JPH09205724A - Ground fault distance relay - Google Patents
Ground fault distance relayInfo
- Publication number
- JPH09205724A JPH09205724A JP8011222A JP1122296A JPH09205724A JP H09205724 A JPH09205724 A JP H09205724A JP 8011222 A JP8011222 A JP 8011222A JP 1122296 A JP1122296 A JP 1122296A JP H09205724 A JPH09205724 A JP H09205724A
- Authority
- JP
- Japan
- Prior art keywords
- zero
- ground fault
- current
- phase
- accident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
(57)【要約】
【課題】 常時の負荷電流の影響を受けにくく、かつよ
り広範囲の地絡事故をより迅速に検出しうる地絡距離継
電装置の提供。
【解決手段】 自端の系統電圧を検出する電圧検出手段
(33)と、自回線の電流および零相電流を検出する電
流検出手段(31)と、自回線の逆相電流を検出する逆
相電流検出手段(32)と、各検出手段によって検出さ
れた自回線の電流、零相電流、逆相電流、並びに自端の
系統電圧に基づき、逆相電流を極性量として事故点まで
の距離を演算する地絡事故点演算手段(34)と、算出
された事故点までの距離が所定の範囲内にあることを条
件として系統分離用遮断器(21)に開放指令を送出す
る事故判定手段(35)とを備えた高抵抗接地系統の地
絡距離継電装置。
(57) [Abstract] [PROBLEMS] To provide a ground fault distance relay device that is not easily affected by a constant load current and can detect a ground fault accident in a wider range more quickly. SOLUTION: A voltage detecting means (33) for detecting a system voltage of its own end, a current detecting means (31) for detecting a current and a zero-phase current of its own line, and a negative phase for detecting a reverse phase current of its own line. Based on the current detecting means (32) and the current of its own line, the zero-phase current, the negative-phase current, and the system voltage of its own end detected by the respective detecting means, the negative-phase current is used as the polarity amount to determine the distance to the fault point. Ground fault accident point calculating means (34) for calculating, and accident determining means (34) for sending an opening command to the system breaker (21) on condition that the calculated distance to the accident point is within a predetermined range ( 35) and a ground fault distance relay device of a high resistance grounding system.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高抵抗接地系統の
送電線の地絡事故を検出し事故区間を切離す遮断器に開
放指令を送出する保護継電装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protective relay device which detects a ground fault in a transmission line of a high resistance grounding system and sends an opening command to a circuit breaker which separates a fault section.
【0002】[0002]
【従来の技術】送電線を種々の事故から保護する保護継
電装置として種々のものが用いられている。その一つと
して、たとえば高抵抗接地系統内の設備に地絡事故が発
生した時、その事故点を切離して保護する地絡方向継電
装置が知られている。図10は、そのような周知の地絡
方向継電装置(以下、地絡方向リレーという)を示すも
のである。2. Description of the Related Art Various types of protective relay devices are used to protect transmission lines from various accidents. As one of them, for example, a ground fault direction relay device is known which, when a ground fault occurs in equipment in a high resistance ground system, isolates the fault point and protects it. FIG. 10 shows such a well-known ground fault direction relay device (hereinafter, referred to as a ground fault direction relay).
【0003】図10に示す電力系統においては、電源1
0Aを有する電気所Aから遮断器(CB)11Aを介し
て送電線12Aが導出されて電気所Bに至り、電気所B
からCB11Bを介してさらに送電線12Bが次の電気
所に向って延びている。In the power system shown in FIG. 10, the power source 1
A power transmission line 12A is led out from an electric station A having 0A through a circuit breaker (CB) 11A to reach an electric station B.
A power transmission line 12B further extends from CB11B to the next electric station.
【0004】電気所A端において変流器(CT)13A
により自回線電流が検出され、送電線12A側で計器用
変圧器(PT)14Aにより自回線系統電圧が検出され
る。これらの検出電流および検出電圧は保護継電装置1
5Aに含まれる地絡方向判定手段16Aに導入され、こ
の判定手段16Aの動作出力がCB11Aに対し開放指
令として送出される。電気所Bにも電気所Aと同様にC
T13B、PT14Bおよび保護継電装置15Bが設け
られている。A current transformer (CT) 13A at the end A of the electric station
The own line current is detected by this, and the own transformer system voltage is detected by the voltage transformer (PT) 14A on the power transmission line 12A side. These detected currents and detected voltages are the protective relay device 1
5A is introduced into the ground fault direction determination means 16A, and the operation output of this determination means 16A is sent to the CB 11A as an opening command. As for electric station A, C is the same for electric station B
T13B, PT14B and protective relay device 15B are provided.
【0005】いま、電気所Aに着目し、電力系統におけ
る送電線12Aの事故点Fに地絡事故が発生したとする
と、CT13AおよびPT14Aを介して検出された自
回線の系統電流および自端の系統電圧を保護継電装置1
5Aに取込み、各取込みデータに基づいて零相電流Io
および零相電圧Vo を検出し、その零相電流Io および
零相電圧Vo に基づいて地絡方向判定手段16Aが図1
1のベクトル図に基づいて地絡事故の方向を判定し、判
定された地絡事故が予め設定された方向に位置するとき
遮断器11Aを開放して地絡点Fを切離す。Now, paying attention to the electric station A, if a ground fault occurs at the accident point F of the transmission line 12A in the electric power system, the system current of the own line detected via the CT 13A and the PT 14A and the own end of the line. System voltage protection relay device 1
5A, zero-phase current I o based on each captured data
1 and the zero-phase voltage V o are detected, and the ground fault direction determining means 16A detects the zero-phase current I o and the zero-phase voltage V o .
The direction of the ground fault accident is determined based on the vector diagram of No. 1, and when the determined ground fault accident is located in the preset direction, the circuit breaker 11A is opened to disconnect the ground fault point F.
【0006】図11に示すベクトル図において、地絡方
向判定手段16Aは検出した零相電圧Vo および零相電
流Io の位相差θを加味し、零相電圧Vo を基準ベクト
ルとして零相電流Io のベクトルが判定線Pを超えた領
域すなわち斜線で示した動作域に入ると、事故と判定し
動作出力を発する。In the vector diagram shown in FIG. 11, the ground fault direction judging means 16A takes into account the phase difference θ between the detected zero-phase voltage V o and zero-phase current I o , and uses the zero-phase voltage V o as a reference vector to achieve zero-phase. When the vector of the current I o exceeds the judgment line P, that is, when it enters the operation range shown by the diagonal lines, it is judged as an accident and an operation output is issued.
【0007】しかしながら、この方式では、地絡事故の
方向を判定することはできるが、継電装置設置点(変流
器設置点)から事故点Fまでの距離を知ることはできな
い。このため、電力系統に地絡事故が発生したとき、設
備の停止を必要最小限の範囲内に抑えるために、電源端
により近い電気所に設置されている地絡方向リレーの動
作時間がより長く、電源端からより遠い電気所に設置さ
れている地絡方向リレーの動作時間がより短くなるよう
な時間協調をとっている。このため、電源端に近い地点
の事故ほど、事故の除去が遅れるということを許容する
必要があった。However, with this method, the direction of the ground fault can be determined, but the distance from the relay device installation point (current transformer installation point) to the accident point F cannot be known. Therefore, in the event of a ground fault in the power system, the operating time of the ground fault direction relay installed at an electrical station closer to the power source end will be longer in order to keep the equipment outage within the minimum necessary range. , The time coordination is taken so that the operation time of the ground fault direction relay installed in the electric place farther from the power source end becomes shorter. For this reason, it has been necessary to allow the accident elimination to be delayed as the accident is closer to the power source end.
【0008】[0008]
【発明が解決しようとする課題】以上述べたように、高
抵抗接地系統の送電線に対し従来の地絡方向リレーを用
いた地絡保護継電装置では、電源端に近い電気所におけ
る地絡事故の検出が遅れるという問題があった。とくに
高抵抗接地系統では、地絡事故電流が常時の負荷電流に
比較して小さく、事故電流を高精度に検出し、地絡方向
リレーにより事故区間識別をすることは困難である。As described above, in the ground fault protection relay device using the conventional ground fault direction relay for the transmission line of the high resistance ground system, the ground fault protection relay device has a ground fault in an electric station near the power source end. There was a problem that the detection of an accident was delayed. Especially in a high resistance grounding system, the ground fault current is smaller than the normal load current, and it is difficult to detect the fault current with high accuracy and identify the fault section by the ground fault direction relay.
【0009】したがって本発明は、常時の負荷電流の影
響を受けにくく、かつより広範囲の地絡事故をより迅速
に検出し事故区間識別の可能な地絡距離継電装置を提供
することを目的とする。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a ground fault distance relay device which is hardly affected by a constant load current and which can detect a ground fault accident in a wider range more quickly and can identify a fault zone. To do.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、高抵抗接地系統の送電線の地絡事
故を検出し事故区間を切離す遮断器に開放指令を送出す
る保護継電装置において、自端の系統電圧を検出する電
圧検出手段と、自回線の電流および零相電流を検出する
電流検出手段と、自回線の逆相電流を検出する逆相電流
検出手段と、電流検出手段によって検出された自回線の
電流および零相電流、逆相電流検出手段によって検出さ
れた逆相電流、並びに電圧検出手段によって検出された
自端の系統電圧に基づき、逆相電流を極性量として事故
点までの距離を演算する地絡事故点演算手段と、地絡事
故点演算手段によって算出された事故点までの距離が所
定の範囲内にあることを条件として遮断器に開放指令を
送出する事故判定手段とを備えたことを特徴とする。In order to achieve the above object, the invention of claim 1 sends a release command to a circuit breaker which detects a ground fault accident of a transmission line of a high resistance grounding system and separates the accident section. In the protective relay device, voltage detecting means for detecting the system voltage of the self end, current detecting means for detecting the current of the own line and zero-phase current, and anti-phase current detecting means for detecting the anti-phase current of the own line. , A reverse phase current based on the current of the own line and the zero-phase current detected by the current detection means, the reverse phase current detected by the reverse phase current detection means, and the system voltage of the self-end detected by the voltage detection means. Ground fault accident point calculation means for calculating the distance to the accident point as the amount of polarity, and an instruction to open the circuit breaker on condition that the distance to the accident point calculated by the ground fault accident point calculation means is within a predetermined range. Accident determination Characterized by comprising a stage.
【0011】同様に請求項2の発明は、高抵抗接地系統
の送電線の地絡事故を検出し事故区間を切離す遮断器に
開放指令を送出する地絡距離継電装置において、自端の
系統電圧を検出する電圧検出手段と、自回線の電流およ
び零相電流を検出する電流検出手段と、自回線の事故前
の逆相電流と事故中の逆相電流の差を検出する電流差検
出手段と、電流検出手段によって検出された自回線の電
流および零相電流、電流差検出手段によって検出された
逆相電流の差、並びに電圧検出手段によって検出された
自端の系統電圧に基づき、逆相電流の差を極性量として
事故点までの距離を演算する地絡事故点演算手段と、地
絡事故点演算手段によって算出された事故点までの距離
が所定の範囲内にあることを条件として遮断器に開放指
令を送出する事故判定手段とを備えたことを特徴とす
る。Similarly, the invention of claim 2 is a ground fault distance relay device which detects a ground fault in a transmission line of a high resistance grounding system and sends an open command to a circuit breaker which separates a fault section. Voltage detecting means for detecting the system voltage, current detecting means for detecting the current of the own line and zero-phase current, and current difference detection for detecting the difference between the anti-phase current before the accident and the anti-phase current during the accident of the own line Means and the current of the own line and zero-phase current detected by the current detection means, the difference between the negative-phase current detected by the current difference detection means, and the system voltage of the self-end detected by the voltage detection means. Provided that the ground fault accident point calculating means for calculating the distance to the accident point using the difference between the phase currents as the polar amount and the distance to the accident point calculated by the ground fault accident point calculating means are within a predetermined range. Accident of sending open command to breaker Characterized by comprising a constant section.
【0012】請求項3の発明は、請求項1または2記載
の地絡距離継電装置において、自端の零相電圧を検出す
る零相電圧検出手段と、零相電圧検出手段によって検出
された自端の零相電圧に応じて事故判定手段における距
離整定値を変更する距離整定演算手段とを備えたことを
特徴とする。According to a third aspect of the present invention, in the ground fault distance relay device according to the first or second aspect, the zero-phase voltage detecting means for detecting the zero-phase voltage at its own end and the zero-phase voltage detecting means detect the zero-phase voltage. Distance settling calculation means for changing the distance settling value in the accident determination means in accordance with the zero-phase voltage at its own end.
【0013】請求項4の発明は、請求項1ないし3のい
ずれかに記載の地絡距離継電装置において、自回線の零
相電流を検出する零相電流検出手段と、自端の零相電圧
を検出する零相電圧検出手段と、零相電流検出手段によ
って検出された自回線の零相電流および零相電圧検出手
段によって検出された自端の零相電圧との位相関係に基
づいて地絡事故の方向を判別する地絡方向判別手段とを
備え、事故判定手段が地絡方向判別手段によって判別さ
れた地絡事故の方向を加味して開放指令送出条件を決定
することを特徴とする。According to a fourth aspect of the present invention, in the ground fault distance relay device according to any one of the first to third aspects, a zero-phase current detecting means for detecting a zero-phase current of its own line and a zero-phase of its own end. Based on the phase relationship between the zero-phase voltage detecting means for detecting the voltage, the own-phase zero-phase current detected by the zero-phase current detecting means, and the own-end zero-phase voltage detected by the zero-phase voltage detecting means. And a ground fault direction determining means for determining the direction of the ground fault, wherein the accident determining means determines the release command transmission condition in consideration of the direction of the ground fault determined by the ground fault direction determining means. .
【0014】請求項5の発明は、請求項1ないし3のい
ずれかに記載の地絡距離継電装置において、自回線の事
故前の零相電流と事故中の零相電流の差を検出する電流
差検出手段と、自端の零相電圧を検出する零相電圧検出
手段と、電流差検出手段によって検出された零相電流の
差および零相電圧検出手段によって検出された零相電圧
の位相関係に基づいて地絡事故の方向を判別する地絡方
向判別手段とを備え、事故判定手段が地絡方向判別手段
によって判別された地絡事故の方向を加味して開放指令
送出条件を決定することを特徴とする。According to a fifth aspect of the present invention, in the ground fault distance relay device according to any of the first to third aspects, the difference between the zero-phase current before the fault of the own line and the zero-phase current during the fault is detected. Current difference detecting means, zero phase voltage detecting means for detecting the zero phase voltage at its own end, difference between zero phase currents detected by the current difference detecting means and phase of zero phase voltage detected by the zero phase voltage detecting means A ground fault direction discriminating means for discriminating the direction of the ground fault accident based on the relationship, and the accident discriminating means determines the release command sending condition in consideration of the direction of the ground fault accident discriminated by the ground fault direction discriminating means. It is characterized by
【0015】[0015]
【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。まず図2を参照して本発明を概説
する。本発明に係る保護継電装置は送電線の保護のみな
らず母線分離や変圧器保護のためにも用いることができ
るが、ここでは送電線の保護のために用いる場合の実施
の形態について説明する。Embodiments of the present invention will be described below with reference to the drawings. First, the present invention will be outlined with reference to FIG. The protective relay device according to the present invention can be used not only for protection of transmission lines but also for bus line separation and transformer protection. Here, an embodiment in the case of being used for protection of transmission lines will be described. .
【0016】図2において、電気所Aから遮断器(C
B)21を介して送電線22が導出され、送電線22の
他端は電気所Bに接続されている。遮断器21の電気所
A側で変流器(CT)23により自回線電流が検出さ
れ、送電線22側で計器用変圧器(PT)24により自
回線系統電圧が検出される。これらの検出電流および検
出電圧は保護継電装置25に含まれる地絡距離継電装置
(以下、地絡距離リレーという)26に導入され、この
リレー26の動作出力が開放指令としてCB21に送出
される。In FIG. 2, a circuit breaker (C
B) The power transmission line 22 is led out via 21, and the other end of the power transmission line 22 is connected to the electric station B. The current transformer (CT) 23 detects the own line current on the side of the electric power station A of the circuit breaker 21, and the instrument transformer (PT) 24 detects the own line system voltage on the side of the power transmission line 22. These detected currents and detected voltages are introduced to a ground fault distance relay device (hereinafter referred to as a ground fault distance relay) 26 included in the protective relay device 25, and the operation output of this relay 26 is sent to the CB 21 as an opening command. It
【0017】図1は本発明による請求項1の実施の形態
を示すものである。この地絡距離リレー30において
は、CT23の出力電流に基づき、自回線電流検出手段
31により自回線の電流Ip および零相電流Io が検出
され、自回線逆相電流検出手段32により自回線の逆相
電流In が検出される。またPT24の出力電圧に基づ
き電圧検出手段33により自端の相電圧Va が検出され
る。これらの各検出出力に基づき地絡事故点演算手段3
4により、逆相電流In を極性量として、次の演算式に
より、リレー30の設置点から事故点までの距離に対応
するリアクタンスXを求める。なお、演算式は理論的な
説明のため便宜的に示しているものである。FIG. 1 shows an embodiment of claim 1 according to the present invention. In the ground fault distance relay 30, the own line current detection means 31 detects the current I p of the own line and the zero-phase current I o based on the output current of the CT 23, and the own line anti-phase current detection means 32 detects the own line. The reverse-phase current I n is detected. Further, the voltage detecting means 33 detects the phase voltage V a at its own end based on the output voltage of the PT 24. Ground fault accident point calculation means 3 based on these respective detection outputs
4, the reactance X corresponding to the distance from the installation point of the relay 30 to the fault point is obtained by the following arithmetic expression with the negative-phase current I n as the polarity amount. The arithmetic expressions are shown for the sake of convenience for theoretical explanation.
【0018】 X=Y/Z …(1) X = Y / Z (1)
【0019】[0019]
【数1】 Im : 虚数分 In * : In の共役複素数 K : 零相補償係数 ej φ:送電線インピーダンスと同方向の基準ベクトル
(整定値) このリアクタンスXの値が、X1 を整定値として、X≦
X1 の範囲内であるか否かを事故判定手段35が判断
し、X≦X1 であれば内部事故であると判定し、CB2
1に対し開放指令を送出する。[Equation 1] I m : Imaginary number I n * : Conjugate complex number of I n K: Zero phase compensation coefficient e j φ : Reference vector in the same direction as the transmission line impedance (setting value) The value of this reactance X is X 1 as a setting value. , X ≦
Whether it is within the range of X 1 accident determining means 35 determines, determines that the internal fault if X ≦ X 1, CB2
A release command is sent to 1.
【0020】図1の実施の形態によれば、リアクタンス
Xを用いて地絡距離を求めることにより、常時の負荷電
流の影響を受けにくく、かつ、電源端に近い電気所の地
絡事故をより迅速に検出することができる。According to the embodiment shown in FIG. 1, the reactance X is used to obtain the ground fault distance, so that it is less susceptible to the load current at all times and the ground fault accident at the electric power station near the power source end is further reduced. It can be detected quickly.
【0021】図3は本発明による請求項2の実施の形態
を示すものである。この地絡距離リレー40における自
回線電流検出手段41および電圧検出手段43は図1の
リレー30における検出手段31および33と同一であ
って、それぞれ自回線の相電流Ip および零相電流Io
並びに自端の相電圧Va を検出する。図3の装置の特徴
は検出手段42および地絡事故点演算手段44にある。
検出手段42は自回線逆相電流のベクトル差を検出する
ベクトル差検出手段であって、図4に示すベクトル図に
従い自回線の事故前の逆相電流InLと事故中の逆相電流
InFとに基づいて次の演算式によりベクトル差ΔIn を
算出する。なお、ここでは便宜上、ベクトルの意味の
「ドット」符号の表示を省略している。 ΔIn =InF−InL …(2) これらの各検出出力に基づき地絡事故点演算手段44に
より、逆相電流ベクトル差ΔIn を極性量として、次の
演算式により、リレー40の設置点から事故点までの距
離に対応する正相リアクタンスXを求める。 X=Y/Z …(3) ただし、Y=Im {(Va ・ΔIn * )} Z=Im {ej φ(Ip +K・Io )・ΔIn * } Im : 虚数分 K : 零相補償係数 ΔIn * :ΔIn の共役複素数 In * : In の共役複素数 K : 零相補償係数 ej φ:送電線インピーダンスと同方向の基準ベクトル
(整定値) この正相リアクタンスXの値が、図1の場合と同様に、
X1 を整定値として、X≦X1 の範囲内であるか否かを
事故判定手段45が判断し、X≦X1 であれば内部事故
であると判定し、CB21に対し開放指令を送出する。
この実施の形態の方式は、常時の逆相電流In が大きい
系統に適している。なお、事故中の逆相電流InFと事故
前の逆相電流InLの位相がほぼ等しいときは、ベクトル
差検出手段42においてベクトル差の代わりにスカラー
差を算出してもほぼ同一結果が得られることは明らかで
ある。FIG. 3 shows an embodiment of claim 2 according to the present invention. The own line current detecting means 41 and the voltage detecting means 43 in this ground fault distance relay 40 are the same as the detecting means 31 and 33 in the relay 30 of FIG. 1, and are respectively the phase current I p and the zero phase current I o of the own line.
Also, the phase voltage V a at its own end is detected. The device of FIG. 3 is characterized by the detecting means 42 and the ground fault accident point calculating means 44.
The detection means 42 is a vector difference detection means for detecting the vector difference of the own-line negative-phase current, and according to the vector diagram shown in FIG. 4, the own-line negative-phase current I nL before the accident and the negative-phase current I nF during the accident. Based on and, the vector difference ΔI n is calculated by the following arithmetic expression. Note that, here, for convenience, the display of the "dot" symbol of the meaning of the vector is omitted. ΔI n = I nF −I nL (2) Based on each of these detection outputs, the ground fault accident point calculation means 44 sets the relay 40 by the following calculation formula using the negative phase current vector difference ΔI n as the polarity amount. Find the positive-phase reactance X corresponding to the distance from the point to the accident point. X = Y / Z (3) where Y = I m {(V a · ΔI n * )} Z = I m {e j φ (I p + K · I o ) · ΔI n * } I m : Imaginary number min K: zero phase compensation coefficient ΔI n *: ΔI n complex conjugate I n *: I n the complex conjugate K: zero phase compensation coefficient e j phi: transmission line impedance in the same direction of the reference vector (set value) the positive The value of the phase reactance X is the same as in the case of FIG.
The X 1 as setpoint, it is determined whether the range of X ≦ X 1 accident determining means 45 determines that an internal accident if X ≦ X 1, sends an opening command to CB21 To do.
The system of this embodiment is suitable for a system in which the reverse phase current I n is always large. When the phases of the anti-phase current I nF during the accident and the anti-phase current I nL before the accident are almost the same, even if the scalar difference is calculated instead of the vector difference in the vector difference detecting means 42, almost the same result is obtained. It is obvious that
【0022】この実施の形態によっても、図1のそれと
同様に、常時の負荷電流の影響を受けにくく、かつ、よ
り広範囲の地絡事故をより迅速に検出することができ
る。According to this embodiment, as in the case of FIG. 1, the influence of the constant load current is less likely to occur, and the ground fault in a wider range can be detected more quickly.
【0023】図5は本発明による請求項3の実施の形態
を示すものである。この地絡距離リレー50には零相電
圧検出手段51、距離整定演算手段52、地絡事故点演
算手段53および事故判定手段54が設けられている。
零相電圧検出手段51は自端のPT24の出力電圧に基
づいて自端の零相電圧Vo を検出する。距離整定演算手
段52は、検出手段51によって検出された零相電圧V
o に応じて距離整定値を変化させるものであって、零相
電圧Vo が低いとき、すなわち事故点抵抗が大きいとき
は、線路降下分電圧が正確に求められないため距離リレ
ーのオーバーリーチによる不要遮断の事態が考えられる
ため、それを回避すべく距離整定値を小さくする。その
ためのアルゴリズムは例えば、Kを係数として 距離整定値=基準値−K(100%零相電圧値Vr −零
相電圧検出値Vo )…(4) にすればよい。FIG. 5 shows an embodiment of claim 3 according to the present invention. The ground fault distance relay 50 is provided with zero-phase voltage detection means 51, distance settling calculation means 52, ground fault accident point calculation means 53, and accident determination means 54.
Zero-phase voltage detecting means 51 detects the zero-phase voltage V o of the local end on the basis of PT24 of the output voltage of Zidane. The distance settling calculation means 52 uses the zero-phase voltage V detected by the detection means 51.
The distance settling value is changed according to o , and when the zero-phase voltage V o is low, that is, when the fault point resistance is large, the line drop voltage cannot be accurately obtained, which causes overreach of the distance relay. The unnecessary set-off situation may occur, so the distance settling value should be reduced to avoid it. The algorithm for the, for example, a distance setting value of K as a coefficient = reference value -K (100% zero-phase voltage value V r - zero-phase voltage detection value V o) ... may be set to (4).
【0024】地絡事故点演算手段53は、図1の要素3
1〜34からなる距離演算手段または図3の要素41〜
44からなる距離演算手段と同一構成のものでよい。事
故判定手段54は地絡事故点演算手段53の算出結果が
距離整定演算手段52によって求められた整定値の範囲
内であれば内部事故であると判定する。The ground fault accident point calculation means 53 is an element 3 in FIG.
1 to 34, or distance calculation means composed of 1 to 34 or elements 41 to 31 of FIG.
It may have the same configuration as the distance calculation means composed of 44. The accident determination unit 54 determines that the internal fault is present if the calculation result of the ground fault accident point calculation unit 53 is within the settling value range obtained by the distance settling calculation unit 52.
【0025】したがって、零相電圧の大きさに応じて距
離整定値を調整するため、事故点抵抗の大きな事故であ
って測距誤差による不要遮断を防止し、信頼性の高い地
絡距離リレーを実現することができる。Therefore, since the distance settling value is adjusted according to the magnitude of the zero-phase voltage, it is possible to prevent an unnecessary interruption due to a distance measurement error even if the accident has a large accident point resistance and to provide a highly reliable ground fault distance relay. Can be realized.
【0026】図6は本発明による請求項4の実施の形態
を示すものである。この地絡距離リレー60においても
地絡事故点までの距離を算出する地絡事故点演算手段
は、図5の実施の形態と同様に図1または図3の距離演
算手段により構成可能である。ここでは背後事故での誤
動作を防止するために事故の方向を判別する手段を備え
た点に特徴がある。すなわち、図6の実施の形態では、
図5における地絡事故点演算手段53と同様の地絡事故
点演算手段64を設けるとともに、零相電流検出手段6
1、零相電圧検出手段62および地絡方向判別手段63
を設けている。零相電流検出手段61はCT23の出力
に基づいてリレー設置点の零相電流を検出し、零相電圧
検出手段62はPT24の出力に基づいて自端の零相電
圧を検出する。そして地絡方向判別手段63は零相電流
検出手段61および零相電圧検出手段62によって検出
された零相電流および零相電圧の位相関係に基づいて地
絡方向を判別するものであって、その判別原理は図11
のベクトル図を参照してすでに説明したものと同様でよ
い。FIG. 6 shows an embodiment of claim 4 according to the present invention. Also in this ground fault distance relay 60, the ground fault accident point calculating means for calculating the distance to the ground fault accident point can be configured by the distance calculating means of FIG. 1 or FIG. 3 as in the embodiment of FIG. Here, it is characterized in that it is provided with means for discriminating the direction of the accident in order to prevent malfunction in a back accident. That is, in the embodiment of FIG.
A ground fault accident point calculation means 64 similar to the ground fault accident point calculation means 53 in FIG.
1. Zero-phase voltage detection means 62 and ground fault direction determination means 63
Is provided. The zero-phase current detecting means 61 detects the zero-phase current at the relay installation point based on the output of CT23, and the zero-phase voltage detecting means 62 detects the zero-phase voltage of its own end based on the output of PT24. The ground fault direction discriminating means 63 discriminates the ground fault direction based on the phase relationship between the zero phase current and the zero phase voltage detected by the zero phase current detecting means 61 and the zero phase voltage detecting means 62. The principle of discrimination is shown in FIG.
May be similar to that already described with reference to the vector diagram of FIG.
【0027】地絡事故点演算手段64は事故点までの距
離が整定値以内にあることを判別するもので、その原理
は図1または図3を参照して説明した地絡事故点演算手
段と同様でよい。事故判定手段65は地絡方向判別手段
63および地絡事故点演算手段64がいずれも動作出力
を発生しているときに内部事故と判定し、遮断器21
(図2)に開放指令を送出する。The ground fault accident point calculation means 64 determines that the distance to the accident point is within the set value, and its principle is the same as that of the ground fault accident point calculation means described with reference to FIG. 1 or 3. It can be the same. The accident determination means 65 determines that the internal fault occurs when both the ground fault direction determination means 63 and the ground fault accident point calculation means 64 generate an operation output, and the circuit breaker 21
An open command is sent to (Fig. 2).
【0028】図7は本発明による請求項5の実施の形態
を示すものである。この実施の形態における地絡距離リ
レー70も図6の場合と同様に地絡方向判別に特徴を有
するものである。この実施の形態においては、図6のも
のと同様の地絡事故点演算手段74、零相電圧検出手段
72、地絡方向判別手段73および事故判定手段75を
設けるとともに、零相電流ベクトル差検出手段71を設
けた点に特徴がある。FIG. 7 shows a fifth embodiment of the present invention. The ground fault distance relay 70 in this embodiment is also characterized in the ground fault direction determination as in the case of FIG. In this embodiment, the ground fault accident point calculating means 74, the zero phase voltage detecting means 72, the ground fault direction judging means 73 and the accident judging means 75, which are the same as those in FIG. 6, are provided and the zero phase current vector difference detection is performed. The feature is that the means 71 is provided.
【0029】零相電流ベクトル差検出手段71は、図8
に示すように、CT23の出力に基づいてリレー設置点
の事故中の零相電流IoFと事故前の零相電流IoLとのベ
クトル差ΔIo =IoF−IoLを検出するものである。な
お、ここでも図4の説明の場合と同様に、ベクトルの意
味の「ドット」符号の表示を省略している。地絡方向判
別手段73は、図9から分かるように、零相電流ベクト
ル差検出手段71によって検出された零相電流ベクトル
差ΔIo と、零相電圧検出手段72によって検出された
自端の零相電圧Vo との間の位相関係から事故の方向を
判別する。地絡事故点演算手段74の機能は図6におけ
る地絡事故点演算手段64と同等である。事故判定手段
75は、地絡方向判別手段73および地絡事故点演算手
段74がいずれも動作出力を発しているときに内部事故
と判定し、遮断器21に開放指令を送出する。The zero-phase current vector difference detecting means 71 is shown in FIG.
As shown in, the vector difference ΔI o = I oF −I oL between the zero phase current I oF during the accident at the relay installation point and the zero phase current I oL before the accident is detected based on the output of CT23. . Here, as in the case of the description of FIG. 4, the display of the “dot” code indicating the meaning of the vector is omitted. As can be seen from FIG. 9, the ground fault direction discriminating means 73 has a zero-phase current vector difference ΔI o detected by the zero-phase current vector difference detecting means 71 and a zero at its own end detected by the zero-phase voltage detecting means 72. determine the direction of the accident from the phase relationship between the phase voltage V o. The function of the ground fault accident point calculation means 74 is equivalent to that of the ground fault accident point calculation means 64 in FIG. The accident determination means 75 determines that the internal fault occurs when both the ground fault direction determination means 73 and the ground fault accident point calculation means 74 generate an operation output, and sends an open command to the circuit breaker 21.
【0030】なお、零相電流ベクトル差検出手段71は
事故前および事故中の零相電流のベクトル差を検出する
ものであるが、両者の位相差θがゼロまたはそれに近い
場合は、ベクトル差の代わりにスカラー差をとってもよ
いことは明らかである。その場合、ベクトル差検出の代
わりに算術差検出となる。The zero-phase current vector difference detection means 71 detects the vector difference between the zero-phase currents before and during the accident. If the phase difference θ between the two is zero or close to zero, the vector difference Obviously, the scalar difference may be taken instead. In that case, arithmetic difference detection is used instead of vector difference detection.
【0031】したがって、図6,図7の実施の形態によ
れば、方向判定を測距演算による距離判定と組合せるこ
とにより、背後事故で誤動作することがない信頼性の高
い地絡距離リレーを実現することができる。Therefore, according to the embodiment shown in FIGS. 6 and 7, by combining the direction determination with the distance determination by the distance measurement calculation, a highly reliable ground fault distance relay which does not malfunction due to a back accident is provided. Can be realized.
【0032】[0032]
【発明の効果】以上述べたように、本発明によれば、自
回線の電流および零相電流、逆相電流または事故前と事
故中の逆相電流の差、並びに自端の系統電圧に基づき、
逆相電流または逆相電流の差を極性量として事故点まで
の距離を演算することにより、常時の負荷電流に比べ事
故電流の小さい場合であっても、事故点の測距演算を高
精度に行うことができる。As described above, according to the present invention, based on the current of the own line and the zero-phase current, the negative-phase current or the difference between the negative-phase current before and during the accident, and the system voltage at the self-end. ,
By calculating the distance to the fault point by using the negative-phase current or the difference between the negative-phase currents as the amount of polarity, even if the fault current is smaller than the normal load current, the fault point calculation can be performed with high accuracy. It can be carried out.
【図1】本発明の請求項1による地絡距離継電装置のブ
ロック図。FIG. 1 is a block diagram of a ground fault distance relay device according to claim 1 of the present invention.
【図2】本発明による地絡距離継電装置を概略的に示す
ブロック図。FIG. 2 is a block diagram schematically showing a ground fault distance relay device according to the present invention.
【図3】本発明の請求項2による地絡距離継電装置のブ
ロック図。FIG. 3 is a block diagram of a ground fault distance relay device according to claim 2 of the present invention.
【図4】図3の装置における逆相電流のベクトル図。4 is a vector diagram of an anti-phase current in the device of FIG.
【図5】本発明の請求項3による地絡距離継電装置のブ
ロック図。FIG. 5 is a block diagram of a ground fault distance relay device according to claim 3 of the present invention.
【図6】本発明の請求項4による地絡距離継電装置のブ
ロック図。FIG. 6 is a block diagram of a ground fault distance relay device according to claim 4 of the present invention.
【図7】本発明の請求項5による地絡距離継電装置のブ
ロック図。FIG. 7 is a block diagram of a ground fault distance relay device according to claim 5 of the present invention.
【図8】図7の装置における零相電流のベクトル図。8 is a vector diagram of zero-phase current in the apparatus of FIG.
【図9】図7の装置における地絡方向判別手段の原理を
説明するための図。9 is a diagram for explaining the principle of the ground fault direction determining means in the device of FIG.
【図10】従来技術による地絡方向継電装置の機能を説
明するための図。FIG. 10 is a diagram for explaining a function of a ground fault direction relay device according to a conventional technique.
【図11】図10の装置における地絡方向継電装置の原
理を説明するための図。11 is a view for explaining the principle of a ground fault direction relay device in the device of FIG.
21 遮断器 22 送電線 23 変流器(CT) 24 計器用変圧器(PT) 25 保護継電装置 26,30,40,50,60,70 地絡距離継電装
置(地絡距離リレー) 31,41 自回線電流検出手段 32 自回線逆相電流検出手段 33,43 電圧検出手段 34,44,53,64,74 地絡事故点演算手段 35,45,54,65,75 事故判定手段 42 自回線逆相電流ベクトル差検出手段 51,62,72 零相電圧検出手段 52 距離整定演算手段 61 零相電流検出手段 63,73 地絡方向判別手段 71 零相電流ベクトル差検出手段21 Circuit breaker 22 Transmission line 23 Current transformer (CT) 24 Instrument transformer (PT) 25 Protective relay device 26, 30, 40, 50, 60, 70 Ground fault distance relay device (ground fault distance relay) 31 , 41 own line current detecting means 32 own line negative phase current detecting means 33, 43 voltage detecting means 34, 44, 53, 64, 74 ground fault accident point calculating means 35, 45, 54, 65, 75 accident judging means 42 own Line anti-phase current vector difference detecting means 51, 62, 72 Zero-phase voltage detecting means 52 Distance setting calculating means 61 Zero-phase current detecting means 63, 73 Ground fault direction judging means 71 Zero-phase current vector difference detecting means
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐 藤 真 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 斎 藤 浩 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Makoto Sato 1-1-1, Shibaura, Minato-ku, Tokyo Inside Toshiba Headquarters Co., Ltd. Toshiba Fuchu Factory
Claims (5)
し事故区間を切離す遮断器に開放指令を送出する保護継
電装置において、 自端の系統電圧を検出する電圧検出手段と、 自回線の電流および零相電流を検出する電流検出手段
と、 自回線の逆相電流を検出する逆相電流検出手段と、 前記電流検出手段によって検出された自回線の電流およ
び零相電流、前記逆相電流検出手段によって検出された
逆相電流、並びに前記電圧検出手段によって検出された
自端の系統電圧に基づき、前記逆相電流を極性量として
事故点までの距離を演算する地絡事故点演算手段と、 前記地絡事故点演算手段によって算出された事故点まで
の距離が所定の範囲内にあることを条件として前記遮断
器に開放指令を送出する事故判定手段とを備えたことを
特徴とする高抵抗接地系統の地絡距離継電装置。Claim: What is claimed is: 1. In a protective relay device that detects a ground fault in a transmission line of a high-resistance grounding system and sends an open command to a circuit breaker that separates the faulty section, a voltage detection means that detects a system voltage at its own end. A current detecting means for detecting a current of the own line and a zero-phase current; a negative-phase current detecting means for detecting a reverse-phase current of the own line; and a current of the own line and a zero-phase current detected by the current detecting means, A ground fault that calculates the distance to the fault point by using the reverse-phase current as a polarity amount based on the reverse-phase current detected by the reverse-phase current detection means and the system voltage at the self-end detected by the voltage detection means. A point calculating means; and an accident determining means for sending an opening command to the circuit breaker on condition that the distance to the accident point calculated by the ground fault accident point calculating means is within a predetermined range. Characterizing Ground fault distance relay device resistance grounding system.
し事故区間を切離す遮断器に開放指令を送出する保護継
電装置において、 自端の系統電圧を検出する電圧検出手段と、 自回線の電流および零相電流を検出する電流検出手段
と、 自回線の事故前の逆相電流と事故中の逆相電流の差を検
出する電流差検出手段と、 前記電流検出手段によって検出された自回線の電流およ
び零相電流、前記電流差検出手段によって検出された逆
相電流の差、並びに前記電圧検出手段によって検出され
た自端の系統電圧に基づき、前記逆相電流の差を極性量
として事故点までの距離を演算する地絡事故点演算手段
と、 前記地絡事故点演算手段によって算出された事故点まで
の距離が所定の範囲内にあることを条件として前記遮断
器に開放指令を送出する事故判定手段とを備えたことを
特徴とする高抵抗接地系統の地絡距離継電装置。2. A protective relay device that detects a ground fault in a transmission line of a high-resistance grounding system and sends an open command to a circuit breaker that separates the faulty section, and a voltage detection means that detects a system voltage at its own end. A current detection means for detecting the current of the own line and a zero-phase current, a current difference detection means for detecting the difference between the anti-phase current before the accident and the anti-phase current during the accident of the own line, and the current detection means The difference between the opposite-phase currents based on the current of the own line and the zero-phase current, the difference between the opposite-phase currents detected by the current difference detection means, and the system voltage of the own end detected by the voltage detection means. Ground fault accident point calculation means for calculating the distance to the accident point as the amount of polarity, and the circuit breaker on the condition that the distance to the accident point calculated by the ground fault accident point calculation means is within a predetermined range. Accident sending a release command Ground fault distance relay device of the high-resistance grounding system, characterized in that a constant means.
段と、前記零相電圧検出手段によって検出された自端の
零相電圧に応じて前記事故判定手段における距離整定値
を変更する距離整定演算手段とを備えたことを特徴とす
る請求項1または2に記載の高抵抗接地系統の地絡距離
継電装置。3. A zero-phase voltage detecting means for detecting a zero-phase voltage at the self-end, and a distance set value in the accident determining means changed according to the zero-phase voltage at the self-end detected by the zero-phase voltage detecting means. The ground fault distance relay device of the high resistance grounding system according to claim 1 or 2, further comprising:
手段と、自端の零相電圧を検出する零相電圧検出手段
と、前記零相電流検出手段によって検出された自回線の
零相電流および前記零相電圧検出手段によって検出され
た自端の零相電圧との位相関係に基づいて地絡事故の方
向を判別する地絡方向判別手段とを備え、前記事故判定
手段が前記地絡方向判別手段によって判別された地絡事
故の方向を加味して開放指令送出条件を決定することを
特徴とする請求項1ないし3のいずれかに記載の高抵抗
接地系統の地絡距離継電装置。4. A zero-phase current detecting means for detecting a zero-phase current of its own line, a zero-phase voltage detecting means for detecting a zero-phase voltage of its own end, and a zero-phase current of the own line detected by said zero-phase current detecting means. A ground fault direction determining means for determining the direction of a ground fault accident based on the phase relationship between the zero phase current and the zero phase voltage at the end detected by the zero phase voltage detecting means; and the accident determining means, The ground fault distance connection of a high resistance grounding system according to any one of claims 1 to 3, wherein the opening command sending condition is determined in consideration of the direction of the ground fault accident determined by the ground fault direction determining means. Electrical equipment.
電流の差を検出する電流差検出手段と、自端の零相電圧
を検出する零相電圧検出手段と、前記電流差検出手段に
よって検出された零相電流の差および前記零相電圧検出
手段によって検出された零相電圧の位相関係に基づいて
地絡事故の方向を判別する地絡方向判別手段とを備え、
前記事故判定手段が前記地絡方向判別手段によって判別
された地絡事故の方向を加味して開放指令送出条件を決
定することを特徴とする請求項1ないし3のいずれかに
記載の高抵抗接地系統の地絡距離継電装置。5. A current difference detecting means for detecting a difference between a zero-phase current before a fault of its own line and a zero-phase current during a fault, a zero-phase voltage detecting means for detecting a zero-phase voltage of its own end, and the current. A ground fault direction determining means for determining the direction of the ground fault accident based on the phase relationship between the zero phase current detected by the difference detecting means and the zero phase voltage detected by the zero phase voltage detecting means;
The high-resistance ground according to any one of claims 1 to 3, wherein the accident determination means determines the release command transmission condition in consideration of the direction of the ground fault determined by the ground fault direction determination means. System ground fault distance relay device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01122296A JP3560297B2 (en) | 1996-01-25 | 1996-01-25 | Ground fault distance relay device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01122296A JP3560297B2 (en) | 1996-01-25 | 1996-01-25 | Ground fault distance relay device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09205724A true JPH09205724A (en) | 1997-08-05 |
JP3560297B2 JP3560297B2 (en) | 2004-09-02 |
Family
ID=11771943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01122296A Expired - Fee Related JP3560297B2 (en) | 1996-01-25 | 1996-01-25 | Ground fault distance relay device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3560297B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115441706A (en) * | 2022-09-26 | 2022-12-06 | 上海铼钠克数控科技有限公司 | PWM generation method and circuit, control method of driver, motor and system |
-
1996
- 1996-01-25 JP JP01122296A patent/JP3560297B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115441706A (en) * | 2022-09-26 | 2022-12-06 | 上海铼钠克数控科技有限公司 | PWM generation method and circuit, control method of driver, motor and system |
CN115441706B (en) * | 2022-09-26 | 2024-05-31 | 上海铼钠克数控科技有限公司 | PWM generation method and circuit, driver control method, motor and system |
Also Published As
Publication number | Publication date |
---|---|
JP3560297B2 (en) | 2004-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4825327A (en) | Negative and zero sequence directional overcurrent unit for AC power transmission line protection | |
IES970641A2 (en) | Fault detection apparatus and method of detecting faults in an electrical distribution network | |
JP2000125462A (en) | Distance relay | |
EP1074849A2 (en) | Fault detection in electrical transmission lines | |
WO2005119871A1 (en) | Directionnal and differential ground fault protective relay system for ungrounded dc traction power feed system and ground fault protective relay apparatus for detecting ground fault current | |
CN102204050B (en) | Differential protection method and differential protection device | |
US20020080535A1 (en) | Multiple ground fault trip function system and method for same | |
WO2024108177A1 (en) | A power system for identifying power faults | |
JPH09205724A (en) | Ground fault distance relay | |
JP3829614B2 (en) | Digital type protective relay device | |
JP4921246B2 (en) | Ground fault distance relay | |
JPS6355297B2 (en) | ||
CN100582797C (en) | Method and system for identifying a faulted phase | |
JPH0974660A (en) | Harmonic detector | |
JP3942137B2 (en) | Transmission line protection device | |
JP3378418B2 (en) | Leakage protection method | |
JPH1118278A (en) | Bipolar DC transmission system | |
JP2001016767A (en) | Substation failure section determination device | |
JP2002101549A (en) | Ground directional relay | |
JP2001251769A (en) | Power system accident detection device | |
JP2002058155A (en) | Ac-dc converter protective delay device | |
JPH09308085A (en) | Distribution line ground relay | |
JP2005051860A (en) | Protection relay system | |
JPH0583844A (en) | Distance relay unit | |
JPH04248478A (en) | Failure point standardization device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040115 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040305 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040309 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040514 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040524 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |