[go: up one dir, main page]

JPH0921667A - Flow rate measuring apparatus - Google Patents

Flow rate measuring apparatus

Info

Publication number
JPH0921667A
JPH0921667A JP17183895A JP17183895A JPH0921667A JP H0921667 A JPH0921667 A JP H0921667A JP 17183895 A JP17183895 A JP 17183895A JP 17183895 A JP17183895 A JP 17183895A JP H0921667 A JPH0921667 A JP H0921667A
Authority
JP
Japan
Prior art keywords
flow rate
measurement
value
cycle
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17183895A
Other languages
Japanese (ja)
Other versions
JP3456060B2 (en
Inventor
Yukio Nagaoka
行夫 長岡
Kenzo Ochi
謙三 黄地
Motoyuki Nawa
基之 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17183895A priority Critical patent/JP3456060B2/en
Publication of JPH0921667A publication Critical patent/JPH0921667A/en
Application granted granted Critical
Publication of JP3456060B2 publication Critical patent/JP3456060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the lower consumption of an ultrasonic flow meter. SOLUTION: The flow rate measuring apparatus includes a first vibrator 5 and a second vibrator 6 provided on a fluid conduit 4, a flow rate calculating means 12 for calculating a flow rate based on a signal of a measurement circuit for measuring signal transmission time between the vibrators, a measurement completion means 15 for informing of completion of flow rate measurement by the flow rate calculation means 12, a voltage control means 16 for controlling supply voltage to the measurement circuit by the measurement completion means 15 or a measurement start means 14 and a period variable means 13 for changing a period of the measurement start means 14 based on a value of the flow rate calculation means 12. A measurement period can be lengthened while accuracy in the flow rate is maintained, and the supply voltage is reduced during the measurement period to reduce the power consumption, thereby lengthening the service life of a battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波を利用してガス
などの流量を計測する流量計測装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring the flow rate of gas or the like using ultrasonic waves.

【0002】[0002]

【従来の技術】従来のこの種の流量計測装置は、たとえ
ば特開平4−328424号公報が知られており、図1
1に示すように、流体管路1の一部に超音波振動子2と
3を流れの方向に相対して設け、振動子1から流れ方向
に超音波を発生しこの超音波を振動子2で検出すると再
び振動子1から超音波を発生させ、この繰り返しを行っ
てその時間を計測し、逆に振動子2から流れに逆らって
超音波を発生し同様の繰り返し時間を計測し、この時間
の差から流体の速度を演算していた。
2. Description of the Related Art A conventional flow rate measuring device of this type is known, for example, from Japanese Patent Laid-Open No. 4-328424.
As shown in FIG. 1, ultrasonic transducers 2 and 3 are provided in a part of the fluid line 1 so as to face each other in the flow direction, and ultrasonic waves are generated from the transducer 1 in the flow direction. When it is detected by, the ultrasonic wave is again generated from the vibrator 1, the time is measured by repeating this, and conversely, the ultrasonic wave is generated from the vibrator 2 against the flow and the same repetition time is measured. The velocity of the fluid was calculated from the difference.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の流量計測装置では計測のスタート信号はある一定の
周波数かまたランダム関数を含めてある関数に決められ
ており、流体が流れていない場合にも決められたサンプ
リング周波数で計測が行われていた。このため電力を使
用する頻度が高く、電池駆動の場合短期間のうちに電池
交換が必要になり消費電力の低減が課題となっていた。
However, in the above-mentioned conventional flow rate measuring device, the measurement start signal is determined to be a certain frequency or a function including a random function, and even when the fluid is not flowing. The measurement was performed at the determined sampling frequency. For this reason, electric power is frequently used, and in the case of battery driving, it is necessary to replace the battery within a short period of time, and reduction of power consumption has been a problem.

【0004】本発明は上記課題を解決するもので、消費
電力を低減することを目的としている。
The present invention has been made to solve the above problems and has an object to reduce power consumption.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明の流量計測装置は、以下の構成とした。
In order to achieve the above object, the flow rate measuring device of the present invention has the following configuration.

【0006】すなわち、流体管路に設けられた第1振動
子と、第1振動子から送信された超音波信号を受信する
第2振動子と、振動子間の信号伝幡時間を計測する計測
回路と、計測回路の信号に基づいて流量を算出する流量
演算手段と、振動子による計測を開始する計測開始手段
と、流量演算手段による流量計測の完了を報知する計測
終了手段と、計測終了手段または計測開始手段によって
計測回路の供給電圧を制御する電圧制御手段と、流量演
算手段の値に基づいて計測開始手段の周期を変化させる
周期可変手段とを備えたものである。
That is, the first transducer provided in the fluid conduit, the second transducer for receiving the ultrasonic signal transmitted from the first transducer, and the measurement for measuring the signal transmission time between the transducers. Circuit, flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, measurement start means for starting measurement by the vibrator, measurement end means for notifying completion of flow rate measurement by the flow rate calculation means, and measurement end means Alternatively, it comprises voltage control means for controlling the supply voltage of the measuring circuit by the measurement starting means, and cycle changing means for changing the cycle of the measurement starting means based on the value of the flow rate calculating means.

【0007】また、流体管路に設けられた第1振動子
と、第1振動子から発信された超音波信号を受信する第
2振動子と、振動子間の信号伝幡時間を計測する計測回
路と、計測回路の信号に基づいて流量を算出する流量演
算手段と、振動子による計測を開始する計測開始手段
と、流量演算手段の値に基づいて計測回路の周期の平均
値を変化させる平均周期可変手段と、ランダム値を発生
する不規則値発生手段と、前記平均周期可変手段の信号
に前記不規則値発生手段の信号を付加した周期可変手段
とを備えたものである。
Further, a first oscillator provided in the fluid conduit, a second oscillator for receiving an ultrasonic signal transmitted from the first oscillator, and a measurement for measuring a signal transmission time between the oscillators. Circuit, a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by the vibrator, and an average for changing the average value of the cycle of the measurement circuit based on the value of the flow rate calculation means. It is provided with period changing means, irregular value generating means for generating a random value, and period changing means for adding the signal of the irregular value generating means to the signal of the average period changing means.

【0008】また、流体管路に設けられた第1振動子
と、第1振動子から発信された超音波信号を受信する第
2振動子と、振動子間の信号伝幡時間を計測する計測回
路と、計測回路の信号に基づいて流量を算出する流量演
算手段と、振動子による計測を開始する計測開始手段
と、流量演算手段の零値の検出回数に応じて計測開始手
段の周期を大きくする周期可変手段とを備えたものであ
る。
Further, a first oscillator provided in the fluid conduit, a second oscillator for receiving an ultrasonic signal transmitted from the first oscillator, and a measurement for measuring a signal propagation time between the oscillators. Circuit, a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by the vibrator, and a cycle of the measurement start means increased according to the number of times the flow rate calculation means detects a zero value. And a means for changing the period.

【0009】また、流体管路に設けられた第1振動子
と、第1振動子から発信された超音波信号を受信する第
2振動子と、振動子間の信号伝幡時間を計測する計測回
路と、計測回路の信号に基づいて流量を算出する流量演
算手段と、振動子による計測を開始する計測開始手段
と、流量演算手段の零値の検出時に計測開始手段の周期
を大きくする周期可変手段と、流量演算手段の流量値を
積算するとともに、零値検出後に所定値以上の流量を検
出したとき流量値に前回計測からの経過時間を乗じた値
を加算する積算演算手段とを備えたものである。
Further, a first oscillator provided in the fluid conduit, a second oscillator for receiving an ultrasonic signal transmitted from the first oscillator, and a measurement for measuring a signal transmission time between the oscillators. Circuit, flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, measurement start means for starting measurement by the vibrator, and variable cycle for increasing the cycle of the measurement start means when the zero value of the flow rate calculation means is detected. And means for integrating the flow rate values of the flow rate calculation means, and adding a value obtained by multiplying the flow rate value by the elapsed time from the previous measurement when a flow rate equal to or greater than a predetermined value is detected after the zero value is detected. It is a thing.

【0010】また、流体管路に設けられた第1振動子
と、第1振動子から発信された超音波信号を受信する第
2振動子と、振動子間の信号伝幡時間を計測する計測回
路と、前記計測回路の信号に基づいて流量を算出する流
量演算手段と、振動子による計測を開始する計測開始手
段と、流量演算手段の零値を検出したとき計測開始手段
の周期を大きくする周期可変手段と、流量演算手段の流
量値を積算するとともに、連続の零値検出後に所定値以
上の流量を検出したときこの流量値を加算しない積算演
算手段とを備えたものである。
Further, a first oscillator provided in the fluid conduit, a second oscillator for receiving an ultrasonic signal transmitted from the first oscillator, and a measurement for measuring a signal propagation time between the oscillators. Circuit, flow rate calculation means for calculating the flow rate based on the signal of the measurement circuit, measurement start means for starting measurement by the oscillator, and increasing the cycle of the measurement start means when the zero value of the flow rate calculation means is detected. The cycle variable means and the integration calculation means for integrating the flow rate values of the flow rate calculation means and not adding the flow rate values when a flow rate of a predetermined value or more is detected after continuous zero value detection.

【0011】また、流体管路に設けられた第1振動子
と、第1振動子から発信された超音波信号を受信する第
2振動子と、振動子間の信号伝幡時間を計測する計測回
路と、計測回路の信号に基づいて流量を算出する流量演
算手段と、振動子による計測を開始する計測開始手段
と、流量演算手段の零値を検出したとき計測開始手段の
周期を大きくする周期可変手段と、流量演算手段の流量
値を積算するとともに、連続の零値検出後に所定値以上
の流量を検出したときこの流量値に所定係数を乗じて加
算する積算演算手段とを備えたものである。
Further, a first oscillator provided in the fluid conduit, a second oscillator for receiving the ultrasonic signal transmitted from the first oscillator, and a measurement for measuring a signal propagation time between the oscillators. Circuit, a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by the vibrator, and a cycle for increasing the cycle of the measurement start means when a zero value of the flow rate calculation means is detected. A variable means and an integrating calculation means for integrating the flow rate values of the flow rate calculation means and for multiplying the flow rate value by a predetermined coefficient and adding it when a flow rate of a predetermined value or more is detected after continuous zero value detection. is there.

【0012】また、流体管路に設けられた第1振動子
と、第1振動子から発信された超音波信号を受信する第
2振動子と、振動子間の超音波伝達を複数回行う繰り返
し手段と、繰り返し手段の回数を設定する回数設定手段
と、信号伝幡時間の累積時間を計測する計測回路と、計
測回路の信号に基づいて流量を算出する流量演算手段
と、振動子による計測を開始する計測開始手段と、流量
演算手段の零値の検出以降に計測開始手段の周期を大き
くする周期可変手段と、計測周期の間に回数設定手段の
値を小さくした探索計測手段を備えたものである。
Further, the first vibrator provided in the fluid conduit, the second vibrator for receiving the ultrasonic signal transmitted from the first vibrator, and the ultrasonic transmission between the vibrators are repeated a plurality of times. Means, a number setting means for setting the number of times of the repeating means, a measuring circuit for measuring the cumulative time of the signal propagation time, a flow rate calculating means for calculating the flow rate based on the signal of the measuring circuit, and a measurement by the vibrator. Measurement start means for starting, cycle changing means for increasing the cycle of the measurement start means after detection of the zero value of the flow rate calculating means, and search and measurement means for decreasing the value of the number of times setting means during the measurement cycle Is.

【0013】また、流体管路に設けられた第1振動子
と、第1振動子から送信された超音波信号を受信する第
2振動子と、振動子間の信号伝幡時間を計測する計測回
路と、計測回路の信号に基づいて流量を算出する流量演
算手段と、振動子による計測を開始する計測開始手段
と、流量演算手段の値に基づいて計測開始手段の周期を
変化させる周期可変手段と、周期可変手段の値に応じて
流量演算手段の係数を変える係数設定手段とを備えたも
のである。
Also, a first oscillator provided in the fluid conduit, a second oscillator for receiving the ultrasonic signal transmitted from the first oscillator, and a measurement for measuring the signal transmission time between the oscillators. Circuit, flow rate calculation means for calculating the flow rate based on the signal of the measurement circuit, measurement start means for starting measurement by the vibrator, and cycle changing means for changing the cycle of the measurement start means based on the value of the flow rate calculation means And coefficient setting means for changing the coefficient of the flow rate calculation means according to the value of the cycle changing means.

【0014】[0014]

【作用】本発明は上記構成によって、流量に応じて計測
の周期を変更するものである。
The present invention has the above-mentioned structure and changes the measurement cycle according to the flow rate.

【0015】[0015]

【実施例】以下、本発明の第1の実施例を図面にもとづ
いて説明する。図1において、流体管路4の途中に超音
波を発信する第1振動子5と受信する第2振動子6を流
れ方向に配置されている。7は第1振動子5への送信回
路、8は第2振動子6で受信した信号の増幅回路で、こ
の増幅された信号は基準信号と比較回路9で比較され、
発信から受信までの時間をタイマカウンタのような計時
手段10で求め、前記送信回路7から前記計時手段10
まで計測回路11を形成する。前記計時手段10による
超音波伝幡時間に応じて管路の大きさや流れの状態を考
慮して流量演算手段12で流量値を求め、この流量演算
手段12の値によって周期可変手段13で測定周期の変
更を行ない、この周期可変手段13の値に応じて計測開
始手段14により、送信回路7への信号送出のタイミン
グを調節する。また流量演算手段12の演算終了を計測
終了手段15に送出し、この計測終了手段15に同期し
て電圧制御手段16で計測回路11の電圧を低下させ
る。また計測開始手段14による計測の開始と同期して
計測回路14の電圧を復帰させる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, a first oscillator 5 that transmits ultrasonic waves and a second oscillator 6 that receives ultrasonic waves are arranged in the flow direction in the middle of the fluid conduit 4. Reference numeral 7 is a transmission circuit to the first vibrator 5, 8 is an amplifier circuit for a signal received by the second vibrator 6, and the amplified signal is compared with a reference signal by a comparison circuit 9,
The time from the transmission to the reception is obtained by the time measuring means 10 such as a timer counter, and the time from the transmitting circuit 7 to the time measuring means 10 is obtained.
The measuring circuit 11 is formed up to. The flow rate calculation means 12 obtains a flow rate value in consideration of the size of the conduit and the flow state according to the ultrasonic wave propagation time by the time measurement means 10, and the cycle changing means 13 measures the measurement cycle by the value of the flow rate calculation means 12. And the timing of signal transmission to the transmission circuit 7 is adjusted by the measurement starting means 14 according to the value of the cycle varying means 13. Further, the calculation end of the flow rate calculation means 12 is sent to the measurement end means 15, and the voltage control means 16 lowers the voltage of the measurement circuit 11 in synchronization with the measurement end means 15. Further, the voltage of the measurement circuit 14 is restored in synchronization with the start of the measurement by the measurement starting means 14.

【0016】次にその動作について述べる。計測開始手
段14から送信回路7よりバースト信号を送出され第1
振動子5で発信された超音波信号は、流れの中を伝幡し
第2振動子6で受信され増幅回路8と比較回路9で信号
処理され、発信から受信までの時間を計時手段10で測
定する。
Next, the operation will be described. A burst signal is sent from the measuring circuit 14 from the transmitting circuit 7
The ultrasonic signal transmitted by the oscillator 5 propagates in the flow, is received by the second oscillator 6, is processed by the amplification circuit 8 and the comparison circuit 9, and the time from transmission to reception is measured by the time measuring means 10. Measure.

【0017】静止流体中の音をc、流体の流れの速さを
vとすると、流れの順方向の超音波の伝搬速度は(c+
v)となる。振動子5と6の間の距離をL、超音波伝幡
軸と管路の中心軸とがなす角度をφとすると、超音波が
到達する時間tは、 t=L/(c+vCOSφ) (1) となり、(1)式より v=(L/t−c)/COSφ (2) となり、Lとφが既知ならtを測定すれば流速vが求め
られる。この流速より流量Qは、通過面積をS、補正計
数をKとすれば、 Q=KSv (3) となる。
When the sound in the stationary fluid is c and the velocity of the fluid flow is v, the propagation velocity of the ultrasonic wave in the forward direction of the flow is (c +
v). When the distance between the transducers 5 and 6 is L and the angle formed by the ultrasonic wave propagation axis and the central axis of the duct is φ, the time t at which the ultrasonic waves arrive is t = L / (c + vCOSφ) (1 ), And from the equation (1), v = (L / t−c) / COSφ (2), and if L and φ are known, the flow velocity v can be obtained by measuring t. From this flow velocity, the flow rate Q becomes Q = KSv (3), where S is the passing area and K is the correction count.

【0018】例えばガスメータのように積算値を正確に
求める場合には、計測は煩雑に行う必要がある。特に流
量が大きいときには計測サンプリング時間を速くして誤
差を小さくする必要があるが、流量が比較的小さいかあ
るいは0の場合には計測サンプリング時間を遅くしても
ほとんど誤差にならない。よって流量演算手段12に応
じて計測間隔を変更することができる。図2は流量が時
間的に変化したときの計測の状態を示したもので、流量
演算手段12の値が小さいときには周期可変手段13で
計測時間の間隔を大きくし、流量演算手段12の値が大
きくなるにともなって計測時間の間隔を小さくする。こ
のように流量値によって計測の周期を変えるのである
が、計測と計測の間には計測回路11の電圧を低減す
る。すなわち流量演算手段12によって流量の計測を終
了すると計測終了手段15に信号を送出し、電圧制御手
段16で電圧を下げるかあるいは零にする。計測開始手
段14によって計測が始まる以前に電圧制御手段16に
よって計測回路11の電圧を元に復帰させる。
For example, in the case of accurately obtaining the integrated value as in a gas meter, the measurement needs to be complicated. Especially when the flow rate is large, it is necessary to shorten the measurement sampling time to reduce the error, but when the flow rate is relatively small or zero, there is almost no error even if the measurement sampling time is delayed. Therefore, the measurement interval can be changed according to the flow rate calculation means 12. FIG. 2 shows the state of measurement when the flow rate changes with time. When the value of the flow rate calculation means 12 is small, the period changing means 13 increases the measurement time interval so that the value of the flow rate calculation means 12 becomes smaller. The interval of measurement time is made smaller as it becomes larger. As described above, the measurement cycle is changed depending on the flow rate value, but the voltage of the measurement circuit 11 is reduced between the measurements. That is, when the flow rate calculation means 12 finishes measuring the flow rate, a signal is sent to the measurement termination means 15, and the voltage control means 16 lowers the voltage or makes it zero. Before the measurement is started by the measurement starting means 14, the voltage control means 16 restores the voltage of the measuring circuit 11 to the original.

【0019】図3は本発明の第2の実施例であり、流量
演算手段12の値によって計測周期の平均値を周期可変
手段17で変更し、さらにランダムな値を発生する信号
を不規則値発生手段18で発生させ、平均周期可変手段
17での値と周期可変手段13で加算値し、計測開始手
段14への信号送出の周期を変化させる。このとき計測
周期は流量値が一定であっても不規則値発生手段18の
信号により所定の範囲内で不規則に変化する。不規則値
発生手段18の値は平均すれば零になるように設定して
ある。
FIG. 3 shows a second embodiment of the present invention, in which the average value of the measurement cycle is changed by the cycle changing means 17 according to the value of the flow rate calculating means 12, and the signal for generating a random value is an irregular value. It is generated by the generating means 18, and the value of the average period changing means 17 and the added value of the period changing means 13 are added to change the period of signal transmission to the measurement starting means 14. At this time, the measurement cycle changes irregularly within a predetermined range by the signal of the irregular value generating means 18 even if the flow rate value is constant. The value of the irregular value generating means 18 is set to be zero on average.

【0020】図4は本発明の第3の実施例であり、流量
演算手段12の値が零値のとき、零回数検出手段19に
よって計測周期を周期可変手段13で変更するもので、
流量零の回数が連続して大きくなるに従い計測開始手段
14の測定周期を大きくするものである。図5は流量の
時間的な変化にともなって計測の時間間隔が変化してい
る様子を示すものである。このとき流量零が長期に連続
しても急に大きな流量が流れ出す場合もあるので、計測
周期は極端に長くすることは避けるため上限を設定す
る。
FIG. 4 shows a third embodiment of the present invention, in which when the value of the flow rate calculating means 12 is zero, the measurement cycle is changed by the zero number detecting means 19 by the cycle changing means 13.
The measurement cycle of the measurement starting means 14 is increased as the number of times of zero flow rate continuously increases. FIG. 5 shows a state in which the measurement time interval is changing with the change in the flow rate with time. At this time, even if zero flow rate continues for a long period of time, a large flow rate may suddenly flow out, so an upper limit is set to avoid making the measurement cycle extremely long.

【0021】図6は本発明の第4の実施例であり、流量
演算手段12の値を積算演算手段20によって積算し1
日や1ヶ月あるいは1年の積算値を求めるものであり、
ガスメータなどに利用される。流量零が何回か続いて計
測周期が大きくなった後、急に大きな流量が流れ始めた
ときの場合を図7に示す。図7で流量零が何回か続いた
後、実際にはa〜bに示すような流量があったとしたと
き、計測は時間T9のとき零を計測し、次の計測時間時
間T10の時には流量bを計測することになる。このと
き積算演算手段20に積算する方法として3種類があ
る。第1の方法として流量bの値に時間T10−T9
(以下△t9という)の時間差を乗じた値を加算する方
法であり、このとき実際の値より積算値は常に多く演算
される。第2の方法として流量aの値(零)に時間差△
t9を乗じた値を加算する、すなわち0を加算する方法
であり、このとき実際の値より積算値は常に少なく演算
される。第3の方法として流量bの値にある定数の値
(0.1〜0.9)に時間差△t9を乗じた値を加算す
る、定数が0.5のとき7図の流量bの半分の値に△t
9を乗じた値が加算される。すなわち流量cと流量bを
結ぶ線が加算されることになる。
FIG. 6 shows a fourth embodiment of the present invention, in which the value of the flow rate calculation means 12 is integrated by the integration calculation means 20 to obtain 1
To calculate the integrated value for one day, one month or one year,
It is used for gas meters. FIG. 7 shows a case where a large flow rate suddenly starts to flow after the flow rate has become zero several times and the measurement cycle has increased. In FIG. 7, after the flow rate of zero has continued several times, it is assumed that there are actually flow rates as shown in a to b. The measurement is zero at the time T9, and the flow rate is measured at the next measurement time time T10. b will be measured. At this time, there are three types of methods for integrating in the integration calculating means 20. As a first method, the value of the flow rate b is set to the time T10-T9.
This is a method of adding a value multiplied by a time difference (hereinafter referred to as Δt9), and at this time, the integrated value is always calculated more than the actual value. As a second method, there is a time difference Δ in the value (zero) of the flow rate a.
This is a method of adding a value multiplied by t9, that is, adding 0, and at this time, the integrated value is always smaller than the actual value. As a third method, a value obtained by multiplying a constant value (0.1 to 0.9) of the flow rate b by a time difference Δt9 is added, and when the constant is 0.5, half the flow rate b in FIG. Δt for the value
The value multiplied by 9 is added. That is, the line connecting the flow rate c and the flow rate b is added.

【0022】図8は本発明の第5の実施例であり、送信
手段7から比較手段9までの超音波伝幡を繰り返し手段
21によって回数設定手段22で設定された回数繰り返
し、その累積時間を計時手段10で計測する。そして流
量演算手段12の値が零値を連続して計測すると、その
回数とともに周期可変手段13で測定周期の値を変更す
るとともに、繰り返し回数を少なくして、すなわち振動
子の送信の回数を少なくしたり計測時間を短くして低消
費電力にした探索計測手段23により流量値の概略を求
める計測を行う。このときの流量と計測時間の間隔を図
9に示す。正確な流量を求めるT3、T4、T5、T6
の計測の間にT3’、T4’、T5’、T6’の時間に
探索計測を行う。もし図8に示すように、T6’の探索
計測で所定値以上の流量を検出すると次回の計測はT
7、T8のように測定周期を小さくして計測を行う。
FIG. 8 shows a fifth embodiment of the present invention, in which the ultrasonic wave transmission from the transmitting means 7 to the comparing means 9 is repeated by the number of times set by the number of times setting means 22 by the repeating means 21, and the accumulated time is calculated. It is measured by the timing means 10. When the value of the flow rate calculation means 12 continuously measures a zero value, the value of the measurement cycle is changed by the cycle changing means 13 along with the number of times, and the number of repetitions is reduced, that is, the number of transmissions of the transducer is reduced. Alternatively, the search and measurement unit 23, which has reduced the power consumption by shortening the measurement time, performs the measurement for obtaining the outline of the flow rate value. The interval between the flow rate and the measurement time at this time is shown in FIG. Obtain accurate flow rate T3, T4, T5, T6
During the measurement, the search measurement is performed at times T3 ', T4', T5 ', and T6'. As shown in FIG. 8, if the flow rate above a predetermined value is detected in the search measurement of T6 ′, the next measurement will be T
The measurement is performed with a shorter measurement period such as 7 and T8.

【0023】図10は本発明の第6の実施例であり、流
量演算手段12の値によって周期可変手段13で計測の
周期を変えるとともに、流量演算手段12の流量係数を
係数設定手段24で変更するものである。測定周期の変
更によって電子回路や超音波振動子の動作する時間が変
わり、それによって応答や感度が変わることを考慮して
流量係数を補正するものである。
FIG. 10 shows a sixth embodiment of the present invention, in which the cycle changing means 13 changes the measurement cycle according to the value of the flow rate calculating means 12 and the flow rate coefficient of the flow rate calculating means 12 is changed by the coefficient setting means 24. To do. The flow rate coefficient is corrected in consideration of the fact that the operation time of the electronic circuit and the ultrasonic transducer changes due to the change of the measurement cycle, which changes the response and sensitivity.

【0024】[0024]

【発明の効果】以上のように本発明によれば次の効果が
得られる。
As described above, according to the present invention, the following effects can be obtained.

【0025】(1)流体管路に設けられた第1振動子
と、第1振動子から送信された超音波信号を受信する第
2振動子と、振動子間の信号伝幡時間を計測する計測回
路と、計測回路の信号に基づいて流量を算出する流量演
算手段と、振動子による計測を開始する計測開始手段
と、流量演算手段による流量計測の完了を報知する計測
終了手段と、計測終了手段または計測開始手段によって
計測回路の供給電圧を制御する電圧制御手段と、流量演
算手段の値に基づいて計測開始手段の周期を変化させる
周期可変手段とを備えたので、流量値が大きいときには
測定周期を短くして正確に測定でき、流量値が小さいと
きには測定周期を長くして消費電力を低減することがで
き、また間欠的な測定の間には回路の電圧を小さくまた
は零にして消費電力の低減をはかることができ、電池寿
命を長くすることができる。
(1) The first transducer provided in the fluid conduit, the second transducer that receives the ultrasonic signal transmitted from the first transducer, and the signal transmission time between the transducers are measured. A measurement circuit, a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by a vibrator, a measurement end means for notifying completion of flow rate measurement by the flow rate calculation means, and a measurement end Means or the measurement starting means for controlling the supply voltage of the measuring circuit, and the cycle changing means for changing the cycle of the measurement starting means based on the value of the flow rate calculating means. Accurate measurement can be performed with a short cycle, power consumption can be reduced by increasing the measurement cycle when the flow rate value is small, and power consumption can be reduced by reducing or zeroing the circuit voltage during intermittent measurement. of It is possible to measure the reduction, it is possible to increase the battery life.

【0026】(2)流体管路に設けられた第1振動子
と、第1振動子から発信された超音波信号を受信する第
2振動子と、振動子間の信号伝幡時間を計測する計測回
路と、計測回路の信号に基づいて流量を算出する流量演
算手段と、振動子による計測を開始する計測開始手段
と、流量演算手段の値に基づいて計測回路の周期の平均
値を変化させる平均周期可変手段と、ランダム値を発生
する不規則値発生手段と、前記平均周期可変手段の信号
に前記不規則値発生手段の信号を付加した周期可変手段
とを備えたので、流量値の周期的な変動に対しても測定
周期が長くなっても高精度を保つことができる。
(2) The first transducer provided in the fluid conduit, the second transducer receiving the ultrasonic signal transmitted from the first transducer, and the signal transmission time between the transducers are measured. A measurement circuit, a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by a vibrator, and an average value of the cycle of the measurement circuit based on the value of the flow rate calculation means. Since the average period changing means, the irregular value generating means for generating a random value, and the period changing means for adding the signal of the irregular value generating means to the signal of the average period changing means are provided, High accuracy can be maintained even if the measurement cycle is long, even with respect to the temporary fluctuation.

【0027】(3)流体管路に設けられた第1振動子
と、第1振動子から発信された超音波信号を受信する第
2振動子と、振動子間の信号伝幡時間を計測する計測回
路と、計測回路の信号に基づいて流量を算出する流量演
算手段と、振動子による計測を開始する計測開始手段
と、流量演算手段の零値の検出回数に応じて計測開始手
段の周期を大きくする周期可変手段とを備えたので、流
量値が零のときすなわち流体を使用していないときには
測定周期を長くとれるので、家庭用ガスメータのように
1日の使用時間が短いものでは消費電力を大幅に低減で
きる。
(3) The signal transmission time between the first vibrator provided in the fluid conduit, the second vibrator receiving the ultrasonic signal transmitted from the first vibrator, and the vibrator is measured. A measurement circuit, a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by a vibrator, and a cycle of the measurement start means according to the number of times the flow rate calculation means detects a zero value. Since it is equipped with a cycle changing means for enlarging, the measurement cycle can be taken long when the flow rate value is zero, that is, when the fluid is not used. It can be greatly reduced.

【0028】(4)流体管路に設けられた第1振動子
と、第1振動子から発信された超音波信号を受信する第
2振動子と、振動子間の信号伝幡時間を計測する計測回
路と、計測回路の信号に基づいて流量を算出する流量演
算手段と、振動子による計測を開始する計測開始手段
と、流量演算手段の零値の検出時に計測開始手段の周期
を大きくする周期可変手段と、流量演算手段の流量値を
積算するとともに、零値検出後に所定値以上の流量を検
出したとき流量値に前回計測からの経過時間を乗じた値
を加算する積算演算手段とを備えたので、計測周期が長
くなったときに不意に流れ始めた流量値を多めに測定す
ることになり、危険な流体の漏洩量を積算値を求める場
合に安全側に作用する。
(4) The first transducer provided in the fluid conduit, the second transducer that receives the ultrasonic signal transmitted from the first transducer, and the signal transmission time between the transducers are measured. A measurement circuit, a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by a vibrator, and a cycle for increasing the cycle of the measurement start means when the zero value of the flow rate calculation means is detected. A variable means and an integration calculation means for integrating the flow rate values of the flow rate calculation means and adding a value obtained by multiplying the flow rate value by the elapsed time from the previous measurement when a flow rate of a predetermined value or more is detected after the zero value is detected. Therefore, the flow rate value that suddenly begins to flow when the measurement cycle becomes long is measured a little more, which acts on the safety side when the integrated value of the dangerous fluid leakage amount is obtained.

【0029】(5)流体管路に設けられた第1振動子
と、第1振動子から発信された超音波信号を受信する第
2振動子と、振動子間の信号伝幡時間を計測する計測回
路と、前記計測回路の信号に基づいて流量を算出する流
量演算手段と、振動子による計測を開始する計測開始手
段と、流量演算手段の零値を検出したとき計測開始手段
の周期を大きくする周期可変手段と、流量演算手段の流
量値を積算するとともに、連続の零値検出後に所定値以
上の流量を検出したときこの流量値を加算しない積算演
算手段とを備えたので、計測周期が長くなったときに不
意に流れ始めた流量値を少なくに測定することになり、
流量積算値を必要量以上必ず供給するような場合に安全
側に作用する。
(5) The signal transmission time between the first vibrator provided in the fluid conduit, the second vibrator receiving the ultrasonic signal transmitted from the first vibrator, and the vibrator is measured. A measurement circuit, a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by the vibrator, and a cycle of the measurement start means when the zero value of the flow rate calculation means is detected is increased. Since the measurement cycle is provided, the flow rate value of the flow rate calculation means is integrated and the integration calculation means that does not add the flow rate value when a flow rate of a predetermined value or more is detected after continuous zero value detection is performed. When it becomes long, the flow rate value that suddenly starts to flow will be measured less,
This works on the safety side when the integrated value of flow rate is always supplied more than necessary amount.

【0030】(6)流体管路に設けられた第1振動子
と、第1振動子から発信された超音波信号を受信する第
2振動子と、振動子間の信号伝幡時間を計測する計測回
路と、計測回路の信号に基づいて流量を算出する流量演
算手段と、振動子による計測を開始する計測開始手段
と、流量演算手段の零値を検出したとき計測開始手段の
周期を大きくする周期可変手段と、流量演算手段の流量
値を積算するとともに、連続の零値検出後に所定値以上
の流量を検出したときこの流量値に所定係数を乗じて加
算する積算演算手段とを備えたので、計測周期が長くな
ったときに不意に流れ始めた流量値を状況に応じて多く
あるいは少なく積算することができ、また平均値をとれ
ば長期的にはほぼ正確な積算値を得ることもできる。
(6) The signal transmission time between the first transducer provided in the fluid conduit, the second transducer receiving the ultrasonic signal transmitted from the first transducer, and the transducer is measured. A measurement circuit, a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by a vibrator, and a cycle of the measurement start means when the zero value of the flow rate calculation means is detected. Since the cycle variable means and the integration calculation means for integrating the flow rate values of the flow rate calculation means and for multiplying the flow rate value by a predetermined coefficient and adding it when a flow rate of a predetermined value or more is detected after continuous zero value detection is provided. The flow rate value that suddenly starts to flow when the measurement cycle becomes long can be increased or decreased depending on the situation, and the average value can be used to obtain a nearly accurate integrated value in the long run. .

【0031】(7)流体管路に設けられた第1振動子
と、第1振動子から発信された超音波信号を受信する第
2振動子と、振動子間の超音波伝達を複数回行う繰り返
し手段と、繰り返し手段の回数を設定する回数設定手段
と、信号伝幡時間の累積時間を計測する計測回路と、計
測回路の信号に基づいて流量を算出する流量演算手段
と、振動子による計測を開始する計測開始手段と、流量
演算手段の零値の検出以降に計測開始手段の周期を大き
くする周期可変手段と、計測周期の間に回数設定手段の
値を小さくした探索計測手段を備えたので、計測周期が
長い時に不意に大きな流量が流れても流体が流れ始めた
ことをわずかな電力消費で行うことができる。
(7) The first transducer provided in the fluid conduit, the second transducer that receives the ultrasonic signal transmitted from the first transducer, and the ultrasonic transmission between the transducers are performed a plurality of times. Repeating means, number-of-times setting means for setting the number of times of repeating means, measuring circuit for measuring the cumulative time of signal propagation time, flow rate calculating means for calculating the flow rate based on the signal of the measuring circuit, and measurement by the vibrator. The measurement start means for starting the measurement, the cycle changing means for increasing the cycle of the measurement start means after the zero value of the flow rate calculating means is detected, and the search and measurement means for decreasing the value of the number of times setting means during the measurement cycle are provided. Therefore, even if a large flow rate unexpectedly flows when the measurement cycle is long, it is possible to start the flow of the fluid with a small amount of power consumption.

【0032】(8)流体管路に設けられた第1振動子
と、第1振動子から送信された超音波信号を受信する第
2振動子と、振動子間の信号伝幡時間を計測する計測回
路と、計測回路の信号に基づいて流量を算出する流量演
算手段と、振動子による計測を開始する計測開始手段
と、流量演算手段の値に基づいて計測開始手段の周期を
変化させる周期可変手段と、周期可変手段の値に応じて
流量演算手段の係数を変える係数設定手段とを備えたの
で、測定周期が長くなって連続的に測定しているときよ
りも超音波振動子や回路の状態が変わることによる誤差
に対して流量係数により補正することができる。
(8) Measure the signal transmission time between the first oscillator provided in the fluid conduit, the second oscillator receiving the ultrasonic signal transmitted from the first oscillator, and the oscillator. A measurement circuit, a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by a vibrator, and a cycle variable for changing the cycle of the measurement start means based on the value of the flow rate calculation means. Since the means and the coefficient setting means for changing the coefficient of the flow rate calculating means according to the value of the cycle changing means are provided, the ultrasonic vibrator and the circuit of the ultrasonic transducer and the circuit are longer than those in the case where the measurement cycle is long and continuous measurement is performed. An error due to a change in state can be corrected by the flow coefficient.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の流量計測装置の制御ブ
ロック図
FIG. 1 is a control block diagram of a flow rate measuring device according to a first embodiment of the present invention.

【図2】同装置の流量の時間的変化を示す特性図FIG. 2 is a characteristic diagram showing a change over time in the flow rate of the device.

【図3】本発明の第2の実施例の流量計測装置の制御ブ
ロック図
FIG. 3 is a control block diagram of a flow rate measuring device according to a second embodiment of the present invention.

【図4】本発明の第3の実施例の流量計測装置の制御ブ
ロック図
FIG. 4 is a control block diagram of a flow rate measuring device according to a third embodiment of the present invention.

【図5】同装置の流量の時間的変化を示す特性図FIG. 5 is a characteristic diagram showing a change over time in the flow rate of the device.

【図6】本発明の第4の実施例の流量計測装置の制御ブ
ロック図
FIG. 6 is a control block diagram of a flow rate measuring device according to a fourth embodiment of the present invention.

【図7】同装置の流量の時間的変化を示す特性図FIG. 7 is a characteristic diagram showing a change over time in the flow rate of the device.

【図8】本発明の第5の実施例の流量計測装置の制御ブ
ロック図
FIG. 8 is a control block diagram of a flow rate measuring device according to a fifth embodiment of the present invention.

【図9】同装置の流量の時間的変化を示す特性図FIG. 9 is a characteristic diagram showing a change over time in the flow rate of the device.

【図10】本発明の第6の実施例の流量計測装置の制御
ブロック図
FIG. 10 is a control block diagram of a flow rate measuring device according to a sixth embodiment of the present invention.

【図11】従来の流量計測装置の制御ブロック図FIG. 11 is a control block diagram of a conventional flow rate measuring device.

【符号の説明】[Explanation of symbols]

4 流体管路 5 第1振動子 6 第2振動子 10 計時手段 11 計測回路 12 流量演算手段 13 周期可変手段 14 計測開始手段 15 計測終了手段 16 電圧制御手段 17 平均周期可変手段 18 不規則値発生手段 19 零回数検出手段 20 積算演算手段 21 繰り返し手段 22 回数設定手段 23 探索計測手段 24 係数設定手段 4 Fluid Pipe 5 First Oscillator 6 Second Oscillator 10 Timing Means 11 Measuring Circuit 12 Flow Rate Calculating Means 13 Cycle Changing Means 14 Measurement Starting Means 15 Measurement Ending Means 16 Voltage Control Means 17 Average Cycle Changing Means 18 Random Value Generation Means 19 Zero count detecting means 20 Integration calculating means 21 Repeating means 22 Number setting means 23 Search and measurement means 24 Coefficient setting means

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】流体管路に設けられた第1振動子と、前記
第1振動子から送信された超音波信号を受信する第2振
動子と、前記振動子間の信号伝幡時間を計測する計測回
路と、前記計測回路の信号に基づいて流量を算出する流
量演算手段と、前記振動子による計測を開始する計測開
始手段と、前記流量演算手段による流量計測の完了を報
知する計測終了手段と、前記計測終了手段または前記計
測開始手段によって前記計測回路の供給電圧を制御する
電圧制御手段と、前記流量演算手段の値に基づいて前記
計測開始手段の周期を変化させる周期可変手段とを備え
た流量計測装置。
1. A first vibrator provided in a fluid conduit, a second vibrator for receiving an ultrasonic wave signal transmitted from the first vibrator, and a signal transfer time between the vibrators are measured. Measuring circuit, a flow rate calculating means for calculating a flow rate based on a signal from the measuring circuit, a measurement starting means for starting measurement by the vibrator, and a measurement ending means for notifying completion of flow rate measurement by the flow rate calculating means. And voltage control means for controlling the supply voltage of the measurement circuit by the measurement end means or the measurement start means, and cycle changing means for changing the cycle of the measurement start means based on the value of the flow rate calculation means. Flow measuring device.
【請求項2】流体管路に設けられた第1振動子と、前記
第1振動子から発信された超音波信号を受信する第2振
動子と、前記振動子間の信号伝幡時間を計測する計測回
路と、前記計測回路の信号に基づいて流量を算出する流
量演算手段と、前記振動子による計測を開始する計測開
始手段と、前記流量演算手段の値に基づいて前記計測手
段の周期の平均値を変化させる平均周期可変手段と、ラ
ンダム値を発生する不規則値発生手段と、前記平均周期
可変手段の信号に前記不規則値発生手段の信号を付加し
た周期可変手段とを備えた流量計測装置。
2. A first vibrator provided in a fluid conduit, a second vibrator for receiving an ultrasonic wave signal transmitted from the first vibrator, and a signal transfer time between the vibrators are measured. Measuring circuit, a flow rate calculating means for calculating a flow rate based on a signal of the measuring circuit, a measurement starting means for starting measurement by the vibrator, and a cycle of the measuring means based on the value of the flow rate calculating means. A flow rate including an average period changing means for changing the average value, an irregular value generating means for generating a random value, and a period changing means for adding the signal of the irregular value generating means to the signal of the average period changing means. Measuring device.
【請求項3】流体管路に設けられた第1振動子と、前記
第1振動子から発信された超音波信号を受信する第2振
動子と、前記振動子間の信号伝幡時間を計測する計測回
路と、前記計測回路の信号に基づいて流量を算出する流
量演算手段と、前記振動子による計測を開始する計測開
始手段と、前記流量演算手段の零値の検出回数に応じて
前記計測開始手段の周期を大きくする周期可変手段とを
備えた流量計測装置。
3. A first vibrator provided in a fluid conduit, a second vibrator for receiving an ultrasonic wave signal transmitted from the first vibrator, and a signal transfer time between the vibrators are measured. Measuring circuit, a flow rate calculating means for calculating a flow rate based on a signal from the measuring circuit, a measurement starting means for starting measurement by the vibrator, and the measurement according to the number of times of zero value detection by the flow rate calculating means. A flow rate measuring device comprising: a cycle varying means for increasing the cycle of the starting means.
【請求項4】周期可変手段の周期に上限を定めた請求項
3記載の流量計測装置。
4. The flow rate measuring device according to claim 3, wherein an upper limit is set for the cycle of the cycle changing means.
【請求項5】流体管路に設けられた第1振動子と、前記
第1振動子から発信された超音波信号を受信する第2振
動子と、前記振動子間の信号伝幡時間を計測する計測回
路と、前記計測回路の信号に基づいて流量を算出する流
量演算手段と、前記振動子による計測を開始する計測開
始手段と、前記流量演算手段の零値の検出時に前記計測
開始手段の周期を大きくする周期可変手段と、前記流量
演算手段の流量値を積算するとともに、前記零値検出後
に所定値以上の流量を検出したとき流量値に前回計測か
らの経過時間を乗じた値を加算する積算演算手段とを備
えた流量計測装置。
5. A first transducer provided in a fluid conduit, a second transducer that receives an ultrasonic signal transmitted from the first transducer, and a signal transfer time between the transducers are measured. Measuring circuit, a flow rate calculating means for calculating a flow rate based on a signal from the measuring circuit, a measurement starting means for starting measurement by the vibrator, and a measurement starting means for measuring the zero value of the flow rate calculating means. Cycle changing means for increasing the cycle and the flow rate value of the flow rate calculating means are integrated, and when a flow rate of a predetermined value or more is detected after the zero value is detected, a value obtained by multiplying the flow rate value by the elapsed time from the previous measurement is added. A flow rate measuring device comprising:
【請求項6】流体管路に設けられた第1振動子と、前記
第1振動子から発信された超音波信号を受信する第2振
動子と、前記振動子間の信号伝幡時間を計測する計測回
路と、前記計測回路の信号に基づいて流量を算出する流
量演算手段と、前記流量演算手段の値を積算する積算演
算手段と、前記振動子による計測を開始する計測開始手
段と、前記流量演算手段の値が零を検出したとき前記計
測開始手段の周期を大きくする周期可変手段と、前記流
量演算手段の流量値を積算するとともに、前記連続の零
検出後に所定値以上の流量を検出したときこの流量値を
加算しない積算演算手段とを備えた流量計測装置。
6. A first transducer provided in a fluid conduit, a second transducer that receives an ultrasonic signal transmitted from the first transducer, and a signal transfer time between the transducers are measured. Measuring circuit, a flow rate calculating means for calculating a flow rate based on a signal from the measuring circuit, an integrating calculating means for integrating the values of the flow rate calculating means, a measurement starting means for starting measurement by the vibrator, and Cycle changing means for increasing the cycle of the measurement starting means when the value of the flow rate calculating means is zero and the flow rate value of the flow rate calculating means are integrated, and a flow rate of a predetermined value or more is detected after the continuous zero detection. A flow rate measuring device provided with an integration calculation means that does not add the flow rate values when the above.
【請求項7】流体管路に設けられた第1振動子と、前記
第1振動子から発信された超音波信号を受信する第2振
動子と、前記振動子間の信号伝幡時間を計測する計測回
路と、前記計測回路の信号に基づいて流量を算出する流
量演算手段と、前記振動子による計測を開始する計測開
始手段と、前記流量演算手段の値が零を検出したとき前
記計測開始手段の周期を大きくする周期可変手段と、前
記流量演算手段の値を積算するとともに、前記連続の零
検出後に所定値以上の流量を検出したときこの流量値に
所定係数を乗じて加算する積算演算手段とを備えた流量
計測装置。
7. A first transducer provided in a fluid conduit, a second transducer that receives an ultrasonic signal transmitted from the first transducer, and a signal transfer time between the transducers are measured. Measuring circuit, a flow rate calculating means for calculating a flow rate based on a signal from the measuring circuit, a measurement starting means for starting measurement by the vibrator, and a measurement start when the value of the flow rate calculating means is zero. A cycle variable means for increasing the cycle of the means and a value of the flow rate calculation means are integrated, and when a flow rate of a predetermined value or more is detected after the continuous zero detection, the flow rate value is multiplied by a predetermined coefficient and added. And a flow rate measuring device having means.
【請求項8】流体管路に設けられた第1振動子と、前記
第1振動子から発信された超音波信号を受信する第2振
動子と、前記振動子間の超音波伝達を複数回行う繰り返
し手段と、前記繰り返し手段の回数を設定する回数設定
手段と、信号伝幡時間の累積時間を計測する計測回路
と、前記計測回路の信号に基づいて流量を算出する流量
演算手段と、前記振動子による計測を開始する計測開始
手段と、前記流量演算手段の零値の検出以降に前記計測
開始手段の周期を大きくする周期可変手段と、前記計測
周期の間に前記回数設定手段の値を小さくした探索計測
手段を備えた流量計測装置。
8. A first oscillator provided in a fluid conduit, a second oscillator for receiving an ultrasonic signal transmitted from the first oscillator, and ultrasonic transmission between the oscillators a plurality of times. Repeating means for performing, number-of-times setting means for setting the number of times of the repeating means, a measuring circuit for measuring an accumulated time of signal propagation time, a flow rate calculating means for calculating a flow rate based on a signal of the measuring circuit, A measurement start means for starting measurement by the vibrator, a cycle changing means for increasing the cycle of the measurement start means after detection of the zero value of the flow rate calculation means, and a value for the number of times setting means during the measurement cycle. A flow rate measuring device equipped with a reduced search and measurement means.
【請求項9】探索計測手段による流量値が零値でないと
き計測周期を初期値にする請求項3記載の流量計測装
置。
9. The flow rate measuring device according to claim 3, wherein the measurement cycle is set to an initial value when the flow rate value by the search measuring means is not zero.
【請求項10】流体管路に設けられた第1振動子と、前
記第1振動子から送信された超音波信号を受信する第2
振動子と、前記振動子間の信号伝幡時間を計測する計測
回路と、前記計測回路の信号に基づいて流量を算出する
流量演算手段と、前記振動子による計測を開始する計測
開始手段と、前記流量演算手段の値に基づいて前記計測
開始手段の周期を変化させる周期可変手段と、前記周期
可変手段の値に応じて前記流量演算手段の係数を変える
係数設定手段とを備えた流量計測装置。
10. A first oscillator provided in the fluid conduit, and a second oscillator for receiving an ultrasonic signal transmitted from the first oscillator.
A vibrator, a measurement circuit for measuring a signal transfer time between the vibrators, a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, and a measurement start means for starting measurement by the vibrator, A flow rate measuring device including cycle changing means for changing the cycle of the measurement starting means based on the value of the flow rate calculating means, and coefficient setting means for changing the coefficient of the flow rate calculating means according to the value of the cycle changing means. .
JP17183895A 1995-07-07 1995-07-07 Flow measurement device Expired - Fee Related JP3456060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17183895A JP3456060B2 (en) 1995-07-07 1995-07-07 Flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17183895A JP3456060B2 (en) 1995-07-07 1995-07-07 Flow measurement device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003071396A Division JP3838209B2 (en) 2003-03-17 2003-03-17 Flow measuring device

Publications (2)

Publication Number Publication Date
JPH0921667A true JPH0921667A (en) 1997-01-21
JP3456060B2 JP3456060B2 (en) 2003-10-14

Family

ID=15930701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17183895A Expired - Fee Related JP3456060B2 (en) 1995-07-07 1995-07-07 Flow measurement device

Country Status (1)

Country Link
JP (1) JP3456060B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016044A1 (en) * 1998-09-11 2000-03-23 Matsushita Electric Industrial Co., Ltd. System for distinguishing appliance
WO2000068649A1 (en) * 1999-05-11 2000-11-16 Matsushita Electric Industrial Co., Ltd. Flow rate measuring device
JP2000321106A (en) * 1999-05-17 2000-11-24 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JP2001330489A (en) * 2000-05-23 2001-11-30 Matsushita Electric Ind Co Ltd Gas cutting-off apparatus
JP2007024752A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Gas meter unit
CN1303404C (en) * 2003-12-10 2007-03-07 松下电器产业株式会社 Gas breaker
WO2011040027A1 (en) * 2009-09-30 2011-04-07 パナソニック株式会社 Flow rate measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548951B2 (en) * 2010-06-24 2014-07-16 パナソニック株式会社 Flow measuring device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016044A1 (en) * 1998-09-11 2000-03-23 Matsushita Electric Industrial Co., Ltd. System for distinguishing appliance
CN100367007C (en) * 1998-09-11 2008-02-06 松下电器产业株式会社 device designation system
WO2000068649A1 (en) * 1999-05-11 2000-11-16 Matsushita Electric Industrial Co., Ltd. Flow rate measuring device
US6748812B1 (en) 1999-05-11 2004-06-15 Matsushita Electric Industrial Co., Ltd. Flow rate measuring apparatus
JP2000321106A (en) * 1999-05-17 2000-11-24 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JP2001330489A (en) * 2000-05-23 2001-11-30 Matsushita Electric Ind Co Ltd Gas cutting-off apparatus
CN1303404C (en) * 2003-12-10 2007-03-07 松下电器产业株式会社 Gas breaker
JP2007024752A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Gas meter unit
WO2011040027A1 (en) * 2009-09-30 2011-04-07 パナソニック株式会社 Flow rate measuring device
US9846065B2 (en) 2009-09-30 2017-12-19 Panasonic Intellectual Property Management Co., Ltd. Flow meter device

Also Published As

Publication number Publication date
JP3456060B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JP3731898B2 (en) Flow rate measuring method and ultrasonic flow meter
WO2000068649A1 (en) Flow rate measuring device
JP2001004419A (en) Flowmeter
JP3456060B2 (en) Flow measurement device
JP3695031B2 (en) Flow measuring device
JP3427762B2 (en) Ultrasonic flow meter
JP3838209B2 (en) Flow measuring device
JP3689973B2 (en) Flow measuring device
JP2003106882A (en) Flow measuring instrument
JPH1144563A (en) Apparatus for measuring flow rate
JP3443658B2 (en) Flow measurement device
JP3945530B2 (en) Flow measuring device
JP2004069524A (en) Flow rate measuring apparatus
JPH09280917A (en) Flow rate measuring apparatus
JP4734822B2 (en) Flow measuring device
JP2002350202A (en) Flow measurement device
JP2001091319A (en) Flow rate measurement device
JP3419341B2 (en) Flow measurement device
JP3438371B2 (en) Flow measurement device
JP3422131B2 (en) Flow measurement device
JP3399938B2 (en) Flow measurement method and ultrasonic flow meter
JP2000105142A (en) Flow rate measuring apparatus
JP3821102B2 (en) Flow measuring device
JPH08128875A (en) Flow rate measuring instrument
JP3399936B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees