JPH09213183A - Small-size thermostat - Google Patents
Small-size thermostatInfo
- Publication number
- JPH09213183A JPH09213183A JP5361796A JP5361796A JPH09213183A JP H09213183 A JPH09213183 A JP H09213183A JP 5361796 A JP5361796 A JP 5361796A JP 5361796 A JP5361796 A JP 5361796A JP H09213183 A JPH09213183 A JP H09213183A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- thermostat
- bimetal
- movable conductor
- small
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004020 conductor Substances 0.000 claims abstract description 34
- 239000010409 thin film Substances 0.000 claims abstract description 34
- 238000004544 sputter deposition Methods 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims description 8
- 238000009413 insulation Methods 0.000 claims description 4
- 238000001771 vacuum deposition Methods 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 238000000427 thin-film deposition Methods 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 230000010354 integration Effects 0.000 abstract 1
- 238000007738 vacuum evaporation Methods 0.000 abstract 1
- 239000000956 alloy Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 9
- 238000000206 photolithography Methods 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 238000005304 joining Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910002070 thin film alloy Inorganic materials 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Thermally Actuated Switches (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、温度を感知して作動す
る感温スイッチの一種であるサーモスタットに関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermostat, which is a kind of temperature sensitive switch that operates by sensing temperature.
【0002】[0002]
【従来の技術】従来のサーモスタットはバイメタルと称
する熱膨張係数の異なる通常2種類の合金を直接或は中
間層を介して熱間圧延等の方法で接合した素材を圧延処
理してなるいわゆるバイメタルの熱変形を利用して、周
囲温度の高低に応じてスイッチの接点を直接或は間接的
にオン、オフする構造になっている。図5から図7に一
般的なサーモスタットの接点開閉部近傍の断面構造を示
す。図5は可動導電体1に直接バイメタル(3)を使用
した例である。図6は独立した可動導電体1の近傍にバ
イメタル3を配し、間接的に接点2の開閉を行うもので
ある。図5は予めバイメタル3を湾曲成形して、熱変形
がスナップ動作として現れるようにしてあり、このスナ
ップ動作を可動導電体1が受けて接点2の開閉を行うも
のである。2. Description of the Related Art A conventional thermostat is a so-called bimetal, which is formed by rolling a raw material obtained by joining two kinds of alloys, which are called bimetals and having different thermal expansion coefficients, directly or through an intermediate layer by a method such as hot rolling. Utilizing thermal deformation, the contact of the switch is turned on or off directly or indirectly depending on the ambient temperature. 5 to 7 show sectional structures in the vicinity of contact opening / closing portions of a general thermostat. FIG. 5 shows an example in which the bimetal (3) is directly used for the movable conductor 1. In FIG. 6, a bimetal 3 is arranged near the independent movable conductor 1 to indirectly open and close the contact 2. In FIG. 5, the bimetal 3 is curved in advance so that thermal deformation appears as a snap action, and the movable conductor 1 receives the snap action to open and close the contact 2.
【0003】[0003]
【発明が解決しようとする課題】従来サーモスタットは
電熱器の電源一次側やモーター、トランス等に内蔵さ
れ、周囲温度やそれ自身の温度が所定の値を超えるとそ
れらが組み込まれた電子機器の電源一次側と直結した接
点を一時的に開放することを目的に使用されるのが一般
的であった。従って、サーモスタットの導電部には10
0V或は200V前後の電源電圧が直接印加され、接点
並びに導電部には電子機器全体の負荷電流が流れる為
に、それに相当する体積容量の部材と電取やULに代表
される各種安全規則に準じた沿面、空間絶縁距離が必要
とされていて、それに規制される大きさ以下に小型化す
ることが不可能な状況にあった。ところが近年は携帯用
の電子機器の需要拡大に伴って生産量が急増している小
型二次電池パック等にも内蔵され、極めて小型の安全器
として使用される場合などの様にサーモスタット自身に
も小型軽量化が要求される傾向が強くなってきている。
これらの場合は直流低電圧、低電流の条件下にある電子
機器の電源二次側に用いられるので、先の安全規則に準
じる絶縁距離等の規制は受けないにも拘らずに、サーモ
スタットは時代の要求にあった技術革新が未だほとんど
なされず、従来の電源一次側直結型の概念で製造された
比較的大型のサーモスタットを使うしかなく、これがサ
ーモスタットの需要の拡大と小型二次電池パック等サー
モスタットが内蔵される小型電子機器、部品側の小型化
を阻む原因にもなっていた。Conventionally, a thermostat is built in the primary side of a power source of an electric heater, a motor, a transformer, etc., and when the ambient temperature or its temperature exceeds a predetermined value, the power source of an electronic device incorporating them. It was generally used for the purpose of temporarily opening the contact directly connected to the primary side. Therefore, the conductive part of the thermostat has 10
A power supply voltage of about 0 V or 200 V is directly applied, and the load current of the entire electronic equipment flows through the contacts and conductive parts. Therefore, the volume capacity equivalent to that and various safety regulations represented by UL and UL A similar creepage and space insulation distance was required, and it was impossible to reduce the size below the size regulated by it. However, in recent years, it has been built into small rechargeable battery packs, etc., whose production volume has increased rapidly with the expansion of demand for portable electronic devices, and is used in the thermostat itself, such as when it is used as an extremely small safety device. There is an increasing tendency to require smaller size and lighter weight.
In these cases, the thermostat is used for the secondary side of the power source of electronic devices under low DC voltage and low current conditions, so despite the fact that it is not subject to regulations such as the insulation distance according to the previous safety rules, However, there is still little technical innovation to meet the demands of the above, and there is no choice but to use a relatively large thermostat manufactured by the conventional concept of direct connection to the primary side of the power source.This is due to expanding demand for thermostats and thermostats such as small secondary battery pack It was also a cause of hindering the miniaturization of small electronic devices and parts that have built-in components.
【0004】サーモスタットの小型軽量化を阻んでいる
もう一つの要因としては、サーモスタットの主要な構成
部品であるバイメタルが通常2種類の合金素材を圧接、
圧延して作製されることにある。サーモスタットに組み
込まれるバイメタルは先の圧接、圧延された素材を通常
プレス加工で所望の形状寸法に成形されるが、接合、圧
延の工程を経て作成されたバイメタルの幅、厚みとも素
材の製法上或は素材の成形加工上からもあまり小さく出
来ず、特に厚みは0.1mm位が限度になっている。と
ころがサーモスタットの接点を開閉する原動力となると
ころの所定の温度差で発生するバイメタルの変形はその
長さの二乗に比例し、かつ厚さに反比例するので、厚さ
の限界が即バイメタルの長さをも規制してしまい、サー
モスタットの小型化にもおのずと限界があった。Another factor that prevents the thermostat from becoming smaller and lighter is that the bimetal, which is the main component of the thermostat, normally presses two kinds of alloy materials together.
It is made by rolling. The bimetal incorporated in the thermostat is formed by pressing the rolled and rolled material into a desired shape and dimension by a normal press working, but the width and thickness of the bimetal formed through the steps of joining and rolling may be different depending on the manufacturing method of the material. Cannot be made so small from the viewpoint of forming the material, and the thickness is limited to about 0.1 mm. However, the deformation of the bimetal, which is the driving force for opening and closing the contacts of the thermostat, and which occurs at a certain temperature difference, is proportional to the square of its length and inversely proportional to the thickness, so the limit of the thickness is immediately the length of the bimetal. However, there was a limit to the miniaturization of the thermostat.
【0005】[0005]
【課題を解決するための手段】サーモスタットを構成
し、組立前はその他の構成部品から分離独立して供さ
れ、可撓性を有し、フォトリソグラフィー等の微細加工
技術で加工された可動導電体1の一部に真空蒸着やスパ
ッタリング等の薄膜堆積手段を用い、微細形状でバイメ
タルの機能を有する薄膜堆積部分3を設ける。A movable conductor, which constitutes a thermostat, is provided separately from other components before assembly, has flexibility, and is processed by a fine processing technique such as photolithography. A thin film deposition means 3 such as a vacuum deposition or a sputtering is used for a part of 1 to form a thin film deposition portion 3 having a fine shape and a function of a bimetal.
【0006】またバイメタル機能を有する薄膜3を堆積
してある基体部分1、6を選択的に除去してかつ薄膜部
3をフォトリソグラフィー等の微細加工技術を応用して
任意の形状に加工して取り出し、それ自体を独立した微
細なバイメタル素子3として活用する。Further, the substrate portions 1 and 6 on which the thin film 3 having a bimetal function is deposited are selectively removed, and the thin film portion 3 is processed into an arbitrary shape by applying a fine processing technique such as photolithography. It is taken out and utilized as an independent fine bimetal element 3.
【0007】[0007]
【作用】サーモスタットを構成する可動導電体1は例え
ばバネ性を有する銅合金箔にフォトリソグラフィー等の
マイクロ素子加工手法を用いて所望の形状寸法になるよ
うに微細加工を施して、その片面もしくは両面の一部に
バイメタルの機能を持たせた薄膜層3を真空蒸着やスパ
ッタリングの手法を用いて形成してやることにより厚さ
等の形状ををミクロンオーダーで制御でき、プレス加工
等の機械加工では実現し得ない小型軽量のバイメタル機
能を有する可動導電体1を供することが出来、サーモス
タットの小型軽量化を実現可能ならしめことができる。The movable conductor 1 forming the thermostat is, for example, a copper alloy foil having a spring property, which is finely processed into a desired shape and dimension by using a microelement processing technique such as photolithography, and one side or both sides thereof are processed. By forming the thin film layer 3 having a bimetal function in a part of it using a method such as vacuum deposition or sputtering, the shape such as thickness can be controlled in the order of micron, which is achieved by mechanical processing such as press working. It is possible to provide the movable conductor 1 having a small and lightweight bimetal function, which is unobtainable, and it is possible to reduce the size and weight of the thermostat.
【0008】また、バイメタル薄膜層を形成する基体6
を中間層として活用するか、基体6が片面に露出した構
成からプラズマエッチング等の手法を用いて基体6のみ
除去して、独立したバイメタル素子として取り出し活用
すれば、厚さ、外形とも極めて微細な形状のバイメタル
素子の実現が可能になり、極めて小型のサーモスタット
を実現可能ならしめることができる。Further, the base 6 for forming the bimetal thin film layer
Is used as an intermediate layer, or if only the substrate 6 is removed from the structure in which the substrate 6 is exposed on one side by a method such as plasma etching and is taken out and utilized as an independent bimetal element, both the thickness and the outer shape are extremely fine. It is possible to realize a bimetal element having a shape, and it is possible to realize an extremely small thermostat.
【0009】[0009]
【実施例】実施例について図面を参照して説明すると、
図1において1はサーモスタットを構成する可動導電体
を示し、バイメタル機能を有する薄膜層を形成する際の
基体でもある。一般的にはバネ性を有する銅合金例えば
ベリリウム銅やリン青銅の薄板を用いる。薄板は圧延或
は蒸着やスパッター等の薄膜形成手段とフォトリソグラ
フィー等の微細加工技術を応用しても得る事ができる。
2は固定の導電体と接触して良好な電気的結合を与える
ための接点部を示し、銀或は銀とニッケルの合金等を接
合して用いる。メッキや蒸着等の薄膜形成手段を用いて
選択的に銀或は銀合金等を可動導電体1上に直接形成し
ても良い。3はバイメタル機能を有する薄膜層を示す。Embodiments will be described with reference to the drawings.
In FIG. 1, reference numeral 1 denotes a movable conductor that constitutes a thermostat, which is also a base body when forming a thin film layer having a bimetal function. Generally, a thin plate of a copper alloy having a spring property such as beryllium copper or phosphor bronze is used. The thin plate can also be obtained by applying a thin film forming means such as rolling or vapor deposition or sputtering, and a fine processing technique such as photolithography.
Reference numeral 2 designates a contact portion for contacting with a fixed electric conductor to provide good electrical coupling, and silver or an alloy of silver and nickel is joined and used. Alternatively, silver or a silver alloy may be selectively formed directly on the movable conductor 1 by using a thin film forming means such as plating or vapor deposition. Reference numeral 3 indicates a thin film layer having a bimetal function.
【0010】図2にバイメタル機能を有する薄膜層の一
例の部分拡大図を示す。図2−1は可動導電体1の片面
に低膨張係数を示す例えば36Ni−Fe合金薄膜3−
1を、もう一方の面には高膨張係数を示すNi−Cr−
Fe合金薄膜3−2を所定の厚み分だけ形成してやる。
薄膜層の外形は膜形成時のマスキング或は膜形成後にフ
ォトリソグラフィー技術等の微細加工を施すことにより
任意に成形できる。FIG. 2 shows a partially enlarged view of an example of a thin film layer having a bimetal function. FIG. 2-1 shows a low expansion coefficient on one surface of the movable conductor 1, for example, a 36Ni—Fe alloy thin film 3-
1 on the other side, and Ni-Cr- showing a high expansion coefficient on the other side.
The Fe alloy thin film 3-2 is formed by a predetermined thickness.
The outer shape of the thin film layer can be arbitrarily formed by masking during film formation or by performing fine processing such as photolithography after film formation.
【0011】図2−2は可動導電体の片面にのみ低膨張
合金薄膜3−1と高膨張合金薄膜3−2を近接して形成
してある。In FIG. 2-2, the low expansion alloy thin film 3-1 and the high expansion alloy thin film 3-2 are formed close to each other on only one surface of the movable conductor.
【0012】図3−1は接点2が閉じている定常時の状
態を示す。図3−2はサーモスタット内に配置された可
動導電体1の加温時の動作の一例を示す。可動導電体1
と一体化してなるバイメタル薄膜合金層部分の一部を高
膨張合金3−2側に折り曲げた状態で成形すると、加温
時は熱膨張の差の関係で低膨張合金3−2側に折り曲が
るように変形して接点2が開き、電流を遮断する。FIG. 3A shows a steady state in which the contact 2 is closed. FIG. 3-2 shows an example of an operation during heating of the movable conductor 1 arranged in the thermostat. Movable conductor 1
When a part of the bimetal thin film alloy layer portion integrated with is bent to the high expansion alloy 3-2 side, it is bent to the low expansion alloy 3-2 side due to the difference in thermal expansion during heating. Then, the contact 2 is opened and the current is cut off.
【0013】図4に微細形状のスナップ動作用バイメタ
ル素子の製法の一例を示す。銅箔等の金属薄板に所定寸
法の多数の凸凹面を加工してなる基体6上に、スパッタ
リング等の薄膜形成技術を応用して例えば凹面側から低
膨張合金薄膜−高膨張合金薄膜の順にバイメタル機能を
示すように薄膜3を形成する。基体6の厚みは、金属箔
に凸凹加工を施した後に、エッチング等の手段を用いて
機械加工の限界を超えるレベルまで薄層化することも可
能である。薄膜形成後はフォトリソグラフィー等の微細
加工技術を応用して、凸凹面をそれぞれ切り放せば円盤
状の微細形状バイメタル素子が完成する。また、バイメ
タル機能を有する薄膜を支える基体6が、バイメタル機
能に悪影響を与える場合は、プラズマエッチング等の手
段を用いて選択的に除去することも可能である。FIG. 4 shows an example of a method for producing a finely shaped bimetal element for snap operation. By applying a thin film forming technique such as sputtering on a substrate 6 formed by processing a large number of uneven surfaces of a metal thin plate such as a copper foil, for example, from the concave surface side to a low expansion alloy thin film-high expansion alloy thin film bimetal The thin film 3 is formed so as to exhibit its function. The thickness of the substrate 6 can be thinned to a level exceeding the limit of machining by means of etching or the like after the metal foil is subjected to uneven processing. After forming the thin film, a fine processing technique such as photolithography is applied to cut off the uneven surfaces to complete a disc-shaped fine bimetal element. Further, when the substrate 6 supporting the thin film having the bimetal function adversely affects the bimetal function, it can be selectively removed by using a means such as plasma etching.
【0014】[0014]
【発明の効果】本発明は、以上説明した様に構成されて
いるので、以下に記載されるような効果を奏する。Since the present invention is constructed as described above, it has the following effects.
【0015】サーモスタットを構成する可動導電体1に
一体化してバイメタル機能を有する薄膜層3を微細加工
技術を応用して一時に大量に形成することにより、従来
の接合、圧延タイプのバイメタルを個別に機械加工して
なるサーモスタットよりも極めて均質で小型のサーモス
タット実現せしめことが出来る。By integrally forming a thin film layer 3 having a bimetal function integrally with the movable conductor 1 constituting the thermostat by applying a fine processing technique, a large amount of the conventional joining and rolling type bimetal can be individually prepared. It is possible to realize a thermostat that is much more homogeneous and smaller than a machined thermostat.
【0016】微細加工技術を応用して一時に大量に形成
したバイメタル薄膜素子を供することにより、従来の接
合、圧延タイプのバイメタルを個別に機械加工してなる
サーモスタットよりも極めて均質で小型のサーモスタッ
トを実現せしめることが出来る。By providing a large amount of bimetal thin film elements formed at one time by applying the microfabrication technology, a thermostat that is extremely homogeneous and small in size can be provided as compared with a conventional thermostat formed by individually machining the joining and rolling type bimetals. It can be realized.
【図1】本発明にかかわるバイメタル機能を有する薄膜
層3を設けてなる可動導電体1の一例を示す。FIG. 1 shows an example of a movable conductor 1 provided with a thin film layer 3 having a bimetal function according to the present invention.
【図2】本発明にかかわるバイメタル機能を有する薄膜
層3設けてなる可動導電体1の薄層形成部の拡大図を示
す。FIG. 2 is an enlarged view of a thin layer forming portion of a movable conductor 1 provided with a thin film layer 3 having a bimetal function according to the present invention.
【図3】本発明にかかわるバイメタル機能を有する薄膜
層3を設けてなる可動導電体1を配したサーモスタット
の接点2近傍の動作例を示す。FIG. 3 shows an operation example in the vicinity of a contact 2 of a thermostat having a movable conductor 1 provided with a thin film layer 3 having a bimetal function according to the present invention.
【図4】本発明にかかわる微細形状のスナップ動作用バ
イメタル素子の製法の一例を示す。FIG. 4 shows an example of a method of manufacturing a finely shaped bimetal element for snap operation according to the present invention.
【図5】サーモスタットの一般動作を説明するための可
動導電体1と固定導電体4近傍の図を示す。可動導電体
1にはバイメタルが直接使用されている。FIG. 5 is a diagram showing the vicinity of a movable conductor 1 and a fixed conductor 4 for explaining the general operation of the thermostat. Bimetal is directly used for the movable conductor 1.
【図6】サーモスタットの一般動作を説明するための可
動導電体1と固定導電体4近傍の図を示す。可動導電体
1の近傍にバイメタル3を配し、間接的に可動導電体1
を動かして接点2を開閉する。FIG. 6 is a diagram showing the vicinity of a movable conductor 1 and a fixed conductor 4 for explaining the general operation of the thermostat. A bimetal 3 is arranged in the vicinity of the movable conductor 1 to indirectly move the movable conductor 1.
To open and close contact 2.
【図7】サーモスタットの一般動作を説明するための可
動導電体1と固定導電体4近傍の図を示す。予めバイメ
タル3を湾曲成形して、熱変形がスナップ動作として現
れるようにしてあり、このスナップ動作を可動導電体1
が受けて接点2の開閉を行う。FIG. 7 is a diagram showing the vicinity of a movable conductor 1 and a fixed conductor 4 for explaining the general operation of the thermostat. The bimetal 3 is previously curved and formed so that the thermal deformation appears as a snap operation. This snap operation is performed by the movable conductor 1.
The contact 2 receives and opens and closes the contact 2.
1 可動導電体 2 接点 3 バイメタル機能を有する薄膜層 3−1 低膨張合金薄膜層 3−2 高膨張合金薄膜層 4 固定導電体 5 支持体 6 基体 DESCRIPTION OF SYMBOLS 1 movable conductor 2 contact point 3 thin film layer having a bimetal function 3-1 low expansion alloy thin film layer 3-2 high expansion alloy thin film layer 4 fixed conductor 5 support 6 substrate
Claims (2)
位置関係がUL等の安全規則で規制される沿面、空間絶
縁距離の適用を受けない例えば電子機器、部品の電源二
次側に接続して使用される低電圧、低電流用のサーモス
タットにおいて、組立前はその他の構成部品から分離独
立して供される可動導電体1が、可撓性を有する基板上
に真空蒸着やスパッタリング等の薄膜堆積手段を用いて
堆積したバイメタル機能を有する多層薄膜層3を形成し
てなることを特徴とするサーモツタット。1. A surface on which a thermostat is assembled is regulated by safety regulations such as UL, and a space insulation distance is not applied, for example, an electronic device is used by being connected to a power source secondary side of the component. In a low-voltage, low-current thermostat, a movable conductor 1, which is provided separately from other components before assembly, is a thin film deposition means such as vacuum deposition or sputtering on a flexible substrate. A thermostat formed by forming a multilayer thin film layer 3 having a bimetal function, which is deposited by using.
位置関係がUL等の安全規則で規制される沿面、空間絶
縁距離の適用を受けない例えば電子機器、部品の電源二
次側に接続して使用される低電圧、低電流用のサーモス
タットにおいて、組立前はその他の構成部品から分離独
立して供され、温度を検知して変形或はスナップ動作を
するいわゆるバイメタル素子が真空蒸着やスパッタリン
グ等の薄膜堆積手段を用いて形成した多層薄膜3である
ことを特徴とするサーモスタット。2. A surface of a thermostat where assembling positions of parts are regulated by safety regulations such as UL, and a space insulation distance is not applied, for example, electronic devices, parts are connected to the secondary side of power supply for use. In a low-voltage, low-current thermostat, a so-called bimetal element that is provided separately from other components before assembly and that performs deformation or snap operation by detecting temperature is a thin film such as vacuum deposition or sputtering. A thermostat, which is a multilayer thin film 3 formed by using a deposition means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5361796A JPH09213183A (en) | 1996-02-05 | 1996-02-05 | Small-size thermostat |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5361796A JPH09213183A (en) | 1996-02-05 | 1996-02-05 | Small-size thermostat |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09213183A true JPH09213183A (en) | 1997-08-15 |
Family
ID=12947876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5361796A Pending JPH09213183A (en) | 1996-02-05 | 1996-02-05 | Small-size thermostat |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09213183A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001080315A3 (en) * | 2000-04-12 | 2002-03-28 | Formfactor Inc | Shaped springs and methods of fabricating and using shaped springs |
US6640432B1 (en) | 2000-04-12 | 2003-11-04 | Formfactor, Inc. | Method of fabricating shaped springs |
US6827584B2 (en) | 1999-12-28 | 2004-12-07 | Formfactor, Inc. | Interconnect for microelectronic structures with enhanced spring characteristics |
US7356913B2 (en) | 1997-12-16 | 2008-04-15 | Commissariat A L'energie Atomique | Process for manufacturing a microsystem |
US7458816B1 (en) | 2000-04-12 | 2008-12-02 | Formfactor, Inc. | Shaped spring |
-
1996
- 1996-02-05 JP JP5361796A patent/JPH09213183A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7356913B2 (en) | 1997-12-16 | 2008-04-15 | Commissariat A L'energie Atomique | Process for manufacturing a microsystem |
US6827584B2 (en) | 1999-12-28 | 2004-12-07 | Formfactor, Inc. | Interconnect for microelectronic structures with enhanced spring characteristics |
US7048548B2 (en) | 1999-12-28 | 2006-05-23 | Formfactor, Inc. | Interconnect for microelectronic structures with enhanced spring characteristics |
US7325302B2 (en) | 1999-12-28 | 2008-02-05 | Formfactor, Inc. | Method of forming an interconnection element |
WO2001080315A3 (en) * | 2000-04-12 | 2002-03-28 | Formfactor Inc | Shaped springs and methods of fabricating and using shaped springs |
JP2003531495A (en) * | 2000-04-12 | 2003-10-21 | フォームファクター,インコーポレイテッド | Molded spring and method of making and using the same |
US6640432B1 (en) | 2000-04-12 | 2003-11-04 | Formfactor, Inc. | Method of fabricating shaped springs |
US7127811B2 (en) | 2000-04-12 | 2006-10-31 | Formfactor, Inc. | Methods of fabricating and using shaped springs |
KR100801353B1 (en) * | 2000-04-12 | 2008-02-05 | 폼팩터, 인크. | How to make and use molding springs |
KR100835027B1 (en) * | 2000-04-12 | 2008-06-03 | 폼팩터, 인크. | Method of fabricating shaped springs |
US7458816B1 (en) | 2000-04-12 | 2008-12-02 | Formfactor, Inc. | Shaped spring |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7075403B2 (en) | Motor protector particularly useful with hermetic electromotive compressors | |
US6603238B2 (en) | Micro-relay and method for manufacturing the same | |
JP6251037B2 (en) | Breaker, safety circuit including the same, and secondary battery pack | |
US6496351B2 (en) | MEMS device members having portions that contact a substrate and associated methods of operating | |
JPH10321102A (en) | Magnetic microswitch and manufacture thereof | |
US5268664A (en) | Low profile thermostat | |
JPH09213183A (en) | Small-size thermostat | |
JPH01159924A (en) | Thermal contact breaker | |
US6765300B1 (en) | Micro-relay | |
JP2013110032A (en) | Breaker and safety circuit including the same and secondary battery pack | |
US20210375568A1 (en) | Current breaker, safety circuit and secondary battery pack | |
US6822175B2 (en) | Liquid conductor switch device | |
EP1580779B1 (en) | Composite contact, vacuum switch and method for manufacturing composite contact | |
JP6204721B2 (en) | Breaker, safety circuit including the same, and secondary battery circuit | |
JPH02265140A (en) | Method of making thermostat switch in narrow operation temperature range | |
JP2001052580A (en) | Thermally-actuated switch | |
US4539620A (en) | Ceramic capacitor | |
JP2017016749A (en) | Breaker and safety circuit including the same | |
JP2001118479A (en) | Current breaker | |
CN100411076C (en) | Electrical contact device | |
JP2920996B2 (en) | Electromagnetic relay | |
JPH0714483A (en) | Micro bi-metal relay and its manufacture | |
JP2001057138A (en) | Thermally actuated switch | |
JP3368303B2 (en) | Micro relay | |
JP7280848B2 (en) | Breaker, safety circuit and secondary battery pack |