JPH09196842A - Fi value measuring method and device - Google Patents
Fi value measuring method and deviceInfo
- Publication number
- JPH09196842A JPH09196842A JP8028670A JP2867096A JPH09196842A JP H09196842 A JPH09196842 A JP H09196842A JP 8028670 A JP8028670 A JP 8028670A JP 2867096 A JP2867096 A JP 2867096A JP H09196842 A JPH09196842 A JP H09196842A
- Authority
- JP
- Japan
- Prior art keywords
- light
- value
- fluid
- light beam
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、流体のFI(Fouli
ng Index) 値を精密且つ簡便に測定できる全く新規な方
法と、その方法を応用したFI値測定装置の構成に関す
る。TECHNICAL FIELD The present invention relates to a fluid FI (Fouli).
The present invention relates to a completely new method capable of accurately and simply measuring the ng Index) value, and a configuration of a FI value measuring device to which the method is applied.
【0002】[0002]
【従来の技術】所謂水質を評価する代表的な尺度として
濁度が用いられている。濁度は、被検液中に存在する主
に固形の不純物の濃度を計る尺度であり、以下に述べる
ようないくつかの方法によって計測されている。 (1) 試料の濁りを肉眼により観察し、標準液と比較して
濁度を求める方法 (2) 試料に波長 660nm付近の光を照射し、入射光と透過
光との強度比から濁度を求める方法 (3) 試料に波長 660nm付近の光を照射し、試料中の粒子
による散乱光強度から濁度を求める方法2. Description of the Related Art Turbidity is used as a typical measure for evaluating so-called water quality. Turbidity is a scale for measuring the concentration of mainly solid impurities present in a test liquid, and is measured by several methods as described below. (1) A method of observing the turbidity of the sample with the naked eye and determining the turbidity by comparing with a standard solution. Method (3) Method of irradiating the sample with light with a wavelength of around 660 nm and calculating the turbidity from the intensity of light scattered by particles in the sample
【0003】しかしながら、上記(1) の視覚的な濁度測
定方法では、測定範囲が1〜10度程度であり、1度以下
の低い濁度の測定は事実上できない。また、上記(2) の
透過光による濁度測定方法においても、低濁度の試料に
対しては透過光の減光量が少なく、測定範囲は5度以上
と言われている。更に、上記(3) の散乱光量による濁度
測定方法は、水分子による散乱光や迷光によってブラン
ク値が高くなるので、結局測定範囲は1〜5度程度とさ
れている。この他にも、積分球などを用いた透過散乱光
濁度測定方法も提案されているが、現状では、測定範囲
の下限は 0.2度となっている。従って、例えば逆浸透膜
や中空糸膜を用いた濾過水のように、濁度でいうと 0.1
度以下に相当するようなレベルの水質評価は不可能であ
った。However, in the above-mentioned (1) visual turbidity measuring method, the measuring range is about 1 to 10 degrees, and it is practically impossible to measure turbidity as low as 1 degree or less. Further, also in the turbidity measuring method using transmitted light of the above (2), the amount of transmitted light extinction is small for a sample with low turbidity, and it is said that the measuring range is 5 degrees or more. Further, in the turbidity measuring method by the amount of scattered light of the above (3), the blank value becomes high due to scattered light and stray light due to water molecules, so that the measuring range is eventually set to about 1 to 5 degrees. In addition to this, a method for measuring transmitted scattered light turbidity using an integrating sphere has been proposed, but at present, the lower limit of the measurement range is 0.2 degree. Therefore, for example, like filtered water using a reverse osmosis membrane or a hollow fiber membrane, the turbidity is 0.1.
It was impossible to evaluate the water quality at a level equivalent to sub-degree.
【0004】そこで、高度な濁度評価が要求される場合
は、FI値と呼ばれるより直截な水質基準が用いられて
いる。即ちFI値とは、所定の仕様のメンブレンフィル
タを用いて所定の条件の下に被検液を濾過し、所定量の
被検液を濾過するのに要する時間を測定した値であり、
通常は下記に示すような条件で測定される。Therefore, when a high degree of turbidity evaluation is required, a more straightforward water quality standard called FI value is used. That is, the FI value is a value obtained by filtering the test liquid under a predetermined condition using a membrane filter having a predetermined specification, and measuring the time required to filter a predetermined amount of the test liquid,
Usually, it is measured under the following conditions.
【0005】(1) 有効直径42.7mm(称呼直径47mm:HA
WP047, Type HA)の0.45μmのメイブレンフィルタ
を用い、(2) 2.1kg/cm2 Gの圧力下で被検液の最初の
500ccが濾過される時間t1 を測定し、(3) 加圧を開始
して15分後から、更に 500ccの被検液が濾過される時間
t2 を測定し、(4) 上記のプロセスで得られた値t1 お
よびt2 を次式に従って計算してPI値を求め:PI
(15分, 2.1KG)=(1−t1 /t2 )× 100(%)、
(5) 更に、次式によりFI値が得られる:FI(15分,
2.1KG)=PI/15(1) Effective diameter 42.7 mm (nominal diameter 47 mm: HA
WP047, Type HA) 0.45 μm Maybren filter, and (2) under the pressure of 2.1 kg / cm 2 G.
The time t 1 during which 500 cc is filtered is measured, and (3) 15 minutes after the start of pressurization, the time t 2 during which 500 cc of the test solution is filtered is measured, and (4) in the above process. The obtained values t 1 and t 2 are calculated according to the following formula to obtain a PI value: PI
(15 minutes, 2.1KG) = (1-t 1 / t 2 ) × 100 (%),
(5) Further, the FI value is obtained by the following formula: FI (15 minutes,
2.1KG) = PI / 15
【0006】ただし、FI値による評価は甚だ便宜的な
定義に基づくものであり、現状の測定方法では、測定値
に十分な余裕を考慮しないと実際の水質制御で利用する
ことができない。また、現場あるいはライン上でFI値
を連続的に監視するような用途に用いることができない
ので工業的な利用範囲が狭かった。However, the evaluation based on the FI value is based on a very convenient definition, and the current measurement method cannot be used in actual water quality control unless a sufficient margin is taken into consideration for the measurement value. Further, since it cannot be used for the purpose of continuously monitoring the FI value on-site or on the line, the industrial application range is narrow.
【0007】[0007]
【発明が解決しようとする課題】上述のように、従来の
測定方法によるFI値は必ずしも客観的な評価方法では
なく、利用範囲も限られていた。As described above, the FI value obtained by the conventional measuring method is not always an objective evaluation method, and its range of use is limited.
【0008】そこで、本発明は、流体、特に逆浸透膜や
中空糸膜を用いた濾過水のように、特に清浄な領域での
精密な評価が必要な分野で利用可能なFI値の計測方法
を提供することを目的としている。また、この評価方法
を実施し得るFI値測定装置を提供することも本発明の
目的のひとつである。Therefore, the present invention is a method for measuring an FI value that can be used in a field requiring a precise evaluation in a particularly clean region such as a fluid, particularly filtered water using a reverse osmosis membrane or a hollow fiber membrane. Is intended to provide. Further, it is also one of the objects of the present invention to provide an FI value measuring device capable of implementing this evaluation method.
【0009】[0009]
【発明の実施の形態】本発明により、コヒーレント光源
からの光ビームを所定の焦点に対して一旦集光させて放
射状光ビームを形成し、FI値を計測すべき流体を該焦
点近傍で放射状光ビーム内を通過させ、該流体中の微粒
子による回折で生じた該光ビームの明暗の分布を、該流
体に対して該光源とは反対側で光ビームの光路上に配置
した光検出器により検出して電気信号に変換し、該電気
信号の変化に基づいて該流体のFI値を求めることを特
徴とする流体のFI値測定方法が提供される。BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, a light beam from a coherent light source is once focused on a predetermined focal point to form a radial light beam, and a fluid whose FI value is to be measured is emitted near the focal point. The light-dark distribution of the light beam that is caused to pass through the beam and is diffracted by fine particles in the fluid is detected by a photodetector arranged on the optical path of the light beam on the side opposite to the light source with respect to the fluid. A FI value measuring method for a fluid is provided, which is characterized in that the FI value of the fluid is obtained based on a change in the electric signal.
【0010】また、上記本発明に係る方法を実施する装
置として、本発明により、コヒーレント光源と、このコ
ヒーレント光源からの光を集光する光学系と、この光学
系で集光された光ビームの焦点の近傍に配置され且つ内
部を被検液が流通する光学セルと、光ビームの光路上で
且つ光学セルに対して光ビームの光源とは反対側に配置
された光検出器と、この光検出器からの電気信号から流
体中の微粒子の個数を計測する電気回路と、該電気回路
の出力信号をFI値に対応した信号に変換する手段とを
備えることを特徴とするFI値測定装置が提供される。As an apparatus for carrying out the method according to the present invention, according to the present invention, a coherent light source, an optical system for condensing light from the coherent light source, and a light beam condensed by the optical system are provided. An optical cell that is arranged near the focal point and through which the sample liquid flows, a photodetector that is arranged on the optical path of the light beam and on the opposite side of the optical cell from the light source of the light beam, and this light An FI value measuring device comprising an electric circuit for measuring the number of fine particles in a fluid from an electric signal from a detector, and means for converting an output signal of the electric circuit into a signal corresponding to the FI value. Provided.
【0011】本発明に係るFI値の計測方法は、後述す
る所定の方法により得られる計測値とFI値とが極めて
高い相関を有するという知見に基づくものである。但
し、現状では本発明の検出原理は理論的には完全には説
明できないが、以下のような説明が試みられる。The FI value measuring method according to the present invention is based on the finding that the FI value and the measured value obtained by a predetermined method described later have an extremely high correlation. However, although the detection principle of the present invention cannot be completely explained theoretically at present, the following explanation is tried.
【0012】平行ビーム中に微粒子が存在するとき、フ
ラウンホーファー回折現像により平行ビームの投影像に
特定のパターンを有する明暗の分布が生じる。ここで、
「回折」は「光の直進性によって説明できない諸現象の
総称」と定義されるが、一般に光の波動性に基づくホイ
ヘンスーフレネルの原理によって説明される。但し、こ
のフラウンホーファー回折現像は、微粒子の半径が光の
波長より大きい場合にのみ現れ、粒度分布計などで利用
される物理現象である。When fine particles are present in the parallel beam, Fraunhofer diffraction development produces a light-dark distribution having a specific pattern in the projected image of the parallel beam. here,
"Diffraction" is defined as "a general term for various phenomena that cannot be explained by the straightness of light", but is generally explained by the Huygens-Fresnel principle based on the wave nature of light. However, this Fraunhofer diffraction development appears only when the radius of the fine particles is larger than the wavelength of light, and is a physical phenomenon used in particle size distribution analyzers and the like.
【0013】また、回折は散乱の一種であると考えるこ
とができ、一般にはマクスウェルの電磁方程式から導か
れたミー(Mie) 散乱理論で説明されるが、ミー散乱理論
は取扱が複雑なため一般には粒子半径rと入射波長λと
の関係から近似が用いられている (r<λの場合にはレ
イリー(Rayleigh)散乱、rがλに近い場合にはミー散
乱、r>λの場合にはフラウンホーファー回折) 。但
し、微粒子の半径が光の波長以下のときは単なる散乱と
して扱われる。これは、微粒子の半径が光の波長程度に
なると、あたかも微粒子が点光源になって散乱を起こし
ているかのように振る舞い、回折角が大きくなるので平
行ビームでは干渉を起こし得なくなるためである。Diffraction can be considered as a kind of scattering, and is generally explained by Mie scattering theory derived from Maxwell's electromagnetic equation. However, Mie scattering theory is generally complicated in handling. Is an approximation from the relationship between the particle radius r and the incident wavelength λ (Rayleigh scattering when r <λ, Mie scattering when r is close to λ, Mie scattering when r> λ Fraunhofer diffraction). However, when the radius of the fine particles is equal to or less than the wavelength of light, it is treated as mere scattering. This is because when the radius of the particles becomes about the wavelength of light, the particles behave as if they act as a point light source and cause scattering, and the diffraction angle becomes large, so that interference cannot occur with parallel beams.
【0014】ここで、図2に示すような平行光によるフ
ラウンホーファー回折理論では、遮光体が微粒子のとき
の回折による広がり角Δθは、微粒子の直径D=2rと
すると、Δθ=1.22λ/Dで表される。従って、遮光す
る微粒子の直径が小さくなればなる程、回折の広がり角
Δθが大きくなり、D=0.78λのときに広がり角がちょ
うど90度になる。通常は、この広がり角が回折方式の微
粒子検出装置での検出限界と考えられるので、入射波長
λ=0.67μmとすると検出可能な粒径は0.52μmという
ことになる。事実、実験的にも波長以下の粒径の回折像
は容易には得られない。Here, in the Fraunhofer diffraction theory by parallel light as shown in FIG. 2, the spread angle Δθ due to diffraction when the light shield is fine particles is Δθ = 1.22λ / D, where D = 2r is the diameter of the fine particles. It is represented by. Therefore, the smaller the diameter of the fine particles to be shielded, the larger the spread angle Δθ of diffraction becomes, and when D = 0.78λ, the spread angle becomes just 90 degrees. Usually, this divergence angle is considered to be the detection limit in the diffraction type fine particle detection device, and therefore, when the incident wavelength λ = 0.67 μm, the detectable particle size is 0.52 μm. In fact, experimentally, it is not easy to obtain a diffraction pattern with a particle size smaller than the wavelength.
【0015】ところが、本発明に係る方法に従って、特
定の焦点から拡散する拡散ビームの焦点近傍に微粒子が
存在するときは、粒径が光の波長よりも小さい微粒子に
対しても回折角が十分に小さくなり、ビームの投影像に
おける明暗の分布から微粒子の存在が容易に検出され
る。更に、上記のような回折分布を含む光ビームを受光
素子アレイで受けて電気信号化することにより、被検液
のFI値に極めて強い相関を有する電気信号を得ること
ができる。However, according to the method of the present invention, when fine particles are present in the vicinity of the focal point of a diffused beam diffusing from a specific focal point, the diffraction angle is sufficient even for fine particles having a particle size smaller than the wavelength of light. It becomes smaller, and the presence of fine particles can be easily detected from the distribution of light and dark in the projected image of the beam. Further, by receiving the light beam including the diffraction distribution as described above by the light receiving element array and converting it into an electric signal, an electric signal having an extremely strong correlation with the FI value of the test liquid can be obtained.
【0016】また、本発明に係るFI値測定方法は、具
体的に後述するように、出力が小さい廉価なレーザー
(光源)と廉価なフォトダイオード(検出器)とを用い
て実施することができるので、測定装置が廉価になると
共に、現場での取り扱いも簡便になるという工業上極め
て重要な利点がある。Further, the FI value measuring method according to the present invention can be carried out by using an inexpensive laser (light source) with a small output and an inexpensive photodiode (detector), as will be specifically described later. Therefore, there is an industrially very important advantage that the measuring device becomes inexpensive and the on-site handling becomes simple.
【0017】以下、実施例を挙げて本発明をより具体的
に説明するが、以下の開示は本発明の一実施例に過ぎ
ず、本発明の技術的範囲を何等限定するものではない。Hereinafter, the present invention will be described in more detail with reference to examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention.
【0018】[0018]
【実施例】図1は、本発明に係る方法を実施することが
できるFI値測定装置の基本構成を示す図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the basic configuration of a FI value measuring apparatus capable of carrying out the method according to the present invention.
【0019】同図に示すように、この装置は、コヒーレ
ント光源であるレーザ1と、レーザ1の出射光を所定の
焦点に一旦収束させるための収束光学系2と、この収束
光学系2から生じた拡散光ビームの焦点近傍に被検液を
流通させるための光学セル3と、光学セル3を通過した
後の光ビームを受ける受光素子アレイ4とを備えてい
る。As shown in the figure, this apparatus is produced by a laser 1 which is a coherent light source, a converging optical system 2 for converging the emitted light of the laser 1 to a predetermined focal point, and a converging optical system 2. An optical cell 3 for circulating the test liquid near the focal point of the diffused light beam and a light receiving element array 4 for receiving the light beam after passing through the optical cell 3 are provided.
【0020】上記のFI値測定装置において、光源は廉
価な半導体レーザ1を用いて構成することができ、コリ
メータレンズによりコリメート光源として構成されてい
る。また、受光素子アレイ4としても、フォトダイオー
ドを用いた市販品を好適に使用することができる。更
に、収束光学系2としては、比較的単純な光学レンズ等
を使用できる。In the above-mentioned FI value measuring device, the light source can be constructed by using the inexpensive semiconductor laser 1, and is constructed as a collimated light source by the collimator lens. Also, as the light receiving element array 4, a commercially available product using a photodiode can be preferably used. Further, as the converging optical system 2, a relatively simple optical lens or the like can be used.
【0021】尚、図示を省略しているが、受光素子アレ
イ4から出力された信号は、A/Dコンバータや適切な
インターフェイスを介して、マイクロコンピュータシス
テムや汎用情報処理装置等に接続されている。これらの
処理装置では、検出された光強度信号または回折像信号
を処理可能な電気信号に変換する。この種の装置の構成
並びに操作については、市場から容易に入手し得るもの
なので詳細な説明は省略する。Although not shown, the signal output from the light-receiving element array 4 is connected to a microcomputer system, a general-purpose information processing device or the like via an A / D converter or an appropriate interface. . In these processing devices, the detected light intensity signal or diffraction image signal is converted into a processable electric signal. The structure and operation of this type of device are readily available from the market, and detailed description thereof is omitted.
【0022】以上のように構成されたFI値測定装置に
おいて、光学セル3内を流通する被検液に対して光学系
2を介して光源1からコヒーレント光を照射する。尚、
レーザー発振器1としては任意のものを用いることがで
きるが、発振波長が短ければ短いほど検出感度は向上す
る。本発明者達が行った現在までの実験では出力が1m
W以下、具体的には 0.2mWの半導体レーザーでも有効
に使用できた。また、集光系と光学レンズ2の焦点距離
は、被検液に含まれる微粒子の大きさによって選択する
ことが有利である。具体的には、被検液に含まれる粒径
が 0.2μm程度である場合は、焦点距離が10mm程度のレ
ンズを用いることが好ましい。In the FI value measuring device configured as described above, the coherent light is emitted from the light source 1 through the optical system 2 to the test liquid flowing in the optical cell 3. still,
Any laser oscillator 1 can be used, but the shorter the oscillation wavelength, the higher the detection sensitivity. In the experiments conducted by the inventors up to the present time, the output is 1 m.
It could be effectively used even with a semiconductor laser of W or less, specifically 0.2 mW. Further, it is advantageous to select the focal lengths of the condensing system and the optical lens 2 depending on the size of the fine particles contained in the test liquid. Specifically, when the particle size contained in the test liquid is about 0.2 μm, it is preferable to use a lens having a focal length of about 10 mm.
【0023】光学セル3は、少なくとも集束光の受光面
および透過面を透明にする必要がある。この光学セルは
迷光を心配する必要がないので単純な構造にすることが
できるが、微粒子を含んだ被検流体の流れに乱流が発生
しないようにする手段、例えば層流板を光学セル内に設
けておくことが好ましい。また、実際の装置では、レー
ザー1から出て集束された集束光が光学セル3に対して
一定の位置、例えば光学セルの中心に集光させることが
できるように、光学系2には位置調節手段を適宜設ける
ことが好ましい。光検出器4は、透過光に隠れている回
折像を検出することにあり、感度についての要求は低
い。従って、原理的には単一のフォトダイオードを用い
ることもできるが、実際にはフォトダイオードアレイを
用いることが好ましい。このフォトダイオードアレイは
被検出粒子を含む流れの方向に対しては垂直に配置し且
つ光軸に対しても垂直に配置すると有利である。In the optical cell 3, at least the light receiving surface and the transmitting surface for the focused light need to be transparent. Since this optical cell does not need to worry about stray light, it can have a simple structure.However, a means for preventing turbulence in the flow of the test fluid containing fine particles, such as a laminar flow plate, is provided in the optical cell. It is preferable to provide it. Also, in an actual device, the optical system 2 is positionally adjusted so that the focused light emitted from the laser 1 can be focused at a certain position with respect to the optical cell 3, for example, the center of the optical cell. It is preferable to appropriately provide means. The photodetector 4 is for detecting a diffracted image hidden in the transmitted light, and the requirement for sensitivity is low. Therefore, although a single photodiode can be used in principle, it is preferable to use a photodiode array in practice. This photodiode array is advantageously arranged perpendicular to the direction of the flow containing the particles to be detected and also perpendicular to the optical axis.
【0024】図3は、本発明に係るFI値測定装置測方
法の原理を説明するための概念図である。FIG. 3 is a conceptual diagram for explaining the principle of the FI value measuring device measuring method according to the present invention.
【0025】同図に示すように、被検液に収束光を照射
した場合は、光の波長よりも粒径の小さな微粒子に対し
ても集束光回折像(光強度分布)が現れるので、この回
折像を受光素子で検出することにより、被検液中の微粒
子の存在を正確に検出することができる。従って、被検
液中の粒子数を計数することにより、被検液のFI値と
強い相関を有する測定値を得ることができる。As shown in the figure, when the test liquid is irradiated with convergent light, a focused light diffraction image (light intensity distribution) appears even for fine particles having a particle size smaller than the wavelength of light. By detecting the diffraction image with the light receiving element, the presence of fine particles in the test liquid can be accurately detected. Therefore, by counting the number of particles in the test liquid, it is possible to obtain a measurement value having a strong correlation with the FI value of the test liquid.
【0026】尚、実際の装置では、光検出器4のSN比
を良くするために、フォトダイオードアレイの各素子の
信号を差動増幅器を用いて多段に重ね合わせて、微粒子
が通過しない時、すなわち、フォトダイオードアレイの
各素子に光が一様に当たっている状態での電気信号を0
とし、集束光回折回折像によっていずれかの素子に光量
の変化が現われた時に、粒子の特性(数、寸法等)に応
じた電気信号が発生するように構成することが好まし
い。In an actual device, in order to improve the SN ratio of the photodetector 4, the signals of the respective elements of the photodiode array are superposed in multiple stages using a differential amplifier, and when fine particles do not pass, That is, the electric signal in the state where the light uniformly hits each element of the photodiode array
It is preferable that an electric signal corresponding to the characteristics (number, size, etc.) of the particles is generated when the light quantity changes in any of the elements due to the focused light diffraction image.
【0027】実施例1 図1に示した装置を、下記の表1に示す仕様で作製し
た。 Example 1 The device shown in FIG. 1 was manufactured according to the specifications shown in Table 1 below.
【0028】[0028]
【表1】 [Table 1]
【0029】次に、上記本発明に係るFI値測定装置A
と、従来のFI値測定装置Bとを用いて図4に示すよう
な手順でその測定結果を比較した。即ち、図4(a) に示
すように、被検液として上水道水を採取して、フィルタ
による濾過の前後で、それぞれ本発明の方法と従来方法
とでFI値を測定した。また、図4(b) に示すように工
業用水についてもそれぞれの測定方法でFI値を測定し
た。測定結果を図5に示す。同図から判るように、本発
明に係る方法で得られた測定値は、従来の方法で測定さ
れたFI値と極めて強い相関を有している。Next, the FI value measuring device A according to the present invention described above.
And the conventional FI value measuring device B were used to compare the measurement results in the procedure as shown in FIG. That is, as shown in FIG. 4 (a), tap water was collected as a test liquid, and the FI value was measured by the method of the present invention and the conventional method before and after filtration with a filter. Further, as shown in FIG. 4 (b), the FI value of industrial water was also measured by each measuring method. FIG. 5 shows the measurement results. As can be seen from the figure, the measured value obtained by the method according to the present invention has an extremely strong correlation with the FI value measured by the conventional method.
【0030】[0030]
【発明の効果】以上詳細に説明したように、本発明に係
るFI値測定方法は、被検液を採取することなく連続的
にFI値を測定できる。また、廉価な部材を用いて容易
に実施することができるので、工業的な利用範囲は極め
て広い。As described above in detail, the FI value measuring method according to the present invention can continuously measure the FI value without collecting the test liquid. Further, since it can be easily carried out by using inexpensive members, the industrial application range is extremely wide.
【図1】本発明の原理を用いたFI値測定装置の概念図
である。FIG. 1 is a conceptual diagram of an FI value measuring device using the principle of the present invention.
【図2】平行ビーム中に微粒子が存在する場合のフラウ
ンホーファー回折現像を示す図である。FIG. 2 is a diagram showing Fraunhofer diffraction development when fine particles are present in a parallel beam.
【図3】本発明に係るFI値検出方法の原理を説明する
ための概念図である。FIG. 3 is a conceptual diagram for explaining the principle of the FI value detection method according to the present invention.
【図4】本発明に係るFI値測定装置の評価方法を概念
的に示す図である。FIG. 4 is a diagram conceptually showing an evaluation method of the FI value measuring device according to the present invention.
【図5】本発明に係るFI値測定装置で得られる測定結
果とFI値測定による評価結果との相関を示すグラフで
ある。FIG. 5 is a graph showing a correlation between a measurement result obtained by the FI value measuring device according to the present invention and an evaluation result by FI value measurement.
1 レーザー 2 レンズ 3 光学セル 4 光検出器 1 laser 2 lens 3 optical cell 4 photodetector
Claims (5)
焦点に対して一旦集光させて放射状光ビームを形成し、
FI値を計測すべき流体を該焦点近傍で放射状光ビーム
内を通過させ、該流体中の微粒子による回折で生じた該
光ビームの明暗の分布を、該流体に対して該光源とは反
対側で光ビームの光路上に配置した光検出器により検出
して電気信号に変換し、該電気信号の変化に基づいて該
流体のFI値を求めることを特徴とするFI値測定方
法。1. A light beam from a coherent light source is once focused on a predetermined focal point to form a radial light beam,
A fluid whose FI value is to be measured is passed through a radial light beam in the vicinity of the focal point, and the light-dark distribution of the light beam generated by diffraction by fine particles in the fluid is measured on the opposite side of the fluid from the light source. A FI value measuring method characterized in that the FI value of the fluid is obtained based on a change in the electric signal detected by a photodetector arranged on the optical path of the light beam and converted into an electric signal.
からの光を集光する光学系と、該光学系で集光された光
ビームの焦点の近傍に配置され且つ内部を微粒子を含む
流体の流れが通過する光学セルと、光ビームの光路上で
且つ光学セルに対して光ビームの光源とは反対側に配置
された光検出器と、該光検出器からの電気信号から流体
中の微粒子の個数を計測する電気回路と、該電気回路の
出力信号をFI値に対応した信号に変換する手段とを備
えることを特徴とするFI値測定装置。2. A coherent light source, an optical system for condensing light from the coherent light source, and a flow of a fluid which is disposed near the focal point of the light beam condensed by the optical system and which contains fine particles inside. The passing optical cell, the photodetector arranged on the optical path of the light beam and on the opposite side of the optical cell from the light source of the light beam, and the number of fine particles in the fluid from the electric signal from the photodetector. An FI value measuring device comprising: an electric circuit for measuring the electric field and means for converting an output signal of the electric circuit into a signal corresponding to the FI value.
光源が半導体レーザであり、前記光検出器がフォトダイ
オードであることを特徴とする装置。3. The device according to claim 2, wherein the light source is a semiconductor laser and the photodetector is a photodiode.
において、前記光学系がレンズであることを特徴とする
装置。4. The device according to claim 2 or 3, wherein the optical system is a lens.
おいて、前記光検出器が、前記流体の流れ方向に対して
垂直に且つ光軸に対して垂直に配置されたフォトダイオ
ードアレイであることを特徴とする装置。5. The device according to claim 2, wherein the photodetector is a photodiode array arranged perpendicular to the flow direction of the fluid and perpendicular to the optical axis. A device characterized by being.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8028670A JPH09196842A (en) | 1996-01-23 | 1996-01-23 | Fi value measuring method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8028670A JPH09196842A (en) | 1996-01-23 | 1996-01-23 | Fi value measuring method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09196842A true JPH09196842A (en) | 1997-07-31 |
Family
ID=12254953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8028670A Pending JPH09196842A (en) | 1996-01-23 | 1996-01-23 | Fi value measuring method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09196842A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017126360A1 (en) * | 2016-01-21 | 2017-07-27 | 東京エレクトロン株式会社 | Foreign matter detection device and foreign matter detection method |
-
1996
- 1996-01-23 JP JP8028670A patent/JPH09196842A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017126360A1 (en) * | 2016-01-21 | 2017-07-27 | 東京エレクトロン株式会社 | Foreign matter detection device and foreign matter detection method |
CN108474731A (en) * | 2016-01-21 | 2018-08-31 | 东京毅力科创株式会社 | Detection device for foreign matter and foreign matter detecting method |
JPWO2017126360A1 (en) * | 2016-01-21 | 2018-11-08 | 東京エレクトロン株式会社 | Foreign object detection device and foreign object detection method |
CN108474731B (en) * | 2016-01-21 | 2021-09-21 | 东京毅力科创株式会社 | Foreign matter detection device and foreign matter detection method |
US11402313B2 (en) | 2016-01-21 | 2022-08-02 | Tokyo Electron Limited | Foreign substance detection device and foreign substance detection method |
US11906414B2 (en) | 2016-01-21 | 2024-02-20 | Tokyo Electron Limited | Foreign substance detection device and foreign substance detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12313514B2 (en) | Detection scheme for particle size and concentration measurement | |
US5956139A (en) | Cross-correlation method and apparatus for suppressing the effects of multiple scattering | |
JP3306828B2 (en) | Liquid flow cytometer | |
US5999256A (en) | Particle measurement system | |
JP2641927B2 (en) | Particle measurement device | |
EP0413812A4 (en) | Particle size analysis utilizing polarization intensity differential scattering | |
US5534999A (en) | Monitoring sub-micron particles | |
KR20120013297A (en) | Methods and systems for analyzing solid particles in a medium | |
JPH0129576Y2 (en) | ||
JP3745947B2 (en) | Method and apparatus for measuring particle size of fine particles in fluid | |
JPH0843292A (en) | A detector for measuring the intensity of light scattered by thin layers of colloidal media. | |
US4213699A (en) | Method of measuring low concentrations of a light absorbing component | |
US5859705A (en) | Apparatus and method for using light scattering to determine the size of particles virtually independent of refractive index | |
JP3151036B2 (en) | Method and apparatus for detecting submicron particles | |
JP2003130784A (en) | Apparatus for detecting particulate in fluid | |
JPH09196842A (en) | Fi value measuring method and device | |
JPH0749302A (en) | Method and apparatus of measuring particle size of microparticle in fluid | |
JP3144687B2 (en) | Particle measurement device | |
JPS63201554A (en) | Particle analyzing device | |
JPH0486546A (en) | Specimen inspection device | |
DE19724228A1 (en) | Method for measuring size distribution, optical characteristics or particle concentration | |
JPH0226054Y2 (en) | ||
JPS60161548A (en) | Apparatus for measuring scattered light of flowing fine particulate material | |
JP2001330551A (en) | Particle measurement device | |
SU1728742A1 (en) | Optical method for testing volume content of particles in solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050405 |