[go: up one dir, main page]

JPH09206621A - Collision type air crusher - Google Patents

Collision type air crusher

Info

Publication number
JPH09206621A
JPH09206621A JP3583396A JP3583396A JPH09206621A JP H09206621 A JPH09206621 A JP H09206621A JP 3583396 A JP3583396 A JP 3583396A JP 3583396 A JP3583396 A JP 3583396A JP H09206621 A JPH09206621 A JP H09206621A
Authority
JP
Japan
Prior art keywords
collision
acceleration
crushed
tube
accelerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3583396A
Other languages
Japanese (ja)
Inventor
Kenichi Uehara
賢一 上原
Osamu Kozu
脩 神津
Nobuyasu Makino
信康 牧野
Keiko Watanabe
啓子 渡邊
Kazuyuki Matsui
一幸 松井
Satoru Okano
覚 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3583396A priority Critical patent/JPH09206621A/en
Publication of JPH09206621A publication Critical patent/JPH09206621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance crushing treatment capacity, in a crusher constituted so that an acceleration pipe having a supply port of matter to be crushed is connected to a compressed air supply nozzle to allow the accelerated matter to be crushed to collide with a barrier member to crush the same, by forming the expanded shape of the inner peripheral surface part of the acceleration pipe so as to satisfy a specific formula. SOLUTION: A collision type air crusher is equipped with a compressed air supply nozzle 2, an acceleration pipe 3 having a supply port 3 of matter to be crushed and a barrier member for crushing the matter to be crushed by the collision with the barrier member. In this case, when the effective distance along the common center line C of the compressed air supply nozzle 2 and the acceleration pipe 3 from a nozzle throat part 2a to the effective outlet part 3b of the acceleration pipe 3 is set to L, L/2=L1 , the expanse angle of the acceleration pipe 3 is set to θ and the expanse angle of the inner peripheral surface part of the acceleration pipe 3 at the position of the distance L1 from the nozzle throat part 2a is set to θ1 , the acceleration pipeline of the acceleration pipe 3 is formed into an expanded shape satisfying a relational expression represented by Ltan (θ/2)>=L1 tan (θ/2)>(1/2) Ltan (θ/2).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ジェット噴流を用
いた減圧部供給型粉砕ノズルを備えた衝突式気流粉砕機
に関し、詳しくは、電子写真法による画像形成に用いら
れるトナーまたはトナー用着色樹脂粉体の製造に好適な
衝突式気流粉砕機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a collision type airflow pulverizer equipped with a pressure reducing portion supply type pulverization nozzle using a jet jet, and more specifically to a toner or a colored resin for toner used for image formation by electrophotography. The present invention relates to a collision type airflow crusher suitable for producing powder.

【0002】[0002]

【従来の技術】ジェット噴流を用いた衝突式気流粉砕機
は、ジェット噴流中に被粉砕物を供給し、この被粉砕物
を衝突部材に衝突させ、その衝撃力によって粉砕するも
のである。このような衝突式気流粉砕機の一般的な構成
を図12に基づいて説明する。図12は、衝突式気流粉
砕機と分級機を組み合わせた粉砕・分級工程のフローシ
ートであり、衝突式気流粉砕機は概略縦断面図で示され
ている。
2. Description of the Related Art A collision-type airflow crusher using a jet jet supplies an object to be crushed into a jet jet, collides the object with a collision member, and crushes it by its impact force. A general configuration of such a collision type airflow crusher will be described with reference to FIG. FIG. 12 is a flow sheet of a crushing / classifying process in which a collision type airflow crusher and a classifier are combined, and the collision type airflow crusher is shown in a schematic vertical sectional view.

【0003】この衝突式気流粉砕機では、圧縮気体供給
ノズル2に接続した加速管3の加速管出口8に対向して
衝突部材4を設け、前記加速管3によるジェット噴流で
ある高速気流14の流動により被粉砕物6を、加速管3
の途中に設けた被粉砕物供給口1から加速管3内に吸引
し、これを高速気流14と共に噴射し、粉砕室7に入射
させ衝突部材4の衝突面9に衝突させ、その衝撃力によ
って粉砕する。
In this collision type air flow pulverizer, a collision member 4 is provided so as to face the acceleration pipe outlet 8 of the acceleration pipe 3 connected to the compressed gas supply nozzle 2, and the high speed air flow 14 which is a jet jet by the acceleration pipe 3 is generated. The object to be crushed 6 is moved by the flow, and the acceleration tube 3
Is sucked into the accelerating pipe 3 from the object to be crushed supply port 1 provided in the middle of the crushing process, and is injected together with the high-speed air flow 14 into the crushing chamber 7 to collide with the collision surface 9 of the collision member 4, and by the impact force thereof. Smash.

【0004】通常、被粉砕物6を所望の粒径に粉砕する
ためには、粉砕室7の排出口5と被粉砕物供給口1との
間に分級機13を配備して閉回路を構成する。この場
合、分級機13による分級の後、粗粉については戻り経
路11を経て被粉砕物供給口1に送って前記した粉砕を
行い、粉砕物10を排出口5から分級機13に戻して再
度分級し、微粉は、経路12を経由して所望の微粉砕物
を得るようにしている。
Usually, in order to crush the object 6 to be crushed to a desired particle size, a classifier 13 is provided between the discharge port 5 of the crushing chamber 7 and the object supply port 1 to form a closed circuit. To do. In this case, after the classification by the classifier 13, the coarse powder is sent to the object to be ground 1 through the return path 11 to carry out the aforementioned grinding, and the ground material 10 is returned from the outlet 5 to the classifier 13 and again. After classification, the fine powder is passed through the route 12 to obtain a desired finely ground product.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
減圧部供給型粉砕ノズルを有する衝突式気流粉砕機で
は、圧縮空気供給ノズル2と加速管3により構成される
噴射ノズルにおいて、加速管3の有効長さLと、その拡
がり角θ(図12を参照)との関係が充分適切なものと
はいえず、通常の圧力下では加速管3を通過する際のジ
ェット噴流は、加速管3内の壁面部で充分な膨張が得ら
れず、通過途中で失速する。また、有効長さLが短いと
加速距離が不充分となり、有効長さLが長すぎると圧力
損失が生じ、減速により失速してしまう。また加速管内
に被粉砕物供給口を有する減圧部供給型粉砕ノズルでは
被粉砕物供給口から流入するエアーの影響で加速管内に
おける被粉砕物の軌跡や分布が加速管中心と断定でき
ず、加速管以降も粉砕機内部の渦の発生や背圧制御範囲
が定まらないため、衝突部材と加速管の最高効率となり
うる設定ができていない。
However, in the conventional collision type airflow crusher having the decompression section supply type crushing nozzle, the accelerating tube 3 is effective in the injection nozzle constituted by the compressed air supply nozzle 2 and the accelerating tube 3. The relationship between the length L and the spread angle θ (see FIG. 12) cannot be said to be sufficiently appropriate, and under normal pressure, the jet jet flow when passing through the accelerating pipe 3 is Sufficient expansion cannot be obtained on the wall surface and the engine stalls during passage. Further, if the effective length L is short, the acceleration distance becomes insufficient, and if the effective length L is too long, pressure loss occurs and deceleration causes stall. Also, in the decompression unit feed type crushing nozzle that has the crushed material supply port inside the acceleration tube, the trajectory and distribution of the crushed object inside the acceleration tube cannot be determined as the center of the acceleration tube due to the effect of the air flowing in from the crushed object supply port, and acceleration Since the generation of vortices inside the crusher and the back pressure control range are not fixed after the pipe, the setting that can maximize the efficiency of the collision member and the acceleration pipe has not been made.

【0006】このような問題点を解決するために、特開
平3−26349号公報、特開平3−26350号公
報、及び特開平3−26349号公報に、加速管3の拡
がり角θを7°〜9°の範囲内に規定した噴射ノズルが
提案されているが、必ずしも充分な粉砕処理能力が得ら
れるものではなかった。
In order to solve such a problem, the divergence angle θ of the accelerating tube 3 is set to 7 ° in JP-A-3-26349, JP-A-3-26350, and JP-A-3-26349. An injection nozzle defined within a range of up to 9 ° has been proposed, but it has not always been possible to obtain sufficient pulverization processing capacity.

【0007】本発明は、従来技術の上記問題点に鑑みな
されたものであり、その目的とするところは、圧縮気体
が有するエネルギーを有効に生かすことにより、粉砕処
理能力を向上させた衝突式気流粉砕機を提供することに
ある。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to make effective use of the energy of a compressed gas to improve the crushing capacity of a collision type air flow. To provide a crusher.

【0008】[0008]

【課題を解決するための手段】本発明によれば、上記課
題を解決するため、圧縮気体供給ノズルと、該圧縮気体
供給ノズルに接続され且つ被粉砕物供給口を有する加速
管と、該加速管の後段に配置され被粉砕物を衝突させて
粉砕するための衝突部材とを備える衝突式気流粉砕機に
おいて、該加速管内の加速管路が、ノズル喉部から加速
管の有効出口部までの、該圧縮気体供給ノズルと該加速
管の共通中心線に沿う有効距離をL、L/2=L1、該
加速管の拡がり角度をθ、該ノズル喉部から距離L1
位置における該加速管の内周面部分の拡がり角度をθ1
としたとき、下記〔数1〕で示される関係式を満足する
拡がり形状に形成されていることを特徴とする衝突式気
流粉砕機が提供される。
According to the present invention, in order to solve the above-mentioned problems, a compressed gas supply nozzle, an accelerating pipe connected to the compressed gas supply nozzle and having a pulverized material supply port, and the acceleration are provided. In a collision type airflow pulverizer provided with a collision member for colliding and crushing an object to be crushed, which is arranged in a subsequent stage of the tube, an acceleration pipe line in the acceleration pipe is provided from a nozzle throat to an effective outlet of the acceleration pipe. L, L / 2 = L 1 , the effective distance along the common center line of the compressed gas supply nozzle and the acceleration tube, the divergence angle of the acceleration tube θ, and the acceleration at the position of the distance L 1 from the nozzle throat. Set the divergence angle of the inner peripheral surface of the pipe to θ 1
In this case, there is provided a collision type airflow crusher characterized by being formed in a spread shape satisfying the relational expression shown in the following [Equation 1].

【数1】Ltan(θ/2)≧L1tan(θ1/2)>
(1/2)Ltan(θ/2) また、本発明によれば、上記構成において、該加速管内
の加速管路が、ノズル喉部の直径をDとしたとき、下記
〔数2〕で示される関係式を満足し、且つθが1°〜7
°で、Lが8D〜30Dの範囲にある拡がり形状に形成
されていることを特徴とする衝突式気流粉砕機が提供さ
れる。
[Number 1] Ltan (θ / 2) ≧ L 1 tan (θ 1/2)>
(1/2) Ltan (θ / 2) Further, according to the present invention, in the above-mentioned configuration, when the diameter of the nozzle throat is D, the acceleration pipeline in the acceleration tube is represented by the following [Equation 2]. Satisfies the relational expression described above and θ is 1 ° to 7
There is provided a collision type airflow crusher characterized by being formed in a spread shape having L in the range of 8D to 30D at 0 °.

【数2】1.8D≧Ltan(θ/2)≧0.13D また、本発明によれば、上記構成において、圧力が0.
7MPa以上の圧縮気体を用いるものであり、該衝突部
材が、該加速管からの噴流が偏流を生じ、分散されなが
ら衝突する形状を有し、且つ該加速管の加速管路が、下
記〔数3〕で示される関係式を満足し、θが2°〜7°
で、Lが10D〜30Dの範囲にある拡がり形状に形成
されていることを特徴とする衝突式気流粉砕機が提供さ
れる。
## EQU00002 ## 1.8D.gtoreq.Ltan (.theta. / 2) .gtoreq.0.13D According to the present invention, in the above structure, the pressure is 0.
A compressed gas of 7 MPa or more is used, and the collision member has a shape in which the jet flow from the acceleration tube causes a non-uniform flow and collides while being dispersed, and the acceleration pipe line of the acceleration pipe is 3] is satisfied and θ is 2 ° to 7 °
Then, there is provided a collision type airflow crusher characterized in that L is formed in a spread shape having a range of 10D to 30D.

【数3】1.8D≧Ltan(θ/2)≧0.19D また、本発明によれば、上記構成において、圧力が0.
7MPa以下の圧縮気体を用いるものであり、該衝突部
材が、該加速管からの噴流が偏流を生じ、分散されなが
ら衝突する形状を有し、且つ該加速管の加速管路が、下
記〔数4〕で示される関係式を満足し、θが2°〜7°
で、Lが8D〜25Dの範囲にある拡がり形状に形成さ
れていることを特徴とする衝突式気流粉砕機が提供され
る。
## EQU00003 ## 1.8D.gtoreq.Ltan (.theta. / 2) .gtoreq.0.19D According to the present invention, in the above structure, the pressure is 0.
A compressed gas of 7 MPa or less is used, and the collision member has a shape in which a jet flow from the acceleration tube causes a non-uniform flow and collides while being dispersed, and the acceleration pipe line of the acceleration pipe is 4] is satisfied and θ is 2 ° to 7 °
Then, there is provided a collision type airflow crusher characterized in that L is formed in a spread shape having a range of 8D to 25D.

【数4】1.2D≧Ltan(θ/2)≧0.19D また、本発明によれば、上記構成において、該衝突部材
が、該加速管からの噴流が偏流、分散のいずれも発生せ
ず、直接衝突する形状を有し、且つ該加速管の加速管路
は、下記〔数5〕で示される関係式を満足し、θが1°
〜5°で、Lが8D〜30Dの範囲にある拡がり形状に
形成されていることを特徴とする衝突式気流粉砕機が提
供される。
## EQU00004 ## 1.2D.gtoreq.Ltan (.theta. / 2) .gtoreq.0.19D Further, according to the present invention, in the above-mentioned structure, the jet from the accelerating tube causes uneven flow or dispersion in the collision member. In addition, the accelerating pipe of the accelerating pipe satisfies the relational expression shown in the following [Equation 5] and θ is 1 °.
Provided is a collision type airflow crusher, which is formed in a spread shape having L in the range of 8D to 30D at -5 °.

【数5】0.78D≧Ltan(θ/2)≧0.13D また、本発明によれば、上記構成において、該加速管
は、複数の環状体を該共通中心軸方向に並べて結合する
ことにより構成したものであり、かつこれら複数の環状
体は、互いに分割可能であることを特徴とする衝突式気
流粉砕機が提供される。また、本発明によれば、上記構
成において、該衝突部材の中心軸が該共通中心線と異な
るように該衝突部材が設置されていることを特徴とする
衝突式気流粉砕機が提供される。また、本発明によれ
ば、上記構成において、該加速管が複数の被粉砕物供給
口を有することを特徴とする衝突式気流粉砕機が提供さ
れる。また、本発明によれば、上記構成において、該加
速管の出口面から該衝突部材の被粉砕物衝突面までの該
共通中心線方向に沿った距離をY、該加速管の出口部直
径をD0としたとき、下記〔数6〕で示される関係式を
満足するように該衝突部材が設置されていることを特徴
とする衝突式気流粉砕機が提供される。
## EQU00005 ## 0.78D.gtoreq.Ltan (.theta. / 2) .gtoreq.0.13D Further, according to the present invention, in the above structure, the accelerating tube is formed by arranging a plurality of annular bodies arranged side by side in the common central axis direction. According to another aspect of the present invention, there is provided a collision type airflow crusher, which is characterized in that the plurality of annular bodies can be divided from each other. Further, according to the present invention, there is provided a collision type airflow crusher characterized in that, in the above-mentioned structure, the collision member is installed so that a central axis of the collision member is different from the common center line. Further, according to the present invention, there is provided a collision type air flow crusher characterized in that, in the above configuration, the accelerating tube has a plurality of crushed object supply ports. Further, according to the present invention, in the above structure, the distance from the exit surface of the acceleration tube to the crushed object collision surface of the collision member along the common center line direction is Y, and the exit diameter of the acceleration tube is When D 0 , the collision type airflow crusher is provided in which the collision member is installed so as to satisfy the relational expression represented by the following [Equation 6].

【数6】Y=M×D0/4 15≧M≧6 さらに、本発明によれば、上記構成において、該加速管
の出口面と該衝突部材の被粉砕物衝突面までの間におい
て該加速管からの高速気流の流路の側部空間を制限する
カバーを設けたことを特徴とする衝突式気流粉砕機が提
供される。
[6] Y = M × D 0/4 15 ≧ M ≧ 6 Furthermore, according to the present invention, the in between in the above structure, to the object to be crushed impact surface of the exit surface and said impact member of the pressurized-speed tube A collision type airflow crusher is provided, which is provided with a cover that limits a side space of a flow path of a high-speed airflow from an acceleration tube.

【0009】[0009]

【発明の実施の形態】以下、本発明による衝突式気流粉
砕機について図面を参照しながら詳細に説明する。本発
明の衝突式気流粉砕機は、高速気流により被粉砕物供給
口1を介して被粉砕物6を輸送加速する減圧部供給加速
管3の後段に、該加速管3から粉砕室7に噴出される被
粉砕物6を衝撃力によって粉砕するための衝撃面9(図
12を参照)を設けた構造の粉砕機を改良したものであ
って、下記のような構成を採用したので、圧縮気体供給
ノズル2から噴出した高圧気体が加速管3を通過する
際、理想的な断熱膨張によって超音速となる。従って、
衝突部材4に分散した状態で衝突・粉砕が行われるた
め、被粉砕物6を数μmのオーダーまで、ばらつきが少
なく高効率で粉砕することができる。
BEST MODE FOR CARRYING OUT THE INVENTION A collision type air flow crusher according to the present invention will be described in detail below with reference to the drawings. The collision type airflow crusher of the present invention ejects from the acceleration tube 3 into the crushing chamber 7 after the depressurization part supply acceleration pipe 3 that accelerates the transportation of the crushed object 6 through the crushed object supply port 1 by the high-speed airflow. This is an improved crusher having a structure provided with an impact surface 9 (see FIG. 12) for crushing the crushed object 6 to be crushed by the impact force. When the high-pressure gas ejected from the supply nozzle 2 passes through the acceleration tube 3, it becomes supersonic due to ideal adiabatic expansion. Therefore,
Since the collision and crushing are performed in the state of being dispersed in the collision member 4, the crushed object 6 can be crushed with high efficiency with little variation up to the order of several μm.

【0010】第1の衝突式気流粉砕機(請求項1の装
置) まず、本発明による第1の衝突式気流粉砕機について説
明する。図1は、この衝突式気流粉砕機における圧縮気
体供給ノズル2及び加速管3の概略縦断面図である。第
1の衝突式気流粉砕機は、圧縮気体供給ノズル2と、圧
縮気体供給ノズル2に接続され且つ被粉砕物供給口1を
有する加速管3と、加速管3の後段に配置され被粉砕物
6を衝突させて粉砕するための衝突部材4とを備える衝
突式気流粉砕機において、加速管3内の加速管路が、ノ
ズル喉部2aから加速管3の有効出口部3bまでの、圧
縮気体供給ノズル2と加速管3の共通中心線Cに沿う有
効距離をL、L/2=L1、加速管3の拡がり角度を
θ、ノズル喉部2aから距離L1の位置における加速管
3の内周面部分の拡がり角度をθ1としたとき、下記
〔数1〕で示される関係式を満足する拡がり形状に形成
されていることを特徴とする。
A first collision type air flow crusher (the device of claim 1)
Location) First, a description will be given of a first collision type air pulverizer according to the present invention. FIG. 1 is a schematic vertical sectional view of a compressed gas supply nozzle 2 and an accelerating pipe 3 in this collision type airflow crusher. The first collision-type airflow crusher includes a compressed gas supply nozzle 2, an accelerating pipe 3 connected to the compressed gas supply nozzle 2 and having a crushed substance supply port 1, and a crushed substance arranged in a subsequent stage of the accelerating pipe 3. In a collision-type airflow crusher including a collision member 4 for colliding and crushing 6, compressed gas from the nozzle throat portion 2a to the effective outlet portion 3b of the acceleration pipe 3 The effective distance along the common center line C between the supply nozzle 2 and the accelerating tube 3 is L, L / 2 = L 1 , the divergence angle of the accelerating tube 3 is θ, and the accelerating tube 3 at a position at a distance L 1 from the nozzle throat 2a. When the divergence angle of the inner peripheral surface portion is θ 1 , it is characterized in that it is formed in a divergent shape that satisfies the relational expression shown in [Formula 1] below.

【数1】Ltan(θ/2)≧L1tan(θ1/2)>
(1/2)Ltan(θ/2)
[Number 1] Ltan (θ / 2) ≧ L 1 tan (θ 1/2)>
(1/2) Ltan (θ / 2)

【0011】ここで、図1〜図3により、本明細書にお
けるノズル喉部2a、ノズル喉部2aの直径D、加速管
3の有効長さL、L1、拡がり角θ、θ1、θ2の定義に
ついて述べる。ノズル喉部2aとは、圧縮気体供給ノズ
ル2と加速管3の間での最狭部分をいう。図1及び後述
の図7、図8では、ノズル喉部2aは、長手方向に幅を
持たないものが示されているが、図2、図3に示すよう
に長手方向に幅を持つ場合もある。図2は最狭部分が長
手方向に同寸法で幅を持つ場合で、2pと2qの間の部
分がノズル喉部2aとなる。図3は最狭部分が長手方向
に異なる寸法で幅を持つ場合で、2pと2qの間の部分
がノズル喉部2aとなる。また、図1、図7、図8で
は、ノズル喉部2aは、加速管3と圧縮気体供給ノズル
2との接合境界面に形成されているが、これに限らず、
圧縮気体供給ノズル2、加速管3双方の内部に存在する
場合もある。ノズル喉部2aの直径Dとは、図3に示す
ように、加速管3又は圧縮気体供給ノズル2の最狭部分
における最小径部位の直径をいう。有効距離Lとは、図
3に示すように、加速管3のテーパ状内周面を表わす輪
郭線の延長線l3と、前記最狭部分の最小径部位に接し
共通中心線Cに平行な直線l4との交点を2bとすると
き、該交点2bから加速管有効出口部3bまでの、共通
中心線Cに沿う距離をいう。従って、図2のようにノズ
ル喉部2aを示す最狭部分の値が長手方向に同寸法で幅
を持つ場合には、加速管3の有効距離Lは、加速管有効
出口部3bに最も近いノズル喉部2a位置から該加速管
有効出口部3bまでの距離となる。距離L1とは、図
1、図3に示すように、前記交点2bからの距離が有効
距離Lの1/2である、共通中心線Cに沿う距離をい
う。加速管3の拡がり角θとは、図1、図3に示すよう
に、加速管3及び圧縮気体供給ノズル2の接合境界位置
における加速管内周面上の点と加速管有効出口部3bに
おける加速管内周面上の点とを結ぶ線lと共通中心線C
とのなす角を2倍した角度をいう。ノズル喉部2aから
距離L1の位置における加速管3の内周面部分の拡がり
角θ1とは、図3に示すように、前記交点2bからの共
通中心線Cに沿う距離がL1である加速管内周面上の点
と前記交点2bとを結ぶ線l1と共通中心線Cとのなす
角を2倍した角度をいう。拡がり角θ2とは、図1に示
すように、前記交点2bからの共通中心線Cに沿う距離
がL1である加速管3の内周面上の点3aと加速管有効
出口部3bとを結ぶ線l2と共通中心線Cとのなす角を
2倍した角度をいう。
1 to 3, the nozzle throat 2a, the diameter D of the nozzle throat 2a, the effective lengths L and L 1 of the accelerating tube 3 and the divergence angles θ, θ 1 and θ according to the present specification will be described. The definition of 2 will be described. The nozzle throat portion 2 a is the narrowest portion between the compressed gas supply nozzle 2 and the acceleration tube 3. In FIG. 1 and FIGS. 7 and 8 described later, the nozzle throat portion 2a is shown as having no width in the longitudinal direction, but it may also have a width in the longitudinal direction as shown in FIGS. 2 and 3. is there. In FIG. 2, the narrowest portion has the same size and width in the longitudinal direction, and the portion between 2p and 2q is the nozzle throat portion 2a. FIG. 3 shows the case where the narrowest portion has different widths in the longitudinal direction and the portion between 2p and 2q is the nozzle throat portion 2a. Further, in FIGS. 1, 7, and 8, the nozzle throat portion 2a is formed on the joint boundary surface between the acceleration tube 3 and the compressed gas supply nozzle 2, but the invention is not limited to this.
It may exist inside both the compressed gas supply nozzle 2 and the acceleration tube 3. The diameter D of the nozzle throat portion 2a means the diameter of the smallest diameter portion in the narrowest portion of the acceleration pipe 3 or the compressed gas supply nozzle 2, as shown in FIG. As shown in FIG. 3, the effective distance L is an extension line l 3 of a contour line representing the tapered inner peripheral surface of the acceleration tube 3 and a minimum center of the narrowest portion, and is parallel to the common center line C. When the point of intersection with the straight line l 4 is 2b, it means the distance from the point of intersection 2b to the effective exit portion 3b of the acceleration tube along the common center line C. Therefore, when the value of the narrowest portion showing the nozzle throat portion 2a has the same size and width in the longitudinal direction as shown in FIG. 2, the effective distance L of the acceleration tube 3 is closest to the acceleration tube effective outlet portion 3b. It is the distance from the position of the nozzle throat 2a to the effective exit portion 3b of the acceleration tube. As shown in FIGS. 1 and 3, the distance L 1 is a distance along the common center line C where the distance from the intersection 2b is 1/2 of the effective distance L. As shown in FIGS. 1 and 3, the divergence angle θ of the accelerating pipe 3 means a point on the inner peripheral surface of the accelerating pipe at the joint boundary position between the accelerating pipe 3 and the compressed gas supply nozzle 2 and acceleration at the accelerating pipe effective outlet portion 3b. A line 1 connecting a point on the inner peripheral surface of the pipe and a common center line C
It is an angle that is twice the angle formed by. As shown in FIG. 3, the divergence angle θ 1 of the inner peripheral surface portion of the acceleration tube 3 at the position at a distance L 1 from the nozzle throat portion 2a means that the distance along the common center line C from the intersection 2b is L 1 . It is an angle obtained by doubling the angle formed by the common center line C and a line l 1 connecting a point on the inner peripheral surface of an accelerating tube and the intersection 2b. As shown in FIG. 1, the divergence angle θ2 refers to a point 3a on the inner peripheral surface of the acceleration tube 3 whose distance from the intersection 2b along the common center line C is L 1 and the acceleration tube effective outlet portion 3b. It is an angle obtained by doubling the angle formed by the connecting line l 2 and the common center line C.

【0012】上記構成において、L1tan(θ1/2)
が上記範囲をはずれると、エアー層剥離や衝撃波の影響
によりエアー加速能力低下となる。なお、図1に示す構
成では、加速管3の加速管路がテーパ角度の異なる2つ
の加速管内周面を接合した形のものにより形成されてい
るが、上記の関係式を満足していれば、多角形形状を含
む曲面でもよい。また、図1に示す構成では、テーパ角
度の異なる2つの加速管内周面の接合点とノズル喉部2
aから距離L1の位置にある加速管内周面上の点3aと
が一致しているが、上記関係式を満足していれば異なっ
ていてもよい。
[0012] In the above configuration, L 1 tan (θ 1/ 2)
If is out of the above range, the air accelerating ability is deteriorated due to the air layer peeling and the influence of shock waves. In the configuration shown in FIG. 1, the accelerating pipe line of the accelerating pipe 3 is formed by joining two inner peripheral surfaces of the accelerating pipes having different taper angles, but if the above relational expression is satisfied, It may be a curved surface including a polygonal shape. Further, in the configuration shown in FIG. 1, the joining point between the inner peripheral surfaces of two acceleration tubes having different taper angles and the nozzle throat 2
The point 3a on the inner peripheral surface of the acceleration pipe at the position of the distance L 1 from a coincides with each other, but may be different as long as the above relational expression is satisfied.

【0013】上記のような構成の衝突式気流粉砕機で
は、被粉砕物供給口1から加速管3に供給された被粉砕
物6は、圧縮気体供給ノズル2から噴出する気流により
搬送される。この場合、ノズル喉部2aにおいて音速に
達した気流は、拡がり角度θ1の部分によって超音速に
加速され、拡がり角度θ2の部分によって気体速度を維
持することができる。そして、衝突部材4に分散した状
態で衝突・粉砕が行われるため、被粉砕物6を数μmの
オーダーまで、ばらつきが少なく高効率で粉砕すること
ができる。
In the collision type air flow crusher having the above-mentioned structure, the crushed object 6 supplied from the crushed object supply port 1 to the acceleration tube 3 is conveyed by the air flow ejected from the compressed gas supply nozzle 2. In this case, the airflow reaching the sonic velocity in the nozzle throat portion 2a is accelerated to supersonic speed by the portion of the spread angle θ 1 and the gas velocity can be maintained by the portion of the spread angle θ 2 . Then, since the collision and crushing are performed in a state of being dispersed in the collision member 4, the crushed object 6 can be crushed with high efficiency with little variation up to the order of several μm.

【0014】第2の衝突式気流粉砕機(請求項2の装
置) 本発明による第2の衝突式気流粉砕機は、上記第1の衝
突式気流粉砕機の構成を前提として、さらに、加速管3
内の加速管路が、ノズル喉部2aの直径をDとしたと
き、下記〔数2〕で示される関係式を満足し、且つθが
1°〜7°で、Lが8D〜30Dの範囲にある拡がり形
状に形成されていることを特徴とする。
A second collision type airflow crusher (the device of claim 2)
Location) a second collision type air pulverizer according to the present invention, given the configuration of the first collision type air pulverizer, and further, the acceleration tube 3
When the diameter of the nozzle throat portion 2a is D, the internal acceleration pipe satisfies the relational expression shown in the following [Equation 2], and θ is in the range of 1 ° to 7 ° and L is in the range of 8D to 30D. It is characterized in that it is formed in a spread shape.

【数2】1.8D≧Ltan(θ/2)≧0.13D[Expression 2] 1.8D ≧ Ltan (θ / 2) ≧ 0.13D

【0015】上記構成において、Ltan(θ/2)が
上記範囲をはずれる要因として、が上記範囲をはずれる
と、エアー層剥離、エアー膨張不足となり、また、Lが
上記範囲をはずれると、粉体加速不良によりそれぞれ粉
砕性の低下となる。Dの絶対値は通常、5〜30mm程
度であり、Lの絶対値は通常、4〜90cm程度であ
る。
In the above-mentioned structure, as a factor that Ltan (θ / 2) deviates from the above range, if deviates from the above range, air layer separation and air expansion will be insufficient, and if L deviates from the above range, powder acceleration will occur. Due to the defects, the pulverizability decreases. The absolute value of D is usually about 5 to 30 mm, and the absolute value of L is usually about 4 to 90 cm.

【0016】第2の衝突式気流粉砕機では、上記構成を
採用したので、上記第1の衝突式気流粉砕機の利点に加
え、圧縮気体のエネルギーと圧縮性流体の特性を有効に
生かせる利点がある。
Since the second collision type airflow crusher employs the above-mentioned structure, in addition to the advantages of the first collision type airflow crusher, there is an advantage that the energy of the compressed gas and the characteristics of the compressible fluid can be effectively utilized. is there.

【0017】第3の衝突式気流粉砕機(請求項3の装
置) 本発明による第3の衝突式気流粉砕機は、上記第2の衝
突式気流粉砕機の構成を前提として、さらに、圧力が
0.7MPa以上の圧縮気体を用いるものであり、衝突
部材4が、加速管3からの噴流が偏流を生じ、分散され
ながら衝突する形状を有し、且つ加速管3の加速管路
が、下記〔数3〕で示される関係式を満足し、θが2°
〜7°で、Lが10D〜30Dの範囲にある拡がり形状
に形成されていることを特徴とする。
A third collision type airflow crusher (the device of claim 3)
Third collision type air pulverizer according location) the invention, given the configuration of the second collision type air pulverizer, and further, the pressure is intended to use a more compressed gas 0.7 MPa, impact member 4 However, the jet flow from the accelerating tube 3 has a shape that causes a drift and collides while being dispersed, and the accelerating conduit of the accelerating tube 3 satisfies the relational expression shown in the following [Equation 3], and θ is 2 °
It is characterized in that it is formed in a spread shape in which L is in the range of 10D to 30D at -7 °.

【数3】1.8D≧Ltan(θ/2)≧0.19D この衝突式気流粉砕機は、特に粉砕性の低い被粉砕物を
粉砕するのに好適なものである。
## EQU00003 ## 1.8D.gtoreq.Ltan (.theta. / 2) .gtoreq.0.19D This collision type airflow crusher is suitable for crushing an object to be crushed having a particularly low crushability.

【0018】上記構成において、衝突部材4の形状、す
なわち加速管3からの噴流が偏流を生じ、分散されなが
ら衝突する形状とは、円錐形状、角錐形状等の多角・多
面形状のことをいう。その例を図4の42、図5の43
示す。また、上記構成において、Ltan(θ/2)が
上記範囲をはずれる要因として、θが上記範囲をはずれ
ると、エアーの剥離やエアー膨張不足となり、また、L
が上記範囲をはずれると、粉体加速不良によりそれぞれ
粉砕性の低下となる。
In the above structure, the shape of the collision member 4, that is, the shape in which the jet flow from the accelerating tube 3 causes a drift and collides while being dispersed means a polygonal or polyhedral shape such as a cone shape or a pyramid shape. Examples thereof are shown as 4 2 in FIG. 4 and 4 3 in FIG. Further, in the above structure, when Ltan (θ / 2) deviates from the above range, when θ deviates from the above range, air separation and air expansion become insufficient, and Ltan
If the values are out of the above range, the pulverizability is lowered due to poor powder acceleration.

【0019】第3の衝突式気流粉砕機によれば、粉砕性
の低い被粉砕物の粉砕において、粉砕性をより向上させ
ることができるとともに、過粉砕により発生する微粉の
量を大幅に低減させることができる。
According to the third collision type air flow crusher, the crushability of the crushed object having low crushability can be further improved, and the amount of fine powder generated by over-crushing can be greatly reduced. be able to.

【0020】第4の衝突式気流粉砕機(請求項4の装
置) 本発明による第4の衝突式気流粉砕機は、上記第2の衝
突式気流粉砕機の構成を前提として、さらに、圧力が
0.7MPa以下の圧縮気体を用いるものであり、衝突
部材4が、加速管3からの噴流が偏流を生じ、分散され
ながら衝突する形状を有し、且つ加速管3の加速管路
が、下記〔数4〕で示される関係式を満足し、θが2°
〜7°で、Lが8D〜25Dの範囲にある拡がり形状に
形成されていることを特徴とする。
A fourth collision type airflow crusher (the device of claim 4)
Fourth collision type air pulverizer according location) the invention, given the configuration of the second collision type air pulverizer, and further, which is pressure using the following compressed gas 0.7 MPa, impact member 4 However, the jet flow from the accelerating tube 3 has a shape that causes a drift and collides while being dispersed, and the accelerating conduit of the accelerating tube 3 satisfies the relational expression shown in the following [Equation 4], and θ is 2 °
It is characterized in that it is formed in a spread shape in which L is in the range of 8D to 25D at -7 °.

【数4】1.2D≧Ltan(θ/2)≧0.19D この衝突式気流粉砕機は、特に粉砕性が比較的よい被粉
砕物を粉砕するのに好適なものである。
## EQU00004 ## 1.2D.gtoreq.Ltan (.theta. / 2) .gtoreq.0.19D This collision type airflow crusher is suitable for crushing an object to be crushed, which has particularly good crushability.

【0021】上記構成において、衝突部材4の形状、す
なわち加速管3からの噴流が偏流を生じ、分散されなが
ら衝突する形状とは、上記第3の衝突式気流粉砕機の場
合と同様である。また、上記構成において、Ltan
(θ/2)が上記範囲をはずれると、加速管3内コア加
速不良による粉砕性の低下や、過風速による粉体熱凝集
の原因となる。また、θが上記範囲をはずれると、エア
ー剥離となり、また、Lが上記範囲をはずれると、粉体
加速不良によりそれぞれ粉砕性の低下となる。
In the above structure, the shape of the collision member 4, that is, the shape of the jet flow from the accelerating tube 3 in which the jet flow produces a drift and is dispersed and dispersed, is the same as in the case of the third collision type airflow crusher. Further, in the above configuration, Ltan
If (θ / 2) deviates from the above range, it may cause deterioration of pulverization due to poor acceleration of the core in the accelerating tube 3 and thermal agglomeration of powder due to excessive wind speed. Further, when θ is out of the above range, air separation occurs, and when L is out of the above range, pulverizability is deteriorated due to poor powder acceleration.

【0022】第4の衝突式気流粉砕機によれば、粉砕性
の比較的よい被粉砕物の粉砕において、過粉砕により発
生する微粉の量が大幅に低減されるとともに、粉砕熱に
よる溶融凝集物の生成量を減少させることができる。
According to the fourth collision type air flow pulverizer, in pulverizing the pulverized object having relatively good pulverizability, the amount of fine powder generated by over-pulverization is significantly reduced, and the molten agglomerate due to the pulverization heat is generated. It is possible to reduce the production amount of.

【0023】第5の衝突式気流粉砕機(請求項5の装
置) 本発明による第5の衝突式気流粉砕機は、上記第2の衝
突式気流粉砕機の構成を前提として、さらに、衝突部材
4が、加速管3からの噴流が偏流、分散のいずれも発生
せず、直接衝突する形状を有し、且つ加速管3の加速管
路は、下記〔数5〕で示される関係式を満足し、θが1
°〜5°で、Lが8D〜30Dの範囲にある拡がり形状
に形成されていることを特徴とする。
A fifth collision type airflow crusher (the device of claim 5)
Location) fifth collision type air pulverizer according to the present invention, given the configuration of the second collision type air pulverizer, and further, the collision member 4, either jet from the acceleration tube 3 is biased flow, the dispersion It has a shape that does not occur and directly collides, and the acceleration pipe line of the acceleration pipe 3 satisfies the relational expression shown in the following [Equation 5], and θ is 1
It is characterized in that it is formed in a divergent shape in which L is in the range of 8D to 30D at an angle of 5 °.

【数5】0.78D≧Ltan(θ/2)≧0.13D[Expression 5] 0.78D ≧ Ltan (θ / 2) ≧ 0.13D

【0024】上記構成において、衝突部材4の形状、す
なわち加速管3からの噴流が偏流、分散のいずれも発生
せず、直接衝突する形状とは、加速管3から衝突部材4
の衝突面9との間に気流に影響を与える障害物がないこ
とをいう。その例を図6の41に示す。また、上記構成
において、Ltan(θ/2)が上記範囲をはずれる
と、加速管3内のエアー加速不良による粉砕性低下や過
風速による過粉砕の原因となる。また、θが上記範囲を
はずれると、エアー剥離となり、また、Lが上記範囲を
はずれると、粉体加速不良によりそれぞれ粉砕性の低下
となる。
In the above configuration, the shape of the collision member 4, that is, the shape of the jet flow from the acceleration tube 3 in which the jet flow does not cause uneven flow or dispersion and directly collides means that the acceleration member 3 collides with the collision member 4.
It means that there is no obstacle between it and the collision surface 9 that affects the air flow. Examples of which are illustrated in 4 1 of FIG. Further, in the above configuration, if Ltan (θ / 2) deviates from the above range, it may cause deterioration of pulverization due to poor air acceleration in the accelerating tube 3 or overpulverization due to excessive wind speed. Further, when θ is out of the above range, air separation occurs, and when L is out of the above range, pulverizability is deteriorated due to poor powder acceleration.

【0025】第5の衝突式気流粉砕機によれば、上記第
3、第4の衝突式気流粉砕機と比較して、粉砕能力は若
干低いが、過粉砕による微粉の発生をより効果的に防止
でき、高い歩留まりを確保した高効率の粉砕が可能であ
る。
According to the fifth collision type air flow pulverizer, the pulverizing ability is slightly lower than those of the third and fourth collision type air flow pulverizers, but the generation of fine powder due to overpulverization is more effective. It is possible to prevent this, and it is possible to pulverize with high efficiency while ensuring a high yield.

【0026】次に、本発明による衝突式気流粉砕機の変
形例について述べる。まず、第1の変形例を図7に示
す。この衝突式気流粉砕機は、上記第1〜第5の衝突式
気流粉砕機において、加速管3端部の有効出口部3bに
拡がり出口部3cを設けて加速管3の出口部を急拡大し
たものである。このような拡がり出口部3cを設ける
と、上記第1〜第5の衝突式気流粉砕機で得られる効果
に加え、粉砕室7内のエアーの乱れを低減し、分級機1
3に粉流体を円滑に流すことができる利点がある。な
お、この場合の拡がり角度θは、ノズル喉部2aと加速
管有効出口部3bとにより設定される角度であって、ノ
ズル喉部2aと拡がり出口部3cとによって設定される
角度ではない。
Next, a modified example of the collision type airflow crusher according to the present invention will be described. First, a first modification is shown in FIG. This collision-type airflow crusher is the same as the above-mentioned first to fifth collision-type airflow crushers, but the expansion outlet 3c is provided in the effective outlet 3b at the end of the acceleration tube 3 to rapidly expand the outlet of the acceleration tube 3. It is a thing. Providing such a spread outlet 3c reduces the turbulence of the air in the crushing chamber 7 in addition to the effects obtained by the first to fifth collision type airflow crushers, and the classifier 1
3 has an advantage that the powder fluid can be smoothly flowed. The divergence angle θ in this case is an angle set by the nozzle throat 2a and the accelerating pipe effective outlet 3b, and not the angle set by the nozzle throat 2a and the divergent outlet 3c.

【0027】次に、第2の変形例(請求項6の装置)を
図8に示す。この衝突式気流粉砕機は、上記第1〜第5
の衝突式気流粉砕機において、加速管3を、環状体3d
と3eを加速管3の長手方向に並べて、かつ互いに分割
可能に結合して構成したものである。衝突式気流粉砕機
では、被粉砕物は圧縮気体供給ノズル2から噴出される
高圧気体により加速管有効出口8へ搬送されるが、この
被粉砕物は用途及び品種により真比重、嵩密度、粒度分
布が異なる。種々異なる被粉砕物に適した粉砕気流を形
成するために、本変形例における加速管では、前記θ1
とθ2の組み合せを自在に構成し、最適状態で被粉砕物
を高速に加速できる加速管3の拡がり形状が容易に形成
できるように、加速管3を分割・組合せ可能に構成した
ものである。なお、図8では2個の環状体を結合して加
速管3を構成してあるが、3個以上の環状体を結合して
もよい。環状体の結合方法としては、例えばノックピ
ン、ねじ込み、インローによるハメ合い等の方法を用い
ることができる。
Next, a second modification (apparatus according to claim 6) is shown in FIG. This collision-type airflow crusher has the above first to fifth features.
In the collision-type airflow crusher of
And 3e are arranged in the longitudinal direction of the accelerating tube 3 and are connected so as to be separable from each other. In the collision type air flow crusher, the material to be crushed is conveyed to the acceleration tube effective outlet 8 by the high-pressure gas ejected from the compressed gas supply nozzle 2. The material to be crushed has a true specific gravity, a bulk density, and a particle size depending on the application and type. The distribution is different. In order to form a crushing air flow suitable for different objects to be crushed, the above-mentioned θ 1
Freely configure a combination of theta 2 between the object to be crushed as spread shape of the acceleration tube 3 can be accelerated to a high speed can be easily formed in an optimum state is obtained by dividing Combination configured to be capable of accelerating tube 3 . In addition, in FIG. 8, two annular bodies are combined to form the accelerating tube 3, but three or more annular bodies may be connected. As a method of connecting the annular bodies, for example, a method such as knock pin, screwing, and fitting with a spigot can be used.

【0028】次に、第3の変形例(請求項7の装置)を
図9に示す。この衝突式気流粉砕機は、上記第1〜第5
の衝突式気流粉砕機において、衝突部材4を、その軸線
Zが共通中心線Cと異なるように設置したものである。
ここで軸線Zが共通中心線Cと異なるとは、共通中心線
Cの延長上に軸線Zが存在しないことをいい、2つの線
CとZが平行な場合をも含む意味である。加速管内3に
おける被粉砕物6の物性や軌跡、分布に応じて軸線Zを
設定することにより、粉砕効率をより一層向上させるこ
とができる。
Next, a third modification (apparatus of claim 7) is shown in FIG. This collision-type airflow crusher has the above first to fifth features.
In the collision type airflow crusher, the collision member 4 is installed so that its axis Z is different from the common center line C.
Here, the axis line Z being different from the common center line C means that the axis line Z does not exist on the extension of the common center line C, and includes the case where the two lines C and Z are parallel to each other. By setting the axis Z in accordance with the physical properties, locus, and distribution of the object 6 to be crushed in the acceleration tube 3, the crushing efficiency can be further improved.

【0029】次に、第4の変形例(請求項8の装置)に
ついて述べる。この衝突式気流粉砕機は、上記第1〜第
5の衝突式気流粉砕機において、加速管3に設けられる
被粉砕物供給口1を複数設けたものである。複数の被粉
砕物供給口1の設置の仕方は円周上方向に設けてもよい
し、共通中心線C方向に設けてもよいし、円周上方向及
び共通中心線C方向ともに設けてもよい。減圧部供給型
加速管では被粉砕物供給口1が1箇所の場合、被粉砕物
供給口1から流入するエアーの影響で加速管内における
被粉砕物の軌跡や分布が加速管中心と異なる場合があ
り、粉砕効率のロスの危惧が懸念されている。そこで図
9に示すように、加速管3に被粉砕物供給口1を共通中
心線Cを軸対称に複数個設けたり、共通中心線C方向に
加速管3内に逆位置に更に被粉砕物供給口1aを追加す
ることで、被粉砕物6を共通中心線Cをピークとした理
想的な分布で加速することができるため粉砕効率につな
がる。このとき粉砕機の共通中心線Cの設定に関しては
水平方向に限定する必要は無く、任意の方向にて取り付
けが可能である。
Next, a fourth modification (apparatus according to claim 8) will be described. This collision-type airflow crusher is the same as the first to fifth collision-type airflow crushers provided with a plurality of crushed object supply ports 1 provided in the acceleration pipe 3. The plurality of crushed material supply ports 1 may be installed in the circumferential direction, in the common centerline C direction, or both in the circumferential direction and the common centerline C direction. Good. In the depressurization part supply type acceleration tube, when the crushed object supply port 1 is one location, the locus or distribution of the crushed object in the acceleration tube may differ from the center of the accelerating tube due to the influence of the air flowing from the crushed object supply port 1. Therefore, there is a concern that the crushing efficiency may be lost. Therefore, as shown in FIG. 9, a plurality of crushed object supply ports 1 are provided in the accelerating tube 3 symmetrically about the common center line C, or the crushed object is further reversed in the accelerating tube 3 in the common center line C direction. By adding the supply port 1a, it is possible to accelerate the object 6 to be crushed with an ideal distribution having the common center line C as a peak, which leads to crushing efficiency. At this time, the setting of the common center line C of the crusher does not need to be limited to the horizontal direction, and the crusher can be attached in any direction.

【0030】次に、第5の変形例について述べる。この
衝突式気流粉砕機は、上記第1〜第5の衝突式気流粉砕
機において、図10に示すように加速管有効出口8の出
口面から衝突部材4の被粉砕物衝突面9までの中心線の
有効距離をYとし、加速管有効出口部8の直径をD0
するとき、下記〔数6〕で示される関係式を満足するよ
うに衝突部材4を設置したことを特徴とする。
Next, a fifth modification will be described. This collision type airflow crusher is the center from the exit surface of the acceleration tube effective outlet 8 to the crushed object collision surface 9 of the collision member 4 as shown in FIG. When the effective distance of the line is Y and the diameter of the effective exit portion 8 of the acceleration tube is D 0 , the collision member 4 is installed so as to satisfy the relational expression shown in the following [Equation 6].

【数6】Y=M×D0/4 15≧M≧6 このとき定数Mは加速管3の有効出口部8のエアー通過
断面積と衝突部材4の被粉砕物衝突面9における共通中
心線Cと直角となるエアー通過面積の拡大定数を示すも
のであり、ここでは衝突面エアー通過面積定数と称す
る。本発明者らの検討によれば、上記定数Mは粉砕用圧
縮空気圧が1.5MPa以下の条件にて満足するもので
あり、粉砕用圧縮空気圧が高いほどM値は大きくとる必
要があることが確認された。また有効距離Yのとりかた
については、加速管有効出口部8中心により、突部頂点
を除く、衝突部材4の被粉砕物衝突面部9平面部までの
垂線最短距離とし、平面部が存在しない場合は、衝突部
材4の中心軸Zと最も垂直に近い部分の垂線最短距離の
平均値とする。上記のような条件で衝突部材4を設置す
ると、加速管3にて増速した粉体は加速管3出口背圧上
昇を少なくすることで衝突エネルギーを維持できる利点
がある。
[6] the common center line of Y = M × D 0/4 15 ≧ M ≧ 6 grinding object impact surface 9 of this time constant M and the air passage cross-sectional area of the effective outlet 8 of the acceleration tube 3 collides member 4 It shows the expansion constant of the air passage area perpendicular to C and is referred to as the collision surface air passage area constant here. According to the study by the present inventors, the above constant M is satisfied under the condition that the crushing compressed air pressure is 1.5 MPa or less, and the M value needs to be increased as the crushing compressed air pressure increases. confirmed. Regarding the effective distance Y, the center of the acceleration tube effective outlet portion 8 is set to be the shortest perpendicular to the flat surface portion of the crushed object collision surface portion 9 of the collision member 4, excluding the projection vertex, and there is no flat surface portion. In this case, the average value of the shortest perpendicular distances of the portion that is closest to the central axis Z of the collision member 4 is set. When the collision member 4 is installed under the above conditions, there is an advantage that the powder accelerated in the acceleration tube 3 can maintain collision energy by reducing the rise in back pressure at the exit of the acceleration tube 3.

【0031】次に、第6の変形例(請求項10の装置)
を図11に示す。この衝突式気流粉砕装置は、上記第1
〜第5の衝突式気流粉砕装置において、加速管3の出口
面8と衝突部材4の被粉砕物衝突面9までの間において
加速管3からの高速気流の流路の側部空間を制限するカ
バー25を設けたことを特徴とする。すなわち、粉砕室
内加速管出口面8上にて加速管3を中心とする閉じられ
た線21と、粉砕室内壁面22にて加速管出口面8と衝
突部材被粉砕物衝突面9までの軸方向位置23内で加速
管3を中心とする閉じられた線24とを結ぶ、面形状の
カバー25を有する。一般に、加速管3と衝突部材4の
構成からなる粉砕機においては、加速管3と衝突部材4
の間にて加速管3からの高速気流14の側部空間に大き
な渦が発生し、その影響で粉砕効率が低下する。そこで
渦発生部空間を削除するカバーを設けることで渦が低減
され、エアーが下流に流れやすくなり、同時に粉砕効率
を向上させることができる。
Next, a sixth modification (apparatus according to claim 10).
Is shown in FIG. This collision type airflow crushing device is the first
In the fifth collision-type airflow crushing device, the side space of the flow path of the high-speed airflow from the acceleration tube 3 is limited between the outlet surface 8 of the acceleration tube 3 and the crushed object collision surface 9 of the collision member 4. A cover 25 is provided. That is, a closed line 21 centered on the acceleration tube 3 on the accelerating tube exit surface 8 of the crushing chamber, and an axial direction from the accelerating tube exit surface 8 to the collision member crushed object collision surface 9 on the crushing chamber wall surface 22. It has a surface-shaped cover 25 that connects a closed line 24 centered on the acceleration tube 3 in the position 23. Generally, in the crusher including the structure of the acceleration tube 3 and the collision member 4, the acceleration tube 3 and the collision member 4 are used.
During this period, a large vortex is generated in the side space of the high-speed airflow 14 from the accelerating tube 3, and the effect of this is that the grinding efficiency is reduced. Therefore, by providing a cover for removing the vortex generating portion space, vortices can be reduced, air can easily flow to the downstream, and at the same time, grinding efficiency can be improved.

【0032】以上いくつかの変形例を述べたが、これら
変形例の構造は単独で利用してもよいし、適宜組み合わ
せて利用してもよい。
Although some modified examples have been described above, the structures of these modified examples may be used alone or in appropriate combination.

【0033】[0033]

【実施例】以下、本発明の実施例について説明する。 実施例1(請求項4に係るもの) ポリエステル樹脂 100重量部 フタロシアニン系顔料 8重量部 上記処方よりなるトナー顔料をミキサーにて混合し、こ
の混合物をエクストルーダーにて約200℃で溶融混練
した後、冷却・固化し、溶融混練物の冷却物をハンマー
ミルで200〜2000μmの粒子に粗粉砕した。この
粗粉砕物を被粉砕物とし、図12に示す分級機及びフロ
ーで粉砕を行った。粉砕された粉体を細粉と粗粉とに分
級するための分級機として固定壁式風力分級機を使用し
た。
Embodiments of the present invention will be described below. Example 1 (according to claim 4) Polyester resin 100 parts by weight Phthalocyanine-based pigment 8 parts by weight Toner pigments having the above formulation were mixed in a mixer, and the mixture was melt-kneaded at about 200 ° C. in an extruder. Then, it was cooled and solidified, and the cooled product of the melt-kneaded product was roughly crushed into particles of 200 to 2000 μm by a hammer mill. This coarsely pulverized material was used as an object to be pulverized and pulverized by a classifier and a flow shown in FIG. A fixed wall air classifier was used as a classifier for classifying the crushed powder into fine powder and coarse powder.

【0034】衝突式気流粉砕機の圧縮気体供給ノズル2
から圧力0.686MPaの圧縮空気を導入し、図1に
示す被粉砕物供給口1から被粉砕物6を34kg/Hr
の割合で供給した。得られた粉砕物10は分級機13に
送り、細粉は分級粉体として取り除き、粗粉は再度、被
粉砕物供給口1から粉体原料と共に被粉砕物6として加
速管3に投入した。
Compressed gas supply nozzle 2 of collision type air flow crusher
Compressed air having a pressure of 0.686 MPa is introduced from the crushed material supply port 1 shown in FIG.
Supplied at the rate of The obtained pulverized product 10 was sent to the classifier 13, fine powder was removed as classified powder, and coarse powder was again charged into the accelerating pipe 3 as the pulverized product 6 together with the powder material from the pulverized product supply port 1.

【0035】なお、加速管3としては、図1においてD
=9mm、L=18.5D、θ=5°、θ1=8.9
°、θ2=1°のものを使用し、衝突部材としては、加
速管3からの噴流が偏流を生じ、分散されながら衝突す
る形状の、図4に示す衝突部材42を使用し、衝突面エ
アー通過面積定数Mが8.5となる加速管3出口部8よ
り衝突面9が80mm離間する位置に設置し、12時間
の連続運転を行った。その結果、体積平均粒径が9μm
であり、粒径4μm以下の微粉発生量が全体の14%で
ある細粉が得られた。
The accelerating tube 3 is indicated by D in FIG.
= 9 mm, L = 18.5 D, θ = 5 °, θ 1 = 8.9.
And θ 2 = 1 ° are used, and as the collision member, a collision member 4 2 shown in FIG. The collision surface 9 was installed at a position 80 mm away from the exit 8 of the acceleration tube 3 where the surface air passage area constant M was 8.5, and continuous operation was performed for 12 hours. As a result, the volume average particle diameter is 9 μm.
A fine powder having a particle size of 4 μm or less and 14% of the total amount of fine powder generated was obtained.

【0036】実施例2(請求項5に係るもの) 実施例1と同様の被粉砕物6にて、図12に示す分級機
及びフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として固定壁式風力分級機
を使用した。衝突式気流粉砕機の圧縮気体供給ノズル2
から圧力0.686MPaの圧縮空気を導入し、図1に
示す被粉砕物供給口1から被粉砕物6を30kg/Hr
の割合で供給した。得られた粉砕物10は分級機13に
送り、細粉は分級粉体として取り除き、粗粉は再度、被
粉砕物供給口1から粉体原料と共に被粉砕物6として加
速管3に投入した。
Example 2 (according to claim 5) The same pulverized material 6 as in Example 1 was pulverized with a classifier and a flow shown in FIG. A fixed wall air classifier was used as a classifier for classifying the crushed powder into fine powder and coarse powder. Compressed gas supply nozzle 2 for collision type air flow crusher
Compressed air having a pressure of 0.686 MPa is introduced from the pulverized material supply port 1 shown in FIG. 1 to the pulverized material 6 at 30 kg / Hr.
Supplied at the rate of The obtained pulverized product 10 was sent to the classifier 13, fine powder was removed as classified powder, and coarse powder was again charged into the accelerating pipe 3 as the pulverized product 6 together with the powder material from the pulverized product supply port 1.

【0037】なお、加速管3としては、図1においてD
=9mm、L=18.5D、θ=3°、θ1=6°、θ2
=1°のものを使用し、衝突部材としては、加速管3か
らの噴流が偏流、分散のいずれも発生せず直接衝突する
形状の、図6に示す衝突部材41を使用し、衝突面エア
ー通過面積定数Mが8.5となる加速管3出口部8より
衝突面9が80mm離間する位置に設置し、12時間の
連続運転を行った。その結果、体積平均粒径が9μmで
あり、粒径4μm以下の微粉発生量が全体の12%であ
る細粉が得られた。
The accelerating tube 3 is indicated by D in FIG.
= 9 mm, L = 18.5 D, θ = 3 °, θ 1 = 6 °, θ 2
= 1 ° is used, and the collision member 41 shown in FIG. 6 is used as the collision member, which has a shape in which the jet flow from the acceleration tube 3 directly collides with neither uneven flow nor dispersion. The collision surface 9 was installed at a position 80 mm away from the exit portion 8 of the acceleration tube 3 where the passage area constant M was 8.5, and continuous operation was performed for 12 hours. As a result, a fine powder having a volume average particle diameter of 9 μm and a generation amount of fine powder of 4 μm or less was 12% of the whole was obtained.

【0038】実施例3(請求項6に係るもの) 実施例1と同様の被粉砕物6にて、図12に示す分級機
及びフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として固定壁式風力分級機
を使用した。衝突式気流粉砕機の圧縮気体供給ノズル2
から圧力0.686MPaの圧縮空気を導入し、図1に
示す被粉砕物供給口1から被粉砕物6を30kg/Hr
の割合で供給した。得られた粉砕物10は分級機13に
送り、細粉は分級粉体として取り除き、粗粉は再度、被
粉砕物供給口1から粉体原料と共に被粉砕物6として加
速管3に投入した。
Example 3 (according to claim 6) The same pulverized material 6 as in Example 1 was pulverized with a classifier and a flow shown in FIG. A fixed wall air classifier was used as a classifier for classifying the crushed powder into fine powder and coarse powder. Compressed gas supply nozzle 2 for collision type air flow crusher
Compressed air having a pressure of 0.686 MPa is introduced from the pulverized material supply port 1 shown in FIG. 1 to the pulverized material 6 at 30 kg / Hr.
Supplied at the rate of The obtained pulverized product 10 was sent to the classifier 13, fine powder was removed as classified powder, and coarse powder was again charged into the accelerating pipe 3 as the pulverized product 6 together with the powder material from the pulverized product supply port 1.

【0039】なお、加速管3及び衝突部材としては、実
施例3と同一形状・寸法のものを用いたが、実施例3の
加速管3が分割不可能な構造であるのに対し、本実施例
では図8に示すように、ノズル喉部2aからL1の位置
において分割可能であるものを使用し、12時間の連続
運転を行った。その結果、体積平均粒径が9μmであ
り、粒径4μm以下の微粉発生量が全体の12%である
細粉が得られた。
Although the accelerating tube 3 and the collision member have the same shape and size as those of the third embodiment, the accelerating tube 3 of the third embodiment has a non-dividable structure. In the example, as shown in FIG. 8, a nozzle that can be divided at the position from the nozzle throat 2a to L 1 was used, and continuous operation was performed for 12 hours. As a result, a fine powder having a volume average particle diameter of 9 μm and a generation amount of fine powder of 4 μm or less was 12% of the whole was obtained.

【0040】比較例1 実施例1と同様の被粉砕物6にて、図12に示す分級機
及びフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として固定壁式風力分級機
を使用した。衝突式気流粉砕機の圧縮気体供給ノズル2
から圧力0.686MPaの圧縮空気を導入し、図1に
示す被粉砕物供給口1から被粉砕物6を20kg/Hr
の割合で供給した。得られた粉砕物10は分級機13に
送り、細粉は分級粉体として取り除き、粗粉は再度、被
粉砕物供給口1から粉体原料と共に被粉砕物6として加
速管3に投入した。
Comparative Example 1 The same pulverized material 6 as in Example 1 was pulverized by the classifier and flow shown in FIG. A fixed wall air classifier was used as a classifier for classifying the crushed powder into fine powder and coarse powder. Compressed gas supply nozzle 2 for collision type air flow crusher
Compressed air having a pressure of 0.686 MPa is introduced from the pulverized material supply port 1 shown in FIG.
Supplied at the rate of The obtained pulverized product 10 was sent to the classifier 13, fine powder was removed as classified powder, and coarse powder was again charged into the accelerating pipe 3 as the pulverized product 6 together with the powder material from the pulverized product supply port 1.

【0041】なお、加速管3としては、図1においてD
=9mm、L=25D、θ=θ1=θ2=7°のものを使
用し、衝突部材としては、加速管3からの噴流が偏流を
生じ、分散されながら衝突する形状の、図4に示す衝突
部材42を使用し、衝突面エアー通過面積定数Mが8.
5となる加速管3出口部8より衝突面9が80mm離間
する位置に設置し、12時間の連続運転を行った。その
結果、体積平均粒径が9μmであり、粒径4μm以下の
微粉発生量が全体の18%である細粉が得られた。
The accelerating tube 3 is indicated by D in FIG.
= 9 mm, L = 25 D, θ = θ 1 = θ 2 = 7 °, and as the collision member, the jet flow from the accelerating tube 3 causes a non-uniform flow, and the shape is shown in FIG. using the collision member 4 2 shown, impact surface air passing area constant M is 8.
The collision surface 9 was installed at a position 80 mm apart from the exit portion 8 of the accelerating tube 3 which was No. 5, and continuous operation was performed for 12 hours. As a result, fine powder having a volume average particle diameter of 9 μm and a generation amount of fine powder having a particle diameter of 4 μm or less was 18% of the whole was obtained.

【0042】さらに、比較例1における条件で、圧縮気
体供給ノズル2から0.882MPaの圧縮空気を導入
してみたが、溶融凝集物が発生し実験の継続は不可能で
あり、供給量を減らしても溶融凝集物が発生防止には効
果がなかった。
Further, under the conditions of Comparative Example 1, it was tried to introduce compressed air of 0.882 MPa from the compressed gas supply nozzle 2, but melt agglomerates were generated and the experiment could not be continued, and the supply amount was reduced. However, it was not effective in preventing the formation of melt aggregates.

【0043】比較例2 実施例1と同様の被粉砕物6にて、図12に示す分級機
及びフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.686MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を17kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。
Comparative Example 2 The same pulverized material 6 as in Example 1 was pulverized by the classifier and flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air with a pressure of 0.686 MPa was introduced from the compressed gas supply nozzle 2 of the collision type air flow crusher, and
17 kg / H of the crushed material 6 from the crushed material supply port 1 shown in
It was supplied in the ratio of r. The crushed product 10 obtained is a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The pulverized material was supplied from the pulverized material supply port 1 into the acceleration tube 3 as the pulverized material 6 together with the powder raw material.

【0044】なお、加速管3としては、図1においてD
=9mm、L=25D、θ=θ1=θ2=7°のものを使
用し、衝突部材としては、加速管3からの噴流が偏流、
分散のいずれも発生せず直接衝突する形状の、図5に示
す衝突部材41を使用し、取付け寸法を衝突面エアー通
過面積定数Mが8.5となる加速管3出口部8より衝突
面9が80mmの距離を設置、12時間の連続運転を行
った。その結果、体積平均粒径が9μmであり、粒径4
μm以下の微粉発生量が全体の14%である細粉が得ら
れた。
The accelerating tube 3 is indicated by D in FIG.
= 9 mm, L = 25 D, θ = θ 1 = θ 2 = 7 °, and the jet from the accelerating tube 3 is deflected as a collision member.
Any of the dispersion of the shape of direct collision does not occur, by using the collision member 4 1 shown in FIG. 5, the impact surface than the acceleration tube 3 outlet 8 for the mounting dimensions collision surface air passage area constant M becomes 8.5 9 was installed at a distance of 80 mm and continuously operated for 12 hours. As a result, the volume average particle diameter was 9 μm, and the particle diameter was 4
A fine powder having a generation amount of fine powder of less than μm of 14% of the whole was obtained.

【0045】さらに、比較例2における条件で、圧縮気
体供給ノズル2から0.882MPaの圧縮空気を導入
してみたが、溶融凝集物が発生し実験の継続は不可能で
あり、供給量を減らしても溶融凝集物が発生防止には効
果がなかった。
Further, 0.882 MPa compressed air was introduced from the compressed gas supply nozzle 2 under the conditions of Comparative Example 2, but melt agglomerates were generated and the experiment could not be continued, and the supply amount was reduced. However, it was not effective in preventing the formation of melt aggregates.

【0046】 実施例4(請求項3に係るもの) スチレンアクリル樹脂 100重量部 フタロシアニン系顔料 8重量部 上記処方よりなるトナー顔料をミキサーにて混合し、こ
の混合物をエクストルーダーにて約200℃で溶融混練
した後、冷却・固化し、溶融混練物の冷却物をハンマー
ミルで200〜2000μmの粒子に粗粉砕した。この
粗粉砕物を被粉砕物とし、図12に示す粉砕機及びフロ
ーで粉砕を行なった。粉砕された粉体を細粉と粗粉とに
分級するための分級機として固定壁式風力分級機を使用
した。
Example 4 (according to claim 3) Styrene acrylic resin 100 parts by weight Phthalocyanine pigment 8 parts by weight Toner pigments having the above formulation were mixed in a mixer, and this mixture was extruded at about 200 ° C. After melt-kneading, the mixture was cooled and solidified, and the cooled product of the melt-kneaded mixture was roughly crushed into particles of 200 to 2000 μm with a hammer mill. This coarsely pulverized product was used as an object to be pulverized and pulverized with a pulverizer and a flow shown in FIG. A fixed wall air classifier was used as a classifier for classifying the crushed powder into fine powder and coarse powder.

【0047】衝突式気流粉砕機の圧縮気体供給ノズル2
から圧力0.882MPaの圧縮空気を導入し、図1に
示す被粉砕物供給口1から被粉砕物6を34kg/Hr
の割合で供給した。得られた粉砕物10は分級機13に
送り、細粉は分級粉体として取り除き、粗粉は再度、被
粉砕物供給口1から粉体原料と共に被粉砕物6として加
速管3に投入した。
Compressed gas supply nozzle 2 of collision type air flow crusher
Compressed air having a pressure of 0.882 MPa is introduced from the pulverized material supply port 1 shown in FIG. 1 to the pulverized material 6 at 34 kg / Hr.
Supplied at the rate of The obtained pulverized product 10 was sent to the classifier 13, fine powder was removed as classified powder, and coarse powder was again charged into the accelerating pipe 3 as the pulverized product 6 together with the powder material from the pulverized product supply port 1.

【0048】なお、加速管3としては、図1においてD
=9mm、L=25D、θ=7°、θ1=12.8°、
θ2=1°のものを使用し、衝突部材としては、加速管
3からの噴流が偏流を生じ、分散されながら衝突する形
状の、図4に示す衝突部材42を使用し、衝突面エアー
通過面積定数Mが8.5となる加速管3出口部8より衝
突面9が80mm離間する位置に設置し、連続運転を行
った。その結果、体積平均粒径が9μmであり、粒径4
μm以下の微粉発生量が全体の16%である細粉が得ら
れた。
The accelerating tube 3 is designated as D in FIG.
= 9 mm, L = 25 D, θ = 7 °, θ 1 = 12.8 °,
θ 2 = 1 ° is used, and as the collision member, the collision member 4 2 shown in FIG. 4 having a shape in which the jet flow from the accelerating tube 3 causes a drift and is dispersed and collided is used. The collision surface 9 was installed at a position 80 mm apart from the exit 8 of the acceleration tube 3 where the passage area constant M was 8.5, and continuous operation was performed. As a result, the volume average particle diameter was 9 μm, and the particle diameter was 4
A fine powder having a generation amount of fine particles of not more than μm of 16% of the whole was obtained.

【0049】実施例5(請求項4に係るもの) 実施例4と同様の被粉砕物6にて、図12に示す分級機
及びフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.686MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を28kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。
Example 5 (according to claim 4) The same pulverized material 6 as in Example 4 was pulverized with a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air with a pressure of 0.686 MPa was introduced from the compressed gas supply nozzle 2 of the collision type air flow crusher, and
28 kg / H of the crushed material 6 from the crushed material supply port 1 shown in
It was supplied in the ratio of r. The crushed product 10 obtained is a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The pulverized material was supplied from the pulverized material supply port 1 into the acceleration tube 3 as the pulverized material 6 together with the powder raw material.

【0050】なお、加速管3としては、図1においてD
=9mm、L=18.5D、θ=5°、θ1=8.9
°、θ2=1°のものを使用し、衝突部材としては、加
速管3からの噴流が偏流、分散されながら衝突する形状
の、図4に示す衝突部材42を使用し、衝突面エアー通
過面積定数Mが8.5となる加速管3出口部8より衝突
面9が80mm離間する位置に設置し、連続運転を行っ
た。その結果、体積平均粒径が9μmであり、粒径4μ
m以下の微粉発生量が全体の14%である細粉が得られ
た。
The accelerating tube 3 is indicated by D in FIG.
= 9 mm, L = 18.5 D, θ = 5 °, θ 1 = 8.9.
°, using those theta 2 = 1 °, as the collision member, jet drift from accelerating tube 3, the shape of the collision while being dispersed, using a collision member 4 2 shown in FIG. 4, the impact surface air The collision surface 9 was installed at a position 80 mm apart from the exit 8 of the acceleration tube 3 where the passage area constant M was 8.5, and continuous operation was performed. As a result, the volume average particle size was 9 μm, and the particle size was 4 μm.
A fine powder having a fine powder generation amount of m or less of 14% of the whole was obtained.

【0051】実施例6(請求項5に係るもの) 実施例4と同様の被粉砕物6にて、図12に示す分級機
及びフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.882MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を30kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。
Example 6 (according to claim 5) The same pulverized material 6 as in Example 4 was pulverized with a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air having a pressure of 0.882 MPa was introduced from the compressed gas supply nozzle 2 of the collision type airflow crusher, and
30 kg / H of the crushed material 6 from the crushed material supply port 1 shown in
It was supplied in the ratio of r. The crushed product 10 obtained is a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The pulverized material was supplied from the pulverized material supply port 1 into the acceleration tube 3 as the pulverized material 6 together with the powder raw material.

【0052】なお、加速管3としては、図1においてD
=9mm、L=18.5D、θ=3.5°、θ1=6
°、θ2=1°のものを使用し、衝突部材としては、加
速管3からの噴流が偏流、分散のいずれも発生せず直接
衝突する形状の、図6に示す衝突部材41を使用し、衝
突面エアー通過面積定数Mが8.5となる加速管3出口
部8より衝突面9が80mm離間する位置に設置し、1
2時間の連続運転を行った。その結果、体積平均粒径が
9μmであり、粒径4μm以下の微粉発生量が全体の1
2%である細粉が得られた。
The accelerating tube 3 is indicated by D in FIG.
= 9 mm, L = 18.5 D, θ = 3.5 °, θ 1 = 6
°, using those theta 2 = 1 °, as the collision member, using jet drift from the acceleration tube 3, none of the variance of the shape impinging directly without generating a collision member 4 1 shown in FIG. 6 Then, the collision surface 9 is installed at a position where the collision surface 9 is separated by 80 mm from the exit portion 8 of the acceleration tube 3 where the collision surface air passage area constant M becomes 8.5.
Two hours of continuous operation was performed. As a result, the volume average particle size was 9 μm, and the amount of fine powder with a particle size of 4 μm or less was 1% of the whole.
A fine powder of 2% was obtained.

【0053】実施例7(請求項6に係るもの) 実施例4と同様の被粉砕物6にて、図12に示す分級機
及びフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.882MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を34kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。
Example 7 (according to claim 6) The same pulverized material 6 as in Example 4 was pulverized with a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air having a pressure of 0.882 MPa was introduced from the compressed gas supply nozzle 2 of the collision type airflow crusher, and
34 kg / H of crushed material 6 from crushed material supply port 1 shown in
It was supplied in the ratio of r. The crushed product 10 obtained is a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The pulverized material was supplied from the pulverized material supply port 1 into the acceleration tube 3 as the pulverized material 6 together with the powder raw material.

【0054】なお、加速管3及び衝突部材としては、実
施例5と同一形状・寸法のものを用いたが、実施例5の
加速管3が分割不可能な構造であるのに対し、本実施例
では図3に示すように、ノズル喉部2aからL1の位置
において分割可能であるものを使用し、12時間の連続
運転を行った。その結果、体積平均粒径が9μmであ
り、粒径4μm以下の微粉発生量が全体の16%である
細粉が得られた。
As the accelerating tube 3 and the collision member, those having the same shape and size as those of the fifth embodiment were used, but the accelerating tube 3 of the fifth embodiment has a non-dividable structure. In the example, as shown in FIG. 3, a nozzle that can be divided at the position of L 1 from the throat portion 2a was used, and continuous operation was performed for 12 hours. As a result, fine powder having a volume average particle diameter of 9 μm and a generation amount of fine powder having a particle diameter of 4 μm or less was 16% of the whole was obtained.

【0055】実施例8(請求項7に係るもの) 実施例4と同様の被粉砕物6にて、図12に示す分級機
及びフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.882MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を36.5kg
/Hrの割合で供給した。得られた粉砕物10は分級機
13に送り、細粉は分級粉体として取り除き、粗粉は再
度、被粉砕物供給口1から粉体原料と共に被粉砕物6と
して加速管3に投入した。
Example 8 (according to claim 7) The same pulverized material 6 as in Example 4 was pulverized with a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air having a pressure of 0.882 MPa was introduced from the compressed gas supply nozzle 2 of the collision type airflow crusher, and
36.5 kg of the crushed material 6 from the crushed material supply port 1 shown in
It was supplied at a ratio of / Hr. The obtained pulverized product 10 was sent to the classifier 13, fine powder was removed as classified powder, and coarse powder was again charged into the accelerating pipe 3 as the pulverized product 6 together with the powder material from the pulverized product supply port 1.

【0056】なお、加速管3としては、図1においてD
=9mm、L=25D、θ=7°、θ1=12.8°、
θ2=1°のものを使用し、衝突部材としては、加速管
3からの噴流が偏流を生じ、分散されながら衝突する形
状の、図4に示す衝突部材42を使用し、取付け寸法を
衝突面エアー通過面積定数Mが8.5となる距離に設置
し、衝突部材42の円錐の頂点が高速噴流14の中心と
なり、衝突部材4の中心軸Zが共通中心線Cより5°下
向きになるよう設定を行ない、12時間の連続運転を行
った。その結果、体積平均粒径が9μmであり、粒径4
μm以下の微粉発生量が全体の20%である細粉が得ら
れた。
The accelerating tube 3 is indicated by D in FIG.
= 9 mm, L = 25 D, θ = 7 °, θ 1 = 12.8 °,
θ 2 = 1 ° is used, and as the collision member, the collision member 4 2 shown in FIG. The collision surface air passage area constant M is set at a distance of 8.5, the apex of the cone of the collision member 4 2 becomes the center of the high-speed jet flow 14, and the central axis Z of the collision member 4 is 5 ° downward from the common center line C. The setting was made so that continuous operation was performed for 12 hours. As a result, the volume average particle diameter was 9 μm, and the particle diameter was 4
A fine powder was obtained in which the generation amount of fine powder of μm or less was 20% of the whole.

【0057】実施例9(請求項8に係るもの) 実施例4と同様の被粉砕物6にて、図12に示す分級機
及びフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.882MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を37kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。
Example 9 (according to claim 8) The same pulverized material 6 as in Example 4 was pulverized with a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air having a pressure of 0.882 MPa was introduced from the compressed gas supply nozzle 2 of the collision type airflow crusher, and
37 kg / H of the crushed material 6 from the crushed material supply port 1 shown in
It was supplied in the ratio of r. The crushed product 10 obtained is a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The pulverized material was supplied from the pulverized material supply port 1 into the acceleration tube 3 as the pulverized material 6 together with the powder raw material.

【0058】なお、加速管3は、図1においてD=9m
m、L=25D、θ=7°、θ1=12.8°、θ2=1
°のもので且つ被粉砕物供給口1を加速管3内円周上に
8等配に設置したものを使用し、衝突部材としては、加
速管3からの噴流が偏流を生じ、分散されながら衝突す
る形状の、図4に示す衝突部材42を使用し、衝突面エ
アー通過面積定数Mが8.5となる加速管3出口部8よ
り衝突面9が80mm離間する位置に設置し、12時間
の連続運転を行った。その結果、体積平均粒径が9μm
であり、粒径4μm以下の微粉発生量が全体の20%で
ある細粉が得られた。
The acceleration tube 3 is D = 9 m in FIG.
m, L = 25D, θ = 7 °, θ 1 = 12.8 °, θ 2 = 1
And the object to be crushed supply port 1 installed on the inner circumference of the accelerating pipe 3 at 8 equal intervals is used. As a collision member, the jet flow from the accelerating pipe 3 causes uneven flow and is dispersed. shapes of collision, using the collision member 4 2 shown in FIG. 4, the impact surface 9 from the acceleration tube 3 outlet 8 which impact surface air passing area constant M is 8.5 is placed at a position 80mm apart, 12 Continuous operation was performed for an hour. As a result, the volume average particle diameter is 9 μm.
A fine powder having a particle size of 4 μm or less and 20% of the total amount of fine powder generated was obtained.

【0059】実施例10(請求項9に係るもの) 実施例4と同様の被粉砕物6にて、図12に示す分級機
及びフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.882MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を36kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。
Example 10 (according to claim 9) The same pulverized material 6 as in Example 4 was pulverized with a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air having a pressure of 0.882 MPa was introduced from the compressed gas supply nozzle 2 of the collision type airflow crusher, and
36 kg / H of the crushed material 6 from the crushed material supply port 1 shown in
It was supplied in the ratio of r. The crushed product 10 obtained is a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The pulverized material was supplied from the pulverized material supply port 1 into the acceleration tube 3 as the pulverized material 6 together with the powder raw material.

【0060】なお、加速管3は、図1においてD=9m
m、L=25D、θ=7°、θ1=12.8°、θ2=1
°のものを使用し、衝突部材としては、加速管3からの
噴流が偏流を生じ、分散されながら衝突する形状の、図
4に示す衝突部材42を使用し、取付け寸法を衝突面エ
アー通過面積定数Mが11となる距離に設置し、12時
間の連続運転を行った。その結果、体積平均粒径が9μ
mであり、粒径4μm以下の微粉発生量が全体の20%
である細粉が得られた。
The acceleration tube 3 is D = 9 m in FIG.
m, L = 25D, θ = 7 °, θ 1 = 12.8 °, θ 2 = 1
The collision member 4 2 shown in FIG. 4 having a shape in which the jet from the accelerating tube 3 causes a non-uniform flow and collides while being dispersed as the collision member. It was installed at a distance such that the area constant M was 11, and continuously operated for 12 hours. As a result, the volume average particle size is 9μ.
m, and 20% of the total amount of fine powder with a particle size of 4 μm or less is generated.
A fine powder was obtained.

【0061】実施例11(請求項10に係るもの) 実施例4と同様の被粉砕物6にて、図12に示す分級機
及びフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.882MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を36.5kg
/Hrの割合で供給した。得られた粉砕物10は分級機
13に送り、細粉は分級粉体として取り除き、粗粉は再
度、被粉砕物供給口1から粉体原料と共に被粉砕物6と
して加速管3に投入した。
Example 11 (according to claim 10) The same pulverized material 6 as in Example 4 was pulverized with a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air having a pressure of 0.882 MPa was introduced from the compressed gas supply nozzle 2 of the collision type airflow crusher, and
36.5 kg of the crushed material 6 from the crushed material supply port 1 shown in
It was supplied at a ratio of / Hr. The obtained pulverized product 10 was sent to the classifier 13, fine powder was removed as classified powder, and coarse powder was again charged into the accelerating pipe 3 as the pulverized product 6 together with the powder material from the pulverized product supply port 1.

【0062】なお、加速管3は、図1においてD=9m
m、L=25D、θ=7°、θ1=12.8°、θ2=1
°のものを使用し、衝突部材としては、加速管3からの
噴流が偏流を生じ、分散されながら衝突する形状の、図
4に示す衝突部材42を使用し、取付け寸法を衝突面エ
アー通過面積定数Mが8.5となる距離に設置し、衝突
面9前方には円錐上の空間削除カバー設け、12時間の
連続運転を行った。その結果、体積平均粒径が9μmで
あり、粒径4μm以下の微粉発生量が全体の20%であ
る細粉が得られた。
The acceleration tube 3 is D = 9 m in FIG.
m, L = 25D, θ = 7 °, θ 1 = 12.8 °, θ 2 = 1
The collision member 4 2 shown in FIG. 4 having a shape in which the jet from the accelerating tube 3 causes a non-uniform flow and collides while being dispersed as the collision member. It was installed at a distance such that the area constant M was 8.5, a conical space deleting cover was provided in front of the collision surface 9, and 12 hours of continuous operation was performed. As a result, a fine powder having a volume average particle diameter of 9 μm and a generation amount of fine powder having a particle diameter of 4 μm or less was 20% of the whole was obtained.

【0063】比較例3 実施例4と同様の被粉砕物6にて、図12に示す分級機
及びフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.882MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を20kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。
Comparative Example 3 The same pulverized material 6 as in Example 4 was pulverized with a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air having a pressure of 0.882 MPa was introduced from the compressed gas supply nozzle 2 of the collision type airflow crusher, and
20 kg / H of crushed material 6 from crushed material supply port 1 shown in
It was supplied in the ratio of r. The crushed product 10 obtained is a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The pulverized material was supplied from the pulverized material supply port 1 into the acceleration tube 3 as the pulverized material 6 together with the powder raw material.

【0064】なお、加速管3としては、図1においてD
=9mm、L=25D、θ=θ1=θ2=7°のものを使
用し、衝突部材としては、加速管3からの噴流が偏流を
生じ、分散されながら衝突する形状の、図4に示す衝突
部材42を使用し、衝突面エアー通過面積定数Mが8.
5となる加速管3出口部8より衝突面9が80mm離間
する位置に設置し、12時間の連続運転を行った。その
結果、体積平均粒径が9μmであり、粒径4μm以下の
微粉発生量が全体の18%である細粉が得られた。
The accelerating tube 3 is indicated by D in FIG.
= 9 mm, L = 25 D, θ = θ 1 = θ 2 = 7 °, and as the collision member, the jet flow from the accelerating tube 3 causes a non-uniform flow, and the shape is shown in FIG. using the collision member 4 2 shown, impact surface air passing area constant M is 8.
The collision surface 9 was installed at a position 80 mm apart from the exit portion 8 of the accelerating tube 3 which was No. 5, and continuous operation was performed for 12 hours. As a result, fine powder having a volume average particle diameter of 9 μm and a generation amount of fine powder having a particle diameter of 4 μm or less was 18% of the whole was obtained.

【0065】比較例4実施例4と同様の被粉砕物6に
て、図12に示す分級機及びフローで粉砕を行った。粉
砕された粉体を細粉と粗粉とに分級するための分級機と
して、固定壁式風力分級機を使用した。衝突式気流粉砕
機の圧縮気体供給ノズル2から圧力0.882MPaの
圧縮空気を導入し、図1に示す被粉砕物供給口1から被
粉砕物6を17kg/Hrの割合で供給した。得られた
粉砕物10は分級機13に送り、細粉は分級粉体として
取り除き、粗粉は再度、被粉砕物供給口1から粉体原料
と共に被粉砕物6として加速管3に投入した。
Comparative Example 4 The same pulverized material 6 as in Example 4 was pulverized by the classifier and flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air having a pressure of 0.882 MPa was introduced from the compressed gas supply nozzle 2 of the collision type air flow pulverizer, and the pulverized material 6 was supplied from the pulverized material supply port 1 shown in FIG. 1 at a rate of 17 kg / Hr. The obtained pulverized product 10 was sent to the classifier 13, fine powder was removed as classified powder, and coarse powder was again charged into the accelerating pipe 3 as the pulverized product 6 together with the powder material from the pulverized product supply port 1.

【0066】なお、加速管3としては、図1においてD
=9mm、L=25D、θ=θ1=θ2=7°のものを使
用し、衝突部材としては、加速管3からの噴流が偏流、
分散のいずれも発生せず、直接衝突する形状の、図6に
示す衝突部材41を使用し、衝突面エアー通過面積定数
Mが8.5となる加速管3出口部8より衝突面9が80
mm離間する位置に設置し、12時間の連続運転を行っ
た。その結果、体積平均粒径が9μmであり、粒径4μ
m以下の微粉発生量が全体の14%である細粉が得られ
た。
The accelerating tube 3 is indicated by D in FIG.
= 9 mm, L = 25 D, θ = θ 1 = θ 2 = 7 °, and the jet from the accelerating tube 3 is deflected as a collision member.
Any of the dispersion does not occur, the shape of direct collision, using the collision member 4 1 shown in FIG. 6, the collision surface 9 from the acceleration tube 3 outlet 8 which impact surface air passing area constant M is 8.5 80
They were installed at positions separated by mm, and continuously operated for 12 hours. As a result, the volume average particle size was 9 μm, and the particle size was 4 μm.
A fine powder having a fine powder generation amount of m or less of 14% of the whole was obtained.

【0067】比較例5 実施例4と同様の被粉砕物6にて、図12に示す分級機
及びフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.882MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を20kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。
Comparative Example 5 The same pulverized material 6 as in Example 4 was pulverized by the classifier and flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air having a pressure of 0.882 MPa was introduced from the compressed gas supply nozzle 2 of the collision type airflow crusher, and
20 kg / H of crushed material 6 from crushed material supply port 1 shown in
It was supplied in the ratio of r. The crushed product 10 obtained is a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The pulverized material was supplied from the pulverized material supply port 1 into the acceleration tube 3 as the pulverized material 6 together with the powder raw material.

【0068】なお、加速管3としては、図1においてD
=9mm、L=25D、θ=7°、θ1=12.8°、
θ2=1°のものを使用し、衝突部材としては、加速管
3からの噴流が偏流を生じ、分散されながら衝突を発生
する形状の、図4に示す衝突部材42を使用し、衝突面
エアー通過面積定数Mが5.5となる位置に設置し、1
2時間の連続運転を行った。その結果、体積平均粒径が
9μmであり、粒径4μm以下の微粉発生量が全体の2
0%である細粉が得られた。
The accelerating tube 3 is indicated by D in FIG.
= 9 mm, L = 25 D, θ = 7 °, θ 1 = 12.8 °,
θ 2 = 1 ° is used, and as the collision member, the collision member 4 2 shown in FIG. Install at the position where the surface air passage area constant M becomes 5.5, and
Two hours of continuous operation was performed. As a result, the volume average particle size was 9 μm, and the amount of fine powder with a particle size of 4 μm or less was 2% of the total.
A fine powder of 0% was obtained.

【0069】以上の実施例1〜12、比較例1〜5の粉
砕・分級条件と結果をそれぞれ下記〔表1〕、〔表2〕
に示す。
The crushing / classifying conditions and results of Examples 1 to 12 and Comparative Examples 1 to 5 are shown in the following [Table 1] and [Table 2], respectively.
Shown in

【0070】[0070]

【表1】 [Table 1]

【0071】[0071]

【表2】 [Table 2]

【0072】[0072]

【発明の効果】以上の説明で明らかなように、請求項1
〜10に記載の減圧部供給型粉砕ノズルを備えた衝突式
気流粉砕機によれば、加速ノズル内で高圧気体が拡がり
角度θ1の部分により超音波に加速され、拡がり角度θ2
の部分により速度がノズル内で均一に維持され、衝突部
材に分散した状態で衝突・粉砕が行われるため、ばらつ
きが少なく高効率の粉砕が可能となる効果がある。ま
た、請求項1〜10の衝突式気流粉砕機によれば、同一
エネルギーの高圧気流を用いた場合、粉砕に使用される
エネルギーを有効に導き出すことが可能となって粉砕処
理能力が向上し、過粉砕による微粉の発生を防止できる
ことから、粒度分布の狭い粉砕製品を得ることができ
る。また、高圧気体の圧力を適宜に変更・設定すること
で、被粉砕物の性状に適した粉砕が可能になり、高収率
・高生産性を確保した粉砕を行うことができる。また、
請求項6に記載の衝突式気流粉砕機によれば、加速管
を、分解・組立可能な複数の環状体を組み合せて構成す
るようにしたので、被粉砕物の用途・品種等に応じて最
適形状の加速ノズルを容易に選択・構成することができ
る。また、請求項7〜10の衝突式気流粉砕機によれ
ば、粉砕効率をより一層高めることが可能となる。この
ように、本発明の衝突式気流粉砕機は樹脂、農薬、化粧
品、顔料など粒径がミクロン単位の微粉状製品の製造用
に、極めて有効に適用できるものである。
As is apparent from the above description, claim 1
According to the collision type air flow pulverizer equipped with the decompression section supply type pulverization nozzle described in 10 to 10, the high pressure gas is accelerated into ultrasonic waves by the portion of the divergence angle θ 1 in the acceleration nozzle, and the divergence angle θ 2
Since the speed is maintained uniform in the nozzle by the part of and the collision and crushing are performed in a state of being dispersed in the collision member, there is an effect that variability is small and highly efficient crushing is possible. Further, according to the collision type airflow crusher of claims 1 to 10, when a high pressure airflow of the same energy is used, it is possible to effectively derive the energy used for crushing, and the crushing processing capacity is improved, Since generation of fine powder due to over-pulverization can be prevented, a pulverized product having a narrow particle size distribution can be obtained. Further, by appropriately changing and setting the pressure of the high-pressure gas, it becomes possible to carry out the grinding suitable for the property of the material to be ground, and it is possible to carry out the grinding with high yield and high productivity. Also,
According to the collision type airflow crusher described in claim 6, since the acceleration tube is configured by combining a plurality of annular bodies that can be disassembled and assembled, it is optimal according to the use and type of the crushed object. The shaped accelerating nozzle can be easily selected and configured. Further, according to the collision type airflow crusher of claims 7 to 10, the crushing efficiency can be further enhanced. As described above, the collision type airflow crusher of the present invention can be very effectively applied to the production of fine powder products such as resins, agricultural chemicals, cosmetics and pigments having a particle size of micron.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の衝突式気流粉砕機における、噴出ノズ
ルの構成を示す概略縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view showing the structure of a jet nozzle in a collision type airflow crusher of the present invention.

【図2】本発明の衝突式気流粉砕機における加速管の有
効距離構成の一例を示す概略縦断面図である。
FIG. 2 is a schematic vertical cross-sectional view showing an example of the effective distance configuration of the acceleration tube in the collision type airflow crusher of the present invention.

【図3】本発明の衝突式気流粉砕機における加速管の有
効距離構成の別例を示す概略縦断面図である。
FIG. 3 is a schematic vertical cross-sectional view showing another example of the effective distance configuration of the acceleration tube in the collision type airflow crusher of the present invention.

【図4】本発明の衝突式気流粉砕機における、衝突部材
の形状を示す概略縦断面図である。
FIG. 4 is a schematic vertical sectional view showing the shape of a collision member in the collision type airflow crusher of the present invention.

【図5】本発明の衝突式気流粉砕機における、衝突部材
の形状を示す概略縦断面図である。
FIG. 5 is a schematic vertical sectional view showing the shape of a collision member in the collision-type airflow crusher of the present invention.

【図6】本発明の衝突式気流粉砕機における、衝突部材
の形状を示す概略縦断面図である。
FIG. 6 is a schematic vertical sectional view showing the shape of a collision member in the collision type airflow crusher of the present invention.

【図7】本発明の衝突式気流粉砕機における、噴出ノズ
ルの別の構成を示す概略縦断面図である。
FIG. 7 is a schematic vertical cross-sectional view showing another configuration of the ejection nozzle in the collision type airflow crusher of the present invention.

【図8】本発明の衝突式気流粉砕機における、噴出ノズ
ルの更に別の構成を示す概略縦断面図である。
FIG. 8 is a schematic vertical cross-sectional view showing still another configuration of the ejection nozzle in the collision type airflow crusher of the present invention.

【図9】(a)は本発明の衝突式気流粉砕機における、
噴出ノズルと衝突部材の位置関係を示す概略縦断面図、
(b)はAからみた断面図である。
FIG. 9 (a) is a view showing the collision type airflow crusher of the present invention,
A schematic vertical sectional view showing the positional relationship between the ejection nozzle and the collision member,
(B) is a sectional view seen from A.

【図10】本発明の衝突式気流粉砕機における、噴出ノ
ズルの被粉砕物供給口、及び更に別の衝突部材との位置
関係を示す概略縦断面図である。
FIG. 10 is a schematic vertical cross-sectional view showing the positional relationship between the crushed object supply port of the ejection nozzle and another collision member in the collision type airflow crusher of the present invention.

【図11】本発明の衝突式気流粉砕機における、粉砕室
内の構成を示す概略縦断面図である。
FIG. 11 is a schematic vertical cross-sectional view showing the configuration of the crushing chamber in the collision type airflow crusher of the present invention.

【図12】衝突式気流粉砕機と分級機とからなる粉砕装
置の概略説明図である。
FIG. 12 is a schematic explanatory view of a crushing device including a collision type airflow crusher and a classifier.

【符号の説明】[Explanation of symbols]

1 被粉砕物供給口 2 圧縮気体供給ノズル 2a ノズル喉部 2b,3a 点 3 加速管 3b 有効出口部 3c 拡がり出口部 3d,3e 環状体 4,41,42 衝突部材 5 排出口 6 被粉砕物 7 粉砕室 8 加速管出口 9 衝突面 10 粉砕物 11,12 経路 13 分級機 14 高速気流 C 共通中心線 D ノズル喉部の直径 L 加速管の有効長さ θ 拡がり角 Z 衝突部材の中心線 1a 被粉砕物供給口の別の構成 Y 加速管出口と衝突面迄の距離 21 粉砕室カバーの加速管出口面位置 22 粉砕室壁面 24 粉砕室カバーの粉砕室壁面位置 25 粉砕室カバー1 crushed object supply port 2 compressed gas supply nozzle 2a nozzle throat 2b, 3a point 3 acceleration tube 3b effective outlet section 3c divergent outlet section 3d, 3e annular body 4, 4 1 , 4 2 collision member 5 discharge port 6 crushed Item 7 Crushing chamber 8 Accelerator pipe outlet 9 Collision surface 10 Crushed substance 11, 12 Path 13 Classifier 14 High-speed airflow C Common centerline D Nozzle throat diameter L Effective length of accelerating pipe θ Divergence Z Centerline of collision member 1a Different configuration of crushed material supply port Y Distance between acceleration tube outlet and collision surface 21 Acceleration tube outlet surface position of crushing chamber cover 22 Grinding chamber wall surface 24 Grinding chamber wall surface position of crushing chamber cover 25 Grinding chamber cover

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡邊 啓子 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 松井 一幸 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 岡野 覚 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Keiko Watanabe 1-3-6 Nakamagome, Ota-ku, Tokyo Stock company Ricoh Company (72) Kazuyuki Matsui 1-3-3 Nakamagome, Ota-ku, Tokyo Stock Within Ricoh Company (72) Inventor Satoru Okano 1-3-6 Nakamagome, Ota-ku, Tokyo Within Ricoh Company, Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 圧縮気体供給ノズルと、該圧縮気体供給
ノズルに接続され且つ被粉砕物供給口を有する加速管
と、該加速管の後段に配置され被粉砕物を衝突させて粉
砕するための衝突部材とを備える衝突式気流粉砕機にお
いて、 該加速管内の加速管路が、ノズル喉部から加速管の有効
出口部までの、該圧縮気体供給ノズルと該加速管の共通
中心線に沿う有効距離をL、L/2=L1、該加速管の
拡がり角度をθ、該ノズル喉部から距離L1の位置にお
ける該加速管の内周面部分の拡がり角度をθ1としたと
き、下記〔数1〕で示される関係式を満足する拡がり形
状に形成されていることを特徴とする衝突式気流粉砕
機。 【数1】Ltan(θ/2)≧L1tan(θ1/2)>
(1/2)Ltan(θ/2)
1. A compressed gas supply nozzle, an accelerating pipe connected to the compressed gas supply nozzle and having an object to be crushed supply port, and arranged at a stage subsequent to the accelerating pipe for colliding and crushing an object to be crushed. In a collision-type airflow crusher including a collision member, an acceleration pipe line in the acceleration pipe is effective along a common center line of the compressed gas supply nozzle and the acceleration pipe from a nozzle throat to an effective outlet of the acceleration pipe. When the distance is L, L / 2 = L 1 , the divergence angle of the accelerating tube is θ, and the divergence angle of the inner peripheral surface portion of the accelerating tube at a distance L 1 from the nozzle throat is θ 1 , A collision type airflow crusher characterized by being formed in a spreading shape satisfying the relational expression shown in [Equation 1]. [Number 1] Ltan (θ / 2) ≧ L 1 tan (θ 1/2)>
(1/2) Ltan (θ / 2)
【請求項2】 該加速管内の加速管路が、ノズル喉部の
直径をDとしたとき、下記〔数2〕で示される関係式を
満足し、且つθが1°〜7°で、Lが8D〜30Dの範
囲にある拡がり形状に形成されていることを特徴とする
請求項1に記載の衝突式気流粉砕機。 【数2】1.8D≧Ltan(θ/2)≧0.13D
2. The acceleration pipe line in the acceleration pipe satisfies the relational expression shown in the following [Formula 2], where θ is 1 ° to 7 °, and L is L, where D is the diameter of the nozzle throat. Is formed in a spreading shape in the range of 8D to 30D, The collision type airflow crusher according to claim 1, wherein [Expression 2] 1.8D ≧ Ltan (θ / 2) ≧ 0.13D
【請求項3】 圧力が0.7MPa以上の圧縮気体を用
いるものであり、該衝突部材が、該加速管からの噴流が
偏流を生じ、分散されながら衝突する形状を有し、且つ
該加速管の加速管路が、下記〔数3〕で示される関係式
を満足し、θが2°〜7°で、Lが10D〜30Dの範
囲にある拡がり形状に形成されていることを特徴とする
請求項2に記載の衝突式気流粉砕機。 【数3】1.8D≧Ltan(θ/2)≧0.19D
3. A compressed gas having a pressure of 0.7 MPa or more is used, and the collision member has a shape in which a jet flow from the acceleration tube causes a drift and collides while being dispersed, and the acceleration tube. The accelerating pipe of No. 1 satisfies the relational expression shown in the following [Formula 3], and is formed in a spread shape having θ of 2 ° to 7 ° and L in the range of 10D to 30D. The collision type airflow crusher according to claim 2. ## EQU00003 ## 1.8D ≧ Ltan (θ / 2) ≧ 0.19D
【請求項4】 圧力が0.7MPa以下の圧縮気体を用
いるものであり、該衝突部材が、該加速管からの噴流が
偏流を生じ、分散されながら衝突する形状を有し、且つ
該加速管の加速管路が、下記〔数4〕で示される関係式
を満足し、θが2°〜7°で、Lが8D〜25Dの範囲
にある拡がり形状に形成されていることを特徴とする請
求項2に記載の衝突式気流粉砕機。 【数4】1.2D≧Ltan(θ/2)≧0.19D
4. A compressed gas having a pressure of 0.7 MPa or less is used, and the collision member has a shape in which a jet flow from the acceleration tube causes a non-uniform flow and collides while being dispersed, and the acceleration tube. The accelerating pipeline of No. 1 satisfies the relational expression shown by the following [Formula 4], and is formed in a spread shape in which θ is 2 ° to 7 ° and L is in the range of 8D to 25D. The collision type airflow crusher according to claim 2. (4) 1.2D ≧ Ltan (θ / 2) ≧ 0.19D
【請求項5】 該衝突部材が、該加速管からの噴流が偏
流、分散のいずれも発生せず、直接衝突する形状を有
し、且つ該加速管の加速管路は、下記〔数5〕で示され
る関係式を満足し、θが1°〜5°で、Lが8D〜30
Dの範囲にある拡がり形状に形成されていることを特徴
とする請求項2に記載の衝突式気流粉砕機。 【数5】0.78D≧Ltan(θ/2)≧0.13D
5. The collision member has a shape in which the jet flow from the acceleration tube directly collides with neither uneven flow nor dispersion, and the acceleration pipe line of the acceleration pipe has the following [Formula 5]. Satisfying the relational expression shown by, θ is 1 ° to 5 °, and L is 8D to 30.
The collision type airflow crusher according to claim 2, wherein the collision type airflow crusher is formed in a spread shape in the range of D. [Expression 5] 0.78D ≧ Ltan (θ / 2) ≧ 0.13D
【請求項6】 該加速管は、複数の環状体を該共通中心
軸方向に並べて結合することにより構成したものであ
り、かつこれら複数の環状体は、互いに分割可能である
ことを特徴とする請求項1〜5のいずれか一項に記載の
衝突式気流粉砕機。
6. The accelerating tube is configured by arranging and coupling a plurality of annular bodies in the common central axis direction, and the plurality of annular bodies can be divided from each other. The collision type airflow crusher according to any one of claims 1 to 5.
【請求項7】 該衝突部材の中心軸が該共通中心線と異
なるように該衝突部材が設置されていることを特徴とす
る請求項1〜5のいずれか一項に記載の衝突式気流粉砕
機。
7. The collision type air flow crushing according to claim 1, wherein the collision member is installed so that a central axis of the collision member is different from the common center line. Machine.
【請求項8】 該加速管が複数の被粉砕物供給口を有す
ることを特徴とする請求項1〜5のいずれか一項に記載
の衝突式気流粉砕機。
8. The collision type airflow crusher according to claim 1, wherein the accelerating tube has a plurality of crushed object supply ports.
【請求項9】 該加速管の出口面から該衝突部材の被粉
砕物衝突面までの該共通中心線方向に沿った距離をY、
該加速管の出口部直径をD0としたとき、下記〔数6〕
で示される関係式を満足するように該衝突部材が設置さ
れていることを特徴とする請求項1〜5のいずれか一項
に記載の衝突式気流粉砕機。 【数6】Y=M×D0/4 15≧M≧6
9. The distance from the exit surface of the acceleration tube to the crushed object collision surface of the collision member along the common center line direction is Y,
When the outlet diameter of the acceleration tube is D 0 , the following [Equation 6]
The collision type airflow crusher according to any one of claims 1 to 5, wherein the collision member is installed so as to satisfy the relational expression shown by. [6] Y = M × D 0/4 15 ≧ M ≧ 6
【請求項10】 該加速管の出口面と該衝突部材の被粉
砕物衝突面までの間において該加速管からの高速気流の
流路の側部空間を制限するカバーを設けたことを特徴と
する請求項1〜5のいずれか一項に記載の衝突式気流粉
砕機。
10. A cover for limiting a side space of a flow path of a high-speed air flow from the acceleration tube is provided between an exit surface of the acceleration tube and a crushed object collision surface of the collision member. The collision type airflow crusher according to any one of claims 1 to 5.
JP3583396A 1996-01-31 1996-01-31 Collision type air crusher Pending JPH09206621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3583396A JPH09206621A (en) 1996-01-31 1996-01-31 Collision type air crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3583396A JPH09206621A (en) 1996-01-31 1996-01-31 Collision type air crusher

Publications (1)

Publication Number Publication Date
JPH09206621A true JPH09206621A (en) 1997-08-12

Family

ID=12452977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3583396A Pending JPH09206621A (en) 1996-01-31 1996-01-31 Collision type air crusher

Country Status (1)

Country Link
JP (1) JPH09206621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076085A1 (en) * 2004-02-10 2005-08-18 Kao Corporation Method of manufacturing toner
US8267340B2 (en) 2009-01-05 2012-09-18 Ricoh Company Limited Airflow pulverization and classification device, and pulverization method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076085A1 (en) * 2004-02-10 2005-08-18 Kao Corporation Method of manufacturing toner
US7866581B2 (en) 2004-02-10 2011-01-11 Kao Corporation Method of manufacturing toner
US8267340B2 (en) 2009-01-05 2012-09-18 Ricoh Company Limited Airflow pulverization and classification device, and pulverization method

Similar Documents

Publication Publication Date Title
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
JP6255681B2 (en) Toner manufacturing method and toner manufacturing apparatus
JP3219955B2 (en) Collision type air crusher
JP5790042B2 (en) Crusher and cylindrical adapter
JPH09206621A (en) Collision type air crusher
JP3114040B2 (en) Collision type air crusher
JP3182039B2 (en) Crusher
JP2000140675A (en) Pulverizer
JPS6018454B2 (en) Opposed jet mill
JP2010284634A (en) Apparatus for pulverization
JP2004073992A (en) Fluidized bed type crushing classifier
JP3090558B2 (en) Collision type supersonic jet crusher
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JPH02152559A (en) Pulverizing and coating device
JP3313922B2 (en) Crusher
JP3093344B2 (en) Collision type air flow crusher and powder material crushing method
JP2002224585A (en) Crusher and apparatus for toner production
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
US8777139B2 (en) Pulverizer, pulverization method, toner production method, and toner
JPH08182937A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP3102902B2 (en) Collision type supersonic jet crusher
JP2704777B2 (en) Collision type air flow crusher and crushing method
JPH04150957A (en) Collision type jet mill and grinding method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041130