JPH09215325A - Dc power supply - Google Patents
Dc power supplyInfo
- Publication number
- JPH09215325A JPH09215325A JP8018958A JP1895896A JPH09215325A JP H09215325 A JPH09215325 A JP H09215325A JP 8018958 A JP8018958 A JP 8018958A JP 1895896 A JP1895896 A JP 1895896A JP H09215325 A JPH09215325 A JP H09215325A
- Authority
- JP
- Japan
- Prior art keywords
- winding
- power supply
- transformer
- voltage
- main transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004804 winding Methods 0.000 claims abstract description 69
- 230000005669 field effect Effects 0.000 claims description 26
- 230000001360 synchronised effect Effects 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 15
- 238000009499 grossing Methods 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Landscapes
- Direct Current Feeding And Distribution (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は同期開閉する整流素
子を介して負荷に効率良く電力供給を行う直流スイッチ
ング電源装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC switching power supply device that efficiently supplies electric power to a load through a rectifying element that opens and closes synchronously.
【0002】[0002]
【従来の技術】図4は従来の直流電源装置を示す回路構
成図である。図4において、10は直流スイッチング電
源装置を全体的に示すもの、11は主変圧器、12は主
変圧器の一次側巻線、13は同二次側巻線で、黒丸印は
夫々巻線の巻終わり、又は巻始めの位置を示す。14は
スイッチング素子を示す。15,16は同期開閉する整
流素子で、この場合は各々電界効果トランジスタを示
す。17は平滑用チョークコイル、18は平滑用コンデ
ンサ、19は負荷、20は直流電圧源を示す。2. Description of the Related Art FIG. 4 is a circuit diagram showing a conventional DC power supply device. In FIG. 4, reference numeral 10 denotes a DC switching power supply device as a whole, 11 is a main transformer, 12 is a primary winding of the main transformer, 13 is a secondary winding thereof, and black circles are windings respectively. Indicates the end of winding or the beginning of winding. Reference numeral 14 represents a switching element. Reference numerals 15 and 16 denote rectifying elements that open and close synchronously, and in this case, are field effect transistors. Reference numeral 17 is a smoothing choke coil, 18 is a smoothing capacitor, 19 is a load, and 20 is a DC voltage source.
【0003】図4に示す電源装置は所謂スイッチング電
源と呼ばれ、入力した直流を直流出力として取り出して
いる。直流電圧源20からの直流電流を、図示しない制
御装置からの制御によりスイッチング素子14を開閉し
て交流信号とし、主変圧器11の一次側巻線12に流れ
るようにする。スイッチング素子14として電界効果ト
ランジスタを使用する例を挙げているが、素子14がオ
ンとなって主変圧器11の二次側巻線13に発生する交
流信号は、電界効果トランジスタ15,16の開閉によ
り整流され、平滑用チョークコイル17,平滑用コンデ
ンサ18により平滑化され、その後直流電流は、負荷1
9に供給される。The power supply device shown in FIG. 4 is a so-called switching power supply and takes out the input DC as a DC output. The DC current from the DC voltage source 20 is controlled by a control device (not shown) to open / close the switching element 14 so as to generate an AC signal, which flows through the primary winding 12 of the main transformer 11. Although an example in which a field effect transistor is used as the switching element 14 is given, the AC signal generated in the secondary winding 13 of the main transformer 11 when the element 14 is turned on is generated by opening and closing the field effect transistors 15 and 16. Is rectified by the smoothing choke coil 17 and the smoothing capacitor 18 and smoothed.
9.
【0004】今、二次側巻線13が図4の矢印Vsの向
きに正電圧になったとき、電界効果トランジスタ15が
オンとなり、図4の矢印Idと示す方向に直流電流が流
れ、そのため直流電圧が負荷19に供給される。このと
き電界効果トランジスタ16はオフとなっている。スイ
ッチング素子14がオフとなって、主変圧器11の二次
側巻線13が矢印Vsの向きと反対方向に正電圧となっ
たとき、電界効果トランジスタ15がオフ、同時に電界
効果トランジスタ16がオンに変わる。このように主変
圧器の二次側巻線に接続された2個の電流開閉素子が排
他的にオン・オフ制御される動作を同期開閉と呼ぶ。ダ
イオードの場合のように接続すると自動的に動作する事
とは異なり、外部からの制御信号が入力する場合を言
う。同期開閉の動作を行い整流電流が得られれば、電界
効果トランジスタ以外の素子を使用しても良い。Now, when the secondary winding 13 has a positive voltage in the direction of arrow Vs in FIG. 4, the field effect transistor 15 is turned on, and a direct current flows in the direction shown by arrow Id in FIG. DC voltage is supplied to the load 19. At this time, the field effect transistor 16 is off. When the switching element 14 is turned off and the secondary winding 13 of the main transformer 11 becomes a positive voltage in the direction opposite to the direction of the arrow Vs, the field effect transistor 15 is turned off and at the same time the field effect transistor 16 is turned on. Change to. The operation in which the two current switching elements connected to the secondary winding of the main transformer are exclusively on / off controlled in this manner is called synchronous switching. Unlike when it is connected as in the case of a diode, it operates automatically, unlike when it receives a control signal from the outside. An element other than the field effect transistor may be used as long as a rectified current can be obtained by performing the synchronous switching operation.
【0005】そのため矢印Ifと示す方向に直流電流が
流れ、平滑用チョークコイル17に流れる電流が上記と
同一方向であるから、負荷19への直流供給が続けられ
る。図5は主変圧器11の二次側巻線13に関連する電
圧・電流波形を示す図である。図5(a)は主変圧器の二
次側巻線13に発生する交流電圧Vsについて、同(b)
は電界効果トランジスタ16を流れる電流Ifについて
示す図である。図5(a)において、電圧Vsはスイッチ
ング素子14がオンとなっている期間のみ、例えば正方
向にパルス状に発生する。このとき電流波形に示すId
は図4に示す方向に流れる。Therefore, a direct current flows in the direction shown by the arrow If, and the current flowing in the smoothing choke coil 17 is in the same direction as described above, so that the direct current supply to the load 19 is continued. FIG. 5 is a diagram showing voltage / current waveforms related to the secondary winding 13 of the main transformer 11. FIG. 5 (a) shows the AC voltage Vs generated in the secondary winding 13 of the main transformer.
FIG. 6 is a diagram showing a current If flowing in the field effect transistor 16. In FIG. 5A, the voltage Vs is generated as a pulse in the positive direction, for example, only while the switching element 14 is on. At this time, Id shown in the current waveform
Flows in the direction shown in FIG.
【0006】スイッチング素子14がオフとなったと
き、電圧Vsは直ぐ反転し、例えば負方向にパルス状電
圧となる。電界効果トランジスタ16はオンになって、
図4に示す向きの電流Ifが流れる。そして電界効果ト
ランジスタ16は電圧Vsの負方向波形の後半になって
オフとなる。そのとき電界効果トランジスタ16が固有
的に持っている回生ダイオードを介して、電流Ifは同
じ方向にやや少量になって流れ続ける。スイッチング素
子14が次にオンとなるとき、即ち電界効果トランジス
タ15がオンとなるときは、スイッチング素子14のオ
ン時間より若干長いオフ時間の経過後とするように、公
知のPWM制御を行う。When the switching element 14 is turned off, the voltage Vs is immediately inverted and becomes a pulse voltage in the negative direction, for example. The field effect transistor 16 is turned on,
The current If in the direction shown in FIG. 4 flows. The field effect transistor 16 is turned off in the latter half of the negative waveform of the voltage Vs. At that time, the current If continues to flow in the same direction in a slightly small amount through the regenerative diode which the field-effect transistor 16 inherently has. When the switching element 14 is turned on next time, that is, when the field effect transistor 15 is turned on, the well-known PWM control is performed such that the off time slightly longer than the on time of the switching element 14 has elapsed.
【0007】次に図6は、図4に示す従来のスイッチン
グ電源装置を並列接続する場合について説明する図であ
る。図6において、10,30はスイッチング電源装置
をそれぞれ全体的に示すもの、19は並列接続された電
源装置10,30に対する共通負荷、21,22はスト
ップダイオードを示す。スイッチング電源装置10,3
0内の各構成素子は同様のものとし、30内の素子は表
示することを省略している。Next, FIG. 6 is a diagram for explaining a case where the conventional switching power supply device shown in FIG. 4 is connected in parallel. In FIG. 6, 10 and 30 are switching power supply devices as a whole, 19 is a common load for the power supply devices 10 and 30 connected in parallel, and 21 and 22 are stop diodes. Switching power supply device 10, 3
The constituent elements in 0 are the same, and the elements in 30 are not shown.
【0008】図6における電源装置30についても、必
要に応じて更に他の電源装置を並列接続させることが出
来る。通常は複数の電源装置の出力端の直流電圧を同一
として、共通負荷19に対し共同して電力を供給してい
る。従って異なる電流値を分担することもある。若し、
電源装置10に異常状態が発生し出力端直流電圧が零V
になったとする。そのとき電源装置10に対するストッ
プダイオード21の接続がないと、下記のような障害が
発生する。As for the power supply device 30 shown in FIG. 6, another power supply device can be connected in parallel if necessary. Normally, the same DC voltage is applied to the output terminals of a plurality of power supply devices, and power is jointly supplied to the common load 19. Therefore, different current values may be shared. Young
An abnormal condition occurs in the power supply device 10 and the DC voltage at the output end is zero V
Let's say At this time, if the stop diode 21 is not connected to the power supply device 10, the following trouble occurs.
【0009】即ち、異常のため電界効果トランジスタ1
5,16が共にオフとなっている。ストップダイオード
21の接続がないとき、負荷19の接地電位とは反対側
の電圧が高いため、電界効果トランジスタ15のゲート
には負荷電圧が印加されてオン状態となる。通常は電界
効果トランジスタ15は主変圧器11二次側巻線13の
電圧でオンとなる特性であるが、所謂回り込み電流に基
づくオン状態では低抵抗のオンでは無くて、Idの電流
回路に対し或る程度の大きさの抵抗値を持った状態とな
る。That is, because of an abnormality, the field effect transistor 1
Both 5 and 16 are off. When the stop diode 21 is not connected, the voltage on the side opposite to the ground potential of the load 19 is high, so that the load voltage is applied to the gate of the field effect transistor 15 to turn it on. Normally, the field-effect transistor 15 has a characteristic that it is turned on by the voltage of the main transformer 11 secondary winding 13, but in the on-state based on a so-called sneak current, it is not turned on with low resistance, but rather with respect to the current circuit of Id. The state has a resistance value of a certain magnitude.
【0010】即ち、負荷19に対して並列接続された負
荷となるので大きな損失となる。そのためストップダイ
オード21などを挿入して回り込み電流の発生を防止し
ている。That is, a load connected in parallel with the load 19 causes a large loss. Therefore, the stop diode 21 or the like is inserted to prevent the generation of a sneak current.
【0011】[0011]
【発明が解決しようとする課題】図5に示す動作波形図
において、電流Ifが流れる期間の後半部は電界効果ト
ランジスタ16がオフになっていて、電流に対し抵抗を
有する状態となる。そのとき回生ダイオードを介して流
れる電流のため、Ifの後半部において電力損失を発生
し、電界効果トランジスタ16は電界効果トランジスタ
15よりも発熱する欠点を生じた。In the operation waveform diagram shown in FIG. 5, the field effect transistor 16 is off in the latter half of the period during which the current If flows, and the field effect transistor 16 has a resistance to the current. At that time, due to the current flowing through the regenerative diode, power loss occurs in the latter half of If, and the field effect transistor 16 has a drawback that it generates more heat than the field effect transistor 15.
【0012】また電源装置を並列接続したときは、スト
ップダイオードの挿入が必要となる。ストップダイオー
ドは電流通過時には大電流のため電圧降下が起こり、ダ
イオード自体も高価なものが必要となり、熱を発生する
欠点を有している。本発明の目的は、前述の欠点を改善
し、動作効率が良く、並列接続しても高価なダイオード
を使用せず、有効に電力供給の可能な直流電源装置を提
供することにある。When the power supply devices are connected in parallel, it is necessary to insert a stop diode. The stop diode has a drawback that a voltage drop occurs due to a large current when passing a current, an expensive diode itself is required, and heat is generated. SUMMARY OF THE INVENTION It is an object of the present invention to provide a DC power supply device which improves the above-mentioned drawbacks, has high operation efficiency, and does not use an expensive diode even when connected in parallel and can effectively supply power.
【0013】[0013]
【課題を解決するための手段】図1は請求項1記載の発
明の基本構成を示す図である。図1において、11は主
変圧器、12は主変圧器の一次側巻線、13は同二次側
巻線、14はスイッチング素子、15は第1整流素子、
16は第2整流素子、17は平滑用チョークコイル、1
8は平滑用コンデンサ、19は負荷、20は直流電圧
源、40は整流素子駆動用変圧器、41は同変圧器の一
次側巻線、42は同二次側第1巻線、43は同二次側第
2巻線、44は第3整流素子、45は主変圧器の三次巻
線を示す。FIG. 1 is a diagram showing a basic configuration of the invention described in claim 1. In FIG. In FIG. 1, 11 is a main transformer, 12 is a primary winding of the main transformer, 13 is a secondary winding thereof, 14 is a switching element, 15 is a first rectifying element,
Reference numeral 16 is a second rectifying element, 17 is a smoothing choke coil, 1
8 is a smoothing capacitor, 19 is a load, 20 is a DC voltage source, 40 is a transformer for driving a rectifying element, 41 is the primary winding of the transformer, 42 is the same secondary winding, and 43 is the same. Secondary side second winding, 44 is a third rectifying element, and 45 is a tertiary winding of the main transformer.
【0014】主変圧器11一次側巻線12にスイッチン
グ素子14を接続し、主変圧器二次側巻線13と、同期
開閉する第1・第2整流素子15,16を介して主変圧
器二次側交流出力を整流平滑し、得られた直流を負荷1
9に供給する直流電源装置において、本発明は前記目的
を達成するため、下記の構成とする。即ち、請求項1記
載の発明は、前記主変圧器11に設けた三次巻線45に
第3整流素子44を介して接続された第1・第2整流素
子駆動用変圧器40を具備して構成する。A switching element 14 is connected to the primary side winding 12 of the main transformer 11, and a main transformer is connected via a secondary side winding 13 of the main transformer and first and second rectifying elements 15 and 16 which synchronously open and close. The secondary side AC output is rectified and smoothed, and the obtained DC is loaded 1
In order to achieve the above object, the present invention has the following configuration in the DC power supply device for supplying the voltage to the DC power supply unit 9. That is, the invention according to claim 1 comprises the first and second rectifying element driving transformers 40 connected to the tertiary winding 45 provided in the main transformer 11 via the third rectifying element 44. Configure.
【0015】請求項2記載の発明は、上記同期開閉する
素子として、電界効果トランジスタを使用することで構
成する。請求項3記載の発明は上記電源装置を複数組並
列接続して直流を負荷に供給することで構成する。According to a second aspect of the present invention, a field effect transistor is used as the synchronous switching element. A third aspect of the invention is configured by connecting a plurality of sets of the power supply devices in parallel and supplying direct current to the load.
【0016】(作用)図1に示す回路図において、スイ
ッチング素子14がオン・オフしたとき、主変圧器11
の二次側巻線13に交流信号Vsが発生し、このとき三
次巻線45に生じた電圧により、第3整流素子44がオ
ンとなるので、電圧Vsは整流素子駆動用変圧器40の
一次側巻線41の両端にかかる。(Operation) In the circuit diagram shown in FIG. 1, when the switching element 14 is turned on and off, the main transformer 11
An AC signal Vs is generated in the secondary winding 13 of the above, and the voltage generated in the tertiary winding 45 at this time turns on the third rectifying element 44. Therefore, the voltage Vs is the primary of the rectifying element driving transformer 40. It is applied to both ends of the side winding 41.
【0017】図2は、図1に示す回路の動作波形図であ
る。図2(a)は主変圧器11の二次側巻線13に発生す
る交流電圧Vsを示す。スイッチング素子14がオンし
たとき、この電圧Vsは前記変圧器40の一次巻線41
を介して、二次側第1巻線42に電圧Vg1を生じさせ
る。電圧Vg1を図2(b)に示す。この電圧Vg1の大
きさは、正方向に巻線41と巻線42との巻数比、負方
向に巻線42に比例する値である。FIG. 2 is an operation waveform diagram of the circuit shown in FIG. FIG. 2A shows an AC voltage Vs generated in the secondary winding 13 of the main transformer 11. When the switching element 14 is turned on, this voltage Vs is applied to the primary winding 41 of the transformer 40.
The voltage Vg1 is generated in the secondary side first winding 42 via. The voltage Vg1 is shown in FIG. The magnitude of the voltage Vg1 is a value proportional to the winding ratio of the windings 41 and 42 in the positive direction and proportional to the winding 42 in the negative direction.
【0018】次に整流素子駆動用変圧器40の二次側第
2巻線43に発生する電圧Vg2は、前記Vg1とは逆
極性である。図2(c)に示すように、負方向に大きな電
圧は巻線41と巻線43との巻数比、正方向には巻線4
3、にそれぞれ比例する値である。図2(b)に示すVg
1の当初のパルス状電圧により、第1整流素子15がオ
ンし、同時にVg2の電圧により第2整流素子16がオ
フする。その結果第1整流素子15を介して直流Idが
図示する方向に流れ、負荷19に給電する。Next, the voltage Vg2 generated in the secondary side second winding 43 of the rectifying element driving transformer 40 has a polarity opposite to that of Vg1. As shown in FIG. 2 (c), a large voltage in the negative direction is the winding ratio of the winding 41 and the winding 43, and a large voltage in the positive direction is the winding 4
It is a value proportional to 3, respectively. Vg shown in Fig. 2 (b)
The first pulsed voltage of 1 turns on the first rectifying element 15, and at the same time the voltage of Vg2 turns off the second rectifying element 16. As a result, the direct current Id flows through the first rectifying element 15 in the direction shown in the figure, and power is supplied to the load 19.
【0019】次いでスイッチング素子14がオフするの
で、整流素子駆動用変圧器40の二次側第1巻線42、
同第2巻線43に、上記と逆方向の交流電圧(Vsの後
半)が発生する。第1整流素子15を介して流れる電流
Ifは、前記直流Idと同一方向であるから、負荷19
に対し直流給電が続けて行われる。スイッチング素子1
4がオンしていた時間程度の間、第1整流素子15がオ
ンしていて、その後オフする。Then, since the switching element 14 is turned off, the secondary side first winding 42 of the transformer 40 for driving the rectifying element,
An alternating voltage (the latter half of Vs) in the opposite direction to the above is generated in the second winding 43. Since the current If flowing through the first rectifying element 15 is in the same direction as the direct current Id, the load 19
DC power is continuously supplied to. Switching element 1
The first rectifying element 15 is on for about the time when 4 is on, and then is off.
【0020】また第2整流素子16は、スイッチング素
子14のオンの時間中はオフしていて、スイッチング素
子14がオフとなったときに前記第2巻線43に発生す
る電圧によってオンする。スイッチング素子14がオフ
している時間は通常オン時間よりも長時間であって、そ
の間第2整流素子16は前記第2巻線43に発生する電
圧が持続しているためオンしている。The second rectifying element 16 is off during the on time of the switching element 14, and is turned on by the voltage generated in the second winding 43 when the switching element 14 is off. The switching element 14 is normally off for a longer time than the on-time, and the second rectifying element 16 is on for the duration of the voltage generated in the second winding 43 during that period.
【0021】整流素子駆動用変圧器40を使用して第1
・第2整流素子を駆動しているから、特に第2整流素子
16において、図2(d)に示すようにスイッチング素子
14がオフの後半、即ちIfの流れている後半において
同素子にはIfがそれ以前と同様に流れて、損失を発生
させない。請求項2記載の発明によると、電界効果トラ
ンジスタを開閉する整流素子としたから、同期制御する
ことが容易にできる。First, the transformer 40 for driving the rectifying device is used.
Since the second rectifying element is driven, especially in the second rectifying element 16, if the switching element 14 is in the latter half of the off state, that is, the latter half of the flow of If, as shown in FIG. Will flow as before and will not cause a loss. According to the invention described in claim 2, since the rectifying element for opening and closing the field effect transistor is used, synchronous control can be easily performed.
【0022】請求項3記載の発明によると、電源回路を
並列接続しても、同期開閉素子の制御電極に対し負荷端
子電圧が直接に印加されることがないため、効率の悪く
なることが起こらない。According to the third aspect of the invention, even if the power supply circuits are connected in parallel, the load terminal voltage is not directly applied to the control electrode of the synchronous switching element, so that the efficiency may deteriorate. Absent.
【0023】[0023]
【発明の実施の形態】図3は請求項1乃至請求項3記載
の発明の実施の形態を示す回路図である。図3におい
て、並列接続されている部分は最上部に示す電源回路と
同一の構成であるから、詳細を示していない。図3にお
いて、図1と異なる箇所は整流素子駆動変圧器の二次側
第2巻線と、第2整流素子との接続、及び第2巻線と出
力端子との間にダイオードを接続したことである。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 is a circuit diagram showing an embodiment of the invention described in claims 1 to 3. In FIG. 3, the parts connected in parallel have the same configuration as the power supply circuit shown in the uppermost part, and therefore details are not shown. In FIG. 3, different points from FIG. 1 are that the secondary side second winding of the rectifying element drive transformer and the second rectifying element are connected, and that a diode is connected between the second winding and the output terminal. Is.
【0024】図3では、整流素子駆動用変圧器40の二
次側第2巻線43に巻き足した巻線45を具備し、その
巻線の中間タップ46とダイオード47の陽極とを接続
し、ダイオード47の陰極は直流出力端子48と接続す
る。図3において、巻線41の巻数をN1、巻線42の
巻数をN2、巻線43の巻数をN3、巻線45の巻数を
N5、上記N3+N5をN4とすると、図2(b)におい
て、42/41に比例する値がVs・N2/N1に、N
2に比例する値が Vo・N2/N3に、ここで
Voは端子48,49間の直流電圧図2(c)において、
43に比例する値が Vo・N4/N3に、43/
41に比例する値がVs・N4/N1 となる。In FIG. 3, a winding 45 is added to the secondary side second winding 43 of the rectifying element driving transformer 40, and the intermediate tap 46 of the winding is connected to the anode of the diode 47. The cathode of the diode 47 is connected to the DC output terminal 48. In FIG. 3, if the number of turns of the winding 41 is N1, the number of turns of the winding 42 is N2, the number of turns of the winding 43 is N3, the number of turns of the winding 45 is N5, and the number of turns of N3 + N5 is N4, then in FIG. A value proportional to 42/41 is Vs · N2 / N1 and N
A value proportional to 2 is Vo · N2 / N3, where
Vo is a DC voltage between terminals 48 and 49 in FIG. 2 (c),
The value proportional to 43 is Vo · N4 / N3, 43 /
A value proportional to 41 is Vs · N4 / N1.
【0025】上記電圧の違いは、第2整流素子として電
界効果トランジスタ16の動作には殆ど差を生じさせ
ず、同様である。またダイオード47は、並列接続され
た電源回路60の内部においても同様の箇所に接続され
たダイオード67と図示している。これらダイオードは
並列接続された電源回路の一つが動作不能となったと
き、端子48の直流電圧が、動作可能な電源回路の電界
効果トランジスタ、例えば15,16のゲートに直接印
加されることを防止する。そのとき回り込み電流が発生
しないから、直流出力に損失とならない。The difference in voltage is similar to the difference in the operation of the field effect transistor 16 as the second rectifying element. Further, the diode 47 is shown as a diode 67 connected at the same position inside the power supply circuit 60 connected in parallel. These diodes prevent the DC voltage at the terminal 48 from being directly applied to the field effect transistors of the operable power supply circuit, eg the gates of 15, 16 when one of the power supply circuits connected in parallel becomes inoperable. To do. At that time, no sneak current is generated, so that no loss occurs in the DC output.
【0026】更に、このダイオードは、スイッチング素
子14がオフしたとき主変圧器11に流れていた電流が
急に遮断されるから、そのとき整流素子駆動用変圧器4
0の二次側第1・第2巻線の両端子間の電圧が急上昇す
ることを押さえるために、接続している。Further, in this diode, since the current flowing through the main transformer 11 is suddenly cut off when the switching element 14 is turned off, the rectifying element driving transformer 4 at that time is cut off.
It is connected in order to prevent the voltage between both terminals of the secondary side first and second windings of 0 from rising sharply.
【0027】[0027]
【発明の効果】このようにして、請求項1記載の発明に
よると、整流素子駆動用変圧器を主変圧器と同期駆動用
変圧器との間に接続し、整流素子駆動用の個別巻線を有
しているため、整流素子の動作を効率良くすることがで
きる。請求項2記載の発明によると、電界効果トランジ
スタを使用するため、同期開閉の制御が容易にできる。
請求項3記載の発明によると、従来使用していた高価な
ダイオードを使用する必要がなく、安定な動作の並列接
続電源装置が得られる。As described above, according to the present invention, the rectifying element driving transformer is connected between the main transformer and the synchronous driving transformer, and the individual winding for driving the rectifying element is provided. Since it has, the operation of the rectifying element can be efficiently performed. According to the second aspect of the present invention, since the field effect transistor is used, it is possible to easily control the synchronous switching.
According to the invention described in claim 3, it is not necessary to use an expensive diode which has been conventionally used, and a parallel-connected power supply device having stable operation can be obtained.
【図1】請求項1記載の発明の基本構成を示す図であ
る。FIG. 1 is a diagram showing a basic configuration of the invention according to claim 1.
【図2】図1に示す回路の動作波形図である。FIG. 2 is an operation waveform diagram of the circuit shown in FIG.
【図3】請求項1乃至請求項3記載の発明の実施の形態
を示す図である。FIG. 3 is a diagram showing an embodiment of the invention described in claims 1 to 3.
【図4】従来の直流電源装置を示す回路構成図である。FIG. 4 is a circuit configuration diagram showing a conventional DC power supply device.
【図5】主変圧器の二次側巻線に関連する電圧・電流波
形を示す図である。FIG. 5 is a diagram showing voltage / current waveforms related to the secondary winding of the main transformer.
【図6】図4に示す従来の直流電源装置を並列接続する
場合について説明する図である。6 is a diagram illustrating a case where the conventional DC power supply device shown in FIG. 4 is connected in parallel.
10 電源装置 11 主変圧器 12 主変圧器の一次側巻線 13 同 二次側巻線 14 スイッチング素子 15 第1整流素子 16 第2整流素子 17 平滑用チョークコイル 18 平滑用コンデンサ 19 負荷 20 直流電圧源 40 整流素子駆動用変圧器 41 同 変圧器の一次側巻線 42 同 二次側第1巻線 43 同 二次側第2巻線 44 第3整流素子 45 主変圧器の三次巻線 DESCRIPTION OF SYMBOLS 10 power supply device 11 main transformer 12 primary side winding 13 of main transformer 13 same secondary side winding 14 switching element 15 first rectifying element 16 second rectifying element 17 smoothing choke coil 18 smoothing capacitor 19 load 20 DC voltage Source 40 Transformer for driving rectifying element 41 Primary winding of the transformer 42 Primary first winding 43 Secondary secondary winding 42 Secondary secondary winding 44 Third rectifying element 45 Tertiary winding of main transformer
Claims (3)
を接続し、主変圧器二次側巻線と、同期開閉する第1・
第2整流素子を介して主変圧器二次側交流出力を整流平
滑し、得られた直流を負荷に供給する直流電源装置にお
いて、 前記主変圧器に設けた三次巻線に第3整流素子を介して
接続された第1・第2整流素子駆動用変圧器を具備する
ことを特徴とする直流電源装置。1. A first transformer for connecting a switching element to the primary winding of the main transformer and opening and closing in synchronization with the secondary winding of the main transformer.
In a DC power supply device that rectifies and smoothes the secondary side AC output of a main transformer via a second rectifying element and supplies the obtained DC to a load, a third rectifying element is provided in a tertiary winding provided in the main transformer. A DC power supply device comprising a first and a second rectifying element driving transformer connected via the DC power supply.
して、電界効果トランジスタを使用することを特徴とす
る直流電源装置。2. A DC power supply device, wherein a field effect transistor is used as the synchronous rectifying element according to claim 1.
て、各組の前記整流素子駆動用変圧器の二次側巻線の一
つと出力端子間を一方向性素子で接続したことことを特
徴とする請求項1または請求項2記載の直流電源装置。3. A plurality of sets of the DC power supply device are connected in parallel, and one of the secondary windings of the rectifying device driving transformer of each set and an output terminal are connected by a unidirectional device. The DC power supply device according to claim 1 or 2, which is characterized in that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01895896A JP3164201B2 (en) | 1996-02-05 | 1996-02-05 | DC power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01895896A JP3164201B2 (en) | 1996-02-05 | 1996-02-05 | DC power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09215325A true JPH09215325A (en) | 1997-08-15 |
JP3164201B2 JP3164201B2 (en) | 2001-05-08 |
Family
ID=11986164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01895896A Expired - Fee Related JP3164201B2 (en) | 1996-02-05 | 1996-02-05 | DC power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3164201B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005034325A1 (en) * | 2003-09-30 | 2005-04-14 | Sanken Electric Co., Ltd. | Switching power source device |
JP2014147282A (en) * | 1999-07-02 | 2014-08-14 | Advanced Energ Ind Inc | System for controlling power transmission to dc computer components |
JP2023057496A (en) * | 2021-10-11 | 2023-04-21 | 新電元工業株式会社 | Power supply circuit and power supply device |
-
1996
- 1996-02-05 JP JP01895896A patent/JP3164201B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014147282A (en) * | 1999-07-02 | 2014-08-14 | Advanced Energ Ind Inc | System for controlling power transmission to dc computer components |
WO2005034325A1 (en) * | 2003-09-30 | 2005-04-14 | Sanken Electric Co., Ltd. | Switching power source device |
US7372710B2 (en) | 2003-09-30 | 2008-05-13 | Sanken Electric Co., Ltd. | Switching power source device of the type capable of controlling power loss in generating output voltage from a secondary winding of a transformer |
JP2023057496A (en) * | 2021-10-11 | 2023-04-21 | 新電元工業株式会社 | Power supply circuit and power supply device |
Also Published As
Publication number | Publication date |
---|---|
JP3164201B2 (en) | 2001-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6125046A (en) | Switching power supply having a high efficiency starting circuit | |
USRE37510E1 (en) | Self-synchronized drive circuit for a synchronized rectifier in a clamped-mode power converter | |
US7906868B2 (en) | Fine tuned multiple output converter | |
CN101325372B (en) | Synchronous rectifier circuit and multi-output power supply device using the same | |
JP4632023B2 (en) | Power converter | |
US6490178B1 (en) | Switching power circuit which switches voltage supplied to a primary winding of a transformer with a switching element to rectify alternating current generated in a secondary winding of the transformer | |
JPH08289538A (en) | Dc-dc converter | |
JPH07298610A (en) | Switching power source | |
JPH09215325A (en) | Dc power supply | |
US7092260B2 (en) | Short-circuiting rectifier for a switched-mode power supply | |
JP3294794B2 (en) | Power supply | |
JPH09154276A (en) | Synchronous rectifier circuit | |
JPH0993917A (en) | Synchronous rectifier circuit | |
JPH1118426A (en) | Switching power supply circuit | |
JP4465713B2 (en) | Switching power supply device and synchronous rectifier circuit | |
WO2020067051A1 (en) | Power supply device | |
JP2004015901A (en) | Electric power converter | |
JPH08205533A (en) | Rectifier circuit | |
JP3066720B2 (en) | Synchronous rectification circuit | |
JP3171578B2 (en) | Switching power supply and synchronous rectifier circuit | |
JP2000050625A (en) | Switching power supply circuit | |
CA2356187A1 (en) | A synchronous flyback converter | |
JP2004166420A (en) | Multi-output switching power supply | |
JP4545988B2 (en) | Synchronous rectifier converter | |
JP2023057497A (en) | Power supply circuit and power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090302 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090302 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100302 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110302 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110302 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120302 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130302 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130302 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140302 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |