[go: up one dir, main page]

JPH09213309A - Method for producing positive electrode for lithium secondary battery and lithium secondary battery - Google Patents

Method for producing positive electrode for lithium secondary battery and lithium secondary battery

Info

Publication number
JPH09213309A
JPH09213309A JP8017478A JP1747896A JPH09213309A JP H09213309 A JPH09213309 A JP H09213309A JP 8017478 A JP8017478 A JP 8017478A JP 1747896 A JP1747896 A JP 1747896A JP H09213309 A JPH09213309 A JP H09213309A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium secondary
kneading
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8017478A
Other languages
Japanese (ja)
Other versions
JP3593776B2 (en
Inventor
Toshiya Naruto
俊也 鳴戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP01747896A priority Critical patent/JP3593776B2/en
Publication of JPH09213309A publication Critical patent/JPH09213309A/en
Application granted granted Critical
Publication of JP3593776B2 publication Critical patent/JP3593776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】 簡易な方法で導電性に優れ、ばらつきの少な
い正極材料を製造可能とする。 【解決手段】 リチウムを吸蔵放出可能な化合物と導電
性物質及びバインダー樹脂を含む正極材料により集電体
上に正極層を形成してなるリチウム2次電池用正極の製
造方法であって、導電性物質、バインダー樹脂及び溶剤
を含む混合物を混合物の溶剤濃度が70〜90重量%、
最大せん断速度が1.0×102 [s-1]以上、1.0
×103 [s-1]以下、混練時間が5〜100分の条件
下にて混練する混練工程と、該工程を経て得られたもの
とリチウムを吸蔵放出可能な化合物とを混練する混練工
程を有することを特徴とするリチウム2次電池用正極層
の製造方法。
(57) Abstract: It is possible to manufacture a positive electrode material having excellent conductivity and less variation by a simple method. A method for producing a positive electrode for a lithium secondary battery, which comprises forming a positive electrode layer on a current collector by using a positive electrode material containing a compound capable of inserting and extracting lithium, a conductive substance, and a binder resin, the method comprising: A mixture containing a substance, a binder resin and a solvent having a solvent concentration of 70 to 90% by weight,
Maximum shear rate is 1.0 × 10 2 [s -1 ] or more, 1.0
× 10 3 [s −1 ] or less, a kneading step of kneading under a condition of a kneading time of 5 to 100 minutes, and a kneading step of kneading the product obtained through the step and a compound capable of occluding and releasing lithium. A method for producing a positive electrode layer for a lithium secondary battery, comprising:

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウム2次電池用
正極の製造方法、及びリチウム2次電池に存する。更に
詳しくは、高電位、高エネルギー密度でサイクル特性に
優れたリチウム2次電池用正極の製造方法及びこれを用
いたリチウム2次電池に存する。
TECHNICAL FIELD The present invention resides in a method for producing a positive electrode for a lithium secondary battery and a lithium secondary battery. More specifically, the present invention resides in a method for producing a positive electrode for a lithium secondary battery, which has high potential, high energy density and excellent cycle characteristics, and a lithium secondary battery using the same.

【0002】[0002]

【従来の技術】近年、カメラ一体型VTR装置、オーデ
ィオ機器、携帯型コンピュータ、携帯電話等様々な機器
の小型化、軽量化が進んでおり、これら機器の電源とし
ての電池に対する高性能化要請が高まっている。中でも
高電圧、高エネルギー密度、優れたサイクル特性の実現
が可能なリチウム2次電池の開発が盛んになっている。
リチウム2次電池は概ね、リチウムを吸蔵放出可能な正
極と負極及び非水電解質液とからなっており、例えば正
極にコバルト酸リチウムを含む電極、負極に炭素材料を
含む電極、及び電解質液を用いた2次電池の場合には、
充電中に正極中からリチウムイオンが電解液を介して負
極中に吸蔵され、放電時には負極中からリチウムイオン
が放出され電解液を介して正極中に吸蔵されるというも
のである。この電極に要求される特性として、電極への
リチウムの吸蔵能力及び放出能力が大きく、これら吸蔵
・放出の繰り返し(サイクル)による各能力の低下を抑
えることである。このような優れたリチウム2次電池の
正極に要求される特性としては正極層内での導電性が挙
げられる。正極に用いる、リチウムを吸蔵放出可能な化
合物は導電性が殆ど無い酸化物を用いることが多く、こ
れのみでは正極として機能しないので、通常炭素等の導
電性物質を用いて導電性を付与し、正極として用いてい
る。
2. Description of the Related Art In recent years, various devices such as a camera-integrated VTR device, an audio device, a portable computer, and a cellular phone have been reduced in size and weight, and there has been a demand for higher performance of a battery as a power supply for these devices. Is growing. Above all, the development of lithium secondary batteries capable of realizing high voltage, high energy density, and excellent cycle characteristics has been actively pursued.
A lithium secondary battery is generally composed of a positive electrode capable of inserting and extracting lithium, a negative electrode, and a non-aqueous electrolyte solution. For example, a positive electrode containing lithium cobalt oxide, a negative electrode containing a carbon material, and an electrolyte solution are used. In case of the secondary battery,
During charging, lithium ions are occluded from the positive electrode into the negative electrode via the electrolytic solution, and during discharging, lithium ions are released from the negative electrode and occluded into the positive electrode via the electrolytic solution. The characteristics required for this electrode are to have a large capacity for occluding and releasing lithium into the electrode, and to suppress a decrease in each capacity due to repetition (cycle) of storage and release. The characteristics required for the positive electrode of such an excellent lithium secondary battery include the conductivity within the positive electrode layer. The compound capable of occluding and releasing lithium used for the positive electrode is often an oxide having almost no conductivity, and since this alone does not function as the positive electrode, conductivity is usually imparted using a conductive substance such as carbon, It is used as a positive electrode.

【0003】[0003]

【発明が解決しようとする課題】このような正極は通
常、リチウムを吸蔵放出可能な化合物と導電性物質をバ
インダー樹脂等を用いて塗料を形成し、この塗料中に両
者を分散させることで正極として機能するようにしてき
た。しかし、従来から均一に分散することが困難であ
り、正極の導電性が低下することがあった。このような
ことがあると、充放電特性が低下しサイクル劣化が生ず
るだけでなく、電池製品間で正極の導電性にばらつきが
生ずることで、製品の性能にばらつきが生じ、例えばこ
のような電池を直列に接続して充電等を行う際に、特性
の低い電池が他の電池に比べて過充電となり、電池が損
壊・破裂する等安全面で甚大な問題が生ずることがあ
る。本発明は上記実状に鑑みて為されたものであり、簡
易な方法で導電性に優れ、ばらつきの少ない正極層材料
を製造可能とし、サイクル特性に優れたリチウム2次電
池を提供することである。
Such a positive electrode is usually formed by forming a paint using a compound capable of occluding and releasing lithium and a conductive substance using a binder resin and dispersing the both in the paint. Has worked as a. However, it has been conventionally difficult to disperse the particles uniformly, and the conductivity of the positive electrode sometimes decreases. In such a case, not only the charging / discharging characteristics are deteriorated and cycle deterioration is caused, but also the conductivity of the positive electrode is varied among battery products, resulting in variation in product performance. When batteries are connected in series for charging or the like, a battery having poor characteristics may be overcharged as compared with other batteries, which may cause a serious safety problem such as damage or explosion of the battery. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a lithium secondary battery having excellent cycle characteristics, which makes it possible to produce a positive electrode layer material having excellent conductivity and less variation by a simple method. .

【0004】[0004]

【課題を解決するための手段】本発明者らは上記実状に
鑑みて鋭意検討した結果、正極層材料の製造方法におい
てバインダーと導電性物質とを溶剤と共に混練し次いで
これとリチウムを吸蔵放出可能な化合物を混練すること
で良好な分散状態のリチウム2次電池用正極材料を提供
することが出来、高電位、高エネルギー密度でサイクル
特性に優れたリチウム2次電池を提供することを成しえ
たのである。
Means for Solving the Problems The inventors of the present invention have made extensive studies in view of the above situation, and as a result, in a method for producing a positive electrode layer material, a binder and a conductive substance can be kneaded together with a solvent, and then this and lithium can be absorbed and released. It was possible to provide a positive electrode material for a lithium secondary battery in a good dispersed state by kneading various compounds, and to provide a lithium secondary battery with high potential, high energy density and excellent cycle characteristics. Of.

【0005】本発明の要旨の一つは、リチウムを吸蔵放
出可能な化合物と導電性物質及びバインダー樹脂を含む
正極層材料により集電体上に正極層を形成してなるリチ
ウム2次電池用正極の製造方法であって、導電性物質、
バインダー樹脂及び溶剤を含む混合物を混合物の溶剤濃
度が70〜90重量%、最大せん断速度が1.0×10
2 [s-1]以上、1.0×103 [s-1]以下、混練時
間が5〜100分の条件下にて混練する混練工程と、該
工程を経て得られたものとリチウムを吸蔵放出可能な化
合物とを混練する混練工程を有することを特徴とするリ
チウム2次電池用正極層の製造方法に存する。本発明の
今一つの要旨は、リチウムを吸蔵放出可能な正極と負極
及び非水電解質液とを具備するリチウム2次電池であっ
て、正極が上述が如き製造方法により得られたものであ
ることを特徴とするリチウム2次電池に存する。以下、
本発明を具体的に説明する。
One of the gist of the present invention is a positive electrode for a lithium secondary battery in which a positive electrode layer is formed on a current collector by a positive electrode layer material containing a compound capable of inserting and extracting lithium, a conductive substance and a binder resin. And a conductive material,
The mixture containing the binder resin and the solvent has a solvent concentration of 70 to 90% by weight and a maximum shear rate of 1.0 × 10.
A kneading step of kneading under a condition of 2 [s −1 ] or more and 1.0 × 10 3 [s −1 ] or less and a kneading time of 5 to 100 minutes; A method for producing a positive electrode layer for a lithium secondary battery, which comprises a kneading step of kneading with a compound capable of inserting and extracting. Another aspect of the present invention is a lithium secondary battery comprising a positive electrode capable of inserting and extracting lithium, a negative electrode and a non-aqueous electrolyte solution, wherein the positive electrode is obtained by the manufacturing method as described above. It exists in a characteristic lithium secondary battery. Less than,
The present invention will be specifically described.

【0006】[0006]

【発明の実施の形態】本発明の正極の製造方法における
リチウムを吸蔵放出可能な化合物としては遷移金属酸化
物、リチウムと遷移金属との複合酸化物、遷移金属硫化
物が挙げられる。ここで遷移金属としては、Co、N
i、Mn、Feなどが挙げられる。具体的にはMnO、
2 5 、TiO2 などの遷移金属酸化物粉末、ニッケ
ル酸リチウム、コバルト酸リチウムなどのリチウムと遷
移金属との複合酸化物粉末、TiS2 、FeSなどの遷
移金属硫化物粉末が挙げられる。・バインダーとして
は、電解液等に対して安定である必要があり耐候性、耐
薬品性、耐熱性、難燃性等が望まれる。例えばポリフッ
化ビニリデン樹脂(PVDF)、SBR系等が挙げられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of compounds capable of inserting and extracting lithium in the method for producing a positive electrode of the present invention include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides. Here, as the transition metal, Co, N
i, Mn, Fe, etc. are mentioned. Specifically, MnO,
Examples thereof include transition metal oxide powders such as V 2 O 5 and TiO 2 , composite oxide powders of lithium and transition metals such as lithium nickel oxide and lithium cobalt oxide, and transition metal sulfide powders such as TiS 2 and FeS. -The binder needs to be stable with respect to the electrolytic solution and the like, and weather resistance, chemical resistance, heat resistance, flame retardancy, etc. are desired. For example, polyvinylidene fluoride resin (PVDF), SBR type, etc. may be mentioned.

【0007】導電性物質としては、リチウムを吸蔵放出
可能な化合物粉末に適量混合して導電性を付与できる物
であれば特に制限は無いが、アセチレンブラック、カー
ボンブラック、黒鉛などの炭素粉末や、使用する電極電
位で安定な金属粉末などが挙げられる。導電性物質とし
てカーボンブラックを用いる際には吸油量が、100c
c/g以上、比表面積が100m2 /gのものが塗膜中
で高い導電性を示し望ましい。これはカーボンブラック
が塗膜中でパーコレーションを形成しやすく、少量のカ
ーボンブラックで高い導電性を出すとの理由からであ
る。
The conductive substance is not particularly limited as long as it can give conductivity by mixing an appropriate amount with a compound powder capable of occluding and releasing lithium, but carbon powder such as acetylene black, carbon black and graphite, Examples thereof include metal powders that are stable at the electrode potential used. When carbon black is used as the conductive material, the oil absorption is 100c
Those having a specific surface area of 100 m 2 / g or more and c / g or more are desirable because they show high conductivity in the coating film. This is because carbon black easily forms percolation in the coating film, and a small amount of carbon black provides high conductivity.

【0008】正極を形成する塗料の溶媒としては、前記
バインダーを溶解可能でかつ容易に乾燥するものであれ
ば適宜選択でき、例えばn−メチルピロリドン、ジメチ
ルフォルムアミド等が挙げられる。正極を形成する材料
の混練においてその順序は、はじめにバインダー樹脂を
溶剤に溶解した溶液と導電性物質を混練する。その条件
は、溶剤濃度が70〜90重量%、最大せん断速度が
1.0×102 [s-1]以上、1.0×103 [s-1
以下で混練時間を5〜100分混練する。次に該工程を
経て得られたものとリチウムを吸蔵放出可能な化合物を
混練するが、同様のせん断速度で5〜20分混練し正極
用の塗料とするのが好ましい。これにより導電性物質を
良好な状態に分散させることが可能となり、より少量の
導電性物質で効率的な導電性を得ることが可能となる。
これより分散が劣ると導電性物質の分散が不均一となり
正極層の導電性が劣るばかりか媒体間にばらつきが生じ
る。またせん断力が強すぎたり、混練時間が長すぎるこ
とにより、逆に分散が強すぎると、導電性物質の構造や
ストラクチャーが壊れ、導電性が低下する。さらに上述
の導電性物質を予め所定の分散状態になったことを確認
してから正極用塗料となすことにより、例えば原料Lo
tの差や分散機の状態等の要因により発生する導電性の
ばらつきを極力小さくすることが可能となる。
The solvent for the coating material forming the positive electrode can be appropriately selected as long as it can dissolve the binder and can be easily dried, and examples thereof include n-methylpyrrolidone and dimethylformamide. In the kneading of the material forming the positive electrode, the order is such that the solution in which the binder resin is dissolved in the solvent and the conductive substance are first kneaded. The conditions are as follows: solvent concentration is 70 to 90% by weight, maximum shear rate is 1.0 × 10 2 [s −1 ] or more, 1.0 × 10 3 [s −1 ].
The following kneading time is 5 to 100 minutes. Next, the product obtained through this step and a compound capable of occluding and releasing lithium are kneaded, but it is preferable to knead at a similar shear rate for 5 to 20 minutes to obtain a positive electrode coating material. As a result, the conductive substance can be dispersed in a good state, and efficient conductivity can be obtained with a smaller amount of the conductive substance.
If the dispersion is inferior to this range, the dispersion of the electroconductive substance will be non-uniform, and the electroconductivity of the positive electrode layer will be inferior and the dispersion will occur among the media. On the other hand, when the dispersion is too strong due to too strong shearing force or too long kneading time, the structure or structure of the conductive substance is broken and the conductivity is lowered. Further, by confirming that the above-mentioned conductive substance has been in a predetermined dispersed state in advance, and then forming the positive electrode coating material, for example, the raw material Lo
It is possible to minimize variations in conductivity that occur due to factors such as the difference in t and the state of the disperser.

【0009】集電体としては、一般的に銅箔や、アルミ
箔を用いる。集電体表面には予め粗化処理を行うと結着
効果が高くなるので好ましい。表面の粗面化方法として
は、機械的研磨法、電解研磨法または化学研磨法が挙げ
られる。機械的研磨法としては、研磨剤粒子を固着した
研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤ
ーブラシなどで集電体表面を研磨する方法が挙げられ
る。一般に、バフ研磨機、ポータブルグラインダー、サ
ンダーなどの研磨機を用いることが好ましい。研磨剤と
してはエメリ、溶融アルミナ、炭化珪素、炭化硼素など
が用いられる。電解研磨法としては集電体を陽極として
電解液中で電解する方法が挙げられ、電解液としては燐
酸、硫酸、蓚酸、クエン酸、無水酢酸またはこれらの混
合液などが挙げられる。化学研磨法としては、集電体を
研磨液中に浸漬する方法であり研磨液としては、電解研
磨法で用いる電解液が挙げられる。又、集電体表面にシ
ランカップリング剤等の結合樹脂を予め塗布し、その上
に正極を形成することで集電体と正極との剥離を抑制し
ても良い。
Copper foil or aluminum foil is generally used as the current collector. It is preferable to perform roughening treatment on the surface of the current collector in advance because the binding effect will be enhanced. Examples of the surface roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. Examples of the mechanical polishing method include a method of polishing the current collector surface with a polishing cloth paper to which abrasive particles are fixed, a grindstone, an emery buff, a wire brush equipped with a steel wire, or the like. Generally, it is preferable to use a polishing machine such as a buff polishing machine, a portable grinder or a sander. As the abrasive, emery, fused alumina, silicon carbide, boron carbide or the like is used. Examples of the electropolishing method include a method in which electrolysis is performed in an electrolytic solution using a current collector as an anode, and examples of the electrolytic solution include phosphoric acid, sulfuric acid, oxalic acid, citric acid, acetic anhydride, or a mixed solution thereof. The chemical polishing method is a method of immersing a current collector in a polishing solution, and the polishing solution includes an electrolytic solution used in an electrolytic polishing method. Alternatively, a binder resin such as a silane coupling agent may be applied to the surface of the current collector in advance, and a positive electrode may be formed on the bonding resin to suppress separation between the current collector and the positive electrode.

【0010】集電体への正極の形成方法は、特に限定さ
れるものではないが、塗料の粘度が高いことからコンマ
リバースコート、スクイーズコート、リップコート等の
塗布方式を用いるのが好ましい。本発明の2次電池は正
極、負極及び非水電解液を主たる構成要件としている。
負極は従来からの任意のものを用いてよいが、通常負極
はリチウムを吸蔵放出可能な炭素粉末とバインダーを含
むものを集電体上に塗布して形成する。
The method of forming the positive electrode on the current collector is not particularly limited, but it is preferable to use a coating method such as comma reverse coating, squeeze coating or lip coating because the viscosity of the coating material is high. The secondary battery of the present invention mainly comprises a positive electrode, a negative electrode and a non-aqueous electrolyte.
Although any conventional negative electrode may be used, the negative electrode is usually formed by coating a current collector containing a carbon powder capable of inserting and extracting lithium and a binder.

【0011】このような炭素粉末は、天然黒鉛、人造黒
鉛、コークス、カーボンブラック、気相成長炭素、炭素
繊維、有機高分子系化合物を炭素化した材料、またはこ
れらを熱処理、混合した材料などが挙げられる。特に負
極用炭素粉末としては、リチウム電位に近いものが好ま
しく、黒鉛を単一成分または主成分とする炭素粉末が好
ましい。負極の製造に用いるバインダー及び負極材料の
塗布方法は正極の製造方法の際と同様のもの及び方法を
用いることができる。
Such carbon powder includes natural graphite, artificial graphite, coke, carbon black, vapor grown carbon, carbon fiber, a material obtained by carbonizing an organic polymer compound, or a material obtained by heat-treating or mixing these. Can be mentioned. In particular, as the carbon powder for the negative electrode, one close to lithium potential is preferable, and carbon powder containing graphite as a single component or a main component is preferable. As the method of applying the binder and the negative electrode material used in the production of the negative electrode, the same methods and methods as in the method of producing the positive electrode can be used.

【0012】また非水電解液としては、電解質として上
記正極活物質及び負極活物質に対して安定であり、かつ
リチウムイオンが前記正極活物質あるいは負極活物質と
電気化学反応をするための移動を行い得る非水物質であ
ればいずれのものでも使用することができ、具体的には
LiPF6 、LiAsF6 、LiSbF6 、LiB
4 、LiClO4 、LiI、LiBr、LiCl、L
iAlCl、LiHF2 、LiSCN、LiSO3 CF
2 等が挙げられる。これらのうちでは特にLiPF 6
LiClO4 が好適である。この電解質を溶解する溶媒
は任意であるが、比較的高誘電率の溶媒が好適に用いら
れる。具体的にはエチレンカーボネート、プロピレンカ
ーボネート等の環状カーボネート類、ジメチルカーボネ
ート、ジエチルカーボネート、エチルメチルカーボネー
トなどの非環状カーボネート類、テトラヒドロフラン、
2−メチルテトラヒドロフラン、ジメトキシエタン等の
グライム類、γ−ブチルラクトン等のラクトン類、スル
フォラン等の硫黄化合物、アセトニトリル等のニトリル
類等の1種又は2種以上の混合物を挙げることができ
る。これらのうちでは、特にエチレンカーボネート、プ
ロピレンカーボネート等の環状カーボネート類、ジメチ
ルカーボネート、ジエチルカーボネート、エチルメチル
カーボネートなどの非環状カーボネート類から選ばれた
1種又は2種以上の混合溶液が好適である。
Further, as the non-aqueous electrolyte, the above electrolyte is used.
Stable to the positive electrode active material and the negative electrode active material, and
Lithium ions serve as the positive electrode active material or the negative electrode active material
It is a non-aqueous substance that can move to perform an electrochemical reaction.
You can use any of them, specifically
LiPF6, LiAsF6, LiSbF6, LiB
F Four, LiClOFour, LiI, LiBr, LiCl, L
iAlCl, LiHFTwo, LiSCN, LiSOThreeCF
TwoAnd the like. Among these, especially LiPF 6,
LiClOFourIs preferred. Solvent that dissolves this electrolyte
Is arbitrary, but a solvent having a relatively high dielectric constant is preferably used.
It is. Specifically, ethylene carbonate, propylene carbonate
Carbonates such as carbonates, dimethyl carbonate
, Diethyl carbonate, ethyl methyl carbonate
Acyclic carbonates such as gypsum, tetrahydrofuran,
2-methyltetrahydrofuran, dimethoxyethane, etc.
Glymes, lactones such as γ-butyl lactone, sulphates
Sulfur compounds such as foran, nitriles such as acetonitrile
Examples thereof include one kind or a mixture of two or more kinds.
You. Among these, especially ethylene carbonate,
Cyclic carbonates such as ropylene carbonate, dimethy
Leucarbonate, diethyl carbonate, ethyl methyl
Selected from acyclic carbonates such as carbonates
One or a mixed solution of two or more is suitable.

【0013】また、本発明の電池には固体電解質とし
て、上記電解質溶解液を例えばポリエチレンオキサイ
ド、ポリプロピレンオキサイド、ポリエチレンオキサイ
ドのイソシアネート架橋体、フェニレンオキシド、フェ
ニレンスルフィド系ポリマー等の重合体に含浸させた有
機固体電解質、Li3 N、LiBCl4 、Li4 SiO
4、Li3 BO3 等のリチウムガラスとの無機固体電解
質を使用することもできる。本発明のリチウム2次電池
においては以上の構成要件の他にリチウムイオンを通過
できる機能を有するセパレータを用いて両極の接触防止
や非水電解液の保持等を行っても良い。セパレータとし
ては、例えばポリエチレン、ポリプロピレン等の多孔質
フィルム、不織布又は織布などが挙げられる。セパレー
タの厚さは、10〜200μm程度が好ましい。本発明
のリチウム2次電池の形状は、円筒型、箱形、ペーパー
型、カード型など種々の形状とすることができる。
In the battery of the present invention, as a solid electrolyte, the electrolyte solution is impregnated with a polymer such as polyethylene oxide, polypropylene oxide, an isocyanate cross-linked product of polyethylene oxide, phenylene oxide, or a polymer of phenylene sulfide. Solid electrolyte, Li 3 N, LiBCl 4 , Li 4 SiO
It is also possible to use an inorganic solid electrolyte with a lithium glass such as 4 , Li 3 BO 3, or the like. In the lithium secondary battery of the present invention, in addition to the above constituent requirements, a separator having a function of allowing passage of lithium ions may be used to prevent contact between both electrodes, hold a nonaqueous electrolytic solution, and the like. Examples of the separator include porous films such as polyethylene and polypropylene, non-woven fabrics or woven fabrics. The thickness of the separator is preferably about 10 to 200 μm. The lithium secondary battery of the present invention can have various shapes such as a cylindrical shape, a box shape, a paper shape, and a card shape.

【0014】[0014]

【実施例】以下に実施例を示し本発明を更に具体的に説
明するが、本発明はその要旨を超えない限り以下に示す
実施例に制限されない。以下に示す組成に従い正極用塗
料を作成しアルミ基材上に塗布してLi2次電池用の正
極とし、評価した。正極塗料の原料としては以下のもの
を使用した。 正極材 LiCoO2 導電材 アセチレンブラック(粒子径40nm,吸油量125cc/1 00g,BET60m2 /g) バインダー PVDF(三菱化学製) 溶剤 NMP:n−メチルピロリドン
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the examples shown below as long as the gist thereof is not exceeded. A positive electrode coating material was prepared according to the following composition and applied on an aluminum substrate to obtain a positive electrode for a Li secondary battery, which was evaluated. The following were used as the raw materials for the positive electrode paint. Positive electrode material LiCoO 2 conductive material Acetylene black (particle size 40 nm, oil absorption 125 cc / 100 g, BET 60 m 2 / g) Binder PVDF (manufactured by Mitsubishi Chemical) Solvent NMP: n-methylpyrrolidone

【0015】実施例1(ベストモード) 第一の分散工程として以下の組成で混練した。 PVDF 42.0wt% アセチレンブラック 58.0wt% NMP 350.0wt% 混練の順番としてバインダーを溶剤に溶解した後、アセ
チレンブラックを添加し混合した。この混合した組成物
を混練機(NETZSCH製「アジテーターミル」)で
溶剤濃度78%、最大せん断速度が3.0×102 [s
-1]、混練時間60分として混練を行った。第2の工程
として上記第1の工程で得られた組成物に正極材と溶剤
を添加し以下の組成で混練時間を20分とした以外は先
述の条件と同じ条件で混練し正極用塗料とした。
Example 1 (Best Mode) In the first dispersion step, the following compositions were kneaded. PVDF 42.0 wt% Acetylene black 58.0 wt% NMP 350.0 wt% After the binder was dissolved in the solvent in the order of kneading, acetylene black was added and mixed. The mixed composition was kneaded with a kneader (“Agitator Mill” manufactured by NETZSCH) at a solvent concentration of 78% and a maximum shear rate of 3.0 × 10 2 [s.
−1 ], and the kneading time was 60 minutes. In the second step, the positive electrode material and the solvent were added to the composition obtained in the first step, and the following composition was used, and the kneading time was 20 minutes. did.

【0016】最終正極塗料組成 LiCoO2 88.0wt% アセチレンブラック 7.0wt% PVDF 5.0wt% NMP 100.0wt% 上記正極用塗料を厚さ20μmのアルミ箔上にドクター
ブレードを用い片面塗布後真空乾燥し、乾燥後同様に裏
面についても塗布処理を行い、両面に電極材が塗布され
たシートを得た。次にプレス圧が500kgf/cm2
でプレスを行い膜厚100μmのシート状正極を作成
し、所定の形状に打ち抜いて正極を作成した。負極材に
はBET比表面積が10m2 、平均粒子系が12μmの
コークス粉末を用いた。
Final positive electrode coating composition LiCoO 2 88.0 wt% Acetylene black 7.0 wt% PVDF 5.0 wt% NMP 100.0 wt% The above positive electrode coating material is applied on one side of a 20 μm thick aluminum foil using a doctor blade and then vacuumed. After drying, the back surface was similarly coated on the back surface to obtain a sheet having both surfaces coated with the electrode material. Next, the press pressure is 500 kgf / cm 2
Was pressed to prepare a sheet-shaped positive electrode having a film thickness of 100 μm and punched into a predetermined shape to prepare a positive electrode. As the negative electrode material, coke powder having a BET specific surface area of 10 m 2 and an average particle size of 12 μm was used.

【0017】負極塗料組成 コークス 90.0wt% PVDF 10.0wt% NMP 100.0wt% 上記負極用塗料を厚さ20μm、表面を耐水ペーパーで
粗化した銅箔上にドクターブレードを用い片面塗布後真
空乾燥し、乾燥後同様に裏面についても塗布処理を行
い、両面に電極材が塗布されたシートを得た。次にプレ
ス圧が500kgf/cm2 でプレスを行い膜厚100
μmのシート状負極を作成し、所定の形状に打ち抜いて
負極を作成した。次にここで得られた正極と負極の間に
厚さ20μmのポリエチレン製セパレーターをはさみ、
電解液としてLiPF6 をエチレンカーボネートとジエ
チルカーボネートとの等容量混合物に溶解した溶液(濃
度1mol/l)を、含浸させて電池を作成した。
Negative electrode coating composition Coke 90.0 wt% PVDF 10.0 wt% NMP 100.0 wt% The above negative electrode coating material was applied to one side using a doctor blade on a copper foil having a thickness of 20 μm and whose surface was roughened with waterproof paper, and then vacuumed. After drying, the back surface was similarly coated on the back surface to obtain a sheet having both surfaces coated with the electrode material. Next, pressing is performed at a pressing pressure of 500 kgf / cm 2 to obtain a film thickness of 100.
A sheet-shaped negative electrode having a thickness of μm was prepared and punched into a predetermined shape to prepare a negative electrode. Next, a polyethylene separator having a thickness of 20 μm is sandwiched between the positive electrode and the negative electrode obtained here,
A battery was prepared by impregnating a solution (concentration: 1 mol / l) in which LiPF 6 was dissolved in an equal volume mixture of ethylene carbonate and diethyl carbonate as an electrolytic solution.

【0018】実施例2(混練時間、せん断力、溶剤濃度
を変更したもの) 正極塗料を作成する第一工程において、アセチレンブラ
ックとバインダー溶液の混合物を混練する条件として、
最大せん断速度が3.0×102 [s-1]、混練時間3
0分として混練を行った以外は実施例1と同様に電池を
作成し評価した。
Example 2 (changing kneading time, shearing force and solvent concentration) In the first step of preparing the positive electrode coating material, the conditions for kneading the mixture of acetylene black and the binder solution were:
Maximum shear rate is 3.0 × 10 2 [s -1 ], kneading time 3
A battery was prepared and evaluated in the same manner as in Example 1 except that kneading was performed for 0 minutes.

【0019】実施例3(正極のカーボンブラックの吸油
量や表面積を変更したもの) 正極塗料を構成する導電材をアセチレンブラックの代わ
りに導電性カーボンブラック「#3050」(三菱化学
社製)粒子径40nm、DBP吸油量180cc/10
0g、比表面積が50m2 /gとした以外は実施例1と
同様にして電池を作成し評価した。
Example 3 (changed oil absorption amount and surface area of positive electrode carbon black) The conductive material constituting the positive electrode coating material was replaced by acetylene black, and conductive carbon black "# 3050" (manufactured by Mitsubishi Chemical Co.) was used. 40nm, DBP oil absorption 180cc / 10
A battery was prepared and evaluated in the same manner as in Example 1 except that the specific surface area was 0 g and the specific surface area was 50 m 2 / g.

【0020】比較例1(いっぺんに混練したもの) 正極塗料を作成する方法を2段工程に分けず、正極材、
導電材、バインダー、溶剤を同時に混合し正極塗料を作
成した以外は実施例1と同様の混練条件下で混練し、電
池を作成し評価した。
Comparative Example 1 (mixed in one piece) The method for preparing the positive electrode coating material was not divided into two steps, and the positive electrode material,
A battery was prepared and evaluated by kneading under the same kneading conditions as in Example 1 except that the conductive material, the binder and the solvent were simultaneously mixed to prepare the positive electrode coating material.

【0021】比較例2 正極塗料を作成する第一工程において、アセチレンブラ
ックとバインダー溶液の混合物を混練する条件として、
最大部のせん断速度が5.0×101 [s-1]、混練時
間10分として混練を行った以外は実施例1と同様に電
池を作成し評価した。
Comparative Example 2 In the first step of preparing the positive electrode coating material, the conditions for kneading the mixture of acetylene black and the binder solution were:
A battery was prepared and evaluated in the same manner as in Example 1 except that kneading was carried out at a shear rate of 5.0 × 10 1 [s −1 ] at the maximum and a kneading time of 10 minutes.

【0022】評価方法 (導電性評価)上述のようにして作られた正極塗料をア
ルミ箔の代わりに100μm厚のPETフィルムとし実
施例と同様に正極シートを作成し、このシートの表面固
有抵抗を測定した。表面固有抵抗はJIS規格に従い、
媒体の両端に交流電圧を印加し高抵抗測定機により求め
た。
Evaluation method (Evaluation of electroconductivity) A positive electrode sheet was prepared in the same manner as in the example except that the positive electrode coating material prepared as described above was replaced with an aluminum foil and a PET film having a thickness of 100 μm was used. It was measured. Surface resistivity is in accordance with JIS standard
An AC voltage was applied to both ends of the medium, and it was determined by a high resistance measuring machine.

【0023】(初期放電容量[mAH/g])初期放電
容量は正極重量当たりの放電容量で計算した。評価は同
一のシートから5個同じ電池を作成し初期放電容量のば
らつきも評価した。 (サイクル特性)サイクル特性は初期放電容量を1とし
たときの30サイクル後の容量保持率(%)で評価し
た。評価は同一のシートから5個同じ電池を作成しサイ
クル特性のばらつきも評価した。
(Initial discharge capacity [mAH / g]) The initial discharge capacity was calculated by the discharge capacity per positive electrode weight. For the evaluation, five identical batteries were prepared from the same sheet, and variations in the initial discharge capacity were also evaluated. (Cycle characteristics) The cycle characteristics were evaluated by the capacity retention rate (%) after 30 cycles when the initial discharge capacity was 1. For evaluation, five same batteries were prepared from the same sheet, and variations in cycle characteristics were also evaluated.

【0024】 評価結果 表面固有抵抗[Ω/□]初期放電容量[mAH/g]サイクル特性(%) 実施例1 6k 130±5 80±2 2 7k 125±8 78±3 3 9k 120±8 79±2 比較例1 50k 110±15 75±5 2 30k 115±15 75±5Evaluation results Surface specific resistance [Ω / □] Initial discharge capacity [mAH / g] Cycle characteristics (%) Example 1 6k 130 ± 5 80 ± 2 2 7k 125 ± 8 78 ± 3 3 9k 120 ± 8 79 ± 2 Comparative Example 1 50k 110 ± 15 75 ± 5 2 30k 115 ± 15 75 ± 5

【0025】[0025]

【発明の効果】本発明の製造方法により得られた正極を
用いたリチウム電池は、正極層の導電材が少ない割に導
電性が高く且つばらつきが少ないことから、電池容量を
損なうことなく、サイクル特性に優れた物となる。
The lithium battery using the positive electrode obtained by the production method of the present invention has a high conductivity and a small variation even though the conductive material of the positive electrode layer is small. It is a product with excellent characteristics.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵放出可能な化合物と導電
性物質及びバインダー樹脂を含む正極材料により集電体
上に正極層を形成してなるリチウム2次電池用正極の製
造方法であって、導電性物質、バインダー樹脂及び溶剤
を含む混合物を混合物の溶剤濃度が70〜90重量%、
最大せん断速度が1.0×102 [s -1]以上、1.0
×103 [s-1]以下、混練時間が5〜100分の条件
下にて混練する混練工程と、該工程を経て得られたもの
とリチウムを吸蔵放出可能な化合物とを混練する混練工
程を有することを特徴とするリチウム2次電池用正極層
の製造方法。
1. A compound capable of inserting and extracting lithium and conductivity.
Collector with a positive electrode material containing a conductive substance and a binder resin
Manufacture of positive electrode for lithium secondary battery having positive electrode layer formed thereon
Manufacturing method, which is a conductive substance, a binder resin and a solvent
A mixture containing a solvent concentration of 70-90% by weight of the mixture,
Maximum shear rate is 1.0 × 10Two[S -1] Or more, 1.0
× 10Three[S-1] Below, kneading time is 5 to 100 minutes
Kneading step of kneading below, and those obtained through the step
Kneader for kneading and a compound capable of occluding and releasing lithium
And a positive electrode layer for a lithium secondary battery, characterized in that
Manufacturing method.
【請求項2】 導電性物質が粒子径50nm以下、DB
P吸油量100cc/100g以上且つ比表面積が10
0m2 /g以下のカーボンブラックであることを特徴と
する請求項1に記載の製造方法。
2. The conductive substance has a particle diameter of 50 nm or less, DB
P oil absorption of 100cc / 100g or more and specific surface area of 10
The production method according to claim 1, wherein the carbon black is 0 m 2 / g or less.
【請求項3】 リチウムを吸蔵放出可能な正極と負極及
び非水電解質液とを具備するリチウム2次電池であっ
て、正極が請求項1又は2に記載の製造方法により得ら
れたものであることを特徴とするリチウム2次電池。
3. A lithium secondary battery comprising a positive electrode capable of inserting and extracting lithium, a negative electrode and a non-aqueous electrolyte solution, wherein the positive electrode is obtained by the manufacturing method according to claim 1. A lithium secondary battery characterized by the above.
JP01747896A 1996-02-02 1996-02-02 Method of manufacturing positive electrode for lithium secondary battery and lithium secondary battery Expired - Lifetime JP3593776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01747896A JP3593776B2 (en) 1996-02-02 1996-02-02 Method of manufacturing positive electrode for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01747896A JP3593776B2 (en) 1996-02-02 1996-02-02 Method of manufacturing positive electrode for lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH09213309A true JPH09213309A (en) 1997-08-15
JP3593776B2 JP3593776B2 (en) 2004-11-24

Family

ID=11945121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01747896A Expired - Lifetime JP3593776B2 (en) 1996-02-02 1996-02-02 Method of manufacturing positive electrode for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3593776B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283831A (en) * 2000-04-04 2001-10-12 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery, its positive electrode, and method of manufacturing the positive electrode
JP2002083588A (en) * 2000-09-08 2002-03-22 Matsushita Electric Ind Co Ltd Method for producing positive electrode mixture for lithium ion secondary battery
CN100337350C (en) * 2004-06-07 2007-09-12 松下电器产业株式会社 Electrode plate for non-water series secondary cell and method for producing said electrode plate
JP2008181714A (en) * 2007-01-23 2008-08-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008311217A (en) * 2007-05-16 2008-12-25 Hitachi Chem Co Ltd Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode using the composition, and nonaqueous electrolyte energy device
JP2012221684A (en) * 2011-04-07 2012-11-12 Denki Kagaku Kogyo Kk Carbon black for nonaqueous secondary battery, electrode and nonaqueous secondary battery
US20130089780A1 (en) * 2011-10-06 2013-04-11 Tomoyuki Uezono Method for manufacturing lithium secondary battery
WO2013190624A1 (en) * 2012-06-18 2013-12-27 電気化学工業株式会社 Carbon black for nonaqueous secondary batteries, electrode, and nonaqueous secondary battery
JP2015128012A (en) * 2013-12-27 2015-07-09 日本ゼオン株式会社 Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and secondary battery
JP2015133302A (en) * 2014-01-15 2015-07-23 日本ゼオン株式会社 Production method of slurry for positive electrode of secondary battery, production method for positive electrode of for secondary battery, and secondary battery
CN105359307A (en) * 2013-07-09 2016-02-24 陶氏环球技术有限责任公司 Mixed positive active material comprising lithium metal oxide and lithium metal phosphate
CN105814718A (en) * 2013-12-27 2016-07-27 日本瑞翁株式会社 Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery cathode, method for producing secondary battery cathode, and secondary battery
JP2018174150A (en) * 2018-07-03 2018-11-08 日本ゼオン株式会社 Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP2020074305A (en) * 2012-09-14 2020-05-14 御国色素株式会社 Manufacturing method of acetylene black dispersion slurry

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283831A (en) * 2000-04-04 2001-10-12 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery, its positive electrode, and method of manufacturing the positive electrode
JP2002083588A (en) * 2000-09-08 2002-03-22 Matsushita Electric Ind Co Ltd Method for producing positive electrode mixture for lithium ion secondary battery
CN100337350C (en) * 2004-06-07 2007-09-12 松下电器产业株式会社 Electrode plate for non-water series secondary cell and method for producing said electrode plate
US7662516B2 (en) 2004-06-07 2010-02-16 Panasonic Corporation Electrode plate of positive electrode for non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2008181714A (en) * 2007-01-23 2008-08-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008311217A (en) * 2007-05-16 2008-12-25 Hitachi Chem Co Ltd Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode using the composition, and nonaqueous electrolyte energy device
JP2012221684A (en) * 2011-04-07 2012-11-12 Denki Kagaku Kogyo Kk Carbon black for nonaqueous secondary battery, electrode and nonaqueous secondary battery
US8906118B2 (en) * 2011-10-06 2014-12-09 Toyota Jidosha Kabushiki Kaisha Method for manufacturing lithium secondary battery
US20130089780A1 (en) * 2011-10-06 2013-04-11 Tomoyuki Uezono Method for manufacturing lithium secondary battery
WO2013190624A1 (en) * 2012-06-18 2013-12-27 電気化学工業株式会社 Carbon black for nonaqueous secondary batteries, electrode, and nonaqueous secondary battery
JP2020074305A (en) * 2012-09-14 2020-05-14 御国色素株式会社 Manufacturing method of acetylene black dispersion slurry
CN105359307A (en) * 2013-07-09 2016-02-24 陶氏环球技术有限责任公司 Mixed positive active material comprising lithium metal oxide and lithium metal phosphate
JP2016524307A (en) * 2013-07-09 2016-08-12 ダウ グローバル テクノロジーズ エルエルシー Mixed positively active material comprising lithium metal oxide and lithium metal phosphate
CN105359307B (en) * 2013-07-09 2018-10-09 陶氏环球技术有限责任公司 Include the blended anode active material of lithium metal oxide and lithium metal phosphates
JP2015128012A (en) * 2013-12-27 2015-07-09 日本ゼオン株式会社 Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and secondary battery
CN105814718A (en) * 2013-12-27 2016-07-27 日本瑞翁株式会社 Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery cathode, method for producing secondary battery cathode, and secondary battery
JP2015133302A (en) * 2014-01-15 2015-07-23 日本ゼオン株式会社 Production method of slurry for positive electrode of secondary battery, production method for positive electrode of for secondary battery, and secondary battery
JP2018174150A (en) * 2018-07-03 2018-11-08 日本ゼオン株式会社 Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery

Also Published As

Publication number Publication date
JP3593776B2 (en) 2004-11-24

Similar Documents

Publication Publication Date Title
KR100446828B1 (en) Graphite particles and lithium secondary battery using them as negative electrode
EP2374176B1 (en) Core-shell type anode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same
JP5543533B2 (en) Anode material for lithium ion secondary battery
JP4672955B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
KR101006212B1 (en) Manufacturing method of negative electrode for nonaqueous secondary battery, nonaqueous secondary battery, negative electrode for nonaqueous secondary battery and electronic device using nonaqueous secondary battery
TWI599092B (en) Non-Aqueous Electrolyte Secondary Battery Negative Carbonaceous Material
KR20140101640A (en) Negative electrode active material for rechargeable lithium battery, and method for preparing the same
JP2006228733A (en) Positive electrode active material, manufacturing method thereof, and positive electrode and lithium battery employing the same
JP2003308845A (en) Electrode for lithium secondary battery and lithium secondary battery using it
JP3593776B2 (en) Method of manufacturing positive electrode for lithium secondary battery and lithium secondary battery
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JP2004186075A (en) Electrode for secondary battery and secondary battery using this
JPH08213022A (en) Non-aqueous secondary battery
JP3478077B2 (en) Lithium secondary battery
JP4053657B2 (en) Lithium secondary battery and manufacturing method thereof
JP3456354B2 (en) Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode
WO2012086186A1 (en) Positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
CN116438691A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4220867B2 (en) Slurry for forming positive electrode of nonaqueous electrolyte secondary battery, positive electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN114402461A (en) Method for manufacturing positive electrode active material for lithium secondary battery and positive electrode active material for lithium secondary battery manufactured by the method
JP2001126718A (en) Method for manufacturing electrode for nonaqueous electrolytic cell and the nonaqueous electrolytic cell
JPH09289022A (en) Nonaqueous electrolyte secondary battery
JPH09306546A (en) Positive electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2014057690A1 (en) Composite carbon particles and lithium ion secondary battery using the same
JP2003151533A (en) Electrode, its manufacturing method and battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

EXPY Cancellation because of completion of term