JPH09203285A - Multi-layer cemented carbide chip and production - Google Patents
Multi-layer cemented carbide chip and productionInfo
- Publication number
- JPH09203285A JPH09203285A JP3558196A JP3558196A JPH09203285A JP H09203285 A JPH09203285 A JP H09203285A JP 3558196 A JP3558196 A JP 3558196A JP 3558196 A JP3558196 A JP 3558196A JP H09203285 A JPH09203285 A JP H09203285A
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- powder
- layer
- hard
- cutting edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 239000000843 powder Substances 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims abstract description 14
- 238000005245 sintering Methods 0.000 claims abstract description 11
- 230000006835 compression Effects 0.000 claims abstract description 8
- 238000007906 compression Methods 0.000 claims abstract description 8
- 239000002994 raw material Substances 0.000 claims abstract description 8
- 239000002002 slurry Substances 0.000 claims abstract description 5
- 238000005520 cutting process Methods 0.000 claims description 34
- 239000010410 layer Substances 0.000 claims description 28
- 238000009412 basement excavation Methods 0.000 claims description 19
- 239000000956 alloy Substances 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 238000005507 spraying Methods 0.000 claims description 6
- 239000002344 surface layer Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 238000000748 compression moulding Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 abstract description 8
- 239000011347 resin Substances 0.000 abstract description 5
- 229920005989 resin Polymers 0.000 abstract description 5
- 238000007689 inspection Methods 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 238000005488 sandblasting Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 abstract 3
- 239000008188 pellet Substances 0.000 abstract 1
- 235000019589 hardness Nutrition 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000005553 drilling Methods 0.000 description 4
- 239000011435 rock Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000008094 contradictory effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 206010011416 Croup infectious Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000009527 percussion Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 235000019587 texture Nutrition 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Earth Drilling (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は多層超硬合金チップ
およびその製造方法に係り、特に、土木用工具の刃先材
料として好適な多層超硬合金チップおよびその製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer cemented carbide chip and a method for manufacturing the same, and more particularly to a multilayer cemented carbide chip suitable as a cutting edge material for civil engineering tools and a method for manufacturing the same.
【0002】[0002]
【従来の技術】超硬合金は粉末冶金法によって製造され
る代表的な合金であり、1926年ドイツのクルップ社
において実用化されて以降、多くの製造技術の改良が行
われ、品質の安定のための技術改良や量産およびコスト
低減のために製造方式から製造設備まで、様々な改善が
行われ、今日に至っている。超硬合金は種々実用化され
た合金のなかで、特に、耐摩耗性、耐圧強度に優れ、切
削工具用、耐摩耗部品用、土木工具用など年々需要範囲
を拡大し、近年の技術革新に伴って、さらに過酷な使用
条件における耐摩耗性や高強度が要求されている。な
お、土木用に用いられる地層掘削用工具としては、ダイ
ヤモンドビット、ポリクリスタルダイヤモンドコンパク
ト(PDC)ビット、超硬合金(メタル)ビット、ロー
ラーカッタービット、ロータリーパーカッションビット
等がある。Cemented carbide is a typical alloy produced by the powder metallurgy method. Since it was put into practical use by Krupp GmbH in Germany in 1926, many manufacturing techniques have been improved to ensure stable quality. Various improvements have been made from the manufacturing method to the manufacturing equipment for technological improvement, mass production and cost reduction to date. Among various practical alloys, cemented carbide has excellent wear resistance and compressive strength, and its demand range is expanding year by year for cutting tools, wear resistant parts, civil engineering tools, etc. Along with this, wear resistance and high strength are required under more severe operating conditions. As a tool for excavating the formation used for civil engineering, there are a diamond bit, a polycrystal diamond compact (PDC) bit, a cemented carbide (metal) bit, a roller cutter bit, a rotary percussion bit and the like.
【0003】[0003]
【発明が解決しようとする課題】都市土木における地層
掘削用工具の刃先材料として、超硬合金もまたより厳し
い性能が要求されている。地層掘削用超硬合金は、軟弱
地層から硬岩の掘削まで使用されており、特に耐摩耗性
と耐衝撃性の相反する性質を兼備することが必要であ
る。本発明は、これらの両特性を備えた超硬合金の製造
法およびその製品を提言するものである。Cemented carbide is also required to have a more severe performance as a cutting edge material for a tool for formation excavation in urban civil engineering. Cemented carbide for stratum excavation is used from soft stratum to excavation of hard rock, and it is particularly necessary to combine the wear resistance and the impact resistance, which are contradictory properties. The present invention proposes a method for producing a cemented carbide having both of these properties and a product thereof.
【0004】土木用工具の刃先材料としての超硬合金
は、炭化タングステン(WC)粉末、およびコバルト
(Co)粉末を主原料として、WC粒度とコバルト量の
コントロールによってその特性値を変えることができ、
使用条件によって使い分けられている。Cemented carbide as a cutting edge material for civil engineering tools can be changed in its characteristic values by controlling the WC grain size and the amount of cobalt, using tungsten carbide (WC) powder and cobalt (Co) powder as the main raw materials. ,
It is used properly according to the usage conditions.
【0005】従来の超硬合金製造法は、原料粉末を混合
撹拌した後に顆粒状とする造粒処理を施し、型中で圧縮
成形して目的の形状にしたり、または、仮焼結後に造形
加工して形状を整える。そして還元雰囲気中または中性
雰囲気中で加熱焼結して硬質高靭性の合金とする。In the conventional method for producing cemented carbide, the raw material powders are mixed and stirred, and then granulated so as to form granules, and compression-molded in a mold to obtain an intended shape, or shaping after temporary sintering. And adjust the shape. Then, it is heated and sintered in a reducing atmosphere or a neutral atmosphere to obtain a hard and high toughness alloy.
【0006】したがって、原料粉末の粒度とCo量の調
整法や有害巣の除去法として、熱間無方向圧縮焼結(H
IP)処理などの改良が行われている。また金属材料な
どの切削用工具としての超硬合金の切削性改良法として
は、窒化物、ほう化物、炭化物等の硬質膜を超硬合金チ
ップの表面に形成して耐摩耗性を向上するなどの方法が
実用化されている。Therefore, hot non-directional compression sintering (H
Improvements such as IP) processing have been made. In addition, as a method for improving the machinability of cemented carbide as a cutting tool for metal materials, etc., a hard film such as nitride, boride, or carbide is formed on the surface of the cemented carbide chip to improve wear resistance. Method has been put to practical use.
【0007】しかしながら、土木工具用としては、使用
条件の過酷さによって、薄膜層の処理法は、その特性を
発揮していないのが実情である。すなわち、薄膜層を形
成した超硬合金チップは、超硬合金を母体として、その
表面に、TiC、TiN、Al2O3などを被覆した工具
材種であるが、主に金属材料加工の刃先としてのスロー
アウエイチップとして使用されており、金属材料の切削
のような連続均質材料の切削では効果を上げている例も
あるが、地層掘削のように不均質対象物の切削において
は、硬質層の剥離チッピングが発生しやすく実用化され
ていないのが現状である。However, for the civil engineering tools, the treatment method of the thin film layer does not exhibit its characteristics due to the severe working conditions. That is, the cemented carbide tip on which a thin film layer is formed is a tool material type in which a cemented carbide alloy is used as a matrix and the surface is coated with TiC, TiN, Al 2 O 3, etc. It is used as a slow-away tip as an example, and there are some examples where it is effective in cutting of continuous homogeneous material such as cutting of metal material, but in cutting of non-homogeneous object such as formation excavation, hard layer At present, peeling chipping is likely to occur and it has not been put to practical use.
【0008】本発明の目的は、土木工具用などの過酷な
使用条件において、耐摩耗性と耐衝撃性という相反する
特性を兼ね備えた多層超硬合金チップおよびその製造方
法を提供することである。An object of the present invention is to provide a multilayer cemented carbide chip having a contradictory characteristic of abrasion resistance and impact resistance under a severe use condition such as for civil engineering tools and a method for producing the same.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に、本発明の多層超硬合金チップは、土木用の地中掘削
工具の刃先部の材料として用いられる超硬合金のチップ
において、前記刃先部は、前記超硬合金の表面層に、内
部よりも硬化した硬質層が形成されていることを特徴と
し、または、前記刃先部は、軟質高靭性合金の表面層
に、硬質合金の層が形成されていることを特徴とし、そ
れにより、土木用掘削工具として過酷な掘削条件下で使
用しても、耐摩耗性および掘削性能の向上が認められ
た。In order to achieve the above object, a multilayer cemented carbide chip of the present invention is a cemented carbide chip used as a material for a cutting edge portion of an underground excavation tool for civil engineering, wherein: The cutting edge portion is characterized in that a hard layer hardened from the inside is formed on the surface layer of the cemented carbide, or the cutting edge portion is a surface layer of a soft high toughness alloy, a layer of a hard alloy. It is characterized by that the wear resistance and the drilling performance are improved even when used as a civil engineering drilling tool under severe drilling conditions.
【0010】また、超硬合金の原料粉末を圧縮成形した
圧縮成形チップの表面に、前記圧縮成形チップより硬質
配合の超硬合金粉末による層を成形焼結することを特徴
とし、または、超硬合金焼結体の表面に、硬質配合した
超硬合金粉末をプラズマアーク溶射法により溶射して、
前記超硬合金焼結体本体より硬質の薄層を形成すること
を特徴とする多層超硬合金チップの製造方法によって、
掘削条件の過酷な土木掘削用工具の硬質層刃先として用
いる多層超硬合金チップを製造できた。Further, the invention is characterized in that a layer of cemented carbide powder having a harder mixture than that of the above-mentioned compression-molded chips is compacted and sintered on the surface of the compression-molded chips obtained by compression-molding the raw material powder of the cemented carbide. On the surface of the alloy sintered body, the hard mixed cemented carbide powder is sprayed by the plasma arc spraying method,
By the method for manufacturing a multilayer cemented carbide chip, characterized in that a hard thin layer is formed from the cemented carbide sintered body.
It was possible to manufacture a multilayer cemented carbide tip used as a hard-layer cutting edge of a tool for civil engineering excavation under severe drilling conditions.
【0011】具体的には、土木用の地中掘削工具の刃先
部の材料として、粒径2ないし10μのWCの超硬合金
の硬質粉末に、軟質粉末のCoを7ないし20%の配合
して圧粉成形し、その仮焼結体に、粒径1ないし5μの
WCの微粒粉末にCoを3〜8%添加した硬質合金粉末
スラリイを被覆した後、熱間無方向圧縮焼結によって、
超硬合金の表面に硬質層を形成することを特徴とする多
層超硬合金チップの製造方法により、工具刃先としての
耐摩耗性と内部の靭性を付与し、耐衝撃性を高めた合金
を製造することができた。Specifically, as a material for the cutting edge of an underground excavation tool for civil engineering, a hard powder of WC cemented carbide having a grain size of 2 to 10 μ is mixed with 7 to 20% of Co as a soft powder. Compacting and pressing, and the pre-sintered body is coated with a hard alloy powder slurry in which 3 to 8% of Co is added to a fine powder of WC having a particle size of 1 to 5 μ, and then hot non-directional compression sintering is performed.
A hardened layer is formed on the surface of cemented carbide to produce a multilayered cemented carbide tip manufacturing method that provides wear resistance as a tool edge and internal toughness to improve impact resistance. We were able to.
【0012】また、土木用の地中掘削工具の刃先部の材
料として、あらかじめ焼結した超硬合金の表面に、硬質
超硬合金の配合粉末をプラズマアーク溶射して硬質層を
形成することを特徴とする多層超硬合金チップの製造方
法によっても、刃先の耐摩耗性と内部の靭性を付与した
多層超硬合金が製造され、掘削性の優れた超硬合金のチ
ップが製造ができた。Further, as a material of a cutting edge portion of an underground excavation tool for civil engineering, it is possible to form a hard layer by plasma arc spraying a powder of hard cemented carbide on a surface of cemented carbide which is previously sintered. The characteristic method for producing a multilayer cemented carbide tip also produced a multilayer cemented carbide having wear resistance of the cutting edge and internal toughness, and a cemented carbide tip having excellent excavability was manufactured.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施形態を、図面
を参照して説明する。図1は、本発明の多層超硬合金チ
ップの製造方法を、簡略に説明するための説明図であ
る。図に示すように、(a)まず、原料の配合粉末を圧
縮成形する。(b)この圧縮成形体をスラリーに浸漬し
て、(c)硬質となる粉末を付着させる。(d)これを
仮焼結後、造形する。(e)次いで、一次焼結し、焼結
体をHIP処理して多層超硬合金チップを製造する。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view for briefly explaining the method for manufacturing a multilayer cemented carbide chip of the present invention. As shown in the figure, (a) first, the raw material blended powder is compression molded. (B) The compression molded body is dipped in the slurry, and (c) powder that becomes hard is attached. (D) This is pre-sintered and then shaped. (E) Next, primary sintering is performed, and the sintered body is subjected to HIP treatment to manufacture a multilayer cemented carbide chip.
【0014】図2は、本発明の多層超硬合金チップの製
造方法の一実施形態を示す工程図である。 (1)まず、タングステンカーバイト粉末、タンタルカ
ーバイト粉末、コバルト粉末等の原料粉末を用意し、秤
で粉末の配合比率重量を計量し、ボールミルなどで混合
撹拌する。 (2)次に、ニーダ、ミニマイザー、篩などを用いて、
顆粒を造り、粉末の流動性をよくする。このとき、顆粒
強度を強くするために、グリプタル樹脂をアセトンに溶
解した薬液を添加する。 (3)次に、この造粒した粉末を、タブレットマシンな
どにより圧縮成型した後、図1に示したように、本発明
になる硬質層付着工程(浸漬付着工程)を経て、脱ロウ
炉中で仮焼結して樹脂を燃焼除去し、造形機で形を整
え、真空焼結炉中で焼結硬化させる。 (4)最後に、仕上工程で、サンドブラストにより表面
の汚れを除去し、検査工程を経て製品として出荷され
る。FIG. 2 is a process chart showing an embodiment of a method for manufacturing a multilayer cemented carbide chip of the present invention. (1) First, raw material powders such as tungsten carbide powder, tantalum carbide powder, and cobalt powder are prepared, the blending ratio of the powders is measured with a balance, and the mixture is stirred with a ball mill or the like. (2) Next, using a kneader, minimizer, sieve, etc.,
Make granules and improve powder flowability. At this time, in order to increase the strength of the granules, a chemical solution in which the glyptal resin is dissolved in acetone is added. (3) Next, after the granulated powder is compression-molded by a tablet machine or the like, as shown in FIG. 1, the hard layer adhesion step (immersion adhesion step) according to the present invention is performed, and then the dewaxing furnace is placed. Pre-sinter to remove the resin by burning, adjust the shape with a modeling machine, and sinter and harden in a vacuum sintering furnace. (4) Finally, in the finishing process, the surface is cleaned by sandblasting, and the product is shipped as a product through the inspection process.
【0015】なお、本発明の他の実施形態として、硬質
層付着工程において、上記浸漬付着工程の代わりに、あ
らかじめ焼結した超硬合金の表面に、所定配合の溶射粉
末を、プラズマアーク溶射装置を用いて溶射し、硬質薄
膜層を刃先に形成してもよい。これによっても、超硬合
金本体の表面に、組織が相違し、硬度の高い硬質処理層
の形成された多層超硬合金のチップを作成することがで
きる。As another embodiment of the present invention, in the hard layer depositing step, instead of the dip depositing step, the surface of the pre-sintered cemented carbide is sprayed with a spray powder of a predetermined composition by a plasma arc spraying apparatus. May be used for thermal spraying to form a hard thin film layer on the cutting edge. This also makes it possible to prepare a multilayer cemented carbide chip in which a hard treatment layer having a different hardness and a different hardness is formed on the surface of the cemented carbide body.
【0016】次に、本発明の実施形態について、2つの
具体例を説明する。 〈具体例〉超硬合金の原料粉末である2〜5μWC
に、1μCo10%配合粉末を造粒処理して、型中で、
1ton/cm2の条件で冷間圧縮成形し、圧縮成形体
の刃先となる部分に、1〜2μWCに1μWTaCを
0.6%、1μCoを5.5%配合した硬質となる粉末
を、高分子樹脂1%をアセトンに溶解して泥状にしたス
ラリイに浸漬して付着させる。アセトンを揮発させて乾
燥し、850℃にて1Hr水素炉中で仮焼結する。形を
整えるため、ダイヤモンドホイールで研削し所定の形状
にした後に、10~6mmHgの真空中で1200℃1H
r一次焼結する。この焼結体をHIP処理する。Next, two specific examples of the embodiment of the present invention will be described. <Specific example> 2-5 μWC which is a raw material powder of cemented carbide
Then, 1 μCo 10% blended powder is granulated, and in a mold,
Cold compression molding was performed under the condition of 1 ton / cm 2 , and 1 to 2 μWC of 1 μW TaC was mixed with 0.6% of 1 μCo and 5.5% of 1 μCo was added to the polymer powder to obtain a polymer powder. 1% of the resin is dissolved in acetone and immersed in a slurry to make it adhere. Acetone is volatilized and dried, and pre-sintered at 850 ° C. in a 1 Hr hydrogen furnace. To adjust the shape, grind it with a diamond wheel into a predetermined shape, then in a vacuum of 10 to 6 mmHg at 1200 ° C for 1H.
r Primary sintering. This sintered body is HIP processed.
【0017】このようにして、表面硬質処理部と超硬合
金内部に、組織、硬度が連続して相違する合金を作成す
ることができた。図5〜図7は、内部の組織および硬度
が連続して変化する上記試供品合金の断面拡大図で、顕
微鏡で800倍に拡大して撮影した写真である。図5は
上記試供品の超硬合金本体部A、図7はその刃先部C、
図6はA部とC部が接続するそれらの連続部Bを示し、
これらの顕微鏡写真からも明らかなように、それぞれ組
織が相違し、それぞれの硬度は、図5に示す超硬合金本
体部AがHRA86.5、図6に示す連続部BがHRA
87.5、図7に示す刃先部CはHRA88以上の硬度
があった。また、硬質配合粉末の処理槽を複数化すれ
ば、さらに多層に変化させることも可能である。In this way, it was possible to produce alloys having continuously different textures and hardnesses in the surface hardened portion and the inside of the cemented carbide. 5 to 7 are enlarged cross-sectional views of the sample alloy in which the internal structure and hardness continuously change, and are photographs taken at a magnification of 800 with a microscope. FIG. 5 is a cemented carbide main body A of the above sample, FIG. 7 is a cutting edge portion C thereof,
FIG. 6 shows those continuous parts B where parts A and C connect,
As is clear from these micrographs, the structures are different from each other, and the respective hardnesses are HRA 86.5 in the cemented carbide main body A shown in FIG. 5 and HRA in the continuous portion B shown in FIG.
87.5, the cutting edge portion C shown in FIG. 7 had a hardness of HRA88 or higher. Further, if a plurality of treatment tanks for hard compounded powder are used, it is possible to change the number of treatment layers into more layers.
【0018】〈具体例〉あらかじめ焼結した2〜5μ
WC−Co10%の超硬合金の表面に、1〜2μWC−
Co5.5%を配合した溶射粉末を、プラズマアーク溶
射装置を用いて溶射し、硬質薄膜層を刃先に形成する。
これによっても、超硬合金本体の表面に、組織が相違
し、硬度の高い硬質処理層の形成された多層超硬合金の
チップを作成することができる。<Specific Example> Pre-sintered 2 to 5 μ
WC-Co 10% cemented carbide surface, 1-2μWC-
A sprayed powder containing Co5.5% is sprayed using a plasma arc spraying device to form a hard thin film layer on the cutting edge.
This also makes it possible to prepare a multilayer cemented carbide chip in which a hard treatment layer having a different hardness and a different hardness is formed on the surface of the cemented carbide body.
【0019】次に、具体例およびによって作成した
多層超硬合金のチップを用いて、メタルクラウンビット
の試供品およびを製作し、性能試験を行った。メタ
ルクラウンビットは、地中掘削用のボーリングに用いら
れ、主として、中硬岩または軟岩の掘削に使用するコア
ビットで、刃先に超硬チップが植え付けられた円筒状の
ビットである。Next, using the multilayer cemented carbide chips produced according to the specific examples and, a sample of a metal crown bit was manufactured, and a performance test was conducted. The metal crown bit is a core bit used for boring for underground excavation and is mainly used for excavation of medium-hard rock or soft rock, and is a cylindrical bit in which a carbide tip is planted at the cutting edge.
【0020】図3は、本発明によるメタルクラウンビッ
トの試供品を示す図で、(A)は側面図、(B)はA矢
視図である。メタルクラウンビット10には、数個所
(図では4個所)に、超硬合金の切削部12が形成さ
れ、この切削部12の表層である刃先部14には、硬質
層16が形成されている。3A and 3B are views showing a sample of the metal crown bit according to the present invention. FIG. 3A is a side view and FIG. The metal crown bit 10 has cemented carbide cutting portions 12 formed at several locations (four locations in the drawing), and a hard layer 16 is formed at a cutting edge portion 14 that is a surface layer of the cutting portions 12. .
【0021】図4は、性能試験の結果を示す図で、図3
に示すようなメタルクラウンビットの刃先材料として、
本発明による試供品およびと、従来品とを用い
て、岩石掘削試験を行った。結果は、図4に示すよう
に、本発明による硬質層形成の超硬合金チップのメタル
クラウンビット(試供品)は、従来品に比較し
て、掘削速度が持続し、掘削性能が優れていた。なお、
試験条件は、掘削対象が花崗岩、錐回転が125(RP
M)、給圧力が500(Kgf/Bit)、送水量20
(l/min)である。FIG. 4 is a diagram showing the results of the performance test.
As the cutting edge material of the metal crown bit as shown in
A rock excavation test was performed using the sample according to the present invention and the conventional sample. As a result, as shown in FIG. 4, the metal crown bit (sample) of the cemented carbide chip with the hard layer formed according to the present invention had a longer excavation speed and superior excavation performance as compared with the conventional product. . In addition,
The test conditions are granite for excavation and cone rotation of 125 (RP
M), supply pressure is 500 (Kgf / Bit), water supply is 20
(L / min).
【0022】[0022]
【発明の効果】以上説明したように、本発明によれば、
土木工具用などの過酷な使用条件において、耐摩耗性と
耐衝撃性という相反する特性を兼ね備えた多層超硬合金
チップおよびその製造方法が得られる。As described above, according to the present invention,
It is possible to obtain a multilayer cemented carbide chip having a contradictory characteristic of wear resistance and impact resistance under a severe use condition such as for civil engineering tools and a manufacturing method thereof.
【図1】図1は、本発明の多層超硬合金の製造方法を簡
略に説明するための説明図である。FIG. 1 is an explanatory view for briefly explaining a method for producing a multilayer cemented carbide according to the present invention.
【図2】図2は、本発明の多層超硬合金の製造方法の一
実施形態を示す工程図である。FIG. 2 is a process chart showing an embodiment of a method for producing a multilayer cemented carbide according to the present invention.
【図3】図3は、本発明の一実施形態による試供品を示
す図で、(A)は側面図、(B)はA矢視図である。3A and 3B are diagrams showing a sample according to an embodiment of the present invention, FIG. 3A is a side view, and FIG.
【図4】図4は、本発明による試供品と従来品の
掘削試験比較図である。FIG. 4 is a comparison diagram of excavation tests of a sample according to the present invention and a conventional sample.
【図5】図5は、本発明による試供品の本体部Aの断
面拡大顕微鏡写真を示す図である。FIG. 5 is a view showing an enlarged cross-sectional micrograph of a main body portion A of a sample according to the present invention.
【図6】図6は、本発明による試供品の本体部Aと刃
先部Cとが連続する連続部Bの断面拡大顕微鏡写真を示
す図である。FIG. 6 is a view showing an enlarged cross-sectional photomicrograph of a continuous portion B in which the main body portion A and the cutting edge portion C of the sample according to the present invention are continuous.
【図7】図7は、本発明による試供品の刃先部Cの断
面拡大顕微鏡写真を示す図である。FIG. 7 is a view showing an enlarged cross-sectional micrograph of a cutting edge portion C of a sample according to the present invention.
10 メタルクラウンビット 12 超硬合金切削部 14 刃先部 16 硬質層 A 超硬合金本体部 B 超硬合金連続部 C 超硬合金刃先部 10 Metal Crown Bit 12 Cemented Carbide Cutting Part 14 Cutting Edge Part 16 Hard Layer A Cemented Carbide Main Body B Cemented Carbide Continuous Part C Cemented Carbide Cutting Edge
Claims (7)
して用いられる超硬合金のチップにおいて、前記刃先部
は、前記超硬合金の表面層に、内部よりも硬化した硬質
層が形成されていることを特徴とする多層超硬合金チッ
プ。1. In a cemented carbide tip used as a material for a cutting edge portion of an underground excavation tool for civil engineering, the cutting edge portion has a hard layer hardened more than the inside in a surface layer of the cemented carbide. A multilayer cemented carbide chip characterized by being
して用いられる超硬合金のチップにおいて、前記刃先部
は、軟質高靭性合金の表面層に、硬質合金の層が形成さ
れていることを特徴とする多層超硬合金チップ。2. In a cemented carbide tip used as a material for a cutting edge portion of an underground excavation tool for civil engineering, the cutting edge portion has a hard alloy layer formed on a surface layer of a soft high toughness alloy. A multi-layer cemented carbide chip characterized in that
成形チップの表面に、前記圧縮成形チップより硬質配合
の超硬合金粉末による層を成形焼結することを特徴とす
る多層超硬合金チップの製造方法。3. A multilayer cemented carbide, characterized in that a layer of cemented carbide powder having a harder composition than that of the compression molded chip is compacted and sintered on the surface of a compression molded chip obtained by compression molding raw material powder of the cemented carbide. Chip manufacturing method.
超硬合金粉末をプラズマアーク溶射法により溶射して、
前記超硬合金焼結体本体より硬質の薄層を形成すること
を特徴とする多層超硬合金チップの製造方法。4. A cemented carbide powder mixed with hard is sprayed on the surface of the cemented carbide sintered body by a plasma arc spraying method,
A method for producing a multilayer cemented carbide chip, comprising forming a thin layer that is harder than the cemented carbide body.
して、粒径2ないし10μのWCの超硬合金の硬質粉末
に、軟質粉末のCoを7ないし20%の配合して圧粉成
形し、その仮焼結体に、粒径1ないし5μのWCの微粒
粉末にCoを3ないし8%添加した硬質合金粉末スラリ
イを被覆した後、熱間無方向圧縮焼結によって、超硬合
金の表面に硬質層を形成することを特徴とする多層超硬
合金チップの製造方法。5. As a material for a cutting edge portion of an underground excavating tool for civil engineering, a hard powder of WC cemented carbide having a particle diameter of 2 to 10 μ and a soft powder of Co of 7 to 20% is mixed and compacted. After forming and coating the pre-sintered body with a hard alloy powder slurry in which 3 to 8% of Co is added to a fine powder of WC having a particle size of 1 to 5 μ, the cemented carbide is formed by hot non-directional compression sintering. A method for producing a multilayer cemented carbide chip, characterized by forming a hard layer on the surface of the.
して、あらかじめ焼結した超硬合金の表面に、硬質超硬
合金の配合粉末をプラズマアーク溶射して硬質層を形成
することを特徴とする多層超硬合金チップの製造方法。6. A hard layer is formed by plasma arc spraying powder of hard cemented carbide on the surface of cemented carbide pre-sintered as a material for a cutting edge portion of an underground excavation tool for civil engineering. A method for producing a multi-layer cemented carbide chip having the characteristics.
の製造方法によって製造された多層超硬合金チップが、
刃先部に用いられている土木用の地中掘削工具。7. A multilayer cemented carbide chip manufactured by the manufacturing method according to claim 3,
Underground excavation tool for civil engineering used in the cutting edge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3558196A JPH09203285A (en) | 1996-01-30 | 1996-01-30 | Multi-layer cemented carbide chip and production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3558196A JPH09203285A (en) | 1996-01-30 | 1996-01-30 | Multi-layer cemented carbide chip and production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09203285A true JPH09203285A (en) | 1997-08-05 |
Family
ID=12445744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3558196A Pending JPH09203285A (en) | 1996-01-30 | 1996-01-30 | Multi-layer cemented carbide chip and production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09203285A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005273439A (en) * | 2004-02-26 | 2005-10-06 | Kubota Corp | Excavating bit |
JP2007522339A (en) * | 2003-12-15 | 2007-08-09 | サンドビック インテレクチュアル プロパティー アクティエボラーグ | Cemented carbide tool for mining and construction, and manufacturing method thereof |
-
1996
- 1996-01-30 JP JP3558196A patent/JPH09203285A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007522339A (en) * | 2003-12-15 | 2007-08-09 | サンドビック インテレクチュアル プロパティー アクティエボラーグ | Cemented carbide tool for mining and construction, and manufacturing method thereof |
JP2013014846A (en) * | 2003-12-15 | 2013-01-24 | Sandvik Intellectual Property Ab | Cemented carbide tool for mining and construction application and method of making same |
KR101387183B1 (en) * | 2003-12-15 | 2014-04-21 | 산드빅 인터렉츄얼 프로퍼티 에이비 | Cemented carbide tools for mining and construction applications and method of making the same |
JP2005273439A (en) * | 2004-02-26 | 2005-10-06 | Kubota Corp | Excavating bit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7678327B2 (en) | Cemented carbide tools for mining and construction applications and method of making same | |
US6663688B2 (en) | Sintered material of spheroidal sintered particles and process for producing thereof | |
CN109070216B (en) | Carbides with toughness-enhancing structures | |
KR20050060024A (en) | Cemented carbide tool and method of making the same | |
JP2012506493A (en) | Polycrystalline diamond composite shaped element, tool incorporating the same, and method of making the same | |
JPH05239585A (en) | Abrasion resistant material and manufacturing method thereof | |
JP2012503094A (en) | Hard metal | |
JPH0941006A (en) | Layered composite carbide article and production | |
US8206474B2 (en) | Abrasive compacts | |
CN1269272A (en) | Cubic boron nitride powder suitable for producing cutter and production method therefor | |
JPH04128330A (en) | Sintered alloy of graded composition structure and its production | |
US20240181526A1 (en) | Method of making a powder for additive manufacturing | |
NO159773B (en) | CARBID MATERIALS AND PROCEDURES FOR THE MANUFACTURE AND USE OF THIS. | |
CN100575523C (en) | Carbide tool for mining and construction applications and method of making same | |
JPH09203285A (en) | Multi-layer cemented carbide chip and production | |
CN111182989B (en) | Polycrystalline diamond composite compact element, method for producing the same and use thereof | |
CN111069610A (en) | Hard alloy spherical tooth with gradient structure and preparation method thereof | |
JP2004256863A (en) | Cemented carbide, its manufacturing method, and rotary tool using the same | |
JP2017148895A (en) | Wc-based cemented carbide drill excellent in breakage resistance | |
JPH0586452A (en) | Powder material for thermal spraying | |
JPH04147939A (en) | Sintered hard alloy and its manufacture | |
JPS62273820A (en) | Composite cylinder for plastic molding apparatus |