JPH09218104A - Temperature measuring device for substrate - Google Patents
Temperature measuring device for substrateInfo
- Publication number
- JPH09218104A JPH09218104A JP2634296A JP2634296A JPH09218104A JP H09218104 A JPH09218104 A JP H09218104A JP 2634296 A JP2634296 A JP 2634296A JP 2634296 A JP2634296 A JP 2634296A JP H09218104 A JPH09218104 A JP H09218104A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- temperature
- dimension
- measuring
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、処理室の内部で基
板の処理を行う際に、その基板の温度を測定するための
基板の温度測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate temperature measuring device for measuring the temperature of a substrate when the substrate is processed inside a processing chamber.
【0002】[0002]
【従来の技術】従来、半導体プロセスにおけるエッチン
グやCVD、スパッタ等、プラズマを発生させて処理を
進める工程では、その処理中にシリコンウエハ等の基板
の温度を測定するのは困難であった。すなわち、熱電対
を使用した温度測定では、プラズマを発生させるための
高周波によるノイズの影響を受けて正確な基板の温度を
測定できなかった。2. Description of the Related Art Conventionally, it has been difficult to measure the temperature of a substrate such as a silicon wafer during a process in which a process is performed by generating plasma such as etching, CVD, and sputtering in a semiconductor process. That is, in the temperature measurement using the thermocouple, the temperature of the substrate cannot be accurately measured due to the influence of the noise due to the high frequency for generating the plasma.
【0003】近年では、パターンの微細化が進み、プロ
セス条件の中の基板温度が重要なパラメータとなってき
ており、処理中の基板の温度をモニタリングすることが
必要不可欠となってきている。In recent years, as patterns have become finer, the substrate temperature in process conditions has become an important parameter, and it has become indispensable to monitor the temperature of the substrate during processing.
【0004】そこで、赤外線放射温度計においては、赤
外線をシリコンウエハに照射してその反射の波長変化に
より温度を測定している。また、蛍光光ファイバ温度計
では、図5(a)、(b)に示す種々の形態がある。Therefore, in the infrared radiation thermometer, the temperature is measured by irradiating the silicon wafer with infrared rays and changing the wavelength of the reflection. Further, there are various types of fluorescent optical fiber thermometers shown in FIGS. 5 (a) and 5 (b).
【0005】すなわち、図5(a)に示す温度計は、蛍
光物質21を耐熱セメント22で覆い、これをばね23
により付勢させたセラミックス端子24の先端に取り付
け、基台Sの表面に突出させたものである。That is, in the thermometer shown in FIG. 5 (a), the fluorescent substance 21 is covered with heat-resistant cement 22, and this is covered with a spring 23.
It is attached to the tip of the ceramics terminal 24 that is urged by and is projected onto the surface of the base S.
【0006】また、図5(b)に示す温度計は、アルミ
キャップ25の内側に蛍光物質21を塗布しておき、光
ファイバ26からアルミキャップ25内の蛍光物質21
に所定の光を照射して、その反射光から光の減衰量を得
て温度測定を行っている。In the thermometer shown in FIG. 5B, the fluorescent substance 21 is applied to the inside of the aluminum cap 25, and the fluorescent substance 21 in the aluminum cap 25 is passed from the optical fiber 26.
The temperature is measured by irradiating a certain amount of light on the above and obtaining the amount of light attenuation from the reflected light.
【0007】また、その他の温度計としては、図6の模
式図に示す光干渉方式のものがある。これは、基台S上
に載置された基板10にレーザ発光部31から赤外線レ
ーザ光を照射し、基板10の表面と裏面とで反射する光
をレーザ受光部32にて受ける。そして、反射光によっ
て生じる干渉縞と時間との関係から温度を計算部33に
て算出するものである。As another thermometer, there is an optical interference type one shown in the schematic view of FIG. In this, the substrate 10 placed on the base S is irradiated with infrared laser light from the laser emitting section 31, and the laser receiving section 32 receives the light reflected by the front and back surfaces of the substrate 10. Then, the temperature is calculated by the calculation unit 33 from the relationship between the interference fringes generated by the reflected light and the time.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、上記説
明した赤外線放射温度計では、赤外線の波長がシリコン
ウエハを透過してしまうため、シリコンウエハの置かれ
ている基台の温度を測定してしまうことになる。この温
度計でシリコンウエハの温度を測定するためには、その
表面にアルミニウム等の金属膜を形成しておく必要が生
じる。However, in the infrared radiation thermometer described above, since the wavelength of infrared rays passes through the silicon wafer, the temperature of the base on which the silicon wafer is placed must be measured. become. In order to measure the temperature of the silicon wafer with this thermometer, it is necessary to form a metal film such as aluminum on the surface thereof.
【0009】また、蛍光光ファイバ温度計では、プラズ
マによるノイズの影響は受けないが、基板を載置する基
台の表面からセンサ部分が突出しているため、基板を載
置した状態でばねによってわずかに基板が浮いてしま
い、静電チャックによる基板の保持が不十分となって処
理に不都合が生じてしまう。しかも、接触式であるため
接触方法や接触角度によって測定誤差が生じるという問
題もある。Further, the fluorescent optical fiber thermometer is not affected by noise due to plasma, but since the sensor portion is projected from the surface of the base on which the substrate is placed, a slight amount of spring is applied when the substrate is placed. Then, the substrate floats, and the holding of the substrate by the electrostatic chuck becomes insufficient, resulting in inconvenience in processing. Moreover, since it is a contact type, there is a problem that a measurement error occurs depending on a contact method and a contact angle.
【0010】さらに、光干渉法では、非接触で基板の温
度を測定できるものの、温度が上昇から下降、もしくは
下降から上昇に転じたことの区別が不可能であり、変化
点からの温度差がそのまま加算されてしまい測定誤差と
なってしまう。また、基板の表面と裏面とからのレーザ
光の反射を受光するため、基板の表面および裏面を研磨
仕上げしたものを使用しなければならないという不都合
も生じる。Further, in the optical interferometry, although the temperature of the substrate can be measured in a non-contact manner, it is impossible to distinguish whether the temperature has risen from a fall or has fallen from a rise, and the temperature difference from the change point cannot be distinguished. It will be added as it is, resulting in a measurement error. Further, since the reflection of the laser light from the front surface and the back surface of the substrate is received, there arises a disadvantage that the substrate having the front surface and the back surface polished and used must be used.
【0011】[0011]
【課題を解決するための手段】本発明は、このような課
題を解決するために成された基板の温度測定装置であ
る。すなわち、本発明は、処理室の内部に配置された基
板の温度を測定する基板の温度測定装置であり、基板の
所定部分における寸法を測定する寸法計測手段と、この
寸法計測手段による測定結果に基づいて基板の温度を算
出する計算手段とを備えている。SUMMARY OF THE INVENTION The present invention is a substrate temperature measuring device which has been made to solve such problems. That is, the present invention is a substrate temperature measuring device for measuring the temperature of a substrate placed inside a processing chamber, and a dimension measuring means for measuring a dimension of a predetermined portion of the substrate and a measurement result by the dimension measuring means. And a calculation means for calculating the temperature of the substrate based on the calculation result.
【0012】本発明では、この寸法計測手段によって処
理室の内部に配置された基板の直径や厚さなどの外形寸
法を測定し、この測定結果に基づいて計算手段が基板の
温度を算出している。すなわち、計算手段は、基板の熱
による膨張収縮の関係から、基板の温度と所定部分の外
形寸法との関係を利用しており、寸法計測手段にて計測
した所定部分の外形寸法に基づいて基板の温度を算出し
ている。これにより、基板に対して温度測定のための処
理を施すことなく、処理室内の基板の温度を測定できる
ようになる。In the present invention, the dimension measuring means measures the outer dimensions such as the diameter and thickness of the substrate arranged inside the processing chamber, and the calculating means calculates the temperature of the substrate based on the measurement result. There is. That is, the calculation means uses the relationship between the temperature of the substrate and the external dimensions of the predetermined portion based on the relationship between the expansion and contraction of the substrate due to heat. Based on the external dimensions of the predetermined portion measured by the dimension measuring means, the substrate The temperature of is calculated. As a result, the temperature of the substrate in the processing chamber can be measured without performing the temperature measurement process on the substrate.
【0013】[0013]
【発明の実施の形態】以下に、本発明の基板の温度測定
装置における実施の形態を図に基づいて説明する。図1
は、第1実施形態を説明する概略断面図(側面)であ
る。すなわち、第1実施形態における温度測定装置1
は、処理室A内の基台S(下部電極)に載置されたシリ
コンウエハ等の基板10の温度を測定するものであり、
処理室AのチャンバBに設けられた窓B1を介してチャ
ンバBの外側から処理室A内へ所定のレーザ光を出射す
る発光部2aと、チャンバBの窓B2から透過するレー
ザ光を受光する受光部2bと、受光部2bから得た信号
に基づいて基板10の温度を計算する計算部3とから構
成されている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a substrate temperature measuring apparatus of the present invention will be described below with reference to the drawings. FIG.
[FIG. 3] is a schematic cross-sectional view (side view) illustrating the first embodiment. That is, the temperature measuring device 1 according to the first embodiment
Is for measuring the temperature of the substrate 10 such as a silicon wafer placed on the base S (lower electrode) in the processing chamber A,
A light emitting unit 2a that emits a predetermined laser beam from the outside of the chamber B into the processing chamber A through a window B1 provided in the chamber B of the processing chamber A, and a laser beam that passes through the window B2 of the chamber B are received. The light receiving unit 2b and the calculation unit 3 that calculates the temperature of the substrate 10 based on the signal obtained from the light receiving unit 2b are included.
【0014】例えば、基板10のエッチング処理を行う
エッチング装置の場合には、チャンバBに所定のガスを
送り込むためのガス供給器4と、処理室A内の排気を行
う排気装置5と、基台Sである下部電極に高周波を印加
する高周波電源7とが設けられている。For example, in the case of an etching device for etching the substrate 10, a gas supplier 4 for feeding a predetermined gas into the chamber B, an exhaust device 5 for exhausting the processing chamber A, and a base. A high frequency power source 7 for applying a high frequency is provided to the lower electrode, which is S.
【0015】この基台S上に載置された基板10の温度
を測定するには、発光部2aから窓B1を介して処理室
A内にレーザ光を照射して基板10に当て、窓B2を介
して基板10の影の映像を取得して計算部3に渡す。In order to measure the temperature of the substrate 10 placed on the base S, laser light is irradiated from the light emitting portion 2a into the processing chamber A through the window B1 to hit the substrate 10 and then the window B2. An image of the shadow of the substrate 10 is acquired via and is passed to the calculation unit 3.
【0016】計算部3には、予め測定対象となっている
基板10の熱による膨張収縮の関係から、その温度と基
板10の外形寸法との関係が関数やテーブルデータとし
て用意されている。計算部3は、これを利用して受光部
2bから送られてきた基板10を示す信号から例えば基
板10の直径を計測し、その直径に対応する温度を求め
る。The calculation section 3 is prepared in advance as a function or table data of the relationship between the temperature and the outer dimension of the substrate 10 based on the relationship of expansion and contraction due to heat of the substrate 10 to be measured. Using this, the calculation unit 3 measures, for example, the diameter of the substrate 10 from the signal indicating the substrate 10 sent from the light receiving unit 2b, and obtains the temperature corresponding to the diameter.
【0017】これにより、処理室A内で基板10に対す
る処理が行われている間でも、基板10の温度を測定す
ることが可能となる。特に、近年ではウエハ等の基板1
0の大径化が進んでいるため、熱による膨張収縮量が大
きくなっている。このため、基板10の外形寸法から精
度良く温度を計算することができるようになる。This makes it possible to measure the temperature of the substrate 10 while the substrate 10 is being processed in the processing chamber A. Particularly, in recent years, a substrate 1 such as a wafer
Since the diameter of 0 is increasing, the amount of expansion and contraction due to heat is large. Therefore, the temperature can be calculated accurately from the outer dimensions of the substrate 10.
【0018】図2は、第1実施形態を説明する概略断面
図(上面)である。第1実施形態では、主として発光部
2aと受光部2bとにより基板10の直径の計測する外
形計測手段を構成しているが、基板10に対して平行光
線を走査するため、回転するポリゴンミラー2c、反射
ミラー2d、コリメータレンズ2e、受光レンズ2fを
備えている。FIG. 2 is a schematic sectional view (upper surface) for explaining the first embodiment. In the first embodiment, the outer shape measuring unit for measuring the diameter of the substrate 10 is mainly configured by the light emitting unit 2a and the light receiving unit 2b. However, since the substrate 10 is scanned with parallel light rays, the rotating polygon mirror 2c is used. , A reflection mirror 2d, a collimator lens 2e, and a light receiving lens 2f.
【0019】このような構成により、発光部2aから出
射したレーザ光は回転するポリゴンミラー2cで角度を
変化させながら反射し、さらに反射ミラー2dによって
コリメータレンズ2eの方向へ反射する。With such a configuration, the laser light emitted from the light emitting portion 2a is reflected by the rotating polygon mirror 2c while changing the angle, and further reflected by the reflecting mirror 2d toward the collimator lens 2e.
【0020】コリメータレンズ2eを通過した光は平行
光線となり、窓B1を介してチャンバB内の基板10を
走査することになる。この平行光線による走査の幅は基
板10の直径より十分大きくしておく。基板10を走査
した平行光線は窓B2を通過して受光レンズ2fにて集
光される。平行光線の走査によって基板10のある場所
は暗、基板10のない場所は明となり、受光部2bでは
その明暗に応じた電気信号が出力されることになる。The light passing through the collimator lens 2e becomes a parallel light beam, and scans the substrate 10 in the chamber B through the window B1. The scanning width of the parallel rays is set sufficiently larger than the diameter of the substrate 10. The parallel light beam scanning the substrate 10 passes through the window B2 and is condensed by the light receiving lens 2f. By scanning the parallel rays, the place where the substrate 10 is present becomes dark, the place where the substrate 10 is not present becomes bright, and the light receiving portion 2b outputs an electric signal according to the lightness.
【0021】計算部3は、受光部2bから送られる暗に
応じた電気信号の時間によって基板10の直径を算出す
る。計算部3は、図3に示すような基板の温度と直径と
の関係を関数やテーブルデータとして持っており、これ
を利用して基板10の直径から温度を求めることにな
る。The calculation unit 3 calculates the diameter of the substrate 10 based on the time of the electric signal corresponding to the darkness sent from the light receiving unit 2b. The calculation unit 3 has the relationship between the temperature and the diameter of the substrate as shown in FIG. 3 as a function or table data, and uses this to obtain the temperature from the diameter of the substrate 10.
【0022】なお、第1実施形態では、基板10の直径
を測定して温度を算出する例を示したが、基板10の厚
さを測定して温度を算出するようにしてもよい。また、
発光部2aから出射するレーザ光としては、処理室A内
にプラズマが発生していても測定に影響を受けない波長
を選べばよい。In the first embodiment, the example in which the diameter of the substrate 10 is measured to calculate the temperature has been described, but the thickness of the substrate 10 may be measured to calculate the temperature. Also,
As the laser light emitted from the light emitting unit 2a, a wavelength that is not affected by measurement even if plasma is generated in the processing chamber A may be selected.
【0023】次に、本発明の第2実施形態の説明を行
う。図4は第2実施形態を説明する概略断面図(上面)
である。第2実施形態では、基板10の直径を測定する
にあたり、爪4a、4bを用いて機械的に計測している
点に特徴がある。Next, a second embodiment of the present invention will be described. FIG. 4 is a schematic sectional view (upper surface) for explaining the second embodiment.
It is. The second embodiment is characterized in that the diameter of the substrate 10 is mechanically measured using the claws 4a and 4b.
【0024】すなわち、基台S上に基板10が載置され
た状態で、その基板10を両側から爪4a、4bで挟む
ように接触させる。基板10の熱膨張、熱収縮にともな
う直径の変位量は、この爪4a、4bの回転角度に変換
される。例えば、回転角度をマイクロメータによって読
み取ったり、エンコーダで電気信号に変換して図1に示
す計算部3に渡し、その変位量から基板10の直径を算
出する。That is, in a state where the substrate 10 is placed on the base S, the substrate 10 is contacted so as to be sandwiched by the claws 4a and 4b from both sides. The displacement amount of the diameter due to the thermal expansion and thermal contraction of the substrate 10 is converted into the rotation angle of the claws 4a and 4b. For example, the rotation angle is read by a micrometer, converted into an electric signal by an encoder, and passed to the calculation unit 3 shown in FIG. 1, and the diameter of the substrate 10 is calculated from the displacement amount.
【0025】その後は第1実施形態と同様に、温度と基
板10の直径との関係を示す関数やテーブルデータを利
用して、算出した直径から基板10の温度を求める。After that, as in the first embodiment, the temperature of the substrate 10 is obtained from the calculated diameter using a function or table data showing the relationship between the temperature and the diameter of the substrate 10.
【0026】第2実施形態では、基板10の直径を機械
的に計測することからプラズマによる影響を全く受けな
いことになる。また、基板10の両側から爪4a、4b
で挟むようにして計測するため、基板10と基台Sとの
密着性を損なわないため静電チャックによる基板の保持
を確実に行うことも可能となる。In the second embodiment, since the diameter of the substrate 10 is mechanically measured, it is not affected by plasma at all. In addition, the claws 4a and 4b are provided on both sides of the substrate 10.
Since the measurement is performed by sandwiching the substrate, the adhesion between the substrate 10 and the base S is not impaired, and thus the substrate can be reliably held by the electrostatic chuck.
【0027】なお、上記の実施形態では、温度測定装置
1をエッチング装置に適用した例を説明したが、CVD
装置やスパッタ装置等の他の製造装置であっても適用可
能である。また、基板10としてシリコンウエハを例に
説明したが、化合物半導体ウエハやガラス基板等の他の
材質から成るものであっても同様である。また、基板1
0の外形を計測する手段も上記の実施形態に限定され
ず、他の手段によって計測してもよい。In the above embodiment, an example in which the temperature measuring device 1 is applied to an etching device has been described.
The present invention can be applied to other manufacturing apparatuses such as an apparatus and a sputtering apparatus. Further, although the silicon wafer has been described as an example of the substrate 10, the same applies to a substrate made of another material such as a compound semiconductor wafer or a glass substrate. Also, substrate 1
The means for measuring the outer shape of 0 is not limited to the above embodiment, and may be measured by other means.
【0028】[0028]
【発明の効果】以上説明したように、本発明の基板の温
度測定装置によれば次のような効果がある。すなわち、
本発明では、基板の外形寸法を計測して、これに基づき
温度を算出しているため、プラズマ生成のための高周波
等のノイズに影響されず、処理中の基板に対する温度を
確実に測定することが可能となる。さらに、基板の表面
や裏面の状態に関係なく安定した温度測定を行うことが
可能となる。As described above, the substrate temperature measuring apparatus of the present invention has the following effects. That is,
In the present invention, since the outer dimensions of the substrate are measured and the temperature is calculated based on the outer dimensions, it is possible to reliably measure the temperature of the substrate being processed without being affected by noise such as high frequency for plasma generation. Is possible. Further, it becomes possible to perform stable temperature measurement regardless of the state of the front surface or the back surface of the substrate.
【図1】本発明の第1実施形態を説明する概略断面図
(側面)である。FIG. 1 is a schematic sectional view (side view) illustrating a first embodiment of the present invention.
【図2】本発明の第1実施形態を説明する概略断面図
(上面)である。FIG. 2 is a schematic cross-sectional view (upper surface) illustrating the first embodiment of the present invention.
【図3】基板の温度と直径との関係を示す図である。FIG. 3 is a diagram showing a relationship between a substrate temperature and a diameter.
【図4】本発明の第2実施形態を説明する概略断面図
(上面)である。FIG. 4 is a schematic sectional view (upper surface) illustrating a second embodiment of the present invention.
【図5】従来例を説明する概略断面図である。FIG. 5 is a schematic sectional view illustrating a conventional example.
【図6】従来例を説明する模式図である。FIG. 6 is a schematic diagram illustrating a conventional example.
1 温度測定装置 2a 発光部 2b 受光部 2c ポリゴンミラー 2d 反射ミラー 2e
コリメータレンズ 2f 受光レンズ 3 計算部 4a、4b 爪
10 基板 A 処理室 B チャンバ B1、B2 窓1 Temperature Measuring Device 2a Light Emitting Part 2b Light Receiving Part 2c Polygon Mirror 2d Reflecting Mirror 2e
Collimator lens 2f Light receiving lens 3 Calculation unit 4a, 4b Claw
10 substrate A processing chamber B chamber B1 and B2 window
Claims (3)
測定する装置であって、 前記基板の所定部分における寸法を計測する寸法計測手
段と、 前記寸法計測手段による測定結果に基づいて前記基板の
温度を求める計算手段とを備えていることを特徴とする
基板の温度測定装置。1. An apparatus for measuring the temperature of a substrate disposed inside a processing chamber, comprising: a dimension measuring means for measuring a dimension of a predetermined portion of the substrate; and a measuring result obtained by the dimension measuring means. A substrate temperature measuring device, comprising: a calculating means for determining the temperature of the substrate.
張収縮の関係から前記寸法に基づく該基板の温度を求め
ることを特徴とする請求項1記載の基板の温度測定装
置。2. The temperature measuring device for a substrate according to claim 1, wherein the calculating means obtains the temperature of the substrate based on the dimension from a relationship of expansion and contraction of the substrate due to heat.
容器に設けられた窓を介して該処理室の外側から該処理
室の内部に配置された前記基板の所定部分における寸法
を計測することを特徴とする請求項1記載の基板の温度
測定装置。3. The dimension measuring means measures the dimension of a predetermined portion of the substrate disposed inside the processing chamber from outside the processing chamber through a window provided in an outer container of the processing chamber. The temperature measuring device for a substrate according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2634296A JPH09218104A (en) | 1996-02-14 | 1996-02-14 | Temperature measuring device for substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2634296A JPH09218104A (en) | 1996-02-14 | 1996-02-14 | Temperature measuring device for substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09218104A true JPH09218104A (en) | 1997-08-19 |
Family
ID=12190776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2634296A Pending JPH09218104A (en) | 1996-02-14 | 1996-02-14 | Temperature measuring device for substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09218104A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008053359A (en) * | 2006-08-23 | 2008-03-06 | Taiyo Nippon Sanso Corp | Vapor growth equipment |
JP2008251904A (en) * | 2007-03-30 | 2008-10-16 | Tokyo Electron Ltd | Method of surface treatment of mounting table |
JP2009212199A (en) * | 2008-03-03 | 2009-09-17 | Canon Anelva Corp | Substrate surface temperature measurement method, and substrate processing apparatus |
JP2011191113A (en) * | 2010-03-12 | 2011-09-29 | Tokyo Electron Ltd | Probe for temperature measurement, temperature measurement system, and temperature measurement method using this |
EP2503021A1 (en) | 2011-03-24 | 2012-09-26 | United Technologies Corporation | Monitoring of substrate temperature. |
-
1996
- 1996-02-14 JP JP2634296A patent/JPH09218104A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008053359A (en) * | 2006-08-23 | 2008-03-06 | Taiyo Nippon Sanso Corp | Vapor growth equipment |
JP2008251904A (en) * | 2007-03-30 | 2008-10-16 | Tokyo Electron Ltd | Method of surface treatment of mounting table |
JP2009212199A (en) * | 2008-03-03 | 2009-09-17 | Canon Anelva Corp | Substrate surface temperature measurement method, and substrate processing apparatus |
JP4515509B2 (en) * | 2008-03-03 | 2010-08-04 | キヤノンアネルバ株式会社 | Substrate surface temperature measuring method and substrate processing apparatus using the same |
JP2011191113A (en) * | 2010-03-12 | 2011-09-29 | Tokyo Electron Ltd | Probe for temperature measurement, temperature measurement system, and temperature measurement method using this |
EP2503021A1 (en) | 2011-03-24 | 2012-09-26 | United Technologies Corporation | Monitoring of substrate temperature. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4128590B2 (en) | Self-calibrating temperature probe | |
KR960013995B1 (en) | Method for measuring surface temperature of semiconductor wafer substrate and heat-treating apparatus | |
US6348967B1 (en) | Method and device for measuring the thickness of opaque and transparent films | |
US5102231A (en) | Semiconductor wafer temperature measurement system and method | |
JP3192161B2 (en) | Non-contact measurement method and system for heated object temperature by radiation | |
JP2731590B2 (en) | How to measure contact angle | |
EP0612862A1 (en) | Measuring wafer temperatures | |
WO2000008429A1 (en) | A sensor for measuring a substrate temperature | |
JPH09218104A (en) | Temperature measuring device for substrate | |
US20020041620A1 (en) | Thermal process apparatus for a semiconductor substrate | |
EP0708318A1 (en) | Radiance measurement by angular filtering for use in temperature determination of radiant object | |
JP4166400B2 (en) | Radiation temperature measurement method | |
JP2000356554A (en) | Method for processing silicon work piece using composite type optical temperature measurement system | |
JP2004020337A (en) | Temperature measuring instrument | |
JP4251742B2 (en) | Laser processing equipment | |
KR0149886B1 (en) | Wafer temperature measuring device using two wavelength infrared laser interferometer | |
JP2001249050A (en) | Temperature-measuring apparatus, film-forming apparatus, etching apparatus, method for measuring temperature, and etching method | |
KR0178079B1 (en) | Temperature measuring method and device | |
KR100777570B1 (en) | Pollution measuring device of rapid thermal processing chamber | |
JPH05507356A (en) | Object temperature measurement method and device and heating method | |
US6051844A (en) | Scanning system for rapid thermal cycle stress/curvature measurement | |
JPH04162337A (en) | electron beam equipment | |
US20050112853A1 (en) | System and method for non-destructive implantation characterization of quiescent material | |
JP2544548B2 (en) | Surface roughness measurement method | |
JP2953742B2 (en) | Surface roughness evaluation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050223 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051101 |