JPH09193223A - Plastic injection mold and method for injection molding plastic using the mold - Google Patents
Plastic injection mold and method for injection molding plastic using the moldInfo
- Publication number
- JPH09193223A JPH09193223A JP2469096A JP2469096A JPH09193223A JP H09193223 A JPH09193223 A JP H09193223A JP 2469096 A JP2469096 A JP 2469096A JP 2469096 A JP2469096 A JP 2469096A JP H09193223 A JPH09193223 A JP H09193223A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- wall surface
- temperature
- flow path
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002347 injection Methods 0.000 title claims abstract description 17
- 239000007924 injection Substances 0.000 title claims abstract description 17
- 238000001746 injection moulding Methods 0.000 title claims description 23
- 238000000034 method Methods 0.000 title description 16
- 238000009826 distribution Methods 0.000 claims abstract description 47
- 238000010438 heat treatment Methods 0.000 claims abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000001816 cooling Methods 0.000 claims description 30
- 230000000630 rising effect Effects 0.000 claims description 21
- 239000013505 freshwater Substances 0.000 claims description 7
- 238000000465 moulding Methods 0.000 abstract description 40
- 238000012546 transfer Methods 0.000 abstract description 20
- 239000000498 cooling water Substances 0.000 abstract description 2
- 230000006872 improvement Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 9
- 230000004044 response Effects 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 238000004088 simulation Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 241000612182 Rexea solandri Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、プラスチック射出
成形に用いる成形型および成形法に関するものである。TECHNICAL FIELD The present invention relates to a molding die and a molding method used for plastic injection molding.
【0002】[0002]
【従来の技術】プラスチックの射出成形は、目的とする
製品形状と同形状のキャビティを有する成形型に溶融し
たプラスチックを射出し冷却固化せしめて行う。得られ
た製品の外観は成形型のキャビティとほぼ等しいのはも
ちろんであるが、厳密には異なる。2. Description of the Related Art Injection molding of plastic is performed by injecting molten plastic into a molding die having a cavity having the same shape as a desired product shape, and cooling and solidifying the molten plastic. The appearance of the resulting product is, of course, approximately equal to the mold cavity, but strictly different.
【0003】特に、キャビティ表面の微細な凹凸は正確
に転写されない場合が多い。これは、溶融プラスチック
がキャビティ表面に接触した瞬間に溶融プラスチック表
面に薄い固化層が形成されるので、キャビティ表面の微
細な凹凸の正確な転写を妨げるからである。キャビティ
表面の微細な凹凸の寸法と、得られたプラスチック成形
品の表面の微細な凹凸の寸法との比を転写率と呼んでい
るが、精密なプラスチック射出成形においては、この転
写率を高くすることが課題の1つである。In particular, fine irregularities on the cavity surface are often not accurately transferred. This is because a thin solidified layer is formed on the surface of the molten plastic at the moment when the molten plastic comes into contact with the surface of the cavity, which hinders accurate transfer of fine irregularities on the surface of the cavity. The ratio of the size of the fine irregularities on the surface of the cavity to the size of the fine irregularities on the surface of the obtained plastic molded product is called the transfer rate. In precise plastic injection molding, increase this transfer rate. That is one of the challenges.
【0004】また、プラスチックの射出成形における製
品の不良として、「ウエルド」,「ひけ」,「シルバ
ー」と呼ばれる3つの大きな不良項目があり、これらの
3大不良を減少もしくは絶滅することは射出工程の現場
では極めて重要である。There are three major defect items called "weld", "hake", and "silver" as defective products in plastic injection molding. It is the injection process to reduce or eliminate these three major defects. Is extremely important in the field.
【0005】上述した転写率の改善方法ならびに上記3
大不良の減少対策として、高温成形と呼ばれる成形方法
が知られている。これは予めキャビティ表面の温度を上
げておくことにより溶融プラスチックの固化層の形成を
遅らせ、キャビティ表面の微細な凹凸を正確に転写さ
せ、その後に型を冷却してプラスチック成形品を完全に
固化させて取り出す方法である。またこの高温成形を用
いることにより、先に述べた成形の3大不良も減少もし
くは絶滅することもできる。このように高温成形法は射
出成形として優れた工法である。The above-described method for improving the transfer rate, and
A molding method called high-temperature molding is known as a measure for reducing large defects. This delays the formation of the solidified layer of molten plastic by raising the temperature of the cavity surface in advance, accurately transfers the fine irregularities on the cavity surface, and then cools the mold to completely solidify the plastic molded product. It is a method of taking out. By using this high-temperature molding, the above-mentioned three major defects of molding can also be reduced or eliminated. Thus, the high-temperature molding method is an excellent method for injection molding.
【0006】しかし、高温成形においては一般に金型の
昇温,冷却に時間がかかるので通常の射出成形サイクル
時間内に収まらず、成形コストが高くなるという欠点が
あった。However, in the high temperature molding, it generally takes time to heat up and cool down the mold, so that the molding cost cannot be kept within the normal injection molding cycle time and the molding cost becomes high.
【0007】例えば、高温成形の代表例として型の加熱
のために型に電気ヒータを埋め込む方法がある。この方
法では型壁面温度を上げるためには、電気ヒータを埋め
込んでいる部分も加熱せねばならないので被加熱部の熱
容量が大きくなり、所定の温度に加熱するのに長時間を
要する上に、冷却時間も延長されてしまう。加熱,冷却
に要する時間は、型の大きさ,使用環境等で大幅に変化
するが、例えば型壁面温度を50℃上昇,下降させよう
とする場合、このような電気ヒータを埋め込んだ方法で
は、数分ないし数10分単位の時間を要するのが通例で
あった。これでは数秒を争って成形時間を短縮しようと
している成形現場に受け入れられないのは当然である。For example, as a typical example of high temperature molding, there is a method of embedding an electric heater in a mold for heating the mold. In this method, in order to raise the mold wall temperature, the portion in which the electric heater is embedded must also be heated, so that the heat capacity of the heated portion increases, and it takes a long time to heat to a predetermined temperature, and cooling Time will be extended. The time required for heating and cooling varies greatly depending on the size of the mold, the use environment, and the like. For example, when the mold wall temperature is to be raised or lowered by 50 ° C., such a method in which the electric heater is embedded is It usually took several minutes to several tens of minutes. Naturally, this is unacceptable for molding sites seeking to reduce molding time by competing for several seconds.
【0008】電気ヒータの代わりに型に適当な流路を設
け、この流路に高温熱媒体を流す方法が提案されてお
り、例えば特開昭62−117716号公報,特開平1
−115606号公報がある。A method has been proposed in which an appropriate flow path is provided in a mold in place of an electric heater, and a high-temperature heat medium is passed through this flow path. For example, Japanese Patent Application Laid-Open Nos. 62-117716 and 1
There is a publication of -115606.
【0009】この方法の利点の1つは、流路を型壁面に
近付けて設けることにより加熱時間を短縮できることで
ある。流路と型壁面との熱伝導が良くなるのに加えて被
加熱部の熱容量を小さくできるからである。さらに、こ
の方法の大きな利点としては加熱時には高温の熱媒体を
流路に流し、冷却時には低温の熱媒体を流すので、加熱
時間だけでなく冷却時間も短縮することができる。One of the advantages of this method is that the heating time can be shortened by providing the flow path close to the mold wall. This is because, in addition to improving the heat conduction between the flow path and the mold wall surface, the heat capacity of the heated portion can be reduced. Further, a great advantage of this method is that a high-temperature heat medium flows through the flow path during heating and a low-temperature heat medium flows during cooling, so that not only the heating time but also the cooling time can be reduced.
【0010】高温成形において、昇温速度,冷却速度と
並んで実用上重要な項目として型壁面の温度分布の一様
性がある。仮に大きな昇温速度が得られ、その結果成形
サイクルが短縮できても、型壁面の温度分布の一様性が
悪いと肝心の射出成形品の性状,仕上がり状態にムラが
生じて通常成形よりかえって外観が悪くなることさえあ
る。In the high temperature molding, the temperature distribution on the mold wall is uniform as a practically important item along with the heating rate and the cooling rate. Even if a large heating rate is obtained, and as a result, the molding cycle can be shortened, if the temperature distribution on the mold wall is not uniform, the injection molded product's properties and finish will be uneven, which is rather than normal molding. It may even look bad.
【0011】上記の特開昭62−117716号公報
は、流路と型壁面との間の熱抵抗を減少させるため良熱
伝導材でキャビティを構成することを提案しているが、
温度分布ムラについては触れていない。The above-mentioned Japanese Patent Application Laid-Open No. 62-117716 proposes to form the cavity with a good heat conductive material in order to reduce the thermal resistance between the flow path and the mold wall surface.
It does not mention uneven temperature distribution.
【0012】また、特開平1−115606号公報は温
度分布の一様性についての考慮は払っているが、後述す
るように十分ではない。さらに、特開平1−11560
6号公報が開示している昇温速度は、50℃の昇温に約
1分ないし1分半を要しており、昇温速度としても不足
している。Further, Japanese Patent Laid-Open No. 1-115606 considers the uniformity of temperature distribution, but it is not sufficient as will be described later. Furthermore, JP-A-1-11560
The temperature increase rate disclosed in Japanese Patent Laid-Open No. 6 requires about 1 minute to 1 minute and a half to increase the temperature at 50 ° C., and the temperature increase rate is insufficient.
【0013】[0013]
【発明が解決しようとする課題】射出成形において、転
写率を向上させ、かついわゆる成形の3大不良の対策と
して樹脂の射出前に、予め型壁面の温度を上昇させてお
く高温成形が有効な手段であることは既に述べた。In injection molding, high temperature molding in which the temperature of the mold wall surface is preliminarily raised before injection of resin is effective as a measure for improving the transfer rate and as a countermeasure against the three major so-called molding defects. It has already been mentioned that it is a means.
【0014】高温成形の効果を発揮させるには、樹脂射
出前の型壁面の温度を樹脂のガラス転移点の近傍、でき
ればガラス転移点以上にしておくことが必要である。樹
脂のガラス転移点は樹脂の種類により異なるが一般に1
00℃〜120℃以上である。また、冷却時の型壁面温
度は普通40℃〜80℃であるので昇温温度幅,冷却温
度幅は40℃〜80℃となる。一方、成形サイクルの延
長を防ぐには、昇温,冷却に充てられる時間は最大でも
40秒、できれば数秒に押さえなければならない。In order to bring out the effect of high temperature molding, it is necessary to keep the temperature of the mold wall surface before resin injection near the glass transition point of the resin, preferably above the glass transition point. The glass transition point of resin varies depending on the type of resin, but is generally 1
The temperature is 00 ° C to 120 ° C or higher. Moreover, since the mold wall surface temperature during cooling is usually 40 ° C. to 80 ° C., the temperature rise temperature range and the cooling temperature range are 40 ° C. to 80 ° C. On the other hand, in order to prevent the extension of the molding cycle, the time devoted to heating and cooling must be suppressed to 40 seconds at maximum, preferably to several seconds.
【0015】従って、昇温速度および冷却速度としては
1℃/秒以上は必要であるので、このような大きな昇温
速度,冷却速度を得るための具体的な手段として、従来
例で述べたように型壁面の近傍に流路を設け、この流路
に高温もしくは低温の熱媒体を流す方法が提案されてい
た。Therefore, the temperature rising rate and the cooling rate need to be 1 ° C./sec or more. Therefore, as a concrete means for obtaining such a large temperature rising rate and cooling rate, as described in the conventional example. There has been proposed a method in which a flow path is provided in the vicinity of the mold wall surface and a high-temperature or low-temperature heat medium is caused to flow through the flow path.
【0016】ところで、一般に物体を加熱した場合の温
度上昇の様子は、図12の曲線Aに示すように1次遅れ
要素におけるステップ応答で近似できる場合が多い。後
述するように型壁面の温度上昇の様子は、図12の曲線
Aとほぼ同じであることを我々の実験結果も示してい
る。温度上昇が1次遅れ要素であるステップ応答では時
定数T1という値が定義され、時定数T1における温度
は最終到達温度θHの約63%であることが判ってい
る。また、時定数T1の2倍の経過時間をT2とする
と、T2における温度θ2は最終到達温度θHの約86
%である。さらに、時定数T1の3倍の経過時間をT3
とすると、T3における温度θ3は最終到達温度θHの
約95%であり、時定数T1の4倍の経過時間をT4と
すると、T4における温度θ4は最終到達温度θHの約
98%である。そこで、昇温速度を比較する指標として
我々は上記T2,T3・・およびθ2,θ3・・を用い
ている。図12の破線Bの勾配が温度θ2に達するまで
の平均昇温速度を示す。上記した型壁面の昇温速度1℃
/秒以上の値とは、図12の破線Bの勾配である平均昇
温速度が1℃/秒以上の値であると解釈しても差し支え
ない。これに対し、図12の曲線Aの接線Cの勾配は加
熱開始時点での昇温速度を示しており、その値は上記破
線Bで示される昇温速度の約2倍である。すなわち、型
壁面の昇温速度を1℃/秒以上の値にするには、加熱開
始時点での昇温速度を約2℃/秒以上にする必要があ
る。By the way, in general, the state of temperature rise when an object is heated can often be approximated by the step response in the first-order lag element as shown by the curve A in FIG. As will be described later, our experimental results also show that the temperature rise of the mold wall surface is almost the same as the curve A in FIG. The value of the time constant T1 is defined in the step response in which the temperature rise is the first-order lag element, and it is known that the temperature at the time constant T1 is about 63% of the final reached temperature θ H. Further, assuming that the elapsed time that is twice the time constant T1 is T2, the temperature θ2 at T2 is about 86 times the final reached temperature θ H.
%. Furthermore, the elapsed time that is three times the time constant T1 is set to T3.
Then, the temperature θ3 at T3 is about 95% of the final reached temperature θ H , and when the elapsed time that is four times the time constant T1 is T4, the temperature θ4 at T4 is about 98% of the final reached temperature θ H. . Therefore, we use the above T2, T3 ... And θ2, θ3 ... As an index for comparing the heating rates. 12 shows the average heating rate until the gradient of the broken line B in FIG. 12 reaches the temperature θ2. Rate of temperature rise of mold wall above 1 ℃
The value of not less than / sec may be interpreted as a value of not less than 1 ° C./sec as the average rate of temperature rise, which is the slope of the broken line B in FIG. On the other hand, the slope of the tangent line C of the curve A in FIG. 12 indicates the heating rate at the start of heating, and the value is about twice the heating rate indicated by the broken line B. That is, in order to increase the temperature rising rate of the mold wall surface to a value of 1 ° C./second or more, the heating rate at the start of heating needs to be about 2 ° C./second or more.
【0017】すなわち、成形サイクルの延長を押さえ高
温成形を実用化するには、加熱開始時点での昇温速度を
約2℃/秒以上にする必要があるが、それには流路と型
壁面との配置関係ならびに用いる熱媒体の種類,流量等
の熱移動に関係する諸量を適切に選定しなければならな
いという問題があった。That is, in order to suppress the extension of the molding cycle and put the high temperature molding into practical use, the temperature rising rate at the start of heating must be about 2 ° C./sec or more. There was a problem in that it was necessary to properly select the arrangement relationship and various quantities related to heat transfer such as the type of heat medium used and the flow rate.
【0018】まず、金型加熱用の熱媒体について述べる
と、油を主成分とする流体を用いる例が報告されてい
る。これは油系の熱媒体は、常圧における飽和温度が高
いので沸騰しにくく、従って取り扱いが容易だからであ
ろう。例えば、成形加工学会から出版されている学術誌
「成形加工VOL.6,NO.2」に掲載された論文:
「金型急加熱・冷却システムとその適用事例」(以下、
文献1とする)は熱媒体として油を用いている。しかし
我々の検討結果では、油系の熱媒体は粘度が高いことも
あって流路の壁面との間の熱渡過率の値が小さくなり、
十分な昇温速度,冷却速度が得られ難いという問題があ
った。また、例えば特開平1−115606号公報のご
とく、油の代わりに飽和蒸気を用いる案も提案されてい
る。しかし、この場合も蒸気と流路壁面との間の熱渡過
率の値が小さくて、十分な昇温速度,冷却速度が得られ
ないという問題があった。First, regarding the heat medium for heating the mold, an example using a fluid containing oil as a main component has been reported. This is probably because the oil-based heat medium has a high saturation temperature at normal pressure and is unlikely to boil and is therefore easy to handle. For example, a paper published in the academic journal "Molding processing VOL.6, NO.2" published by the Japan Society for Molding Processing:
"Mold rapid heating / cooling system and its application examples" (below,
Reference 1) uses oil as a heat medium. However, in our study results, the heat transfer rate between the oil-based heat transfer medium and the wall surface of the flow channel becomes small due to the high viscosity,
There was a problem that it was difficult to obtain sufficient heating rate and cooling rate. In addition, as in Japanese Patent Laid-Open No. 1-115606, for example, a proposal of using saturated steam instead of oil has been proposed. However, in this case as well, there is a problem that the value of the heat transfer rate between the steam and the wall surface of the flow path is small, and a sufficient temperature rising rate and cooling rate cannot be obtained.
【0019】さらに、流路を型壁面の近傍に設けるとし
ても、いたずらに流路を型壁面に近付ければ良いという
訳ではなく、型壁面の温度分布の均一性を十分考慮した
配置でなければならない。一般的な傾向として昇温速
度,冷却速度を大きくするには流路を型壁面に近付ける
のが良いが、流路を型壁面に近付けると温度分布の均一
性が悪くなるという傾向がある。高温成形による成形品
は転写率が向上することは既に述べたが、それだけに型
壁面に温度分布ムラが存在すると成形品の外観に光沢ム
ラが発生することになり、温度分布ムラの程度によって
は通常成形品より外観性状が劣ることにもなりかねな
い。それだけに昇温速度,冷却速度を大きくし、かつ温
度分布の一様性を確保するのは実際問題として厄介な問
題であった。Further, even if the flow path is provided in the vicinity of the mold wall surface, it does not mean that the flow path is unnecessarily brought close to the mold wall surface, and it must be arranged in consideration of the uniformity of the temperature distribution on the mold wall surface. I won't. As a general tendency, in order to increase the temperature rising rate and the cooling rate, it is better to bring the flow path closer to the mold wall surface, but if the flow path is closer to the mold wall surface, the uniformity of the temperature distribution tends to deteriorate. Although it has already been stated that the transfer rate of molded products by high temperature molding improves, unevenness in the temperature distribution on the mold wall will cause uneven gloss in the appearance of the molded product. The appearance may be inferior to the molded product. For that reason, increasing the heating rate and cooling rate and ensuring the uniformity of the temperature distribution was a difficult problem in practice.
【0020】図13は型壁面の近傍に流路を設け、その
流路に高温熱媒体を流した時の型壁面上の温度分布を示
した一例である。図13(b)は型壁面の近傍に設けた
流路に垂直に切断した断面図を示し、図13(a)は図
13(b)の対応する位置における温度を示したもので
ある。図13(b)で14が型壁面であり、8は熱媒体
用の流路である。流路が存在する位置を一点鎖線F1−
F1,F2−F2,F3−F3で示し、流路と流路の丁
度中間の位置を一点鎖線G1−G1,G2−G2で示し
ている。図に示すように、流路が存在する位置における
型壁面温度は、その他の位置における型壁面温度より高
くなっている。すなわち、温度分布ムラが存在する。あ
る時刻に曲線S1で示されていた温度分布は時間の経過
と共に上方へ移動し、曲線S2で示される温度分布とな
る。すなわち、時間の経過と共に温度分布は一様化の方
向に向かう。しかし、逆に言えば一様な温度分布を得る
には時間の経過が必要であって、これは成形サイクルの
延長を避けたいという要求と矛盾する。FIG. 13 is an example showing a temperature distribution on the mold wall surface when a flow path is provided in the vicinity of the mold wall surface and a high temperature heat medium is caused to flow through the flow path. FIG. 13B shows a cross-sectional view cut perpendicularly to the flow path provided near the mold wall surface, and FIG. 13A shows the temperature at the corresponding position in FIG. 13B. In FIG. 13B, 14 is a mold wall surface, and 8 is a flow path for the heat medium. The position where the flow path exists is indicated by the alternate long and short dash line F1-
F1, F2-F2, F3-F3 are shown, and the middle positions of the flow paths are shown by alternate long and short dash lines G1-G1, G2-G2. As shown in the figure, the mold wall temperature at the position where the flow path is present is higher than the mold wall temperature at other positions. That is, there is uneven temperature distribution. The temperature distribution indicated by the curve S1 at a certain time moves upward with the passage of time, and becomes the temperature distribution indicated by the curve S2. That is, the temperature distribution tends to become uniform over time. However, conversely, it takes time to obtain a uniform temperature distribution, which contradicts the desire to avoid extending the molding cycle.
【0021】ここで、曲線S1,S2で示した温度分布
で流路の存在する位置(一点鎖線F1−F1の位置)に
おける温度をそれぞれθf1,θf2、中間位置(一点
鎖線G1−G1の位置)における温度をそれぞれθg
1,θg2とするとθfとθgとの比、すなわちRθ1
=θg1/θf1,Rθ2=θg2/θf2の値で温度
分布ムラの尺度とする。当然、Rθの値が1に近いほど
温度分布が一様であることを意味する。Here, in the temperature distributions shown by the curves S1 and S2, the temperatures at positions where the flow path exists (positions indicated by alternate long and short dash lines F1-F1) are θf1 and θf2, respectively, and intermediate positions (positions indicated by alternate long and short dashed lines G1 to G1). The temperature at
1, θg2, the ratio between θf and θg, that is, Rθ1
The value of θg1 / θf1 and Rθ2 = θg2 / θf2 is used as a measure of the temperature distribution unevenness. Of course, the closer the value of Rθ is to 1, the more uniform the temperature distribution.
【0022】成形サイクルの延長を最小限に押さえつ
つ、しかも上記した温度分布ムラRθを1に近付けるに
は図13に示す流路8の径d、流路8と壁面14との距
離Yおよび流路8のピッチ距離pの値を適当な値に収め
なければならない。In order to bring the temperature distribution unevenness Rθ close to 1 while suppressing the extension of the molding cycle to a minimum, the diameter d of the channel 8 shown in FIG. 13, the distance Y between the channel 8 and the wall surface 14 and the flow rate are shown. The value of the pitch distance p of the path 8 must be set to an appropriate value.
【0023】図14は岡田清監修「射出成形型」第5
版:プラスチック・エージ社刊(以下、文献2とする)
の図49から引用したもので、冷却穴径とその位置関係
を示した従来例の一例である。穴径を1とした時、穴と
穴とのピッチ距離は5、穴の中心と型壁面との距離は3
にすることを述べている。すなわち、穴と型壁面との距
離より穴と穴のピッチ距離の方が大きくなっている。こ
の図は通常の成形条件における一般的な冷却穴の配置を
示しているので、本発明が目的としている急速加熱,急
速冷却の場合の流路の配置とは異なるのは当然である
が、もしこのような通常の金型における流路の配置を高
温成形に用いると図13で示した温度分布ムラは大きく
なる。FIG. 14 is No. 5 "Injection Mold" supervised by Kiyoshi Okada.
Edition: Published by Plastic Age (hereinafter referred to as Literature 2)
FIG. 49 is an example of a conventional example showing the cooling hole diameter and its positional relationship. When the hole diameter is 1, the pitch distance between the holes is 5, and the distance between the center of the holes and the mold wall surface is 3.
It says that. That is, the pitch distance between the holes is larger than the distance between the holes and the mold wall surface. Since this figure shows a general arrangement of cooling holes under normal molding conditions, it is a matter of course that the arrangement is different from the passage arrangement in the case of rapid heating and rapid cooling, which is the object of the present invention. When the flow path arrangement in such a normal mold is used for high temperature molding, the temperature distribution unevenness shown in FIG. 13 becomes large.
【0024】また、特開平1−115606号公報はこ
の点について、「流路ピッチは流路幅+4mmないし流
路幅+10mmに選ぶのが良く、特に流路幅+10mm
を越えると昇温速度が遅くなり、温度斑が大きくなる傾
向がある」と述べており、温度分布の一様性についての
考慮は払っているが、温度分布ムラに影響を与えるのは
単に流路ピッチ距離だけではなく、図13に示す流路8
の径(または流路幅)d、流路8と型壁面14との距離
Yおよび流路8のピッチ距離pの3つの要因すべてに関
係し、特に距離Yとピッチ距離pとの関係が重要である
が、この点についての記述はない。Further, Japanese Unexamined Patent Application Publication No. 1-115606 discloses in this regard that "the flow channel pitch is preferably set to the flow channel width +4 mm or the flow channel width +10 mm, particularly the flow channel width +10 mm.
If the temperature exceeds this value, the temperature rise rate will become slower and the temperature spots will tend to become larger. ”While taking into consideration the uniformity of the temperature distribution, it is only the flow that affects the temperature distribution unevenness. Not only the path pitch distance but the flow path 8 shown in FIG.
Diameter (or flow channel width) d, the distance Y between the flow channel 8 and the mold wall surface 14 and the pitch distance p of the flow channel 8 are all related, and the relationship between the distance Y and the pitch distance p is particularly important. However, there is no description on this point.
【0025】また、上記した文献1においては、Y=1
0mmに対しp=28.5mmとなっていて、後述する
ように我々の検討結果では、温度分布の一様性としては
不十分である。In the above-mentioned document 1, Y = 1
Since p = 28.5 mm with respect to 0 mm, as will be described later, in the result of our study, the uniformity of the temperature distribution is insufficient.
【0026】以上説明したように、従来においては、実
用的な昇温速度,冷却速度を実現して温度分布ムラを所
定の範囲に収める手段については解決されていないとい
う問題があった。As described above, there has been a problem in the prior art that means for realizing a practical temperature rising rate and cooling rate to keep the temperature distribution unevenness within a predetermined range has not been solved.
【0027】[0027]
【課題を解決するための手段】この課題を解決するため
に本発明は、型壁面の近傍に熱媒体を流す流路を設け、
流路の径もしくは幅d、流路と型壁面との距離Y、およ
び流路のピッチ距離pの3つの要因を適切な値に選ぶ選
択手段を提供し、上記選択手段を適切に用いることによ
り、温度分布ムラが最小限で、かつ、型壁面の昇温速
度,冷却速度を大きい高温成形用の射出成形用金型とし
ている。さらに熱媒体の種類と流量と流路径との選定手
段を提供し、上記選定手段を適切に用いることにより型
壁面の昇温速度,冷却速度をさらに大きくした射出成形
法としている。In order to solve this problem, the present invention provides a flow path for flowing a heat medium in the vicinity of a mold wall surface,
By providing selection means for selecting three factors of the diameter or width d of the flow path, the distance Y between the flow path and the mold wall surface, and the pitch distance p of the flow path to appropriate values, and by appropriately using the above selection means The mold for injection molding is for high temperature molding in which the temperature distribution unevenness is minimal and the mold wall surface heating rate and cooling rate are high. Further, an injection molding method is provided in which a means for selecting the type, flow rate and flow path diameter of the heat medium is provided, and the temperature rising rate and cooling rate of the mold wall surface are further increased by appropriately using the above selecting means.
【0028】そして、本発明のプラスチック射出成形型
は上記した構造を持っているので、型壁面温度の急速な
昇温速度,冷却速度を実現しつつ型壁面の温度分布ムラ
を実用上差し支えない範囲に押さえることが可能になっ
た。従って、本発明のプラスチック射出成形型を用いる
ことにより成形サイクルの延長を最小限に押さえつつ高
温成形の特徴を発揮できるので、転写率を著しく向上す
ることが可能になった外、「ウエルド」,「ひけ」,
「シルバー」等のいわゆるプラスチック成形の3大不良
を軽減もしくは絶滅することが可能となった。Further, since the plastic injection mold of the present invention has the above-mentioned structure, the temperature distribution unevenness of the mold wall surface can be practically hindered while realizing the rapid temperature rising rate and cooling rate of the mold wall temperature. It became possible to hold down to. Therefore, by using the plastic injection mold of the present invention, it is possible to exhibit the characteristics of high temperature molding while minimizing the extension of the molding cycle, so that it is possible to remarkably improve the transfer rate. "Hike",
It has become possible to reduce or eliminate the three major defects of so-called plastic molding such as "silver".
【0029】また、本発明のプラスチック射出成形型を
用い、かつ本発明の射出成形方法を採用することにより
熱媒体の流路における熱渡過率を著しく改善できたので
急速な昇温速度,冷却速度が可能となり、成形サイクル
の延長を最小限に押さえることができた。Further, by using the plastic injection mold of the present invention and adopting the injection molding method of the present invention, the heat transfer rate in the flow path of the heat medium can be remarkably improved. The speed was enabled and the extension of the molding cycle could be minimized.
【0030】[0030]
【発明の実施の形態】本発明は、金型のキャビティの近
傍に複数の流路を設け、上記流路の径もしくは幅をdと
し、流路と流路とのピッチ距離をpとし、流路位置にお
ける上記キャビティの型壁面から流路の壁までの距離を
Yとし、流路と流路との中央位置におけるキャビティの
型壁面から流路の壁までの距離をtcとし、tc/Yを
壁面距離比と呼びKtで表わした時、型壁面の許容温度
分布ムラにより定まる数値を壁面距離比Ktに代入して
数1を満足するd/Y,p/Yを求め、求めたp/Yの
値より小さい値のp/Yを型寸法とするプラスチック射
出成形型を提供するものである。BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, a plurality of flow passages are provided in the vicinity of a cavity of a mold, the diameter or width of the flow passages is set to d, the pitch distance between the flow passages is set to p, and the flow path is set to p. Let Y be the distance from the mold wall of the cavity to the wall of the flow path at the road position, and tc be the distance from the mold wall of the cavity to the wall of the flow path at the center between the flow paths. When expressed as Kt, which is the wall surface distance ratio, the numerical value determined by the allowable temperature distribution unevenness of the mold wall surface is substituted into the wall surface distance ratio Kt to find d / Y and p / Y that satisfy Equation 1, and the calculated p / Y The present invention provides a plastic injection mold having a mold dimension of p / Y smaller than the value of.
【0031】さらに本発明は、金型のキャビティの近傍
に複数の流路を設け、流路位置における上記キャビティ
の型壁面から流路の壁までの距離をYとした時、上記Y
寸法を6mm以下の値とすることにより型壁面温度の急
速な昇温速度,冷却速度を実現したプラスチック射出成
形型を提供するものである。Further, in the present invention, when a plurality of flow paths are provided in the vicinity of the cavity of the mold and the distance from the mold wall surface of the cavity at the flow path position to the wall of the flow path is Y, the above Y
Provided is a plastic injection molding die which realizes a rapid temperature rising rate and a cooling rate of a mold wall surface temperature by setting the dimension to a value of 6 mm or less.
【0032】さらに本発明は、キャビティの型壁面から
流路の壁までの距離をY,流路径d,ピッチ距離pに関
する比を数1を満足するように選ぶ時に、数1のKtに
代入する値を2.0以下に選ぶことにより、好ましくは
Ktに代入する値を1.5以下に選ぶことにより型壁面
の温度分布ムラを実用上差し支えない範囲に押さえたプ
ラスチック射出成形型を提供するものである。Further, according to the present invention, when the distance between the mold wall surface of the cavity and the wall of the flow path is selected so as to satisfy Y, the flow path diameter d, and the pitch distance p, it is substituted into Kt of Expression 1. By providing a value of 2.0 or less, preferably by assigning a value of 1.5 or less to Kt, a plastic injection molding die is provided in which the temperature distribution unevenness on the mold wall is suppressed within a practically acceptable range. Is.
【0033】さらに本発明は、キャビティの型壁面から
流路の壁までの距離Yを6mm以下の値とし、上記Y寸
法,流路径d,ピッチ距離pに関する比を数1を満足す
るように選ぶ時に、数1のKtに代入する値を2.0以
下に選ぶことにより、好ましくはKtに代入する値を
1.5以下に選ぶことにより、型壁面温度の急速な昇温
速度,冷却速度を実現しつつ型壁面の温度分布ムラを実
用上差し支えない範囲に押さえたプラスチック射出成形
型を提供するものである。Further, in the present invention, the distance Y from the mold wall surface of the cavity to the wall of the flow path is set to a value of 6 mm or less, and the ratio relating to the Y dimension, the flow path diameter d, and the pitch distance p is selected so as to satisfy the expression 1. At times, by selecting the value to be substituted for Kt in Equation 1 to be 2.0 or less, preferably the value to be substituted for Kt to be 1.5 or less, the rapid heating rate and cooling rate of the mold wall surface temperature can be increased. The present invention provides a plastic injection molding die in which the temperature distribution unevenness on the die wall surface is suppressed within a practically acceptable range while being realized.
【0034】さらに本発明は、金型のキャビティの近傍
に複数の流路を設け、上記流路の径もしくは幅をdと
し、流路と流路とのピッチ距離をpとし、流路位置にお
ける上記キャビティの型壁面から流路までの距離をYと
し、流路と流路との中央位置におけるキャビティの型壁
面から流路の壁までの距離をtcとし、tc/Yを壁面
距離比と呼びKtで表わした時、型壁面の許容温度分布
ムラにより定まる数値を壁面距離比Ktに代入して数1
を満足するd/Y,p/Yを求め、求めたp/Yの値よ
り小さい値のp/Yを型寸法とするプラスチック射出成
形型を用い、流路に流す熱媒体として清水の圧力水を用
い、流量と流路径を数2を満たすように選んだプラスチ
ック射出成形方法である。Furthermore, in the present invention, a plurality of flow paths are provided in the vicinity of the cavity of the mold, the diameter or width of the flow paths is set to d, the pitch distance between the flow paths is set to p, and the flow path position The distance from the mold wall surface of the cavity to the flow channel is Y, the distance from the mold wall surface of the cavity to the flow channel wall at the central position between the flow channels is tc, and tc / Y is called the wall surface distance ratio. When expressed by Kt, the numerical value determined by the allowable temperature distribution unevenness of the mold wall surface is substituted into the wall surface distance ratio Kt, and the following formula is used.
D / Y and p / Y satisfying the above conditions are obtained, and a plastic injection mold having a p / Y value smaller than the obtained p / Y is used as a mold dimension, and pressure water of fresh water is used as a heat medium flowing in the flow path. Is a plastic injection molding method in which the flow rate and the flow path diameter are selected so as to satisfy Equation 2.
【0035】[0035]
(実施例1)図1は本発明の一実施例を示したプラスチ
ック射出成形型の断面図であり、図2は図1の矢線M−
Mにおける断面図、図3は図1におけるN部分すなわち
一点鎖線で示す円における拡大断面図である。1は固定
型、2は可動型、3は型取付板、4はロケートリング、
5はスプルー孔、6はエジェクターピンである。固定型
1と可動型2とを閉じて形成される空間がキャビティ7
である。固定型1はロケートリング4により射出成形機
の所定の位置に位置決めされる。溶融樹脂は射出ノズル
(図示せず)からスプルー孔5を経てキャビティ7に射
出される。固定型1のキャビティ7に沿って、図1に示
すように流路8が多数設けてある。図2に示すように固
定型1の前後にタンク9A,9Bが設けてあり、上記流
路8はタンク9A,9Bに連結管10A,10Bにより
連結されている。タンク9A,9Bは供給管11A,1
1Bにより水源に連結されている。プラグ12A,12
Bは供給管11A,11Bを固定型1に固定するための
ものであるが、プラグ12A,12Bには熱電対が設け
てあり、供給水温を検出できるようになっている。上述
したような流路8を配置したプラスチック射出成形型の
構成は公知であるが問題は、図3に示すような流路8の
直径d,流路8とキャビティ7の壁面との寸法Y,流路
8と流路8とのピッチ距離pをどのように選ぶか、また
流路8に流す熱媒体の種類ならびに流量等の諸元をいか
に決定すべきかである。(Embodiment 1) FIG. 1 is a sectional view of a plastic injection mold showing an embodiment of the present invention, and FIG. 2 is an arrow M- of FIG.
FIG. 3 is a sectional view taken along line M in FIG. 1, and FIG. 3 is an enlarged sectional view taken along line N in FIG. 1 is a fixed type, 2 is a movable type, 3 is a mold mounting plate, 4 is a locate ring,
Reference numeral 5 is a sprue hole, and 6 is an ejector pin. The space formed by closing the fixed mold 1 and the movable mold 2 is a cavity 7
It is. The fixed mold 1 is positioned at a predetermined position of the injection molding machine by the locate ring 4. The molten resin is injected from the injection nozzle (not shown) into the cavity 7 through the sprue hole 5. A large number of flow paths 8 are provided along the cavity 7 of the fixed mold 1 as shown in FIG. As shown in FIG. 2, tanks 9A and 9B are provided before and after the fixed mold 1, and the flow path 8 is connected to the tanks 9A and 9B by connecting pipes 10A and 10B. Tanks 9A and 9B are supply pipes 11A and 1
It is connected to the water source by 1B. Plugs 12A, 12
B is for fixing the supply pipes 11A and 11B to the fixed mold 1. The plugs 12A and 12B are provided with thermocouples so that the supply water temperature can be detected. Although the construction of the plastic injection molding die in which the flow path 8 is arranged as described above is known, the problem is that the diameter d of the flow path 8 and the dimension Y of the flow path 8 and the wall surface of the cavity 7 as shown in FIG. It is how to select the pitch distance p between the flow paths 8 and how to determine the parameters such as the type and flow rate of the heat medium flowing in the flow paths 8.
【0036】まず、本実施例においては、熱媒体として
は加熱した清水を用いる。加熱時の型壁面温度は先に述
べたように100℃〜120℃以上であるので、清水の
加熱温度は130℃以上である。当然、清水には飽和圧
以上の圧力を加えて蒸発を防いでいる。First, in this embodiment, heated fresh water is used as the heat medium. Since the mold wall surface temperature during heating is 100 ° C. to 120 ° C. or higher as described above, the heating temperature of fresh water is 130 ° C. or higher. Naturally, a pressure higher than the saturation pressure is applied to fresh water to prevent evaporation.
【0037】通常、熱媒体としては飽和温度の高い油を
用いることが多いが、油は一般に粘性が大きいため流路
壁との間の熱渡過率(境膜係数ともいう)が小さくな
り、その結果、我々の検討結果では大きな昇温速度を得
ることが困難であった。Usually, oil having a high saturation temperature is often used as the heat medium, but since oil generally has a high viscosity, the heat transfer coefficient (also referred to as a film coefficient) between the oil and the flow path wall becomes small, As a result, it was difficult to obtain a large heating rate according to our study results.
【0038】また、飽和蒸気を用いる案もあるが、蒸気
のままではやはり上述の熱渡過率が小さい。蒸気が凝縮
して流路壁に水膜を形成すると熱渡過率は大きくなる
が、十分な熱渡過率を得るには水の流速を大きくするこ
とが必要で、それには圧縮水を用いるのが最も適してい
る。There is also a plan to use saturated steam, but the above heat transfer rate is still small when steam is used as it is. When steam condenses and forms a water film on the channel wall, the heat transfer rate increases, but it is necessary to increase the water flow rate to obtain a sufficient heat transfer rate. Is most suitable.
【0039】圧縮水を用いたとしても、水の流速は流量
と流路径により変わるので、大きな熱渡過率を得るには
流量と流路径を適切な値に選ばなければならない。我々
は実験結果より、流路8の径dをミリメートルで表わ
し、流量Qをリットル/分で表わした時、数2で示す実
験式を満足するよう流路径と流量を選ぶことにより、十
分大きな熱渡過率が得られることを見いだした。Even if compressed water is used, the flow velocity of water changes depending on the flow rate and the diameter of the flow path, so that the flow rate and the diameter of the flow path must be selected as appropriate values in order to obtain a large heat transfer rate. According to the experimental results, when the diameter d of the flow path 8 is expressed in millimeters and the flow rate Q is expressed in liters / minute, by selecting the flow path diameter and the flow rate so as to satisfy the empirical formula shown in Equation 2, a sufficiently large heat can be obtained. I found that a passover rate was obtained.
【0040】実用的なポンプの容量等から流量の値は、
流路1本について15リットル/分以下を標準とするの
が適当である。また、流路径は型の強度上の制限ならび
に工作上の制限から3mm以上に選ぶ必要がある。From the practical pump capacity and the like, the value of the flow rate is
It is appropriate that the standard is 15 liters / minute or less for one flow path. In addition, it is necessary to select the diameter of the flow path to be 3 mm or more due to the limitation of the strength of the mold and the limitation of the work.
【0041】流量と流路径の制限、ならびに数2を満た
す必要から流量,流路径を決定する。なお、後述するが
熱媒体の流路の形状は必ずしも円形である必要はない。
その場合は流路径に代わって流路幅、あるいは流路径に
相当する代表寸法をdの値として用いる。The flow rate and the flow path diameter are determined based on the restrictions on the flow rate and the flow path diameter, and the need to satisfy the equation (2). As will be described later, the shape of the flow path of the heat medium does not necessarily have to be circular.
In that case, instead of the channel diameter, the channel width or a representative dimension corresponding to the channel diameter is used as the value of d.
【0042】次に、流路8の壁面とキャビティ7の型壁
面との距離Y(図3または図13参照)の値であるが、
単に温度上昇速度,冷却速度を大きくするだけの観点か
ら選ぶのであれば、金型強度が許す範囲でYの値をでき
るだけ小さく選べば良い。しかし、温度分布の一様性を
考慮に入れると、Yの値は流路8の径dの値により制限
をうけるが、これについて述べる。Next, the value of the distance Y (see FIG. 3 or FIG. 13) between the wall surface of the flow path 8 and the mold wall surface of the cavity 7,
If the selection is made from the viewpoint of simply increasing the temperature rising rate and the cooling rate, the value of Y may be selected as small as possible within the range allowed by the die strength. However, considering the uniformity of the temperature distribution, the value of Y is limited by the value of the diameter d of the flow path 8, which will be described below.
【0043】まず、本発明において温度分布ムラは、図
13においてRθ=θg/θfで表わすことは既に述べ
た。First, it has been described that the temperature distribution unevenness in the present invention is represented by Rθ = θg / θf in FIG.
【0044】そして、温度分布の一様性を確保する条件
として、上記した流路径d,Y寸法およびピッチ距離p
との関係について考察した結果、数1に示す関係がある
ことが判った。Then, as conditions for ensuring the uniformity of the temperature distribution, the above-mentioned flow path diameter d, Y dimension and pitch distance p are set.
As a result of examining the relationship with, it was found that there is a relationship shown in Formula 1.
【0045】この式においてKtは壁面距離比と呼んで
いる数値である。そして、数1に代入するKtの値は、
温度分布の一様性の尺度であるRθの値から求める。例
えばT2時点でRθを60%以上に保つためにはKtの
値は2.0以下であれば良いが、T2時点でRθを80
%以上に保つにはKtの値は1.5以下にする必要があ
る。In this equation, Kt is a numerical value called the wall surface distance ratio. Then, the value of Kt to be substituted into Equation 1 is
It is determined from the value of Rθ, which is a measure of the uniformity of temperature distribution. For example, in order to keep Rθ at 60% or more at the time of T2, the value of Kt may be 2.0 or less, but Rθ at the time of T2 is 80 or less.
The value of Kt needs to be 1.5 or less in order to maintain at least%.
【0046】上記のRθとKtとの関係は後述するよう
に、まずシミュレーション計算で見いだし、次に実験的
に確認して求めたものである。As described later, the relationship between Rθ and Kt is first found by simulation calculation and then experimentally confirmed.
【0047】Rθの値は、求められる成形品の表面性状
の程度により変わる。通常の成形品においてはRθの値
は60%以上で良い場合もあるが、成形品の表面性状の
一様性が非常に厳しく要求される場合には、Rθの値は
80%以上を確保する必要がある。The value of Rθ varies depending on the degree of surface properties of the molded product required. The value of Rθ may be 60% or more for a normal molded product, but if the uniformity of the surface properties of the molded product is extremely strict, the value of Rθ should be 80% or more. There is a need.
【0048】すなわち、所望の成形品の表面性状によっ
て達成すべきRθの値が求められ、Rθの値が決まると
そのために必要なKtの値が決定され、Ktの値が決ま
ると数1を満足するp/Y,d/Yを求めることができ
る。数1を満足するp/Y,d/Yの値をそれぞれ(p
/Y)c,(d/Y)cとすると、実際に型設計に採用
するp/Yの値は、温度分布の一様性を確保するために
は上記(p/Y)cの値より小さくしなければならな
い。すなわち、数3の関係を満たす必要がある。That is, the value of Rθ to be achieved is determined according to the desired surface properties of the molded product. When the value of Rθ is determined, the value of Kt necessary for that is determined, and when the value of Kt is determined, the formula 1 is satisfied. P / Y and d / Y can be obtained. The values of p / Y and d / Y that satisfy the equation 1 are (p
/ Y) c and (d / Y) c, the value of p / Y actually adopted in the die design is more than the value of (p / Y) c in order to ensure the uniformity of temperature distribution. Must be small. That is, it is necessary to satisfy the relationship of Expression 3.
【0049】[0049]
【数3】 (Equation 3)
【0050】一方、p/Yの値をあまり小さくすると、
流路8と流路8とが干渉することになるから、干渉を避
けるにはp/Yの値は(d/Y)cの値より大きくなけ
ればならない。すなわち、数4を満たす必要がある。On the other hand, if the value of p / Y is too small,
Since the flow paths 8 and 8 interfere with each other, the value of p / Y must be larger than the value of (d / Y) c in order to avoid the interference. That is, it is necessary to satisfy the equation 4.
【0051】[0051]
【数4】 (Equation 4)
【0052】この関係を図11(a),(b)を用いて
説明する。図11(a)の曲線Pyは、数1においてK
t=2.0とおいた時のd/Yとp/Yとの関係を示し
ている。従って、数3を満たす領域は図の曲線Pyより
下方の領域である。また、図11(a)の直線Pdはp
/Y=d/Yを示しているから、数4を満たすためには
直線Pdより上方の領域でなければならない。従って結
局、斜線で示した領域Sが実際に型設計に採用できる領
域である。すなわち、d/Yの値は約6.0以下である
ことが要請される。This relationship will be described with reference to FIGS. 11 (a) and 11 (b). The curve Py of FIG.
The relationship between d / Y and p / Y when t = 2.0 is shown. Therefore, the region that satisfies the equation 3 is the region below the curve Py in the figure. Further, the straight line Pd in FIG.
Since / Y = d / Y is shown, the area above the straight line Pd must be satisfied in order to satisfy Expression 4. Therefore, after all, the shaded area S is the area that can be actually adopted for the die design. That is, the value of d / Y is required to be about 6.0 or less.
【0053】また、図11(b)の曲線Pyは、数1に
おいてKt=1.5とおいた時のd/Yとp/Yとの関
係を示している。従って、数3を満たす領域は図の曲線
Pyより下方の領域である。また、図11(b)の直線
Pdはp/Y=d/Yを示しているから、数4を満たす
ためには直線Pdより上方の領域でなければならない。
従って結局、斜線で示した領域Sが実際に型設計に採用
できる領域である。すなわち、d/Yの値は約3.45
以下であることが要請される。The curve Py in FIG. 11 (b) shows the relationship between d / Y and p / Y when Kt = 1.5 in equation (1). Therefore, the region that satisfies the equation 3 is the region below the curve Py in the figure. Further, since the straight line Pd in FIG. 11B shows p / Y = d / Y, the region must be above the straight line Pd in order to satisfy Expression 4.
Therefore, after all, the shaded area S is the area that can be actually adopted for the die design. That is, the value of d / Y is about 3.45.
The following is required:
【0054】単に温度上昇速度,冷却速度を大きくする
だけの観点では金型強度が許す範囲でYの値をできるだ
け小さくする方が良いのであるが、Yの値を小さくする
と上記のd/Yの値が大きくなってしまう。従って、数
1,数3,数4を満足することを考慮しつつ、Yの値を
選ぶことになる。From the viewpoint of simply increasing the temperature rising rate and the cooling rate, it is better to make the value of Y as small as possible within the range allowed by the die strength, but if the value of Y is made small, the above d / Y The value becomes large. Therefore, the value of Y is selected in consideration of satisfying the equations 1, 3 and 4.
【0055】一方、既に述べたように、型壁面の昇温速
度を加熱開始直後で2℃/秒以上の値を確保せねばなら
ない。このため、シミュレーション計算により昇温速度
とY寸法との関係を求め、その結果を実験型を作り検証
した。On the other hand, as described above, it is necessary to secure the rate of temperature rise of the mold wall surface at 2 ° C./sec or more immediately after the start of heating. Therefore, the relationship between the temperature rising rate and the Y dimension was obtained by simulation calculation, and the result was verified by making an experimental type.
【0056】図6はシミュレーション計算により、昇温
速度とY寸法との関係を求めた結果である。横軸にY寸
法をとり、縦軸に時間T2までの昇温速度をとってい
る。FIG. 6 shows the result of obtaining the relationship between the temperature rising rate and the Y dimension by simulation calculation. The horizontal axis represents the Y dimension, and the vertical axis represents the heating rate up to time T2.
【0057】また、図7は上記した図1とほぼ同様の実
験型を鋼材を用いて製作し、熱媒体として110℃の熱
水を流路に流した時の型壁面温度の応答を実験した結果
である。図7は縦軸は温度、横軸は時間を表わしている
が、実験結果を自動記録したデータをそのまま用いてい
るので、時間経過は左方向に向かっていることに注意し
て頂きたい。既に述べたように、図7に示す型壁面温度
の応答特性は1次遅れ要素のステップ応答とよく似てい
る。厳密な検証を行うと合致しない点もあるが、取り扱
いの簡便さを考慮して、図7の型壁面温度の応答を1次
遅れ要素のステップ応答として取り扱うことにした。そ
して、型壁面温度の上昇幅の86%の温度に達する時間
T2を図7から読み取り、昇温速度を求めた。Y寸法を
6mmと11mmとに変えて同様の実験を行い、得られ
た昇温速度の実験データを図6に表示している。矢印で
示しているのは実験データの変動範囲である。In FIG. 7, an experimental mold similar to that of FIG. 1 described above was manufactured by using a steel material, and the response of the mold wall temperature when hot water of 110 ° C. as a heat medium was passed through the flow channel was tested. The result. In FIG. 7, the vertical axis represents temperature and the horizontal axis represents time. However, since the data obtained by automatically recording the experimental results is used as is, note that the time elapses toward the left. As described above, the response characteristic of the mold wall temperature shown in FIG. 7 is very similar to the step response of the first-order lag element. Although there are some points that do not agree with rigorous verification, we decided to handle the response of the mold wall temperature in Fig. 7 as the step response of the first-order lag element, considering the ease of handling. Then, the time T2 for reaching the temperature of 86% of the rise width of the mold wall surface was read from FIG. 7 and the temperature rising rate was obtained. The same experiment was performed by changing the Y dimension to 6 mm and 11 mm, and the experimental data of the obtained temperature rising rate are shown in FIG. The arrow indicates the range of variation of the experimental data.
【0058】図6から判るように、シミュレーション結
果に較べ実験結果の方が温度上昇速度が遅い。その理由
としては、色々な因子が考えられるが最も大きな要因
は、計算では流路内の熱媒体が低温から高温に直ちに置
き変わることを仮定しているが、実際の流路においては
流路壁面に低温水が粘着して、直ちに高温水に置き変わ
らないことが挙げられる。このように、計算と実験結果
との一致は必ずしも正確ではないがY寸法の増大と共に
昇温速度が低下するという傾向は一致している。従っ
て、加熱開始直後の温度上昇速度を2℃/秒以上にする
にはY寸法を少なくとも10mm以下にする必要があ
り、実用型での変動要因を考慮すると6mm以下にする
必要があることが図6から読み取れる。As can be seen from FIG. 6, the temperature increase rate is slower in the experimental result than in the simulation result. There are various factors that can be considered as the reason, but the largest factor is that the heat medium in the flow channel is immediately changed from low temperature to high temperature in the calculation. It can be mentioned that low temperature water adheres to and is not immediately replaced by high temperature water. As described above, the agreement between the calculation and the experimental result is not always accurate, but the tendency that the temperature rising rate decreases as the Y dimension increases is in agreement. Therefore, the Y dimension needs to be at least 10 mm or less in order to increase the temperature rising rate immediately after the start of heating to 2 ° C./sec or more, and it is necessary to set it to 6 mm or less in consideration of the variation factor in the practical type. It can be read from 6.
【0059】このようにして、所望の温度分布ムラのR
θの値に基づきKtの値を選択し、数1によりY寸法と
流路径dおよびピッチ距離pとの比を求め、かつY寸法
を6mm以下に押さえることにより、型壁面を急速に昇
温,冷却させると共に、型壁面の温度分布ムラを所望の
値以下に押さえることができる。In this way, R of the desired temperature distribution unevenness is obtained.
The value of Kt is selected based on the value of θ, the ratio of the Y dimension to the flow path diameter d and the pitch distance p is calculated by Equation 1, and the Y dimension is suppressed to 6 mm or less, so that the mold wall surface is rapidly heated, While cooling, it is possible to suppress uneven temperature distribution on the mold wall surface to a desired value or less.
【0060】次に、上記した数1の導出経過について説
明する。図8はコンピュータ,シミュレーションによる
計算結果を図示したものである。流路の直径d,流路の
壁面とキャビティの型壁面との距離がYとした時、流路
の真上の型壁面の温度および真上からθの角度の型壁面
位置の温度を経過時間T2,T3,T4と共に変化する
様子を示したものである。縦軸は温度、横軸は真上から
θの角度の型壁面位置を示している。流路の真上の型壁
面の温度が最も高く、真上から遠ざかるに従い型壁面温
度は低下している。また、図9は横軸は図8と同じく流
路の真上からθの角度の型壁面位置をとり、縦軸に図1
3で説明したRθの値をパーセントで示している。な
お、図に示した経過時間T2,T3,T4は既に説明し
たが時定数をT1とすると、T2=T1×2,T3=T
1×3,T4=T1×4の関係にある時間である。Next, the derivation process of the above equation 1 will be described. FIG. 8 illustrates the calculation results by the computer and the simulation. When the diameter d of the flow path and the distance between the wall surface of the flow path and the mold wall surface of the cavity are Y, the temperature of the mold wall surface directly above the flow path and the temperature of the mold wall surface at an angle of θ from directly above the elapsed time It shows how it changes with T2, T3, and T4. The vertical axis represents temperature, and the horizontal axis represents the mold wall surface position at an angle of θ from directly above. The temperature of the mold wall directly above the flow path is highest, and the temperature of the mold wall decreases as it moves away from directly above. Further, in FIG. 9, the horizontal axis represents the mold wall surface position at an angle of θ from just above the flow path, and the vertical axis represents FIG.
The value of Rθ described in 3 is shown in percent. Although the elapsed times T2, T3, T4 shown in the figure have already been described, assuming that the time constant is T1, T2 = T1 × 2, T3 = T
The time is in the relation of 1 × 3, T4 = T1 × 4.
【0061】一方、図13に示しているように、流路の
直径d,流路の壁面とキャビティの型壁面との距離Y,
流路のピッチ距離pとし、ピッチの中央点における流路
の壁面とキャビティの型壁面との距離をtcとすると、
tcは数5で表わされる。数5より容易に数6を得る
が、数6では左辺はtc/Yで表わされている。On the other hand, as shown in FIG. 13, the diameter d of the flow path, the distance Y between the wall surface of the flow path and the mold wall surface of the cavity,
Letting the pitch distance p of the flow path be tc, the distance between the wall surface of the flow path and the mold wall surface of the cavity at the center point of the pitch is tc
tc is expressed by the equation 5. Equation 6 can be easily obtained from Equation 5, but in Equation 6, the left side is represented by tc / Y.
【0062】[0062]
【数5】 (Equation 5)
【0063】[0063]
【数6】 (Equation 6)
【0064】図9の横軸は流路の真上からθの角度の型
壁面位置をとっているが、流路の壁面とキャビティの型
壁面との距離をtとすると、図9の横軸をt/Yに置き
換えることができる。横軸にt/Yをとり、縦軸の値は
図9をそのまま用いて書き直した図が図10である。The horizontal axis of FIG. 9 is the mold wall surface position at an angle of θ from directly above the flow path. When the distance between the wall surface of the flow path and the mold wall surface of the cavity is t, the horizontal axis of FIG. Can be replaced by t / Y. FIG. 10 is a diagram in which t / Y is plotted on the horizontal axis and values on the vertical axis are rewritten using FIG. 9 as they are.
【0065】また、ピッチ中央点における流路の壁面と
キャビティの型壁面との距離をtcで表わすと、ピッチ
中央点におけるRθの値を求めるには、図10の横軸の
値をtc/Yに読み変えれば良い。If the distance between the wall surface of the flow path and the cavity wall surface at the center point of the pitch is represented by tc, the value of Rθ at the center point of the pitch can be obtained by changing the value on the horizontal axis of FIG. 10 to tc / Y. Should be read as
【0066】例えば、図10で流路位置における流路の
壁面とキャビティの型壁面との距離Yと、ピッチ中央点
における流路の壁面とキャビティの型壁面との距離tc
との比が例えば、tc/Y=2の型壁面位置の到達温度
は、経過時間T2においては流路中心の到達温度に比較
して約62%(Rθ=62%)、経過時間T3において
は流路中心の到達温度に比較しての約73%(Rθ=7
3%)であり、Rθ=80%以上の到達温度になるには
経過時間T4まで待たねばならないことを示している。For example, in FIG. 10, the distance Y between the wall surface of the flow path and the mold wall surface of the cavity at the flow path position, and the distance tc between the wall surface of the flow path and the mold wall surface of the cavity at the pitch center point.
For example, the reached temperature at the mold wall surface position of tc / Y = 2 is about 62% (Rθ = 62%) compared with the reached temperature at the passage center at the elapsed time T2, and at the elapsed time T3. Approximately 73% (Rθ = 7
3%), which means that it is necessary to wait until the elapsed time T4 until the ultimate temperature of Rθ = 80% or more is reached.
【0067】通常、流路中心位置の型壁面温度に対し
て、ピッチ中央点における型壁面温度が最も低い。従っ
て、型壁面の温度ムラの尺度であるRθを所望の値に収
めるには、ピッチ中央点におけるRθを所望の値に収め
れば良いから、そのために要する経過時間T2,T3・
・を図10から読み取ることができる。つまり、所望の
経過時間内に所望のRθに収まるために必要なtc/Y
の値を図10から読み取ることができる。このようにし
て、得られたtc/Yの値をKtとし数1に代入する。
通常の成形品においては、Rθ=60%以上を確保すれ
ば良いのでKt=2.0とすれば良いことが図10から
読み取れる。また、厳しい表面性状が要求される場合は
Rθ=80%以上を確保せねばならないのでKt=1.
5以下にする必要があることが図10から読み取れる。
このようにKtの値を選ぶことにより、それぞれのケー
スに必要な型壁面温度の一様性すなわち、Rθを確保す
ることができる。Usually, the mold wall temperature at the center point of the pitch is the lowest with respect to the mold wall temperature at the center of the flow path. Therefore, in order to set Rθ, which is a measure of the temperature unevenness of the mold wall surface, to a desired value, it is sufficient to set Rθ at the pitch center point to a desired value. Therefore, the elapsed time T2, T3
Can be read from FIG. In other words, tc / Y required to fit within the desired Rθ within the desired elapsed time
The value of can be read from FIG. In this way, the value of tc / Y thus obtained is set as Kt and is substituted into the equation 1.
It can be seen from FIG. 10 that Kt = 2.0 is sufficient because Rθ = 60% or more can be secured in a normal molded product. Further, when strict surface properties are required, it is necessary to secure Rθ = 80% or more, so Kt = 1.
It can be read from FIG. 10 that it is necessary to set the number to 5 or less.
By selecting the value of Kt in this way, it is possible to ensure the uniformity of the mold wall surface temperature required for each case, that is, Rθ.
【0068】Ktの値を与えると、数1を満たすd/
Y,p/Yの値を算出することができるので、必要な温
度一様性を確保した型構造を決定することができる。Given the value of Kt, d /
Since the values of Y and p / Y can be calculated, it is possible to determine the mold structure that secures the required temperature uniformity.
【0069】(実施例2)図4,図5は本発明の他の実
施例を示したものである。図4で固定型は固定型1aと
固定型1bとに分割されている。そして、固定型1bの
上面に複数の流路8が刻まれている。熱媒体は図4に示
す供給管11から供給され、図5に示すタンク9に入
り、さらに連結管10を通じて流路8に供給される。上
記固定型1aと固定型1bとの間の隙間から熱媒体が洩
れないように、固定型1aと固定型1bとの間には図示
していないが適当なOリングにより密封されている。(Embodiment 2) FIGS. 4 and 5 show another embodiment of the present invention. In FIG. 4, the fixed die is divided into a fixed die 1a and a fixed die 1b. And the some flow path 8 is carved in the upper surface of the fixed die 1b. The heat medium is supplied from the supply pipe 11 shown in FIG. 4, enters the tank 9 shown in FIG. 5, and is further supplied to the flow path 8 through the connecting pipe 10. Although not shown, an appropriate O-ring is sealed between the fixed mold 1a and the fixed mold 1b so that the heat medium does not leak from the gap between the fixed mold 1a and the fixed mold 1b.
【0070】図1,図2においては、熱媒体の流路8は
固定型にドリルで穿孔されていたのに対し図4,図5で
は固定型1bの上面にフライス盤で溝彫りされて形成さ
れている。In FIG. 1 and FIG. 2, the heat medium passage 8 was drilled in the fixed mold, whereas in FIG. 4 and FIG. 5, it was formed by carving a groove on the upper surface of the fixed mold 1b with a milling machine. ing.
【0071】図1,図2の構造では流路8は円形かつ直
線状に限られ、型寸法が大きい場合は深穴穿孔が必要で
型加工が困難となる等、流路の配置に制約を受ける。そ
れに較べ図4,図5の構造の方が流路配置の制約が少な
いが、固定型を分割しているので隙間からの水洩れの防
止が必要となるという欠点もある。In the structure shown in FIGS. 1 and 2, the flow path 8 is limited to a circular shape and a linear shape, and when the mold size is large, deep hole drilling is required, which makes mold processing difficult, and thus there are restrictions on the arrangement of the flow path. receive. On the other hand, the structures of FIGS. 4 and 5 are less restricted in the arrangement of the flow paths, but there is a drawback that it is necessary to prevent water leakage from the gap because the fixed mold is divided.
【0072】図4,図5の構造をとる場合の流路8の代
表寸法は、図4に示しているように流路の幅dを用い
る。ただし数2を用いて流量決定を行う場合に、流路の
幅dに較べ流路の深さhが2倍以上大きい場合は、流路
の断面積を求め、その断面積に相当する円の直径を数2
のdとして代入する。As a representative dimension of the flow path 8 in the case of adopting the structure of FIGS. 4 and 5, the width d of the flow path is used as shown in FIG. However, when the flow rate is determined using Equation 2, if the depth h of the flow channel is twice or more as large as the width d of the flow channel, the cross-sectional area of the flow channel is calculated and the circle corresponding to the cross-sectional area is calculated. Number 2
Substitute as d.
【0073】なお、上記実施例の説明においては清水の
圧力水を熱媒体に用いた場合について述べたが、温度分
布ムラに関する数1に関連する事項は水以外の熱媒体、
例えば油等を用いた場合についても当てはまることが確
認されているので、本発明の熱媒体は清水の圧力水に限
定されることはない。In the description of the above embodiments, the case where pressure water of fresh water is used as the heat medium has been described. However, the matters relating to the equation 1 regarding the temperature distribution unevenness are heat medium other than water,
For example, it has been confirmed that this also applies to the case where oil or the like is used, so the heat medium of the present invention is not limited to the pressure water of fresh water.
【0074】[0074]
【発明の効果】本発明は以上に説明したように、金型の
キャビティの近傍に複数の流路を設け、上記複数の流路
に熱媒体を流す構造のプラスチック射出成形型におい
て、上記流路に数2で規定した流量の100℃以上の圧
力水または冷却水を流すことによりキャビティ面の温度
の急速上昇,急速冷却が可能となり、さらにキャビティ
の壁面から流路の壁までの距離をY,流路の径d,ピッ
チ距離pに関する比を数1を満足するように選ぶ時に、
数1のKtに代入する値を2.0以下、好ましくは1.
5以下に選ぶことにより、型壁面の温度分布ムラを実用
上差し支えない範囲に押さえることができる。As described above, the present invention provides a plastic injection molding die having a structure in which a plurality of flow paths are provided in the vicinity of a cavity of a mold and a heat medium is flown through the plurality of flow paths. It is possible to rapidly raise the temperature of the cavity surface and cool it by flowing pressure water or cooling water of 100 ° C or more at a flow rate specified in Equation 2 to Y. When selecting the ratio of the flow path diameter d and the pitch distance p so as to satisfy the equation 1,
The value to be substituted for Kt in Equation 1 is 2.0 or less, preferably 1.
By selecting 5 or less, the temperature distribution unevenness on the mold wall surface can be suppressed to a range that does not hinder practical use.
【0075】これにより、成形サイクルの延長を最小限
に押さえることができ、かつ高温成形の特徴である転写
率の向上,成形不良の減少ないし根絶を実現することが
可能となった。As a result, the extension of the molding cycle can be suppressed to a minimum, and it is possible to realize the improvement of the transfer rate and the reduction or elimination of molding defects, which are the features of high temperature molding.
【図1】本発明を用いた一実施例の成形型の断面図FIG. 1 is a sectional view of a molding die according to an embodiment of the present invention.
【図2】図1の矢線M−Mにおける断面図FIG. 2 is a sectional view taken along the line MM in FIG.
【図3】図1におけるN部の拡大断面図FIG. 3 is an enlarged cross-sectional view of a portion N in FIG.
【図4】本発明を用いた他の実施例の成形型の断面図FIG. 4 is a sectional view of a molding die of another embodiment using the present invention.
【図5】図4の矢線N−Nにおける断面斜視図5 is a cross-sectional perspective view taken along the line NN of FIG.
【図6】図3のY寸法を横軸にとり、縦軸に昇温速度を
示した図FIG. 6 is a diagram showing the Y dimension of FIG. 3 on the horizontal axis and the temperature rising rate on the vertical axis.
【図7】本発明の成形型と同様の構造の実験型における
昇温速度の実験データFIG. 7: Experimental data of temperature rising rate in an experimental mold having the same structure as the forming mold of the present invention
【図8】流路を中心とした型壁面の温度分布の時間経過
を示す計算結果を示す説明図FIG. 8 is an explanatory diagram showing calculation results showing a time course of temperature distribution of a mold wall surface centering on a flow path.
【図9】流路を中心とした型壁面のRθの時間経過を示
す計算結果を示す説明図FIG. 9 is an explanatory view showing a calculation result showing a time course of Rθ of a mold wall surface centering on a flow path.
【図10】横軸にt/Yを用いたRθの時間経過を示す
計算結果を示す説明図FIG. 10 is an explanatory diagram showing a calculation result showing a time course of Rθ using t / Y on the horizontal axis.
【図11】数1,数2,数3の関係を示す説明図FIG. 11 is an explanatory diagram showing the relationship between Equations 1, 2 and 3.
【図12】1次遅れ要素を持つ温度レスポンスの説明図FIG. 12 is an explanatory diagram of a temperature response having a first-order lag element.
【図13】型壁面の温度分布ムラの説明図FIG. 13 is an explanatory view of uneven temperature distribution on the mold wall surface.
【図14】従来例の流路配置の説明図FIG. 14 is an explanatory diagram of a flow path arrangement of a conventional example.
7 キャビティ 8 流路 7 cavity 8 flow path
Claims (6)
設けた射出成形型において、上記流路の径もしくは幅を
dとし、流路と流路とのピッチ距離をpとし、流路位置
における上記キャビティの型壁面から流路の壁までの距
離をYとし、流路と流路との中央位置におけるキャビテ
ィの型壁面から流路の壁までの距離をtcとし、tc/
Yを壁面距離比Ktとし、数1における壁面距離比Kt
に許容温度分布ムラにより定まる値を代入して求めたp
/Yの値以下となるピッチ距離pおよび距離Yを型寸法
として型壁面の温度分布ムラを許容範囲に収めたプラス
チック射出成形型。 【数1】 1. An injection molding die in which a plurality of flow passages are provided in the vicinity of a cavity of a mold, wherein the diameter or width of the flow passages is d, the pitch distance between the flow passages is p, and the flow passages are Let Y be the distance from the mold wall surface of the cavity to the wall of the flow path at the position, and tc be the distance from the mold wall surface of the cavity to the wall of the flow path at the central position between the flow paths.
Y is the wall surface distance ratio Kt, and the wall surface distance ratio Kt in Equation 1
P obtained by substituting a value determined by the allowable temperature distribution unevenness into
A plastic injection molding die in which the temperature distribution unevenness on the die wall surface is set within an allowable range with the pitch distance p and the distance Y that are equal to or less than the value of / Y as die dimensions. [Equation 1]
度,冷却速度を得た請求項1記載のプラスチック射出成
形型。2. The plastic injection molding die according to claim 1, wherein a rapid temperature rising rate and a rapid cooling rate are obtained by setting the distance Y to 6 mm or less.
温度分布の一様性を確保した請求項1記載のプラスチッ
ク射出成形型。3. The plastic injection mold according to claim 1, wherein the wall surface distance ratio Kt is 2.0 or less to ensure the uniformity of temperature distribution.
温度分布の一様性を確保した請求項3記載のプラスチッ
ク射出成形型。4. The plastic injection mold according to claim 3, wherein the wall distance ratio Kt is set to 1.5 or less to ensure the uniformity of temperature distribution.
比Ktの値を1.5以下にして急速な昇温速度,冷却速
度を得つつ温度分布の一様性を確保した請求項1記載の
プラスチック射出成形型。5. The uniformity of the temperature distribution is ensured while the distance Y is set to a value of 6 mm or less and the wall surface distance ratio Kt is set to a value of 1.5 or less to obtain a rapid heating rate and a cooling rate. The described plastic injection mold.
を用い、流路に流す熱媒体として清水の圧力水を用い、
流量と流路の径を数2を満足するようにしたプラスチッ
ク射出成形法。 【数2】 6. The plastic injection molding die according to claim 1, wherein fresh water pressure water is used as a heat medium flowing in the flow path,
A plastic injection molding method in which the flow rate and the diameter of the flow path satisfy the expression 2. [Equation 2]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2469096A JPH09193223A (en) | 1996-01-18 | 1996-01-18 | Plastic injection mold and method for injection molding plastic using the mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2469096A JPH09193223A (en) | 1996-01-18 | 1996-01-18 | Plastic injection mold and method for injection molding plastic using the mold |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09193223A true JPH09193223A (en) | 1997-07-29 |
Family
ID=12145174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2469096A Pending JPH09193223A (en) | 1996-01-18 | 1996-01-18 | Plastic injection mold and method for injection molding plastic using the mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09193223A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6936206B1 (en) | 1999-05-06 | 2005-08-30 | Mitsui Chemicals, Inc. | Synthetic resin molding mold, apparatus for and method of adjusting a temperature of the mold |
JP2007223143A (en) * | 2006-02-23 | 2007-09-06 | Sumitomo Chemical Co Ltd | Method for producing molded thermoplastic resin |
CN114801055A (en) * | 2022-03-15 | 2022-07-29 | 祥星塑料模具(嘉兴)有限公司 | Plastic shell injection molding process |
-
1996
- 1996-01-18 JP JP2469096A patent/JPH09193223A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6936206B1 (en) | 1999-05-06 | 2005-08-30 | Mitsui Chemicals, Inc. | Synthetic resin molding mold, apparatus for and method of adjusting a temperature of the mold |
JP2007223143A (en) * | 2006-02-23 | 2007-09-06 | Sumitomo Chemical Co Ltd | Method for producing molded thermoplastic resin |
CN114801055A (en) * | 2022-03-15 | 2022-07-29 | 祥星塑料模具(嘉兴)有限公司 | Plastic shell injection molding process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100850308B1 (en) | Mold for molding PVC | |
US7445743B2 (en) | Molding tool, and method of making plastic articles | |
US6203731B1 (en) | Method for injection molding of plastic products having excellent transcription properties | |
US20040032060A1 (en) | Shut-off nozzle with heating unit and cooling unit for hot runner systems of injection molding machines, and method of controlling the same | |
JPH09193223A (en) | Plastic injection mold and method for injection molding plastic using the mold | |
JP5650641B2 (en) | Disc substrate molding apparatus, disc substrate molding method, and disc substrate molding die | |
JPH11291300A (en) | Mold for plastic injection molding, production thereof and injection molding method using mold | |
JP3984498B2 (en) | Mold for molding and plastic molding method using the same | |
JPH11115013A (en) | Plastic injection molding method | |
JP2004322597A (en) | Injection molding die and method of manufacturing injection molded product | |
JP2002273771A (en) | Injection molding die for resin, and resin molding method | |
JP2000271981A (en) | Injection molding machine equipped with die plate temperature adjusting method and mechanism for implementing the method | |
JPH05278088A (en) | Mold for molding optical disc | |
EP3981572B1 (en) | Mold cooling structure | |
JP2002530222A (en) | Mold temperature control method for injection molding | |
JP2622326B2 (en) | Method and apparatus for controlling mold temperature distribution in injection molding | |
JPH0566245B2 (en) | ||
JPH09254215A (en) | Injection molding die device | |
JP2006150749A (en) | Lens molding method and mold | |
JPH08332653A (en) | Injection molding apparatus | |
JP3369962B2 (en) | Method and apparatus for molding resin products by gas assist molding method | |
JPH0243009A (en) | plastic molding mold | |
JPH01115606A (en) | Resin molding die | |
JPH08216217A (en) | Die for molding optical disc substrate and system thereof as well as molding method | |
JPH11179764A (en) | Method for molding plastic molded product and mold therefor |