[go: up one dir, main page]

JPH09208966A - Heating method for tubular heating furnace - Google Patents

Heating method for tubular heating furnace

Info

Publication number
JPH09208966A
JPH09208966A JP1796996A JP1796996A JPH09208966A JP H09208966 A JPH09208966 A JP H09208966A JP 1796996 A JP1796996 A JP 1796996A JP 1796996 A JP1796996 A JP 1796996A JP H09208966 A JPH09208966 A JP H09208966A
Authority
JP
Japan
Prior art keywords
heating furnace
air
temperature
furnace
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1796996A
Other languages
Japanese (ja)
Other versions
JP3728341B2 (en
Inventor
Toshiaki Hasegawa
敏明 長谷川
Toshibumi Hoshino
俊文 星野
Atsushi Nishimura
淳 西村
Katao Moriguchi
容雄 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Nippon Furnace Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Nippon Furnace Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP01796996A priority Critical patent/JP3728341B2/en
Publication of JPH09208966A publication Critical patent/JPH09208966A/en
Application granted granted Critical
Publication of JP3728341B2 publication Critical patent/JP3728341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Furnace Details (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformize the heat flux without increasing a furnace volume of a tubular heating furnace while keeping the close arrangement of heating pipes. SOLUTION: A hot diluted air preheated at a temperature above a critical blow-off temperature and having remarkably low oxygen concentration relative to normal air is produced by mixing air with a part of combustion exhaust gas discharged from a tubular heating furnace. The hot diluted air and a fuel are subjected to diffusion combustion in a tubular heating furnace without changing the chemical equivalent ratio of the optimum air ratio and the hot gas flow is intermittently, continuously or periodically flowed around the heating pipes to heat the fluid in the heating pipes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は管式加熱炉に関す
る。更に詳述すると、本発明は、管式加熱炉の被加熱管
の加熱方法の改善に関する。
TECHNICAL FIELD The present invention relates to a tubular heating furnace. More specifically, the present invention relates to improvement of a method for heating a heated tube of a tubular heating furnace.

【0002】[0002]

【従来の技術】従来の管式加熱炉、例えばイソフロ型
(ISOFLOW TYPE)管式加熱炉は、石油などの被加熱流体
を通過させる1パスあるいは複数パスの被加熱管が炉壁
に沿って幾重にも折り返されて配置され、その内側の炉
底部に燃焼室が形成されている。燃焼室には拡散バーナ
が設置され、火炎が被加熱管と平行に形成されると共に
炉頂部へ向けて燃焼ガスが流れ、ふく射伝熱および対流
伝熱によって被加熱管を加熱するように設けられてい
る。
2. Description of the Related Art A conventional tubular heating furnace, for example, an ISOFLOW TYPE tubular heating furnace, has a single-pass or multi-pass heated pipe through which a fluid to be heated such as petroleum passes and is stacked along the furnace wall. Is also folded back and arranged, and a combustion chamber is formed inside the furnace bottom. A diffusion burner is installed in the combustion chamber, a flame is formed in parallel with the heated pipe, and combustion gas flows toward the top of the furnace to heat the heated pipe by radiant heat transfer and convective heat transfer. ing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
管式加熱炉は、燃焼室内の固定した領域に火炎が存在し
ているので、どうしても被加熱管に熱流束の不均一が生
じる。これを是正するためには、イソフロ型管式加熱炉
の場合、炉内で被加熱管が火炎からの直接放射を他の被
加熱管によって遮られないようにし、かつ壁面からの反
射による放射を増加すれば良いが、その結果炉内に設置
される被加熱管本数が少なくなり、必要な加熱を行うた
めには大きな炉容積が必要となる。換言すると、被加熱
管の最大熱流束と平均熱流束との比は、被加熱管の設置
本数の粗密即ち被加熱管表面積と炉容積との比に依存す
ることとなり、通常の配置条件では図4に示すようにほ
ぼ1.6程度となることが知られている。このため、被
加熱管の許容熱流束よりもかなり低く平均熱流束を設定
せざるを得ず、加熱効率が悪くなる問題を有している。
また、炉容積を大きくせずに被加熱管の設置本数を増や
すため被加熱管を3列以上に配置しようとしても、火炎
に近い管の最高熱流束が許容値以上となり、また火炎か
らの輻射熱が遮られる被加熱管が生じて熱流束が不均一
となることから、被加熱管の平均熱流束が低下するため
実際には不可能であった。
However, in the conventional tube-type heating furnace, since the flame exists in the fixed region in the combustion chamber, the heat flux inevitably becomes nonuniform in the heated tube. In order to correct this, in the case of an isoflo tube heating furnace, it is necessary to prevent the heated pipe from blocking the direct radiation from the flame by other heated pipes inside the furnace, and to prevent the radiation from reflection from the wall surface. The number should be increased, but as a result, the number of tubes to be heated installed in the furnace is reduced, and a large furnace volume is required to perform necessary heating. In other words, the ratio between the maximum heat flux and the average heat flux of the heated pipe depends on the density of the number of the heated pipes, that is, the ratio of the heated pipe surface area to the furnace volume. It is known that it becomes about 1.6 as shown in FIG. For this reason, there is no choice but to set the average heat flux that is considerably lower than the allowable heat flux of the heated tube, and there is a problem that the heating efficiency deteriorates.
Even if the heated tubes are arranged in three or more rows in order to increase the number of tubes to be heated without increasing the furnace volume, the maximum heat flux of the tubes close to the flame exceeds the allowable value, and the radiant heat from the flame is increased. Since a heated pipe that blocks the heat is generated and the heat flux becomes non-uniform, it is not possible in practice because the average heat flux of the heated pipe decreases.

【0004】また、対流伝熱支配型管式加熱炉の場合、
被加熱管周囲を通過するガス流速により伝熱量即ち熱流
束が律束されていた。このため、平均熱流束が小さく加
熱効率が良くないので、処理量を上げるには大型の加熱
炉が必要とされている。
In the case of a convection heat transfer dominant type tube heating furnace,
The amount of heat transfer, that is, the heat flux was restricted by the flow velocity of the gas passing around the heated tube. Therefore, since the average heat flux is small and the heating efficiency is not good, a large heating furnace is required to increase the throughput.

【0005】本発明は、炉容積当たりの被加熱管表面積
を低下させることなく最大熱流束と平均熱流束との比を
最小化すること、即ち管式加熱炉の炉容積を大きくせず
に被加熱管を密に配置したまま熱流束の均一化を可能と
する管式加熱炉の燃焼方法を提供することを目的とす
る。
The present invention minimizes the ratio of the maximum heat flux to the average heat flux without reducing the surface area of the heated tube per furnace volume, that is, without increasing the furnace volume of the tubular heating furnace. An object of the present invention is to provide a combustion method for a tube-type heating furnace, which enables uniform heat flux while keeping the heating tubes densely arranged.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成するた
め、本発明の管式加熱炉の加熱方法は、管式加熱炉から
排出される燃焼排ガスの一部を加えて通常の空気よりも
はるかに酸素濃度が低くかつ少なくともその酸素濃度に
おける吹き消え限界温度以上に予熱された高温希釈空気
と燃料とを適正空気比時の化学当量比を変えないで管式
加熱炉内で拡散燃焼させ、熱ガス流を被加熱管の周囲に
断続的あるいは連続的若しくは周期的に流動させて被加
熱管内の流体を加熱するようにしている。
In order to achieve such an object, the heating method of the tubular heating furnace of the present invention is much more than ordinary air by adding a part of the combustion exhaust gas discharged from the tubular heating furnace. In addition, the high-temperature diluted air and the fuel, which have a low oxygen concentration and are at least blown off at the oxygen concentration, are pre-heated and diffuse-combusted in a tubular heating furnace without changing the chemical equivalence ratio at the proper air ratio. The gas flow is caused to flow around the heated pipe intermittently, continuously or periodically to heat the fluid in the heated pipe.

【0007】ここで本発明者等の燃焼状態の観察の結
果、燃焼の安定性に対する空気の温度と酸素濃度の影響
は図2に示す傾向にある。したがって、各酸素濃度にお
ける吹き消え限界温度(それよりも温度が低くなると吹
き消えを起こしてしまう温度)以上に予熱された高温希
釈空気と燃料とは、拡散混合して可燃範囲に入ると保炎
機構の助けを受けてあるいは自発的に燃焼を開始する。
しかし、酸素濃度が通常の空気よりもはるかに低く尚か
つ希釈空気のボリュームが相当大きいので、通常の燃焼
に比して熱発生速度が十分に低速な酸化発熱反応を伴っ
たものとなる。このため、被加熱管の周囲を断続的ある
いは連続的若しくは周期的に流動する間にも絶えず酸化
発熱発熱反応を持続して炉内の広範囲で燃焼し続け、顕
熱が発生する過程で熱を奪われ被加熱管内の流体を加熱
する。しかも、火炎ボリュームは低酸素濃度でかつ大容
量の高温希釈空気によって顕著に増大するため、流速が
速くなる。即ち、熱ガス流の流速が早く尚かつ非常に大
きなボリュームで安定に燃焼する火炎が形成される。
As a result of the observation of the combustion state by the present inventors, the influences of the air temperature and the oxygen concentration on the combustion stability tend to be as shown in FIG. Therefore, the high-temperature diluted air and fuel preheated above the blowout limit temperature (the temperature at which it blows off when the temperature becomes lower) at each oxygen concentration diffuse-mixes and flame-holds when it enters the combustible range. Initiate combustion with the help of the mechanism or spontaneously.
However, since the oxygen concentration is much lower than that of normal air and the volume of dilution air is considerably large, the heat generation rate is sufficiently slower than that of normal combustion, accompanied by an oxidative exothermic reaction. Therefore, even while flowing around the pipe to be heated intermittently, continuously, or periodically, the oxidative exothermic reaction is continuously maintained and continues to burn in a wide range in the furnace, and heat is generated in the process of generating sensible heat. It is robbed and heats the fluid in the heated pipe. Moreover, since the flame volume is significantly increased by the high-temperature dilution air having a low oxygen concentration and a large volume, the flow velocity is increased. That is, a flame is formed in which the flow velocity of the hot gas flow is fast and the combustion is stable with a very large volume.

【0008】また、本発明の管式加熱炉の加熱方法は、
高温希釈空気の予熱温度をその酸素濃度における燃料の
自己着火温度以上、より好ましくは600℃以上として
いる。この場合、保炎機構を必要とせず、燃料が拡散混
合して可燃範囲に入ると自発的に燃焼を起こす。
The heating method of the tubular heating furnace of the present invention is
The preheating temperature of the high-temperature dilution air is set to the auto-ignition temperature of the fuel at the oxygen concentration or higher, more preferably 600 ° C or higher. In this case, a flame holding mechanism is not required, and when the fuel diffusely mixes and enters the combustible range, spontaneous combustion occurs.

【0009】更に、本発明の管式加熱炉の加熱方法は、
管式加熱炉からの排気ガスの一部を管式加熱炉に還流さ
せると共に還流されなかった排気ガスとの熱交換によっ
て高温に予熱された燃焼用空気とを混合して希釈空気を
生成するようにしている。
Further, the heating method of the tubular heating furnace of the present invention is
A part of the exhaust gas from the tube heating furnace is recirculated to the tube heating furnace and mixed with the combustion air that has been preheated to a high temperature by heat exchange with the exhaust gas that has not been recirculated to generate dilution air. I have to.

【0010】[0010]

【発明の実施の形態】以下、本発明の構成を図面に示す
実施の形態の一例に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The structure of the present invention will be described below in detail based on an example of an embodiment shown in the drawings.

【0011】図1に本発明の加熱方法を実施した管式加
熱炉の一例を概略で示す。この管式加熱炉は特に型式に
は限定を受けず、イソフロ型管式加熱炉でも対流伝熱支
配型管式加熱炉でも適用可能である。例えば、イソフロ
型管式加熱炉に適用する場合、円筒形の断熱・耐熱製の
炉体の中に同心円状に3パスあるいはそれ以上の被加熱
管が上端と下端とでそれぞれ折り返されて配置されてい
る。この管式加熱炉1の底部中央の燃焼室に少なくとも
1基の拡散バーナ2が配置されている。拡散バーナ2
は、特にその構造に限定を受けるものではないが、例え
ば管式加熱炉1内から排気された燃焼ガスの一部を炉外
循環経路3を経て循環させると共に残りの燃焼ガスの顕
熱を高熱効率の熱交換器4で熱回収して燃焼用空気を予
熱し、これら予熱された燃焼用空気と再循環燃焼ガスと
を混合して通常の空気よりも酸素濃度が低く化学当量比
を変えない容量でかつ少なくともその酸素濃度における
吹き消え限界温度以上に予熱された高温希釈空気を得て
これで燃料を拡散燃焼させるバーナシステムが採用され
ている。
FIG. 1 schematically shows an example of a tubular heating furnace in which the heating method of the present invention is carried out. The tubular heating furnace is not particularly limited in type, and is applicable to an isoflow type tubular heating furnace or a convection heat transfer control type tubular heating furnace. For example, in the case of applying to an isoflow type tube heating furnace, three paths or more of heated tubes are concentrically arranged in a cylindrical heat-insulating and heat-resistant furnace body and folded at the upper end and the lower end, respectively. ing. At least one diffusion burner 2 is arranged in the combustion chamber at the center of the bottom of the tube heating furnace 1. Diffusion burner 2
Is not particularly limited to its structure, but for example, a portion of the combustion gas exhausted from inside the tube heating furnace 1 is circulated through the external circulation path 3 and the sensible heat of the remaining combustion gas is increased to a high level. Efficient heat exchanger 4 recovers heat to preheat combustion air, and the preheated combustion air and recirculated combustion gas are mixed to have a lower oxygen concentration than normal air and the chemical equivalent ratio is not changed. A burner system is employed in which hot diluted air preheated to a capacity and at least above the blowout limit temperature at its oxygen concentration is obtained, and the fuel is diffused and burned therewith.

【0012】炉外循環系路3は、炉頂部に接続された排
気管5と炉底部のバーナ2に接続された燃焼用空気供給
管6とを連結し、管式加熱炉1から排気された燃焼ガス
の一部をそのまま循環させるように設けられている。
The external circulation system passage 3 connects the exhaust pipe 5 connected to the top of the furnace and the combustion air supply pipe 6 connected to the burner 2 at the bottom of the furnace, and is exhausted from the tubular heating furnace 1. It is provided to circulate a part of the combustion gas as it is.

【0013】一方、燃焼用空気は、管式加熱炉1の排気
管5を通って排気される燃焼ガスの一部と熱交換器4を
介して熱交換して燃焼ガスの顕熱で予熱される。なお、
図中の符号7,8はファンである。
On the other hand, the combustion air exchanges heat with a part of the combustion gas exhausted through the exhaust pipe 5 of the tubular heating furnace 1 through the heat exchanger 4 and is preheated by the sensible heat of the combustion gas. It In addition,
Reference numerals 7 and 8 are fans.

【0014】以上のように構成された管式加熱炉による
と、管式加熱炉1の炉頂部から排出される燃焼ガスの一
部はそのままの温度で循環経路3を経て炉底部の拡散バ
ーナ2に接続された燃焼用空気供給管6に還流される。
同時に、燃焼用空気は熱交換器4において炉外循環経路
3側に分流しなかった燃焼ガスの一部との間に熱交換し
て熱効率に見合った温度にまで予熱される。高温の空気
と燃焼排ガスとはバーナに供給される前に混合されて所
定の温度でかつ所定の酸素濃度に希釈された高温希釈空
気とされて供給される。例えば、高温希釈空気は、各酸
素濃度におけるる少なくとも吹き消え限界温度以上、よ
り好ましくは自己着火温度以上に予熱され、かつ通常の
空気よりもはるかに酸素濃度が低く、より好ましくは1
5%以下に調整されている。ここで、高温希釈空気は、
例えば600℃以上に予熱すれば、火炎のボリュームが
顕著に増大する15%以下の酸素濃度にしたときに必ず
吹き消え限界温度以上となり、吹き消えが起こることが
ない。
According to the tubular heating furnace configured as described above, a part of the combustion gas discharged from the furnace top of the tubular heating furnace 1 remains at the same temperature through the circulation path 3 and the diffusion burner 2 at the bottom of the furnace. Is recirculated to the combustion air supply pipe 6 connected to.
At the same time, the combustion air is preheated to a temperature commensurate with the thermal efficiency by exchanging heat with a part of the combustion gas that has not been branched to the outside of the furnace circulation path 3 side in the heat exchanger 4. The high temperature air and the combustion exhaust gas are mixed before being supplied to the burner and are supplied as high temperature diluted air diluted to a predetermined temperature and a predetermined oxygen concentration. For example, the hot dilution air is preheated to at least the blowout limit temperature, more preferably the autoignition temperature or higher, and has a much lower oxygen concentration than that of normal air, and more preferably 1 or more.
It is adjusted to 5% or less. Here, the hot dilution air is
For example, if preheated to 600 ° C. or higher, when the oxygen concentration is 15% or less, at which the volume of the flame remarkably increases, the blowout limit temperature is always exceeded and blowout does not occur.

【0015】そして、この希釈空気は適正空気比時の化
学当量比を変えない容量が供給される。高温希釈空気は
酸素濃度が通常の空気よりも低い上に高温であるため、
化学当量比を変えないと酸化剤容量が相当に増大する。
The dilution air is supplied with a capacity that does not change the chemical equivalent ratio at the proper air ratio. Because hot diluted air has a lower oxygen concentration than normal air and is hot,
If the chemical equivalence ratio is not changed, the capacity of the oxidant increases considerably.

【0016】したがって、各バーナスロート内に流れ込
み、各燃料ノズルから噴射された燃料と混合されて発生
する酸化発熱反応ガスは従来のものよりも遥かに増大し
高速で流動することとなる。例えば図3に示すように、
同じ燃料を酸素濃度21%、温度50℃の燃焼用空気を
用いて拡散燃焼させた場合(実線で示す火炎)に比べ
て、酸素濃度3%、温度1010℃の高温希釈空気を用
いて拡散燃焼させた場合(仮想線で湿す火炎)は火炎ボ
リュームが20倍以上にも達した。
Therefore, the oxidation exothermic reaction gas that flows into each burner throat and mixes with the fuel injected from each fuel nozzle to generate is much larger than the conventional one and flows at a high speed. For example, as shown in FIG.
Compared to the case of diffusive combustion of the same fuel using combustion air having an oxygen concentration of 21% and a temperature of 50 ° C. (flame indicated by the solid line), diffusion combustion is performed using high temperature diluted air having an oxygen concentration of 3% and a temperature of 1010 ° C. In the case of making it (flame dampened by virtual line), the flame volume reached 20 times or more.

【0017】このとき、少なくとも吹き消え限界温度以
上に予熱された高温希釈空気と燃料とは、図2に示すよ
うに酸素濃度が通常の空気(21%)より低くても、拡
散混合して可燃範囲に入ると保炎機構の助けを受けてあ
るいは自発的に燃焼を開始する。しかし、酸素濃度が通
常の空気よりもはるかに低く尚かつ希釈空気のボリュー
ムが相当大きいので、通常の燃焼に比して熱発生速度が
十分に低速な酸化発熱反応を伴ったものとなる。そし
て、流速が速く尚かつ広範囲で燃焼し続ける燃焼ガス
は、多数の管がめぐらされた炉内においてこれまでより
も格段に流速を速めて対流伝熱性を向上させると共に、
炉内の広範囲な領域で流れながら絶えず燃焼し続けて顕
熱が発生する過程で熱を奪われ被加熱管内の流体を加熱
する。更に熱ガスの流量は酸素濃度が通常の空気よりも
はるかに低い高温希釈空気を使うため、通常の燃焼時よ
りも遥かに増大して炉内のガス流動が激しくなり、炉内
ガスの混合の促進や対流伝熱量の増加を起こして局部的
な温度差が解消される。したがって、熱流束のピークを
作らず、炉内のほぼ全域において顕熱を発生させながら
対流伝熱と輻射伝熱とで被加熱管を加熱することができ
る。空気比を変えずに燃焼用酸化剤としてのボリューム
を増やして酸素濃度を通常の空気よりも遥かに低くし尚
かつ温度を吹き消え限界温度以上に上げるときに、酸化
発熱反応が通常の空気を用いた場合に比べて非常に遅い
にもかかわらず安定して燃焼する現象が起こる。
At this time, as shown in FIG. 2, the high-temperature diluted air and the fuel preheated to at least the blow-off limit temperature are diffusively mixed and combusted even if the oxygen concentration is lower than that of normal air (21%). When it enters the range, it starts combustion spontaneously with the help of the flame holding mechanism. However, since the oxygen concentration is much lower than that of normal air and the volume of dilution air is considerably large, the heat generation rate is sufficiently slower than that of normal combustion, accompanied by an oxidative exothermic reaction. And the combustion gas, which has a high flow velocity and continues to burn in a wide range, accelerates the flow velocity significantly in the furnace with many tubes and improves convective heat transfer,
While flowing in a wide area in the furnace, it continuously burns and heat is taken in the process of generating sensible heat to heat the fluid in the heated pipe. Furthermore, since the flow rate of hot gas uses high-temperature diluted air whose oxygen concentration is much lower than that of normal air, the flow rate of hot gas is much higher than during normal combustion, and the gas flow in the furnace becomes violent. Local temperature difference is eliminated by promoting and increasing convective heat transfer. Therefore, it is possible to heat the pipe to be heated by convective heat transfer and radiant heat transfer while generating sensible heat in almost the entire area of the furnace without creating a heat flux peak. When the volume as a combustion oxidant is increased without changing the air ratio to make the oxygen concentration much lower than that of normal air, and when the temperature is blown out and the temperature rises above the critical temperature, the oxidation exothermic reaction changes the normal air. The phenomenon of stable combustion occurs although it is much slower than when used.

【0018】一方、排気系に接続されている熱交換器4
では、被加熱流体たるボイラ水の加熱に使われた後の燃
焼排ガスの熱が高効率で回収されて燃焼用空気の予熱が
行われる。同時に、炉内の燃焼ガスは、循環ファン7に
よって発生する負圧によって炉外循環系路3へ取り出さ
れ、高効率の熱交換によって排ガスの顕熱を回収して高
温に予熱された燃焼用空気と混合されて所定の酸素濃度
及び温度の希釈空気として再び燃焼室内へ高速で噴射さ
れる。
On the other hand, the heat exchanger 4 connected to the exhaust system
In this, the heat of the combustion exhaust gas after being used for heating the boiler water, which is the fluid to be heated, is highly efficiently recovered to preheat the combustion air. At the same time, the combustion gas in the furnace is taken out to the external circulation system passage 3 by the negative pressure generated by the circulation fan 7, and the sensible heat of the exhaust gas is recovered by the highly efficient heat exchange to preheat the combustion air to a high temperature. It is mixed with and is injected again at high speed into the combustion chamber as diluted air having a predetermined oxygen concentration and temperature.

【0019】なお、上述の実施形態は本発明の好適な形
態の一例ではあるがこれに限定されるものではなく本発
明の要旨を逸脱しない範囲において種々変形実施可能で
ある。例えば、再循環させる排ガス中に蒸気などを注入
してさらに最高火炎温度を低下させることもある。
The above-described embodiment is an example of the preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, the maximum flame temperature may be further lowered by injecting steam or the like into the exhaust gas to be recirculated.

【0020】[0020]

【発明の効果】以上の説明より明らかなように、本発明
の管式加熱設備によると、炉内に流速が速く尚かつ広範
囲で燃焼し続ける顕著に増大した火炎を形成できるので
熱流束の局所的ピークが発生しない。したがって、被加
熱管の最大熱流束と平均熱流束との比は図4に示すよう
に著しく小さく1に近づいてくるので、被加熱管の設置
本数の粗密即ち被加熱管表面積と炉容積との比に依存す
ることがなくなり、炉内に設置される被加熱管本数を増
やすことができる。依って、必要な加熱を行うために
は、炉容積を小型化して被加熱管の設置本数を密にする
ことができ、炉のコンパクト化が可能となる。例えば、
イソフロ型管式加熱炉の場合、炉容積を大きくせずに3
列以上に被加熱管を配置して被加熱管本数を増やすこと
が可能となるので、同じ大きさの管式加熱炉でも加熱処
理量が飛躍的に増大し、同じ処理量とする場合には炉を
小さくできる。
As is clear from the above description, according to the tubular heating equipment of the present invention, a markedly increased flame can be formed in the furnace, which has a high flow velocity and continues to burn in a wide range. Peak does not occur. Therefore, the ratio between the maximum heat flux and the average heat flux of the heated tubes is extremely small and approaches 1 as shown in FIG. 4, and therefore the density of the number of the heated tubes, that is, the surface area of the heated tubes and the furnace volume It does not depend on the ratio, and the number of heated tubes installed in the furnace can be increased. Therefore, in order to perform the necessary heating, the volume of the furnace can be reduced and the number of tubes to be heated can be made dense, so that the furnace can be made compact. For example,
In the case of the Isoflo type tube type heating furnace, 3
Since it is possible to increase the number of tubes to be heated by arranging the tubes to be heated in rows or more, even if the tube heating furnace of the same size, the heat treatment amount increases dramatically, and in the case of the same treatment amount, The furnace can be made smaller.

【0021】また、対流伝熱支配型管式加熱炉の場合に
も、火炎ボリュームが顕著に増大して被加熱管周囲を通
過するガスの流速が速くなるため、対流伝熱による伝熱
量が増加すると共に、広範囲で燃焼し続けながら被加熱
管周囲を流れるので輻射伝熱をも同時に受ける。したが
って、被加熱管の平均熱流束を増加することができ、加
熱効率を良くして炉のコンパクト化あるいは加熱処理時
間の短縮が可能である。
Also, in the case of the convection heat transfer type tube heating furnace, the flame volume remarkably increases and the flow velocity of the gas passing around the heated tube increases, so that the amount of heat transfer by convection heat transfer increases. At the same time, while continuing to burn in a wide area, it flows around the heated pipe, so that it also receives radiant heat transfer. Therefore, the average heat flux of the heated tube can be increased, the heating efficiency can be improved, and the furnace can be made compact or the heat treatment time can be shortened.

【0022】また、炉内温度の均一化により、炉構造物
に対する熱ストレスを小さくすると共に炉内全域の管へ
の熱流束を均一にできる。更に、酸化発熱反応が十分に
低速であるため、燃焼騒音や振動燃焼を抑制できる。
Further, by making the temperature inside the furnace uniform, it is possible to reduce the thermal stress on the furnace structure and to make the heat flux to the tubes throughout the furnace uniform. Furthermore, since the oxidation exothermic reaction is sufficiently slow, combustion noise and oscillatory combustion can be suppressed.

【0023】また、本発明の管式加熱炉の加熱方法は、
高温希釈空気の予熱温度を燃料の自己着火温度以上、よ
り好ましくは600℃以上としている。この場合、燃料
が拡散混合して可燃範囲に入ると自発的に燃焼を起こ
し、より安定燃焼する。
Further, the heating method of the tubular heating furnace of the present invention is
The preheating temperature of the high-temperature diluted air is set to the self-ignition temperature of the fuel or higher, more preferably 600 ° C. or higher. In this case, when the fuel diffusely mixes and enters the combustible range, spontaneous combustion occurs, and more stable combustion occurs.

【0024】更に、本発明の管式加熱炉の加熱方法は、
管式加熱炉からの排気ガスの一部を管式加熱炉に還流さ
せると共に還流されなかった排気ガスとの熱交換によっ
て高温に予熱された燃焼用空気とを混合して希釈空気を
生成するようにしている。
Further, the heating method of the tubular heating furnace of the present invention is
A part of the exhaust gas from the tube heating furnace is recirculated to the tube heating furnace and mixed with the combustion air that has been preheated to a high temperature by heat exchange with the exhaust gas that has not been recirculated to generate dilution air. I have to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加熱方法を実施する管式加熱炉の一例
を示す概略図である。
FIG. 1 is a schematic view showing an example of a tubular heating furnace for carrying out a heating method of the present invention.

【図2】安定燃焼に対する燃焼用空気の温度と酸素濃度
の影響を示すグラフである。
FIG. 2 is a graph showing the effects of combustion air temperature and oxygen concentration on stable combustion.

【図3】燃焼用空気の酸素濃度と温度とを変えた場合の
火炎ボリュームの変化を示す説明図である。
FIG. 3 is an explanatory diagram showing changes in flame volume when the oxygen concentration and temperature of combustion air are changed.

【図4】被加熱表面積と炉容積との比に対する最大熱流
束と平均熱流束との比との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the ratio of the maximum heat flux and the average heat flux to the ratio of the surface area to be heated and the furnace volume.

【符号の説明】[Explanation of symbols]

1 管式加熱炉 2 拡散バーナ 3 炉外循環系路 4 熱交換器 5 排気管 6 空気供給管 1 Tube type heating furnace 2 Diffusion burner 3 External circulation system path 4 Heat exchanger 5 Exhaust pipe 6 Air supply pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 淳 東京都港区芝浦1丁目1番1号 コスモ石 油株式会社内 (72)発明者 森口 容雄 東京都港区芝浦1丁目1番1号 コスモ石 油株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Jun Nishimura 1-1-1, Shibaura, Minato-ku, Tokyo Cosmo Stone Oil Co., Ltd. (72) Inventor Yoshio Moriguchi 1-1-1, Shibaura, Minato-ku, Tokyo Cosmo Stone Oil Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 管式加熱炉から排出される燃焼排ガスの
一部を加えて通常の空気よりもはるかに酸素濃度が低く
かつ少なくともその酸素濃度における吹き消え限界温度
以上に予熱された高温希釈空気と燃料とを適正空気比時
の化学当量比を変えないで管式加熱炉内で拡散燃焼さ
せ、熱ガス流を被加熱管の周囲に断続的あるいは連続的
若しくは周期的に流動させて被加熱管内の流体を加熱す
ることを特徴とする管式加熱炉の加熱方法。
1. High-temperature diluted air which has a much lower oxygen concentration than ordinary air and is preheated to at least the blow-out limit temperature at that oxygen concentration by adding a part of combustion exhaust gas discharged from a tubular heating furnace. And fuel are diffused and burned in the tube heating furnace without changing the chemical equivalence ratio at the proper air ratio, and the hot gas flow is intermittently or continuously or periodically flowed around the heated tube to be heated. A method for heating a tubular heating furnace, comprising heating a fluid in a tube.
【請求項2】 高温希釈空気の予熱温度はその酸素濃度
における燃料の自己着火温度以上であることを特徴とす
る請求項1記載の管式加熱炉の加熱方法。
2. The heating method for a tubular heating furnace according to claim 1, wherein the preheating temperature of the high-temperature diluted air is equal to or higher than the self-ignition temperature of the fuel at the oxygen concentration thereof.
【請求項3】 高温希釈空気は予熱温度が600℃以
上、酸素濃度が17%以下であることを特徴とする請求
項1記載の管式加熱炉の加熱方法。
3. The heating method for a tubular heating furnace according to claim 1, wherein the high-temperature dilution air has a preheating temperature of 600 ° C. or higher and an oxygen concentration of 17% or lower.
【請求項4】 管式加熱炉からの排気ガスの一部を前記
管式加熱炉に還流させると共に還流されなかった排気ガ
スとの熱交換によって高温に予熱された燃焼用空気とを
混合して前記希釈空気を生成することを特徴とする請求
項1記載の管式加熱炉の加熱方法。
4. A part of the exhaust gas from the tube-type heating furnace is recirculated to the tube-type heating furnace and mixed with combustion air that has been preheated to a high temperature by heat exchange with exhaust gas that has not been recirculated. The heating method for a tubular heating furnace according to claim 1, wherein the dilution air is generated.
JP01796996A 1996-02-02 1996-02-02 Heating method of tube furnace Expired - Fee Related JP3728341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01796996A JP3728341B2 (en) 1996-02-02 1996-02-02 Heating method of tube furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01796996A JP3728341B2 (en) 1996-02-02 1996-02-02 Heating method of tube furnace

Publications (2)

Publication Number Publication Date
JPH09208966A true JPH09208966A (en) 1997-08-12
JP3728341B2 JP3728341B2 (en) 2005-12-21

Family

ID=11958570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01796996A Expired - Fee Related JP3728341B2 (en) 1996-02-02 1996-02-02 Heating method of tube furnace

Country Status (1)

Country Link
JP (1) JP3728341B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696965A (en) * 2015-03-23 2015-06-10 华东理工大学 Straight-flow type dispersion combustion tubular heating furnace system and combustor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696965A (en) * 2015-03-23 2015-06-10 华东理工大学 Straight-flow type dispersion combustion tubular heating furnace system and combustor

Also Published As

Publication number Publication date
JP3728341B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
US5476375A (en) Staged combustion in a porous-matrix surface combustor to promote ultra-low NOx Emissions
US6289851B1 (en) Compact low-nox high-efficiency heating apparatus
KR100827869B1 (en) Fuel supply device and fuel supply method
US6029614A (en) Water-tube boiler with re-circulation means
JP2688325B2 (en) Porous matrix, surface combustor-fluid heating device and method for burning gaseous fuel
US5746159A (en) Combustion device in tube nested boiler and its method of combustion
KR19980702191A (en) Catalytic combustion device
JP2004125379A (en) Method and device for low nox combustion
JP4819276B2 (en) Tube furnace
US5544624A (en) Gas-fired, porous matrix, combustor-steam generator
JPH09208966A (en) Heating method for tubular heating furnace
KR100299709B1 (en) Airflow circulating heating system
JP4863541B2 (en) Combustion apparatus and combustion method
JP4901054B2 (en) Overpressure combustor for burning lean concentration of combustible gas
JP4248132B2 (en) Fuel supply apparatus and fuel supply method
JP2004060984A (en) Low nox combustor
EP2592362B1 (en) Flameless boiler for producing hot water
KR100519747B1 (en) Sequential catalytic combustion system and its method
JP2916262B2 (en) boiler
JP2000240935A (en) Reboiler
KR20040045274A (en) thermal oil heater which is able to mounte or remove a air pre-heater
JPS63131903A (en) Boiler
KR200304704Y1 (en) thermal oil heater having a pre-heater
CN116447592A (en) Ammonia-hydrogen fusion zero-carbon combustor
CN114017762A (en) Horizontal internal combustion steam boiler with porous ceramic medium combustion

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees