0.2-2.5% by weight,
CaO 0.2-2.5% by weight, the balance consisting essentially of inevitable impurities, the sum of the contents of SiO 2 , MgO and CaO being 5-12% by weight, said SiO 2 , MgO and CaO
When the sum of the contents of is 100, the ratio of each component is SiO 2
72 to 85% by weight, MgO 3 to 25% by weight, CaO 3 to
25% by weight, the unavoidable impurities are 0.5% by weight or less,
A wear-resistant alumina-based ceramic characterized by having a defect amount of 5% or less.
【請求項2】 Al23 88重量%以上95重量%未満、
SiO2 3.6〜10重量%、MgO 0.2〜2.5重量%、
CaO 0.2〜2.5重量%、残部実質的に不可避的不純
物からなる基本組成物100重量部に対しZrO2を0.
01〜15重量部含有する請求項1に記載の耐摩耗性ア
ルミナ質セラミックス。
2. Al 2 O 3 88% by weight or more and less than 95% by weight,
SiO 2 3.6-10% by weight, MgO 0.2-2.5% by weight,
0.2 to 2.5% by weight of CaO and the balance of 100 parts by weight of a basic composition consisting essentially of unavoidable impurities were added to 0.2% of ZrO 2 .
The wear-resistant alumina ceramics according to claim 1, wherein the wear-resistant alumina ceramics is contained in an amount of 01 to 15 parts by weight.
【請求項3】 前記不可避的不純物として含まれるアル
カリ金属酸化物が0.4重量%以下、TiO2が0.2重量
%以下であることを特徴とする請求項1又は2に記載の
耐摩耗性アルミナ質セラミックス。
3. The wear resistance according to claim 1, wherein the alkali metal oxides contained as the inevitable impurities are 0.4% by weight or less and the TiO 2 is 0.2% by weight or less. Alumina ceramics.
【請求項4】 平均結晶粒径が1.0〜5.0μm、かさ
密度が3.60g/cm3以上である請求項1〜3の一に記載
の耐摩耗性アルミナ質セラミックス。
4. The wear-resistant alumina ceramics according to claim 1, which has an average crystal grain size of 1.0 to 5.0 μm and a bulk density of 3.60 g / cm 3 or more.
【請求項5】 原料粉末を所定の割合で配合し、その混
合物を平均粒径0.5〜1.0μm粉末に微粉砕し、得ら
れた微粉末を所定形状に成形してかさ密度1.90〜2.
10g/cm3の成形体を得、これを焼成することを特徴と
する請求項1に記載の耐摩耗性アルミナ質セラミックス
の製造方法。
5. A raw material powder is blended in a predetermined ratio, the mixture is pulverized into a powder having an average particle size of 0.5 to 1.0 μm, and the obtained fine powder is molded into a predetermined shape to have a bulk density of 1. 90-2.
The method for producing wear-resistant alumina-based ceramics according to claim 1, wherein a molded body of 10 g / cm 3 is obtained and is fired.
JP08025218A 1996-02-13 1996-02-13 Abrasion resistant alumina ceramics and method for producing the same Expired - Lifetime JP3080873B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP08025218A JP3080873B2 (en) 1996-02-13 1996-02-13 Abrasion resistant alumina ceramics and method for producing the same
TW86100526A TW448135B (en) 1996-02-13 1997-01-18 Wear resistant aluminous ceramics and its production
CN97102439A CN1081175C (en) 1996-02-13 1997-02-13 Abradability aluminium oxide ceramics and its manufacture method
HK98101602A HK1002557A1 (en) 1996-02-13 1998-03-02 Wear-resisting alumina ceramic and a preparing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08025218A JP3080873B2 (en) 1996-02-13 1996-02-13 Abrasion resistant alumina ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09221354A true JPH09221354A (en) 1997-08-26
JP3080873B2 JP3080873B2 (en) 2000-08-28

Family

ID=12159832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08025218A Expired - Lifetime JP3080873B2 (en) 1996-02-13 1996-02-13 Abrasion resistant alumina ceramics and method for producing the same

Country Status (4)

Country Link
JP (1) JP3080873B2 (en)
CN (1) CN1081175C (en)
HK (1) HK1002557A1 (en)
TW (1) TW448135B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510509A2 (en) * 2003-08-28 2005-03-02 Kyocera Corporation Alumina/zirconia ceramics and method of producing the same
WO2005042047A1 (en) * 2003-10-30 2005-05-12 Kyocera Corporation Biological member and method for manufacture thereof
CN100435860C (en) * 2003-10-30 2008-11-26 京瓷株式会社 Biological member and method for manufacture thereof
JP2009091196A (en) * 2007-10-09 2009-04-30 Nitsukatoo:Kk Alumina ceramic excellent in wear resistance, and method for producing the same
JP2010184988A (en) * 2009-02-12 2010-08-26 Japan Planning Organization Inc Method for gasifying organic material-based waste material
CN102560217A (en) * 2012-02-10 2012-07-11 桂林市爱普高科材料有限公司 Ceramic sliding vane
JP5129819B2 (en) * 2008-03-26 2013-01-30 日本特殊陶業株式会社 Spark plug insulator and manufacturing method thereof, and spark plug and manufacturing method thereof
JP2014091648A (en) * 2012-11-02 2014-05-19 Kyocera Corp Alumina sintered product and wear-resistant member using the same
JP2014525383A (en) * 2011-12-31 2014-09-29 中国電子科技集団公司第十三研究所 Refined white ceramics and method for preparing the same
JP2016164117A (en) * 2015-02-27 2016-09-08 Agcセラミックス株式会社 Ceramic bead
WO2021049530A1 (en) * 2019-09-12 2021-03-18 株式会社ニッカトー Wear-resistant alumina sintered body
CN112897993A (en) * 2021-01-18 2021-06-04 成都宏科电子科技有限公司 Black alumina ceramic for semiconductor integrated circuit packaging, preparation method thereof and green ceramic tape
CN113185270A (en) * 2021-05-12 2021-07-30 四川锐宏电子科技有限公司 Ceramic-based printed circuit board and preparation process thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062840C (en) * 1998-05-11 2001-03-07 山东工业大学 Iron-aluminum intermetallic compound-aluminum oxide ceramic composite material and preparation thereof
CN1316695C (en) * 2002-12-31 2007-05-16 中国建筑材料科学研究院 Ceramic light-gathering cavity material, ceramic light-gathering cavity and making method thereof
CN101250057B (en) * 2007-12-14 2010-12-08 陈国安 CaO-Al2O3-MgO-ZrO2-SiO2 series aluminum oxide electronic ceramics
CN101525230B (en) * 2008-03-05 2013-03-06 邹平金刚新材料有限公司 Formulation of microcrystal wear-resisting alumina ceramic
JP2011088756A (en) * 2009-10-20 2011-05-06 Murata Mfg Co Ltd Low temperature-sintering ceramic material, low temperature-sintered ceramic sintered compact and multilayer ceramic substrate
CN102125333A (en) * 2011-03-03 2011-07-20 王余烨 Rubber ceramic wear-resistant sole and preparation method thereof
CN102701592A (en) * 2012-06-19 2012-10-03 郑州九环科贸有限公司 Microcrystalline ceramic liner and preparation method thereof
CN103342545A (en) * 2013-07-11 2013-10-09 桂林理工大学 Method for preparing wear-resistant microcrystalline aluminum oxide ceramic at low temperature
CN104778684B (en) * 2015-03-06 2019-01-08 江苏大学 Automatic measurement, characterization classification method and its system of steel surface heterogeneous type defect
CN106242537A (en) * 2016-08-25 2016-12-21 上海雨荣新材料科技有限公司 A kind of heavy duty grinding wheel and metal removal alundum abrasive particle and production method
CN107323023A (en) * 2017-06-29 2017-11-07 扬中市第蝶阀厂有限公司 A kind of coal bunker composite liner and preparation method thereof
CN110563450A (en) * 2019-10-09 2019-12-13 咸阳澳华瓷业有限公司 alumina ceramic and preparation method thereof
CN114804840B (en) * 2022-04-07 2023-04-14 德阳三环科技有限公司 Alumina ceramic substrate and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101456A (en) * 1984-10-24 1986-05-20 日本特殊陶業株式会社 Alumina ceramic composition
JPS62252364A (en) * 1986-04-25 1987-11-04 株式会社住友金属セラミックス Alumina ceramic
JPH01286957A (en) * 1988-05-12 1989-11-17 Onoda Cement Co Ltd Production of ceramic
JPH054863A (en) * 1991-10-31 1993-01-14 Nitsukatoo:Kk Production of alumina member for grinder
JPH07206514A (en) * 1994-01-17 1995-08-08 Nitsukatoo:Kk Abrasion-resistant alumina ceramic
JPH07237961A (en) * 1994-02-28 1995-09-12 Kyocera Corp Abrasion resistant alumina sintered body and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH096514A (en) * 1995-06-20 1997-01-10 Toshiba Mach Co Ltd Pen touch input device and tablet device for computer
JPH0937961A (en) * 1995-08-03 1997-02-10 Eiichi Takaku Charcoal fish broiler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101456A (en) * 1984-10-24 1986-05-20 日本特殊陶業株式会社 Alumina ceramic composition
JPS62252364A (en) * 1986-04-25 1987-11-04 株式会社住友金属セラミックス Alumina ceramic
JPH01286957A (en) * 1988-05-12 1989-11-17 Onoda Cement Co Ltd Production of ceramic
JPH054863A (en) * 1991-10-31 1993-01-14 Nitsukatoo:Kk Production of alumina member for grinder
JPH07206514A (en) * 1994-01-17 1995-08-08 Nitsukatoo:Kk Abrasion-resistant alumina ceramic
JPH07237961A (en) * 1994-02-28 1995-09-12 Kyocera Corp Abrasion resistant alumina sintered body and method for producing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510509A3 (en) * 2003-08-28 2005-11-09 Kyocera Corporation Alumina/zirconia ceramics and method of producing the same
US7148167B2 (en) 2003-08-28 2006-12-12 Kyocera Corporation Alumina/zirconia ceramics and method of producing the same
EP1510509A2 (en) * 2003-08-28 2005-03-02 Kyocera Corporation Alumina/zirconia ceramics and method of producing the same
US7820577B2 (en) 2003-10-30 2010-10-26 Kyocera Corporation Biomedical member and method for producing the same
WO2005042047A1 (en) * 2003-10-30 2005-05-12 Kyocera Corporation Biological member and method for manufacture thereof
CN100435860C (en) * 2003-10-30 2008-11-26 京瓷株式会社 Biological member and method for manufacture thereof
EP2229963A2 (en) 2003-10-30 2010-09-22 Kyocera Corporation Biomedical member and method for producing the same
JP2009091196A (en) * 2007-10-09 2009-04-30 Nitsukatoo:Kk Alumina ceramic excellent in wear resistance, and method for producing the same
JP5129819B2 (en) * 2008-03-26 2013-01-30 日本特殊陶業株式会社 Spark plug insulator and manufacturing method thereof, and spark plug and manufacturing method thereof
JP2010184988A (en) * 2009-02-12 2010-08-26 Japan Planning Organization Inc Method for gasifying organic material-based waste material
JP2014525383A (en) * 2011-12-31 2014-09-29 中国電子科技集団公司第十三研究所 Refined white ceramics and method for preparing the same
DE112012002644B4 (en) 2011-12-31 2019-09-19 The 13th Research Institute of China Electronics Technology Group Corp. White refined ceramic material and manufacturing process
CN102560217A (en) * 2012-02-10 2012-07-11 桂林市爱普高科材料有限公司 Ceramic sliding vane
JP2014091648A (en) * 2012-11-02 2014-05-19 Kyocera Corp Alumina sintered product and wear-resistant member using the same
JP2016164117A (en) * 2015-02-27 2016-09-08 Agcセラミックス株式会社 Ceramic bead
WO2021049530A1 (en) * 2019-09-12 2021-03-18 株式会社ニッカトー Wear-resistant alumina sintered body
JP2021042104A (en) * 2019-09-12 2021-03-18 株式会社ニッカトー Wear-resistant alumina sintered body
KR20220061105A (en) 2019-09-12 2022-05-12 가부시키가이샤 닛카토 Wear-resistant alumina sintered compact
CN112897993A (en) * 2021-01-18 2021-06-04 成都宏科电子科技有限公司 Black alumina ceramic for semiconductor integrated circuit packaging, preparation method thereof and green ceramic tape
CN113185270A (en) * 2021-05-12 2021-07-30 四川锐宏电子科技有限公司 Ceramic-based printed circuit board and preparation process thereof

Also Published As

Publication number Publication date
TW448135B (en) 2001-08-01
JP3080873B2 (en) 2000-08-28
HK1002557A1 (en) 1998-09-04
CN1165124A (en) 1997-11-19
CN1081175C (en) 2002-03-20

Similar Documents

Publication Publication Date Title
JP3080873B2 (en) Abrasion resistant alumina ceramics and method for producing the same
US6066584A (en) Sintered Al2 O3 material, process for its production and use of the material
JPH0715095B2 (en) Ceramic abrasive grains, manufacturing method thereof, and polishing product
JPH09268050A (en) Alumina-zirconia sintered material, its production and impact mill using the same
TWI640615B (en) Electrofused alumina grains, production method for electrofused alumina grains, grinding stone, and coated abrasive
TWI751689B (en) Wear-resistant alumina sintered body
JP4331825B2 (en) Method for producing high strength alumina sintered body
JP4927292B2 (en) Alumina ceramics with excellent wear and corrosion resistance
JP2860953B2 (en) Components for zirconia dispersing and crushing machines
JP2587767B2 (en) Crusher components
JPH07187774A (en) High-strength sintered zirconia material, its production, material for crushing part and ceramic die
JP2900118B2 (en) Abrasion resistant alumina ceramics
JP2004075425A (en) Partially stabilized zirconia sintered compact
JPH04285063A (en) Member for crusher
JP7648848B2 (en) Zirconia media, bearing balls and their manufacturing method
JPH02180747A (en) Wear resistant alumina ceramics and production thereof
JP7548448B2 (en) Powder composition, calcined body, sintered body, and method for producing same
JP2003128461A (en) Highly durable sintered zirconia and crusher/disperser member using the same
JP7517571B1 (en) Polycrystalline alumina abrasive grains, their manufacturing method, and grinding wheel
JPH03146454A (en) Production of fine powder of ceramics and refractories
JPH042613A (en) Production of alumina-zirconia compound powder and sintered material
JP3566323B2 (en) Crusher components
JP2004137128A (en) Partially stabilized sintered zirconia
JPH0639303A (en) Material of part for crushing using sintered body of zirconia
WO2024070689A1 (en) Ceramic spherical bodies and production method for ceramic spherical bodies

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term