JPH0920943A - Copper alloy for electronic and electrical parts and its production - Google Patents
Copper alloy for electronic and electrical parts and its productionInfo
- Publication number
- JPH0920943A JPH0920943A JP16597895A JP16597895A JPH0920943A JP H0920943 A JPH0920943 A JP H0920943A JP 16597895 A JP16597895 A JP 16597895A JP 16597895 A JP16597895 A JP 16597895A JP H0920943 A JPH0920943 A JP H0920943A
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- electronic
- electrical parts
- compound
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 150000001875 compounds Chemical class 0.000 claims abstract description 26
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 17
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 15
- 238000005096 rolling process Methods 0.000 claims abstract description 14
- 238000000137 annealing Methods 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 12
- 239000010949 copper Substances 0.000 claims abstract description 12
- 238000005097 cold rolling Methods 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 230000032683 aging Effects 0.000 claims abstract description 9
- 238000005098 hot rolling Methods 0.000 claims abstract description 9
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 8
- 239000000956 alloy Substances 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 abstract description 7
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 239000013078 crystal Substances 0.000 description 20
- 238000005452 bending Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 6
- 238000005336 cracking Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 229910020711 Co—Si Inorganic materials 0.000 description 3
- 229910017985 Cu—Zr Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018098 Ni-Si Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- 229910018529 Ni—Si Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910017876 Cu—Ni—Si Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229910021484 silicon-nickel alloy Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、曲げ加工性に優れ、高
強度、高導電性の電子電気部品用銅合金およびその製造
方法に関するものであり、特に小型、高密度化されたリ
ードフレーム、端子およびコネクター等に適した銅合金
およびその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy having excellent bending workability, high strength and high conductivity for electronic and electrical parts and a method for producing the same, and particularly to a lead frame having a small size and a high density. The present invention relates to a copper alloy suitable for terminals, connectors, etc. and a method for manufacturing the same.
【0002】[0002]
【従来の技術】電子電気部品に用いられる端子やコネク
ターは、電子電気機器等の小型化、軽量化にともない、
高強度、高導電性のものが望まれている。これらの要求
を満足すべく、Cu−Ni−Si系合金が使用されるよ
うになった。また、リード強度の向上が図られたため、
集積度の高い回路のリードフレーム材に銅合金を使用す
ることができるようになった。2. Description of the Related Art Terminals and connectors used in electronic and electrical parts are becoming smaller and lighter as electronic and electrical equipments are becoming smaller.
High strength and high conductivity are desired. In order to satisfy these requirements, Cu-Ni-Si alloys have come to be used. Also, because the lead strength was improved,
Copper alloys can now be used in lead frame materials for highly integrated circuits.
【0003】[0003]
【発明が解決しようとする課題】しかし、従来のCu−
Ni−Si系合金は時効処理の段階で最高強度を示すよ
うな条件で熱処理を行うと、端子、コネクターあるいは
リードフレーム等に成形時或いは成形後に曲げ加工を行
うと、粒界割れや金属組織的なシャーバンドの発生によ
り、曲げ割れが生じてしまうため、過時効となる時効条
件で熱処理する必要があった。そのため、小型端子用、
コネクター用、高集積化に対応したリードフレーム用の
材料として、性能は十分ではなかった。However, the conventional Cu-
Ni-Si alloys, when heat-treated under conditions that show the highest strength during the aging treatment, will undergo grain boundary cracking and / or metallographic cracking when terminals, connectors, lead frames, etc. are bent during or after molding. Since bending cracks occur due to the occurrence of such shear bands, it was necessary to perform heat treatment under aging conditions that would cause overaging. Therefore, for small terminals,
The performance was not sufficient as a material for connectors and lead frames for high integration.
【0004】[0004]
【問題を解決するための手段】本発明は、これに鑑み種
々検討の結果、曲げ加工性に優れ、かつ、高強度、高導
電性の電子電気部品用銅合金およびその製造方法を開発
したものである。As a result of various studies in view of the above, the present invention has developed a copper alloy for electronic and electrical parts which has excellent bending workability, high strength and high conductivity, and a method for producing the same. Is.
【0005】即ち、本発明の請求項1は、Co:0.1
〜3.0wt%、Si:0.3〜1.0wt%、Zn:
0.3〜1.0wt%、Mn:0.005〜0.1wt
%、P:0.005〜0.1wt%を含有し、残部が銅
および不可避的不純物からなる銅合金において、母相中
にCoとSiの化合物およびCoとPの化合物が存在
し、かつ母相の平均結晶粒度が20μm以下で、圧延方
向に対する板厚方向のアスペクト比が1〜3であること
を特徴とする電子電気部品用銅合金である。That is, claim 1 of the present invention provides Co: 0.1
~ 3.0 wt%, Si: 0.3-1.0 wt%, Zn:
0.3-1.0 wt%, Mn: 0.005-0.1 wt
%, P: 0.005 to 0.1 wt%, the balance being copper and unavoidable impurities, in a copper alloy, a compound of Co and Si and a compound of Co and P are present in the mother phase, and The copper alloy for electronic and electrical parts is characterized in that the average grain size of the phase is 20 μm or less and the aspect ratio in the plate thickness direction with respect to the rolling direction is 1 to 3.
【0006】また、本発明の請求項2は、Co:0.1
〜3.0wt%、Ni:1.5〜3.0wt%、かつC
o+Ni≦4.5であり、Si:0.3〜1.0wt
%、Zn:0.3〜1.0wt%、Mn:0.005〜
0.1wt%、P:0.005〜0.1wt%を含有
し、残部が銅および不可避的不純物からなる銅合金にお
いて、母相中にNiとCoとSiの化合物およびCoと
P、NiとPの化合物が存在し、かつ母相の平均結晶粒
度が20μm以下で、圧延方向に対する板厚方向のアス
ペクト比が1〜3であることを特徴とする電子電気部品
用銅合金である。According to claim 2 of the present invention, Co: 0.1
~ 3.0 wt%, Ni: 1.5-3.0 wt%, and C
o + Ni ≦ 4.5, Si: 0.3 to 1.0 wt
%, Zn: 0.3-1.0 wt%, Mn: 0.005-
In a copper alloy containing 0.1 wt% and P: 0.005 to 0.1 wt% and the balance being copper and inevitable impurities, a compound of Ni, Co and Si, Co, P and Ni in the matrix phase. A copper alloy for electronic and electrical parts, characterized in that a compound of P is present, the average grain size of the mother phase is 20 μm or less, and the aspect ratio in the plate thickness direction with respect to the rolling direction is 1 to 3.
【0007】また、本発明の請求項3は、Co:0.1
〜3.0wt%、Ni:1.5〜3.0wt%、かつC
o+Ni≦4.5であり、Si:0.3〜1.0wt
%、Zn:0.3〜1.0wt%、Mn:0.005〜
0.1wt%、Zr:0.05〜0.3wt%を含有
し、残部が銅および不可避的不純物からなる銅合金にお
いて、母相中にNiとCoとSiの化合物およびCuと
Zrの化合物が存在し、かつ母相の平均結晶粒度が20
μm以下で、圧延方向に対する板厚方向のアスペクト比
が1〜3であることを特徴とする電子電気部品用銅合金
である。According to claim 3 of the present invention, Co: 0.1
~ 3.0 wt%, Ni: 1.5-3.0 wt%, and C
o + Ni ≦ 4.5, Si: 0.3 to 1.0 wt
%, Zn: 0.3-1.0 wt%, Mn: 0.005-
In a copper alloy containing 0.1 wt% and Zr: 0.05 to 0.3 wt% and the balance copper and unavoidable impurities, in the parent phase, a compound of Ni, Co and Si and a compound of Cu and Zr are contained. Is present and the average grain size of the matrix is 20
A copper alloy for electronic and electrical parts, characterized in that the aspect ratio in the plate thickness direction with respect to the rolling direction is 1 to 3 μm.
【0008】また、本発明の請求項4は、Ni:1.5
〜3.0wt%、Si:0.3〜1.0wt%、Zn:
0.3〜1.0wt%、Mn:0.005〜0.1wt
%、Zr:0.05〜0.3wt%、を含有し、残部が
銅および不可避的不純物からなる銅合金において、母相
中にNiとSiの化合物およびCuとZrの化合物が存
在し、かつ母相の平均結晶粒度が20μm以下で、圧延
方向に対する板厚方向のアスペクト比が1〜3であるこ
とを特徴とする電子電気部品用銅合金である。According to claim 4 of the present invention, Ni: 1.5
~ 3.0 wt%, Si: 0.3-1.0 wt%, Zn:
0.3-1.0 wt%, Mn: 0.005-0.1 wt
%, Zr: 0.05 to 0.3 wt%, with the balance being copper and unavoidable impurities, a Ni-Si compound and a Cu-Zr compound are present in the mother phase, and The copper alloy for electronic and electrical parts is characterized in that the average grain size of the mother phase is 20 μm or less, and the aspect ratio in the plate thickness direction with respect to the rolling direction is 1 to 3.
【0009】また、本発明の請求項5は、熱間圧延後、
85%以上の冷間圧延を施し、450〜480℃で5〜
30分間焼鈍後、30%以下の冷間圧延を施し、更に4
50〜500℃で30〜120分間時効処理を行うこと
を特徴とする請求項1〜4記載の電子電気部品用銅合金
の製造方法である。According to claim 5 of the present invention, after hot rolling,
Cold rolling of 85% or more is performed at 450 to 480 ° C. for 5 to 5.
After annealing for 30 minutes, 30% or less cold rolling is performed, and further 4
The aging treatment is performed at 50 to 500 ° C. for 30 to 120 minutes, and the method for producing a copper alloy for electronic and electric parts according to claim 1.
【0010】[0010]
【作用】次に本発明合金における成分元素の添加理由
と、その組成範囲の限定理由について説明する。Co、
Si、PおよびZrの添加は、加熱処理によりCo−S
i化合物およびCo−PまたはCu−Zr化合物を析出
させるためである。Co−Si化合物は、結晶粒の成長
を抑える効果があり、Co−PまたはCu−Zr化合物
は、結晶粒の成長を抑える効果に加えて強度を向上させ
る効果があるためである。いずれの元素もその組成範囲
未満では上記効果を示さず、またその組成範囲を超える
添加では鋳造時に晶出相を生成して鋳造割れの原因とな
るため好ましくない。Next, the reason for adding the constituent elements in the alloy of the present invention and the reason for limiting the composition range will be explained. Co,
The addition of Si, P and Zr is carried out by heat treatment of Co-S.
This is for precipitating the i compound and the Co-P or Cu-Zr compound. This is because the Co-Si compound has an effect of suppressing the growth of crystal grains, and the Co-P or Cu-Zr compound has an effect of improving the strength in addition to the effect of suppressing the growth of the crystal grains. Any of the elements does not exhibit the above effect if the content is less than the composition range, and addition of more than the composition range is not preferable because it causes a crystallization phase during casting and causes casting cracks.
【0011】Znの添加は、半田付け後の環境劣化を防
止するためである。しかしてZn含有量を0.3〜1.
0wt%としたのは、0.3wt%未満ではその効果が
十分に得られず、1.0wt%を超えると導電率が低下
するからである。Mnの添加は、不純物として存在する
硫黄をトラップし、脆化割れの発生を防止するためであ
る。しかして、Mn含有量を0.005〜0.1wt%
としたのは、0.005wt%未満ではその効果が得ら
れず、0.1wt%を超えると導電率が低下するからで
ある。The addition of Zn is to prevent environmental deterioration after soldering. Therefore, the Zn content is 0.3 to 1.
The reason why the content is 0 wt% is that the effect is not sufficiently obtained when the content is less than 0.3 wt%, and the conductivity decreases when the content exceeds 1.0 wt%. The addition of Mn is to trap sulfur existing as impurities and prevent the occurrence of embrittlement cracking. Therefore, the Mn content is 0.005-0.1 wt%
The reason is that the effect is not obtained when the content is less than 0.005 wt% and the conductivity decreases when the content exceeds 0.1 wt%.
【0012】NiはCoとともにNi−Co−Si化合
物を形成し、また、Ni−PまたはNi−Si化合物を
形成し、さらに強度を向上させることができるが、1.
5wt%未満では金属間化合物の生成が少なくて、強度
の向上が少なく、3.0wt%を超えると加工性が劣化
するとともに、導電率が低下する。なお、Co+Ni≦
4.5とした理由は、Co+Niが4.5を越えると熱
間圧延性に劣るためである。Ni forms a Ni-Co-Si compound together with Co, and also a Ni-P or Ni-Si compound, which can further improve the strength.
If it is less than 5 wt%, the formation of intermetallic compounds is small and the improvement in strength is small, and if it exceeds 3.0 wt%, the workability is deteriorated and the conductivity is lowered. Note that Co + Ni ≦
The reason why it is set to 4.5 is that if Co + Ni exceeds 4.5, the hot rolling property is poor.
【0013】なお、本発明の銅合金の酸素含有量は、5
〜100ppm程度であることが望ましい。この理由
は、過剰の酸素分が製造加工を困難にするばかりか、強
度、成形加工性、メッキ性、半田付け性等の特性を劣化
するためである。また、さらに望ましい酸素含有量は5
〜10ppmである。The oxygen content of the copper alloy of the present invention is 5
It is desirable that the concentration is about 100 ppm. The reason for this is that the excessive oxygen content not only makes the manufacturing process difficult, but also deteriorates the properties such as strength, moldability, plating property, and solderability. Further, the more desirable oxygen content is 5
-10 ppm.
【0014】結晶粒度を20μm以下に限定した理由
は、結晶粒度が20μmよりも大きいと、曲げ加工の際
に、変形中に導入される転位が粒界にパイルアップして
セルを形成し、割れの起点になりやすいからである。ま
た、析出物の大きさは、100nm以下が望ましく、5
〜50nmがより望ましいがこれに限定されない。The reason why the grain size is limited to 20 μm or less is that when the grain size is larger than 20 μm, dislocations introduced during deformation pile up to the grain boundaries during bending, forming cells and cracking. This is because it is easy to start from. The size of the precipitate is preferably 100 nm or less, and 5
˜50 nm is more desirable, but not limited to this.
【0015】本発明で規定しているアスペクト比とは、
(圧延方向の結晶粒の長さ)/(板厚方向の結晶粒の長
さ)から求められる数値であり、この数値が大きければ
大きい程、結晶粒が圧延方向に長く伸びていることにな
る。本発明においてこのアスペクト比を1〜3に限定し
た理由は、アスペクト比が3を越えると変形中にそれぞ
れの結晶方位の回転が起こり難くなるため、転位のセル
が粒界の一部に集中して存在するようになり、粒界破壊
が生じ、また、結晶粒内でのシャーバンドの形成が起こ
り易くなり、粒内破壊が生じ、曲げ加工性が劣化するた
めである。The aspect ratio specified in the present invention is
It is a numerical value obtained from (length of crystal grain in rolling direction) / (length of crystal grain in plate thickness direction). The larger this value is, the longer the crystal grain extends in the rolling direction. . In the present invention, the reason why the aspect ratio is limited to 1 to 3 is that when the aspect ratio exceeds 3, rotation of each crystal orientation is less likely to occur during deformation, so dislocation cells are concentrated in a part of grain boundaries. This is because grain boundaries are broken and shear bands are easily formed in the crystal grains, and intergranular fracture is caused and bending workability is deteriorated.
【0016】本願の製造方法において、熱間圧延後、8
5%以上の加工率で冷間圧延した後、450〜480℃
で5〜30分間焼鈍する理由は、熱間圧延後の冷間加工
および焼鈍によって、再結晶とCo−PもしくはNi−
P化合物の析出を同時に進行させるためである。しかし
て加工率を85%以上に限定した理由は、85%未満の
加工率では、再結晶核の発生頻度が低くくなり結晶粒が
微細にならないためである。また焼鈍条件を450〜4
80℃で5〜30分間の範囲内に限定した理由は、焼鈍
温度が480℃を超えると急速に再結晶が進み、Co−
PもしくはNi−P化合物の析出が同時に進行せず、結
晶粒が粗大になってしまうためである。焼鈍時間が30
分を超えると、やはり結晶粒が粗大化するためである。
また、焼鈍温度が450℃未満あるいは焼鈍時間が5分
未満であると、再結晶が十分に起きなく、結晶粒が微細
化しないためである。In the manufacturing method of the present application, after hot rolling, 8
After cold rolling at a working rate of 5% or more, 450-480 ° C
The reason for annealing for 5 to 30 minutes is to perform recrystallization and Co-P or Ni- by cold working and annealing after hot rolling.
This is because the precipitation of the P compound proceeds at the same time. However, the reason why the working rate is limited to 85% or more is that at a working rate of less than 85%, the frequency of occurrence of recrystallization nuclei becomes low and the crystal grains do not become fine. Moreover, the annealing condition is set to 450 to 4
The reason for limiting the temperature to 80 ° C. for 5 to 30 minutes is that when the annealing temperature exceeds 480 ° C., recrystallization proceeds rapidly and Co−
This is because the precipitation of P or Ni-P compound does not proceed at the same time and the crystal grains become coarse. Annealing time 30
This is because when the amount exceeds the limit, the crystal grains become coarser.
Further, if the annealing temperature is less than 450 ° C. or the annealing time is less than 5 minutes, recrystallization does not occur sufficiently and the crystal grains do not become fine.
【0017】焼鈍後の冷間圧延率を30%以下とした理
由は、圧延率が30%を超えると、結晶粒が圧延方向に
伸びてアスペクト比が高くなるか、または時効処理の際
に再結晶が起こり微結晶状態を得ることができず、曲げ
加工性が悪くなからである。The reason why the cold rolling rate after annealing is set to 30% or less is that when the rolling rate exceeds 30%, the crystal grains extend in the rolling direction to increase the aspect ratio, or when the aging treatment is repeated. This is because crystals occur and a microcrystalline state cannot be obtained, and bending workability deteriorates.
【0018】さらに450〜500℃で30〜120分
間時効処理を行う理由は、強度を向上させるCo−Si
化合物および/またはNi−Co−Si化合物を十分に
析出させるためであり、500℃を超え、あるいは12
0分を超えると析出相が粗大化するため十分な強度が得
られず、また450℃未満、あるいは30分未満である
と析出相の生成量が不十分であり、電子電気部品として
要求される強度および導電率が得られないからである。The reason why the aging treatment is further carried out at 450 to 500 ° C. for 30 to 120 minutes is that Co--Si which improves the strength.
This is for sufficiently precipitating the compound and / or the Ni-Co-Si compound, and the temperature exceeds 500 ° C, or 12
If it exceeds 0 minutes, the precipitated phase becomes coarse, so that sufficient strength cannot be obtained, and if it is less than 450 ° C. or less than 30 minutes, the amount of the generated precipitation phase is insufficient, which is required as an electronic / electrical component. This is because strength and conductivity cannot be obtained.
【0019】[0019]
【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.
【0020】(実施例1)表1に示すような組成の鋳塊
No.a〜mを誘導溶解炉を用いて溶解し、厚さ20m
m、幅150mm、長さ300mmの試料を鋳造した。
しかる後上記試料を980℃に加熱して3h保持した
後、厚さ10mm、又は3mmに熱間圧延した。熱間圧
延後、両面面削もしくは酸洗バブ研磨を行い、それぞ
れ、厚さ8mm、又は2mmとした。次に、それぞれの
試料に対して表2に示す本発明方法Aの製造条件によ
り、冷間圧延、焼鈍処理、冷間圧延、時効処理の各処理
を施した。Example 1 Ingots No. a to m having the composition shown in Table 1 were melted in an induction melting furnace to have a thickness of 20 m.
A sample having m, a width of 150 mm and a length of 300 mm was cast.
Then, the sample was heated to 980 ° C. and held for 3 hours, and then hot-rolled to a thickness of 10 mm or 3 mm. After hot rolling, double-sided surface grinding or pickling bubbling was performed to obtain a thickness of 8 mm or 2 mm, respectively. Next, each sample was subjected to cold rolling, annealing treatment, cold rolling, and aging treatment under the manufacturing conditions of the method A of the present invention shown in Table 2.
【0021】この様にして得られた試料について、引張
試験、導電率測定、V字曲げ試験、透過型電子顕微鏡に
よる結晶粒度測定および形状調査をおこなった。なお、
平均結晶粒径は、圧延方向の結晶粒の長さと板厚方向の
結晶粒の長さの平均値である。その結果を表3に示す。
なお、Co、Ni、Si、Zn、Mn、P、Zrの内い
ずれかが本願の範囲内よりも多い比較合金j〜mを用い
た試料(比較例10〜13)はいずれも鋳造過程あるい
は熱間圧延過程で割れを生じたため、それ以降の処理は
行わなかった。The samples thus obtained were subjected to a tensile test, a conductivity measurement, a V-shaped bending test, a crystal grain size measurement by a transmission electron microscope, and a shape investigation. In addition,
The average crystal grain size is the average value of the length of crystal grains in the rolling direction and the length of crystal grains in the plate thickness direction. Table 3 shows the results.
The samples (Comparative Examples 10 to 13) using the comparative alloys j to m in which any one of Co, Ni, Si, Zn, Mn, P, and Zr is larger than the range of the present invention (Comparative Examples 10 to 13) are all in the casting process or the heat treatment. No further treatment was performed because cracking occurred during the hot rolling process.
【0022】[0022]
【表1】 [Table 1]
【0023】[0023]
【表2】 [Table 2]
【0024】[0024]
【表3】 [Table 3]
【0025】表3から明らかなように、本発明の組成範
囲内の合金(鋳塊No.a〜f)を用い、本発明の製造方
法によって製造された本発明例No. 1〜6は、いずれも
結晶粒度が20μm以下で、アスペクト比が3以下で、
請求項1〜4の限定条件を満足している。しかして、上
記合金は曲げ性の指標であるr/t(Vブロックの曲げ
半径/板厚)が0.4以下と良好な値を示し、しかも8
00N/mm2 以上の引張強さ、および45%IACS 以上の高
い導電率が得られる。それに対し製造方法は本発明の範
囲内であるが、合金組成が請求範囲から外れた比較例7
〜9は、引張強さ、0.2%耐力が低下し、結晶粒の粗大化
が起こって(請求項1〜4の発明の範囲外となり)、曲
げ性に劣っている。As is apparent from Table 3, the invention examples Nos. 1 to 6 produced by the production method of the present invention using the alloys (ingots No. a to f) within the composition range of the present invention, All have a grain size of 20 μm or less and an aspect ratio of 3 or less,
The limiting conditions of claims 1 to 4 are satisfied. However, the above alloy shows a good value of r / t (bending radius of V block / plate thickness), which is an index of bendability, of 0.4 or less, and 8
A tensile strength of 00 N / mm 2 or more and a high conductivity of 45% IACS or more can be obtained. On the other hand, the manufacturing method is within the scope of the present invention, but the alloy composition is out of the claimed range.
Nos. 9 to 9 have poor tensile strength and 0.2% proof stress, and coarsening of crystal grains (outside the scope of the invention of claims 1 to 4), resulting in poor bendability.
【0026】(実施例2)表1に示す鋳塊のうち鋳塊N
o.aを用いて、実施例1と同様の条件で溶解、鋳造、加
熱処理、熱間圧延、両面面削、酸洗バブ研磨を行い、表
2に示す各条件(A〜M)の各処理を施した。Example 2 Of the ingots shown in Table 1, ingot N
Using o.a, melting, casting, heat treatment, hot rolling, double-sided surface grinding, pickling bubbling were performed under the same conditions as in Example 1, and each of the conditions (AM) shown in Table 2 was used. Treated.
【0027】処理を施した試料について、引張試験、導
電率測定、V字曲げ試験、透過型電子顕微鏡による結晶
粒度測定および形状調査をおこなった。その結果を表4
に示す。The treated sample was subjected to a tensile test, a conductivity measurement, a V-shaped bending test, a crystal grain size measurement by a transmission electron microscope, and a shape investigation. Table 4 shows the results.
Shown in
【0028】[0028]
【表4】 [Table 4]
【0029】表4から明らかなように、本発明方法によ
るもの(本発明例14〜16)は結晶粒度が20μm以
下で、アスペクト比が3以下で、請求項1〜4の限定条
件を満足している。しかして上記本発明例は、曲げ性の
指標であるr/t(Vブロックの曲げ半径/板厚)が
0.4以下と良好な値を示し、しかも800N/mm2 以上
の引張強さ、および45%IACS 以上の高い導電率が得ら
れる。それに対し製造条件が請求範囲から外れたもの
(比較例17〜26)は、結晶粒、アスペクト比が本発
明の範囲外であり、曲げ性が劣っており、引張強さ、耐
力、導電率も本発明例よりも劣っている。As is apparent from Table 4, the particles obtained by the method of the present invention (Examples 14 to 16 of the present invention) have a grain size of 20 μm or less and an aspect ratio of 3 or less, and satisfy the limiting conditions of claims 1 to 4. ing. However, in the above-mentioned present invention example, r / t (bending radius of V block / plate thickness), which is an index of bendability, shows a good value of 0.4 or less, and further, tensile strength of 800 N / mm 2 or more, And high conductivity of 45% IACS or more is obtained. On the other hand, when the manufacturing conditions were out of the claimed range (Comparative Examples 17 to 26), the crystal grains and the aspect ratio were out of the range of the present invention, the bendability was poor, and the tensile strength, proof stress, and conductivity were also It is inferior to the inventive examples.
【0030】[0030]
【発明の効果】以上詳述したように本発明によれば、強
度、導電率の両者に優れ、しかも電子電気部品用材料と
して非常に重要な特性である曲げ加工性に優れた銅合金
を得ることができ、高集積化または小型化が図られてい
る電子電気部品用材料に十分に対応できる電子電気部品
用銅合金を提供できる。As described in detail above, according to the present invention, a copper alloy excellent in both strength and conductivity and excellent in bendability, which is a very important property as a material for electronic and electrical parts, is obtained. It is possible to provide a copper alloy for electronic / electrical components, which can sufficiently correspond to a material for electronic / electrical components that is highly integrated or miniaturized.
Claims (5)
3〜1.0wt%、Zn:0.3〜1.0wt%、M
n:0.005〜0.1wt%、P:0.005〜0.
1wt%を含有し、残部が銅および不可避的不純物から
なる銅合金において、母相中にCoとSiの化合物およ
びCoとPの化合物が存在し、かつ母相の平均結晶粒度
が20μm以下で、圧延方向に対する板厚方向のアスペ
クト比が1〜3であることを特徴とする電子電気部品用
銅合金。1. Co: 0.1-3.0 wt%, Si: 0.
3 to 1.0 wt%, Zn: 0.3 to 1.0 wt%, M
n: 0.005 to 0.1 wt%, P: 0.005 to 0.
In a copper alloy containing 1 wt% and the balance consisting of copper and unavoidable impurities, a compound of Co and Si and a compound of Co and P are present in the mother phase, and the average grain size of the mother phase is 20 μm or less, A copper alloy for electronic and electrical parts, which has an aspect ratio of 1 to 3 in the plate thickness direction with respect to the rolling direction.
5〜3.0wt%、かつCo+Ni≦4.5であり、S
i:0.3〜1.0wt%、Zn:0.3〜1.0wt
%、Mn:0.005〜0.1wt%、P:0.005
〜0.1wt%を含有し、残部が銅および不可避的不純
物からなる銅合金において、母相中にNiとCoとSi
の化合物およびCoとP、NiとPの化合物が存在し、
かつ母相の平均結晶粒度が20μm以下で、圧延方向に
対する板厚方向のアスペクト比が1〜3であることを特
徴とする電子電気部品用銅合金。2. Co: 0.1 to 3.0 wt%, Ni: 1.
5 to 3.0 wt% and Co + Ni ≦ 4.5, S
i: 0.3-1.0 wt%, Zn: 0.3-1.0 wt
%, Mn: 0.005-0.1 wt%, P: 0.005
In a copper alloy containing 0.1 to 0.1 wt% and the balance copper and unavoidable impurities, Ni, Co and Si are contained in the matrix.
And a compound of Co and P, a compound of Ni and P,
And the average grain size of the matrix is 20 μm or less, and the aspect ratio in the plate thickness direction with respect to the rolling direction is 1 to 3, a copper alloy for electronic and electrical parts.
5〜3.0wt%、かつCo+Ni≦4.5であり、S
i:0.3〜1.0wt%、Zn:0.3〜1.0wt
%、Mn:0.005〜0.1wt%、Zr:0.05
〜0.3wt%を含有し、残部が銅および不可避的不純
物からなる銅合金において、母相中にNiとCoとSi
の化合物およびCuとZrの化合物が存在し、かつ母相
の平均結晶粒度が20μm以下で、圧延方向に対する板
厚方向のアスペクト比が1〜3であることを特徴とする
電子電気部品用銅合金。3. Co: 0.1 to 3.0 wt%, Ni: 1.
5 to 3.0 wt% and Co + Ni ≦ 4.5, S
i: 0.3-1.0 wt%, Zn: 0.3-1.0 wt
%, Mn: 0.005-0.1 wt%, Zr: 0.05
In a copper alloy containing 0.3 to 0.3 wt% and the balance copper and unavoidable impurities, Ni, Co and Si are contained in the matrix.
Alloy of Cu and Zr and the average grain size of the parent phase is 20 μm or less, and the aspect ratio in the plate thickness direction with respect to the rolling direction is 1 to 3; .
3〜1.0wt%、Zn:0.3〜1.0wt%、M
n:0.005〜0.1wt%、Zr:0.05〜0.
3wt%、を含有し、残部が銅および不可避的不純物か
らなる銅合金において、母相中にNiとSiの化合物お
よびCuとZrの化合物が存在し、かつ母相の平均結晶
粒度が20μm以下で、圧延方向に対する板厚方向のア
スペクト比が1〜3であることを特徴とする電子電気部
品用銅合金。4. Ni: 1.5 to 3.0 wt%, Si: 0.
3 to 1.0 wt%, Zn: 0.3 to 1.0 wt%, M
n: 0.005-0.1 wt%, Zr: 0.05-0.
In a copper alloy containing 3 wt% and the balance being copper and inevitable impurities, a compound of Ni and Si and a compound of Cu and Zr are present in the matrix, and the average grain size of the matrix is 20 μm or less. A copper alloy for electronic and electrical parts, which has an aspect ratio of 1 to 3 in the plate thickness direction with respect to the rolling direction.
し、450〜480℃で5〜30分間焼鈍後、30%以
下の冷間圧延を施し、更に450〜500℃で30〜1
20分間時効処理を行うことを特徴とする請求項1〜4
記載の電子電気部品用銅合金の製造方法。5. Hot rolling, cold rolling at 85% or more, annealing at 450 to 480 ° C. for 5 to 30 minutes, cold rolling at 30% or less, and further 30 to 450 to 500 ° C. 1
The aging treatment is performed for 20 minutes, and the aging treatment is performed.
A method for producing a copper alloy for electronic and electrical parts as described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16597895A JP3408021B2 (en) | 1995-06-30 | 1995-06-30 | Copper alloy for electronic and electric parts and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16597895A JP3408021B2 (en) | 1995-06-30 | 1995-06-30 | Copper alloy for electronic and electric parts and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0920943A true JPH0920943A (en) | 1997-01-21 |
JP3408021B2 JP3408021B2 (en) | 2003-05-19 |
Family
ID=15822616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16597895A Expired - Fee Related JP3408021B2 (en) | 1995-06-30 | 1995-06-30 | Copper alloy for electronic and electric parts and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3408021B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6506269B2 (en) * | 1999-01-15 | 2003-01-14 | Industrial Technology Research Institute | High-strength and high-conductivity Cu-(Ni, Co, Fe)-Si copper alloy for use in leadframes and method of making the same |
WO2004005560A3 (en) * | 2002-07-05 | 2004-06-17 | Olin Corp | Copper alloy containing cobalt, nickel, and silicon |
JP2008056977A (en) * | 2006-08-30 | 2008-03-13 | Mitsubishi Electric Corp | Copper alloy and its production method |
JP2009007666A (en) * | 2007-05-31 | 2009-01-15 | Furukawa Electric Co Ltd:The | Copper alloy for electrical and electronic equipment |
WO2009099198A1 (en) * | 2008-02-08 | 2009-08-13 | The Furukawa Electric Co., Ltd. | Copper alloy material for electric and electronic components |
WO2010013790A1 (en) * | 2008-07-31 | 2010-02-04 | 古河電気工業株式会社 | Copper alloy material for electrical and electronic components, and manufacturing method therefor |
EP2194151A1 (en) * | 2007-09-28 | 2010-06-09 | Nippon Mining & Metals Co., Ltd. | Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy |
EP2219193A1 (en) * | 2007-11-01 | 2010-08-18 | The Furukawa Electric Co., Ltd. | Conductor material for electronic device and electric wire for wiring using the same |
WO2010113553A1 (en) | 2009-03-31 | 2010-10-07 | 日鉱金属株式会社 | Cu-co-si copper alloy for use in electronics, and manufacturing method therefor |
EP2248921A1 (en) * | 2008-01-31 | 2010-11-10 | The Furukawa Electric Co., Ltd. | Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material |
JP2011017070A (en) * | 2009-07-10 | 2011-01-27 | Furukawa Electric Co Ltd:The | Copper alloy material for electric and electronic component |
WO2011036804A1 (en) | 2009-09-28 | 2011-03-31 | Jx日鉱日石金属株式会社 | Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME |
EP2333127A1 (en) * | 2008-08-05 | 2011-06-15 | The Furukawa Electric Co., Ltd. | Copper alloy material for electrical/electronic component |
EP2333128A1 (en) * | 2008-08-05 | 2011-06-15 | The Furukawa Electric Co., Ltd. | Copper alloy material for electrical/electronic component |
WO2011129281A1 (en) | 2010-04-14 | 2011-10-20 | Jx日鉱日石金属株式会社 | Cu-si-co alloy for electronic materials, and method for producing same |
WO2012026488A1 (en) | 2010-08-24 | 2012-03-01 | Jx日鉱日石金属株式会社 | Copper-cobalt-silicon alloy for electrode material |
WO2012043170A1 (en) | 2010-09-29 | 2012-04-05 | Jx日鉱日石金属株式会社 | Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME |
US8287669B2 (en) * | 2007-05-31 | 2012-10-16 | The Furukawa Electric Co., Ltd. | Copper alloy for electric and electronic equipments |
US9460825B2 (en) | 2010-05-31 | 2016-10-04 | Jx Nippon Mining & Metals Corporation | Cu-Co-Si-based copper alloy for electronic materials, and method of manufacturing same |
-
1995
- 1995-06-30 JP JP16597895A patent/JP3408021B2/en not_active Expired - Fee Related
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6506269B2 (en) * | 1999-01-15 | 2003-01-14 | Industrial Technology Research Institute | High-strength and high-conductivity Cu-(Ni, Co, Fe)-Si copper alloy for use in leadframes and method of making the same |
US8430979B2 (en) | 2002-07-05 | 2013-04-30 | Gbc Metals, Llc | Copper alloy containing cobalt, nickel and silicon |
WO2004005560A3 (en) * | 2002-07-05 | 2004-06-17 | Olin Corp | Copper alloy containing cobalt, nickel, and silicon |
EP1520054A2 (en) * | 2002-07-05 | 2005-04-06 | olin Corporation | Copper alloy containing cobalt, nickel, and silicon |
US7182823B2 (en) | 2002-07-05 | 2007-02-27 | Olin Corporation | Copper alloy containing cobalt, nickel and silicon |
EP1520054A4 (en) * | 2002-07-05 | 2007-03-07 | Olin Corp | Copper alloy containing cobalt, nickel, and silicon |
US8257515B2 (en) | 2002-07-05 | 2012-09-04 | Gbc Metals, Llc | Copper alloy containing cobalt, nickel and silicon |
JP2008056977A (en) * | 2006-08-30 | 2008-03-13 | Mitsubishi Electric Corp | Copper alloy and its production method |
DE102007040822B4 (en) * | 2006-08-30 | 2013-08-14 | Mitsubishi Electric Corp. | Copper alloy and process for its production |
US8287669B2 (en) * | 2007-05-31 | 2012-10-16 | The Furukawa Electric Co., Ltd. | Copper alloy for electric and electronic equipments |
JP2009007666A (en) * | 2007-05-31 | 2009-01-15 | Furukawa Electric Co Ltd:The | Copper alloy for electrical and electronic equipment |
EP2194151A1 (en) * | 2007-09-28 | 2010-06-09 | Nippon Mining & Metals Co., Ltd. | Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy |
US8444779B2 (en) | 2007-09-28 | 2013-05-21 | JX Nippon Mining & Metals Co., Ltd. | Cu—Ni—Si—Co copper alloy for electronic materials and method for manufacturing same |
EP2194151A4 (en) * | 2007-09-28 | 2011-01-26 | Jx Nippon Mining & Metals Corp | CU-NI-SI-CO COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME |
EP2219193A1 (en) * | 2007-11-01 | 2010-08-18 | The Furukawa Electric Co., Ltd. | Conductor material for electronic device and electric wire for wiring using the same |
EP2219193A4 (en) * | 2007-11-01 | 2012-07-04 | Furukawa Electric Co Ltd | Conductor material for electronic device and electric wire for wiring using the same |
EP2248921A1 (en) * | 2008-01-31 | 2010-11-10 | The Furukawa Electric Co., Ltd. | Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material |
EP2248921A4 (en) * | 2008-01-31 | 2011-03-16 | Furukawa Electric Co Ltd | Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material |
WO2009099198A1 (en) * | 2008-02-08 | 2009-08-13 | The Furukawa Electric Co., Ltd. | Copper alloy material for electric and electronic components |
JP4974193B2 (en) * | 2008-02-08 | 2012-07-11 | 古河電気工業株式会社 | Copper alloy sheet for electrical and electronic parts |
WO2010013790A1 (en) * | 2008-07-31 | 2010-02-04 | 古河電気工業株式会社 | Copper alloy material for electrical and electronic components, and manufacturing method therefor |
EP2333127A1 (en) * | 2008-08-05 | 2011-06-15 | The Furukawa Electric Co., Ltd. | Copper alloy material for electrical/electronic component |
EP2333128A1 (en) * | 2008-08-05 | 2011-06-15 | The Furukawa Electric Co., Ltd. | Copper alloy material for electrical/electronic component |
EP2333128A4 (en) * | 2008-08-05 | 2012-07-04 | Furukawa Electric Co Ltd | Copper alloy material for electrical/electronic component |
EP2333127A4 (en) * | 2008-08-05 | 2012-07-04 | Furukawa Electric Co Ltd | Copper alloy material for electrical/electronic component |
US20110200480A1 (en) * | 2008-08-05 | 2011-08-18 | The Furukawa Electric Co., Ltd. | Copper alloy material for electric/electronic parts |
WO2010113553A1 (en) | 2009-03-31 | 2010-10-07 | 日鉱金属株式会社 | Cu-co-si copper alloy for use in electronics, and manufacturing method therefor |
EP2415887A1 (en) * | 2009-03-31 | 2012-02-08 | JX Nippon Mining & Metals Corporation | Cu-co-si copper alloy for use in electronics, and manufacturing method therefor |
CN102099499A (en) * | 2009-03-31 | 2011-06-15 | Jx日矿日石金属株式会社 | Cu-co-si copper alloy for use in electronics, and manufacturing method therefor |
JP2010236071A (en) * | 2009-03-31 | 2010-10-21 | Nippon Mining & Metals Co Ltd | Cu-Co-Si based copper alloy for electronic materials and method for producing the same |
EP2415887A4 (en) * | 2009-03-31 | 2013-06-05 | Jx Nippon Mining & Metals Corp | COPPER, COBALT, SILICON COPPER ALLOY FOR USE IN ELECTRONICS, AND METHOD FOR MANUFACTURING THE SAME |
KR101317096B1 (en) * | 2009-03-31 | 2013-10-11 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Cu-Co-Si COPPER ALLOY FOR USE IN ELECTRONICS, AND MANUFACTURING METHOD THEREFOR |
JP2011017070A (en) * | 2009-07-10 | 2011-01-27 | Furukawa Electric Co Ltd:The | Copper alloy material for electric and electronic component |
WO2011036804A1 (en) | 2009-09-28 | 2011-03-31 | Jx日鉱日石金属株式会社 | Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME |
WO2011129281A1 (en) | 2010-04-14 | 2011-10-20 | Jx日鉱日石金属株式会社 | Cu-si-co alloy for electronic materials, and method for producing same |
US9499885B2 (en) | 2010-04-14 | 2016-11-22 | Jx Nippon Mining & Metals Corporation | Cu—Si—Co alloy for electronic materials, and method for producing same |
US9460825B2 (en) | 2010-05-31 | 2016-10-04 | Jx Nippon Mining & Metals Corporation | Cu-Co-Si-based copper alloy for electronic materials, and method of manufacturing same |
WO2012026488A1 (en) | 2010-08-24 | 2012-03-01 | Jx日鉱日石金属株式会社 | Copper-cobalt-silicon alloy for electrode material |
WO2012043170A1 (en) | 2010-09-29 | 2012-04-05 | Jx日鉱日石金属株式会社 | Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME |
Also Published As
Publication number | Publication date |
---|---|
JP3408021B2 (en) | 2003-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101667812B1 (en) | Copper alloy plate and method for producing same | |
JP3408021B2 (en) | Copper alloy for electronic and electric parts and method for producing the same | |
JP4596493B2 (en) | Cu-Ni-Si alloy used for conductive spring material | |
KR101331339B1 (en) | Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor | |
JP5448763B2 (en) | Copper alloy material | |
JP4418028B2 (en) | Cu-Ni-Si alloy for electronic materials | |
WO2011125554A1 (en) | Cu-ni-si-co copper alloy for electronic material and process for producing same | |
CN103339273B (en) | Electronic material Cu-Si-Co series copper alloy and manufacture method thereof | |
JP4177104B2 (en) | High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same | |
CN1800426A (en) | Copper-based alloy and manufacturing method thereof | |
KR101114116B1 (en) | Copper Alloy Material for Electric and Electronic Apparatuses, and Electric and Electronic Components | |
JP4025632B2 (en) | Copper alloy | |
KR20120011309A (en) | Copper alloy sheet and its manufacturing method | |
JP2005060773A (en) | Special brass and method for increasing strength of the special brass | |
JP4408275B2 (en) | Cu-Ni-Si alloy with excellent strength and bending workability | |
KR20120046049A (en) | Titan-copper for electric parts | |
JP2005163127A (en) | Method of producing copper alloy sheet for high strength electrical/electronic component | |
JP4166197B2 (en) | Cu-Ni-Si-based copper alloy strips with excellent BadWay bending workability | |
JP3729454B2 (en) | Copper alloy and manufacturing method thereof | |
JP4166196B2 (en) | Cu-Ni-Si copper alloy strip with excellent bending workability | |
JP4251672B2 (en) | Copper alloy for electrical and electronic parts | |
JP5202812B2 (en) | Copper alloy and its manufacturing method | |
JP4754930B2 (en) | Cu-Ni-Si based copper alloy for electronic materials | |
JP2012188680A (en) | Titanium copper for electronic component | |
JP2010236029A (en) | Cu-Si-Co alloy for electronic materials and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080314 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090314 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100314 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100314 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120314 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140314 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |