[go: up one dir, main page]

JPH09200266A - Transmission control system - Google Patents

Transmission control system

Info

Publication number
JPH09200266A
JPH09200266A JP2177396A JP2177396A JPH09200266A JP H09200266 A JPH09200266 A JP H09200266A JP 2177396 A JP2177396 A JP 2177396A JP 2177396 A JP2177396 A JP 2177396A JP H09200266 A JPH09200266 A JP H09200266A
Authority
JP
Japan
Prior art keywords
base station
delivery confirmation
packet
interval
delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2177396A
Other languages
Japanese (ja)
Other versions
JP2962215B2 (en
Inventor
Masanori Takeji
将徳 武次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2177396A priority Critical patent/JP2962215B2/en
Publication of JPH09200266A publication Critical patent/JPH09200266A/en
Application granted granted Critical
Publication of JP2962215B2 publication Critical patent/JP2962215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)
  • Communication Control (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transmission control system capable of improving the availability of radio line. SOLUTION: In this system, transmission control is performed in a radio packet communication system for transmitting and receiving packet signals D1, D2... between plural terminals and a radio base station while using a radio line. In this case, at the time of down communication from the radio base station to the terminals, arrival is confirmed by down packet signals D0P, D6P... at the time of communication start, the number of down packet signals sent out of the radio base station until the return of response signals as up packet signals from the terminals is stored as the number of cyclic delay, the number of times adding '1' to a value subtracting the number of cyclic delay from the number of packets continuously transmittable from the radio base station without confirming the arrival is stored as a maximum arrival confirmation interval, the radio base station confirms the arrival after the lapse of the maximum arrival confirmation interval and each time the response signal is received, the arrival is confirmed while updating the maximum arrival confirmation interval.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は伝送制御方式に関
し、特に無線パケット通信システムに用いて好適な伝送
制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission control system, and more particularly to a transmission control system suitable for use in a wireless packet communication system.

【0002】[0002]

【従来の技術】HDLC(High Level Data Link
Control procedure、ハイレベルデータリンク制御手
順、例えばJIS X5104(ISO 3309)、X5105(ISO 4335)、X5
106(ISO7809)等参照)は、高効率且つ信頼性の高い、高
速伝送が可能な伝送制御方式であり、任意のビットパタ
ーンの伝送が可能であり、且つ誤り制御が厳密であると
いう特徴を持つ。
2. Description of the Related Art HDLC (High Level Data Link)
Control procedure, high level data link control procedure, for example JIS X5104 (ISO 3309), X5105 (ISO 4335), X5
106 (ISO7809, etc.) is a highly efficient and reliable transmission control method capable of high-speed transmission, and has the characteristic that arbitrary bit patterns can be transmitted and error control is strict. .

【0003】HDLC手順に従う伝送制御方式における
誤り制御については、ポール(Poll)/ファイナル
(Final)ビット(「P/Fビット」という、なお、P
/FビットについてはJIS X5105 4.2「ポール・ファイ
ナルビットの用法」が参照される)を用いて行われる送
達確認や、受信側から応答信号の送出などにより実現さ
れている。例えばポール/ファイナルビットは、コマン
ドフレームの場合にはポール(P)ビットとなり、レス
ポンス(応答)フレームの場合にはファイナル(F)ビ
ットとなり、Pビットは相手局に対して単一又は複数の
応答フレームを誘発するのに用いられ、また“1”に設
定されたFビットは、“1”に設定されたPビット受信
の結果として送出された応答フレームであることを示
す。
Regarding error control in a transmission control method according to the HDLC procedure, a poll / final bit (referred to as "P / F bit", P
The / F bit is realized by confirming the delivery performed using JIS X5105 4.2 “Pol Final Bit Usage” and sending a response signal from the receiving side. For example, the poll / final bit becomes a poll (P) bit in the case of a command frame, becomes the final (F) bit in the case of a response (response) frame, and the P bit makes a single or a plurality of responses to the partner station. The F bit used to trigger the frame and set to "1" indicates that the response frame was sent as a result of receiving the P bit set to "1".

【0004】そして、従来の通信システムでは、パケッ
ト信号を送信する毎に送達確認を行ったり、通信の方向
に関わらず送達確認信号を送信してから応答信号を得る
までの周回遅延を設定値として、アウトスタンディング
フレーム数内の固定的な周期で、送達確認を行い、順序
番号の確認を行っている。
In the conventional communication system, delivery confirmation is performed every time a packet signal is transmitted, or a round delay from transmission of the delivery confirmation signal to acquisition of a response signal is set as a set value regardless of the communication direction. , The delivery order is confirmed and the sequence number is confirmed at a fixed cycle within the number of outstanding frames.

【0005】[0005]

【発明が解決しようとする課題】上記のような送達確認
方式を、無線基地局及び複数の端末から成り、マルチア
クセス制御を行う無線パケット通信システムに適用した
場合、無線基地局から端末への下り方向では、複数の端
末宛に送信するパケットがMAC(Media Access Co
ntrol)サブレイヤにおける、送信待ちキューに入力さ
れるため、送達確認に対する応答信号(Pビット=
“1”に対する応答信号)が戻ってくるまでの時間が揺
らいでしまうという現象が起こる。
When the delivery confirmation method as described above is applied to a wireless packet communication system including a wireless base station and a plurality of terminals and performing multi-access control, a downlink from the wireless base station to the terminals is obtained. In the direction, packets sent to multiple terminals are transmitted by MACs (Media Access Codes).
ntrol) Sub-layer, the signal is sent to the transmission queue, so a response signal to the delivery confirmation (P bit =
A phenomenon occurs in which the time until the response signal for "1" returns is fluctuated.

【0006】一方、端末から無線基地局への上り方向で
は、マルチアクセスによって衝突が生じる可能性がある
ため、送達確認に対する応答が戻ってくる時間が揺らい
でしまうという現象が起こる。
On the other hand, in the upstream direction from the terminal to the radio base station, there is a possibility that collision may occur due to multi-access, so that there occurs a phenomenon that the time for returning the response to the delivery confirmation fluctuates.

【0007】このように、送達確認信号を送信しても、
直に応答信号が戻って来るとは限らないため、双方向通
信の状況下において、パケットの連続送信を実現するに
は、アウトスタンディングフレーム数よりも短めの周期
で送達確認信号を送信しなければならない。
In this way, even if the delivery confirmation signal is transmitted,
Since the response signal does not always come back directly, in order to realize continuous packet transmission under bidirectional communication conditions, a delivery confirmation signal must be transmitted at a cycle shorter than the number of outstanding frames. I won't.

【0008】このため、無線区間では、ユーザのデータ
ではない、制御信号である応答信号が増えてしまい、こ
の結果、無線回線の有効利用効率を低下させてしまうと
いう問題が生じる。
Therefore, in the wireless section, the number of response signals, which are control signals, not user data, increases, resulting in a problem that the effective use efficiency of the wireless line is reduced.

【0009】従って、本発明は、上記従来技術の問題点
を解消し、無線回線の有効利用効率を向上する伝送制御
方式を提供することを目的とする。また、本発明は、マ
ルチアクセスによる衝突を誘発することなく無線回線の
有効利用効率を向上する伝送制御方式を提供することを
目的とする。
Therefore, it is an object of the present invention to provide a transmission control system which solves the above problems of the prior art and improves the effective use efficiency of a wireless line. It is another object of the present invention to provide a transmission control method that improves the effective use efficiency of wireless lines without inducing collisions due to multi-access.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、無線回線を用いて複数の端末と無線基地
局との間でパケット信号の送受信を行う無線パケット通
信システムにおける伝送制御方式であって、前記無線基
地局から前記端末への下り通信時には、通信開始時の下
りパケット信号にて送達確認を行い、前記端末から上り
パケット信号として応答信号が戻って来るまでに前記無
線基地局が送出した下りパケット信号数を周回遅延数と
して記憶し、前記無線基地局が送達確認をとらずに連続
して送信できるパケット数から前記周回遅延数を差し引
いた値に「1」を加えた回数を最大送達確認間隔として
記憶し、前記最大送達確認間隔後に前記無線基地局が送
達確認を行い、応答信号を受信する度に前記最大送達確
認間隔を更新して送達確認を行う、ことを特徴とする伝
送制御方式を提供する。
In order to achieve the above object, the present invention provides a transmission control method in a wireless packet communication system for transmitting and receiving packet signals between a plurality of terminals and a wireless base station using a wireless line. In the downlink communication from the radio base station to the terminal, the delivery confirmation is performed by the downlink packet signal at the start of communication, and the radio base station is used until a response signal is returned from the terminal as an uplink packet signal. The number of downlink packet signals transmitted by the wireless base station is stored as the number of round trip delays, and the value obtained by subtracting the number of round trip delays from the number of packets that the wireless base station can continuously transmit without confirming delivery Is stored as the maximum delivery confirmation interval, the radio base station confirms delivery after the maximum delivery confirmation interval, and updates the maximum delivery confirmation interval each time a response signal is received and sends the response. To confirm, to provide a transmission control system, characterized in that.

【0011】また、本発明は、無線回線を用いて複数の
端末と無線基地局との間でパケット信号の送受信を行う
無線パケット通信システムにおける伝送制御方式であっ
て、前記端末から前記無線基地局への上り通信時には、
通信開始時の上りパケット信号にて送達確認を行い、前
記無線基地局から応答信号が戻って来るまでに前記端末
が送出した上りパケット信号数を周回遅延数として記憶
し、前記端末が送達確認をとらずに連続して送信できる
パケット数から前記周回遅延数を差し引いた値に「1」
を加えた回数を最大送達確認間隔として記憶し、以降の
送達確認の送信間隔を前記周回遅延数から前記最大送達
確認間隔まで順次増しながら送達確認を行い、応答信号
を受信する毎に周回遅延数を計測し、この値が変化した
場合には、再び送達確認の送信間隔を該周回遅延数に設
定して送達確認を行う、ことを特徴とする伝送制御方式
を提供する。
Further, the present invention is a transmission control method in a wireless packet communication system for transmitting and receiving packet signals between a plurality of terminals and a wireless base station using a wireless circuit, wherein the terminal controls the wireless base station. When going up to
Delivery confirmation is performed with an upstream packet signal at the start of communication, and the number of upstream packet signals sent by the terminal until the response signal is returned from the radio base station is stored as a round trip delay number, and the terminal confirms delivery. “1” is the value obtained by subtracting the number of round trip delays from the number of packets that can be transmitted continuously without taking
Is stored as the maximum delivery confirmation interval, and the delivery confirmation is performed while sequentially increasing the transmission interval of the subsequent delivery confirmation from the number of round trip delays to the maximum delivery confirmation interval, and the number of round trip delays each time a response signal is received. Is measured, and when this value changes, the transmission interval is set again to the number of round trip delays to perform delivery confirmation, and a transmission control method is provided.

【0012】[0012]

【作用】本発明の原理・作用を以下に説明する。The principle and operation of the present invention will be described below.

【0013】請求項1に係る発明では、通信開始時の下
りパケット信号を用いて送達確認を行い、周回遅延を計
測することにより、送達確認を行うパケット信号の送出
周期をできる限り大きく取れるようにしたものである。
According to the first aspect of the present invention, the delivery confirmation is performed using the downlink packet signal at the start of communication, and the round trip delay is measured, so that the transmission cycle of the packet signal for the delivery confirmation can be made as large as possible. It was done.

【0014】また、請求項2に係る発明では、通信開始
時の上りパケット信号を用いて送達確認を行い、周回遅
延を計測し、その値を最大値として、送達確認を行うパ
ケット信号の送出周期を徐々に大きくすることができる
ようにしたものである。
Further, in the invention according to claim 2, the delivery confirmation is performed by using the upstream packet signal at the start of communication, the round trip delay is measured, and the value is set as the maximum value, and the transmission cycle of the packet signal for which the delivery confirmation is performed is performed. Is designed to be gradually increased.

【0015】このように、本発明では、無線パケット通
信システムの上り・下りの回線の特性に応じた個別の方
式で適応的に伝達確認を行うことを特徴としており、下
り方向では、送達確認を行うパケット送信周期をできる
限り大きくすることにより、無線回線の有効利用を行う
ことができる(下り方向では応答信号の返送が遅れ連続
送信が一旦途絶えても復旧可能であるため無線回線有効
利用のため送達確認の周期を大とする)。また、上り方
向では、送達確認を行うパケット送信周期を徐々に大き
くしていくことにより、連続送信を継続することが可能
となる(上り方向ではマルチアクセスのため連続送信が
一旦途絶えると衝突を誘発するため連続送信を途絶えさ
せないように送達確認周期を徐々に大としている)。
As described above, the present invention is characterized in that the transmission confirmation is adaptively performed by the individual method according to the characteristics of the up / down line of the wireless packet communication system, and the delivery confirmation is performed in the down direction. By making the packet transmission cycle to be as large as possible, it is possible to effectively use the wireless line (in the downstream direction, the reply signal is delayed in returning and the continuous transmission can be recovered even if it is interrupted, so that the wireless line can be effectively used. Make the delivery confirmation cycle large). Also, in the upstream direction, it is possible to continue continuous transmission by gradually increasing the packet transmission cycle for confirming delivery (in the upstream direction, collision is triggered when continuous transmission is interrupted due to multiple access). Therefore, the delivery confirmation cycle is gradually increased so that continuous transmission is not interrupted).

【0016】[0016]

【発明の実施の形態】本発明の実施の形態を図面を参照
して以下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は、請求項1に係る発明の実施の形態
を説明するための図であり、この発明の伝達制御方式の
実施形態を説明するシーケンス図である。
FIG. 1 is a diagram for explaining an embodiment of the invention according to claim 1, and is a sequence diagram for explaining an embodiment of a transmission control system of the present invention.

【0018】図1において、送信側が送達確認を行わず
に送信できるパケット数であるアウトスタンディング数
は「7」、送信側が送達確認を行ってから応答信号が戻
って来るまでに送出したパケット数は「2」である。ま
た、図1において、送信されるパケット信号をDi(i
=0,1,…)とし、送達確認を要求するパケット信号をD
ipとし(Pビット=“1”)、その応答信号をRR(re
ceive ready)として示す。
In FIG. 1, the outstanding number, which is the number of packets that can be transmitted by the transmitting side without confirming the delivery, is "7", and the number of packets transmitted from the transmitting side after confirming the delivery until the response signal returns. It is "2". Further, in FIG. 1, the packet signal to be transmitted is represented by D i (i
= 0,1, ...) and D is the packet signal requesting confirmation of delivery.
ip (P bit = "1") and the response signal is RR (re
ceive ready).

【0019】まず、無線基地局から送信される最初のパ
ケット信号D0にて送達確認を行うべく、D0pとして送
信する。アウトスタンディングフレーム数は「7」であ
るので、次の送信タイミングでは、D1が送信される。
First, in order to confirm delivery with the first packet signal D 0 transmitted from the radio base station, it is transmitted as D 0p . Since the number of outstanding frames is “7”, D 1 is transmitted at the next transmission timing.

【0020】パケット信号D1を送信した後に、通信を
行っている端末から応答信号が来たとすると、無線基地
局は周回遅延数を「2」として記憶し、最大送達確認間
隔として、[(アウトスタンディングフレーム数)−
(周回遅延数)+1]を算出する(この場合、7−2+
1=6)。
If a response signal comes from the terminal that is communicating after transmitting the packet signal D 1 , the radio base station stores the number of round trip delays as "2", and the maximum delivery confirmation interval is [(out Number of standing frames)-
(Circular delay number) +1] is calculated (in this case, 7-2 +
1 = 6).

【0021】この後、無線基地局は、パケット信号D0
に対する応答信号を受信するため、パケット信号D0
らアウトスタンディングフレーム数だけ先のD7まで、
送達確認を行わずに送信可能であるが、最大送達確認間
隔である6パケット信号を送出毎に送達確認を取るよう
にする。
After this, the radio base station transmits the packet signal D 0.
In order to receive the response signal to the packet signal D 0 , the packet signal D 0 to the preceding frame D 7 by the number of outstanding frames,
Although it is possible to transmit without confirming the delivery, the delivery confirmation is made every time a 6 packet signal, which is the maximum delivery confirmation interval, is transmitted.

【0022】即ち、パケット信号D2からD5までは、そ
のまま送信し、D6を送信する時に送達確認を行うた
め、D6pとしてパケット信号を送信する。
That is, the packet signals D 2 to D 5 are transmitted as they are, and the packet signal is transmitted as D 6p in order to confirm the delivery when transmitting D 6 .

【0023】無線基地局はD7を送信後、端末からD6p
に対する応答信号を受信し、再び周回遅延数を計測する
ことになる。
The radio base station transmits D 7 and then D 6p from the terminal.
A response signal to is received, and the number of round trip delays is measured again.

【0024】以降、無線基地局は、計測された周回遅延
数から算出される最大送達確認間隔毎に送達確認を行
う。
Thereafter, the radio base station confirms the delivery for each maximum delivery confirmation interval calculated from the measured number of round trip delays.

【0025】図2は、請求項2に係る発明の実施の形態
を説明するための図であり、この発明の伝達制御方式の
実施形態を説明するシーケンス図である。
FIG. 2 is a diagram for explaining an embodiment of the invention according to claim 2, and is a sequence diagram for explaining an embodiment of the transmission control system of the present invention.

【0026】図2において、送信側が送達確認を行わず
に送信できるパケット数であるアウトスタンディングフ
レーム数は「7」、送信側が送達確認を行ってから応答
信号が戻って来るまでに送出したパケット数は「2」で
ある。また、送信されるパケット信号をDi(i=0,1,
…)とし、送達確認を要求するパケット信号をDip
し、応答信号をRRとして示す。
In FIG. 2, the number of outstanding frames, which is the number of packets that can be transmitted by the transmitting side without confirming the delivery, is "7", and the number of packets sent from the transmitting side after confirming the delivery until the response signal returns. Is "2". In addition, the packet signal to be transmitted is D i (i = 0,1,
...), the packet signal requesting the delivery confirmation is D ip , and the response signal is RR.

【0027】まず、端末から送信される最初のパケット
信号D0にて送達確認を行うべく、D0pとして送信す
る。アウトスタンディングフレーム数は「7」であるの
で、次の送信タイミングでは、D1が送信される。
First, in order to confirm delivery with the first packet signal D 0 transmitted from the terminal, it is transmitted as D 0p . Since the number of outstanding frames is “7”, D 1 is transmitted at the next transmission timing.

【0028】パケット信号D1を送信した後に、通信を
行っている無線基地局から応答信号が来たとすると、前
記端末は周回遅延数を「2」として記憶し、最大送達確
認間隔として、[(アウトスタンディングフレーム数)
−(周回遅延数)+1]を算出する。
If a response signal comes from the communicating wireless base station after transmitting the packet signal D 1 , the terminal stores the number of round trip delays as “2”, and the maximum delivery confirmation interval is [( Number of outstanding frames)
-(Circular delay number) +1] is calculated.

【0029】この後、端末はD0に対する応答信号を受
信するため、D0からアウトスタンディングフレーム数
だけ先のD7まで送達確認を行わずに送信可能である
が、送達確認を要求する間隔は、この周回遅延数から上
記最大送達確認間隔まで一つずつ増加させていく。
[0029] Thereafter, the terminal for receiving a response signal to the D 0, but can be transmitted without acknowledgment from D 0 to outstanding number frame just previous D 7, the interval that requires acknowledgment is The number of round trip delays is increased by one to the maximum delivery confirmation interval.

【0030】このため、次の送信タイミングにD2を送
信した後、最初に送達確認を行ったD0から、前記計測
された周回遅延数「2」のパケット信号を送信した後の
3を送信するときに、送達確認を行うためD3pとして
送信する。
For this reason, after D 2 is transmitted at the next transmission timing, D 3 after transmitting the packet signal of the measured number of round delay “2” from D 0 for which the delivery confirmation is first performed. When sending, send as D 3p to confirm delivery.

【0031】次の送信タイミングでD4を送信した後、
再び応答信号を受信すると、周回遅延数を計測し、最大
送達確認間隔を算出し直す。
After transmitting D 4 at the next transmission timing,
When the response signal is received again, the number of round trip delays is measured and the maximum delivery confirmation interval is calculated again.

【0032】以降、計測された周回遅延数が変わらない
限り、端末は、送達確認間隔を一つずつ増しながら送達
確認を行い、送達確認間隔が最大送達確認間隔と等しく
なった時点で、送達確認間隔を増加しないようにして送
達確認を行う。
After that, as long as the measured number of round trip delays does not change, the terminal confirms the delivery by increasing the delivery confirmation interval one by one, and when the delivery confirmation interval becomes equal to the maximum delivery confirmation interval, the delivery confirmation is made. Confirm the delivery without increasing the interval.

【0033】また、計測された周回遅延数が前記端末が
記憶している周回遅延数と異なる場合には、再び送達確
認間隔を上記計測した周回遅延数として送達確認を行
う。
When the measured number of round delays is different from the number of round delays stored in the terminal, the delivery confirmation is performed again by using the delivery confirmation interval as the number of round delays measured above.

【0034】[0034]

【発明の効果】以上説明したように、本発明(請求項
1)によれば、送信開始時に送達確認を行うことによ
り、無線回線の有効利用効率を速やかに向上することを
可能とする。
As described above, according to the present invention (Claim 1), it is possible to promptly improve the effective utilization efficiency of the wireless line by confirming the delivery at the start of transmission.

【0035】また、本発明によれば、送信開始時に送達
確認を行い、徐々に送達確認間隔を増していくことによ
り、マルチアクセスによる衝突を誘発することなく無線
回線の有効利用効率を向上することが可能となる。
Further, according to the present invention, by confirming the delivery at the start of transmission and gradually increasing the delivery confirmation interval, it is possible to improve the effective use efficiency of the wireless line without inducing collision due to multi-access. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態の伝送制御方式を説明する
ためのシーケンス図である。
FIG. 1 is a sequence diagram for explaining a transmission control system according to an embodiment of the present invention.

【図2】本発明の他の実施形態の伝送制御方式を説明す
るためのシーケンス図である。
FIG. 2 is a sequence diagram for explaining a transmission control method according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

i(i=0,1,…) パケット信号 Dip(i=0,1,…) 送達確認を行うパケット信号 RR 応答信号D i (i = 0,1, ...) Packet signal D ip (i = 0,1, ...) Packet signal for confirming delivery RR Response signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】無線回線を用いて複数の端末と無線基地局
との間でパケット信号の送受信を行う無線パケット通信
システムにおける伝送制御方式であって、 前記無線基地局から前記端末への下り通信時には、通信
開始時の下りパケット信号にて送達確認を行い、 前記端末から上りパケット信号として応答信号が戻って
来るまでに前記無線基地局が送出した下りパケット信号
数を周回遅延数として記憶し、 前記無線基地局が送達確認をとらずに連続して送信でき
るパケット数から前記周回遅延数を差し引いた値に
「1」を加えた回数を最大送達確認間隔として記憶し、 前記最大送達確認間隔後に前記無線基地局が送達確認を
行い、 応答信号を受信する度に前記最大送達確認間隔を更新し
て送達確認を行う、 ことを特徴とする伝送制御方式。
1. A transmission control system in a wireless packet communication system for transmitting and receiving a packet signal between a plurality of terminals and a wireless base station using a wireless line, the downlink communication from the wireless base station to the terminal. Sometimes, the delivery confirmation is performed with the downlink packet signal at the start of communication, and the number of downlink packet signals transmitted by the radio base station until the response signal returns as an uplink packet signal from the terminal is stored as the number of round trip delays, The number of times that the wireless base station can continuously transmit without confirming the delivery and subtracting the number of round trip delays and adding “1” is stored as the maximum delivery confirmation interval, and after the maximum delivery confirmation interval, The transmission control method, wherein the radio base station confirms delivery, and every time a response signal is received, the maximum delivery confirmation interval is updated to confirm delivery.
【請求項2】無線回線を用いて複数の端末と無線基地局
との間でパケット信号の送受信を行う無線パケット通信
システムにおける伝送制御方式であって、 前記端末から前記無線基地局への上り通信時には、通信
開始時の上りパケット信号にて送達確認を行い、 前記無線基地局から応答信号が戻って来るまでに前記端
末が送出した上りパケット信号数を周回遅延数として記
憶し、 前記端末が送達確認をとらずに連続して送信できるパケ
ット数から前記周回遅延数を差し引いた値に「1」を加
えた回数を最大送達確認間隔として記憶し、 以降の送達確認の送信間隔を前記周回遅延数から前記最
大送達確認間隔まで順次増しながら送達確認を行い、 応答信号を受信する毎に周回遅延数を計測し、この値が
変化した場合には、再び送達確認の送信間隔を該周回遅
延数に設定して送達確認を行う、 ことを特徴とする伝送制御方式。
2. A transmission control method in a wireless packet communication system for transmitting and receiving a packet signal between a plurality of terminals and a wireless base station using a wireless line, the upstream communication from the terminal to the wireless base station. Occasionally, delivery confirmation is performed with an upstream packet signal at the start of communication, and the number of upstream packet signals sent by the terminal until the response signal returns from the radio base station is stored as a round trip delay number, and the terminal delivers the packet. The maximum delivery confirmation interval is stored as the number of times that "1" is added to the value obtained by subtracting the round trip delay number from the number of packets that can be transmitted continuously without confirmation, and the transmission interval of the subsequent delivery confirmation is stored as the round trip delay number. To the maximum delivery confirmation interval, the delivery confirmation is performed, and the number of round trip delays is measured every time a response signal is received. If this value changes, the delivery confirmation is sent again. Set interval in circumferential times the number of delay performing delivery confirmation, transmission control method, characterized in that.
JP2177396A 1996-01-12 1996-01-12 Transmission control method Expired - Lifetime JP2962215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2177396A JP2962215B2 (en) 1996-01-12 1996-01-12 Transmission control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177396A JP2962215B2 (en) 1996-01-12 1996-01-12 Transmission control method

Publications (2)

Publication Number Publication Date
JPH09200266A true JPH09200266A (en) 1997-07-31
JP2962215B2 JP2962215B2 (en) 1999-10-12

Family

ID=12064397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177396A Expired - Lifetime JP2962215B2 (en) 1996-01-12 1996-01-12 Transmission control method

Country Status (1)

Country Link
JP (1) JP2962215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7490160B2 (en) 2003-07-28 2009-02-10 Samsung Electronics Co., Ltd. Method of efficiently transmitting/receiving data using transport layer in a mobile ad hoc network, and network device using the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7490160B2 (en) 2003-07-28 2009-02-10 Samsung Electronics Co., Ltd. Method of efficiently transmitting/receiving data using transport layer in a mobile ad hoc network, and network device using the method

Also Published As

Publication number Publication date
JP2962215B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US7269152B2 (en) Method and apparatus for transmitting information within a communication system
US9800687B2 (en) Method and device for improving the transmission efficiency in a communication system with a layered protocol stack
EP0615365B1 (en) A method of accessing a communication medium
US5231634A (en) Medium access protocol for wireless lans
US6829227B1 (en) Dual polling media access control protocol for packet data in fixed wireless communication systems
US20020167963A1 (en) Method and apparatus for spread spectrum medium access protocol with collision avoidance using controlled time of arrival
CA1242537A (en) Multiple access communications system
JP3902516B2 (en) Interference reducing communication method, communication system, and communication apparatus
Gower et al. Congestion control using pacing in a packet radio network
US7142880B2 (en) Method of increasing the data throughput in a communication system
JP2003037606A (en) Device and method for radio communication
WO2005062839A2 (en) Method and system for multicast scheduling in a wlan
Sugihara et al. Throughput performance of slotted nonpersistent CSMA with an adaptive array
JPH09200266A (en) Transmission control system
US20050013325A1 (en) Method for transmitting multimedia data in wireless network
Foh et al. Improving the Efficiency of CSMA using Reservations by Interruptions
Kanjanavapastit et al. A modified point coordination function in IEEE 802.11 wireless LAN.
RamMohan et al. A new protocol to mitigate the unheard RTS/CTS problem in networks with switched beam antennas
JPH0423525A (en) Radio packet multiple address communication control system
JPH09186741A (en) Communication system
JP2003198553A (en) Simultaneous command communication method
EP0813316A1 (en) Method of establishing a spatially normalized communication path in a networked communications system
JP2005117244A (en) Wireless packet communication system
JPH0435232A (en) Radio packet communication reply confirmation system
JPH01212140A (en) Multi-address response control system in local area network

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990706