JPH09192676A - Treatment of lead-containing waste water - Google Patents
Treatment of lead-containing waste waterInfo
- Publication number
- JPH09192676A JPH09192676A JP8008544A JP854496A JPH09192676A JP H09192676 A JPH09192676 A JP H09192676A JP 8008544 A JP8008544 A JP 8008544A JP 854496 A JP854496 A JP 854496A JP H09192676 A JPH09192676 A JP H09192676A
- Authority
- JP
- Japan
- Prior art keywords
- lead
- ferric
- iron
- added
- waste water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 34
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229960004887 ferric hydroxide Drugs 0.000 claims abstract description 10
- 229910052742 iron Inorganic materials 0.000 claims abstract description 10
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 claims abstract description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims abstract description 8
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 8
- -1 iron ion Chemical class 0.000 claims abstract description 8
- 150000003839 salts Chemical class 0.000 claims abstract description 8
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims abstract description 7
- 239000000920 calcium hydroxide Substances 0.000 claims abstract description 7
- 235000011116 calcium hydroxide Nutrition 0.000 claims abstract description 7
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims abstract description 7
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims abstract description 6
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims abstract description 6
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 claims abstract description 4
- 239000000292 calcium oxide Substances 0.000 claims abstract description 4
- 235000012255 calcium oxide Nutrition 0.000 claims abstract description 4
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 claims abstract description 3
- 229910000360 iron(III) sulfate Inorganic materials 0.000 claims abstract description 3
- 238000007885 magnetic separation Methods 0.000 claims description 5
- 239000003513 alkali Substances 0.000 claims description 3
- 238000010979 pH adjustment Methods 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 239000002244 precipitate Substances 0.000 abstract description 6
- 235000010216 calcium carbonate Nutrition 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 abstract description 2
- 239000002245 particle Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 description 8
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 7
- 238000000975 co-precipitation Methods 0.000 description 7
- 229910001447 ferric ion Inorganic materials 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 5
- 239000002562 thickening agent Substances 0.000 description 5
- 235000014413 iron hydroxide Nutrition 0.000 description 4
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 241001674048 Phthiraptera Species 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000006148 magnetic separator Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000019086 sulfide ion homeostasis Effects 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鉛含有排水から鉛
を除去する方法に関する。TECHNICAL FIELD The present invention relates to a method for removing lead from lead-containing wastewater.
【0002】[0002]
【従来の技術】鉱山からの坑廃水、製錬所やその他の工
場からの廃水には鉛が含まれていることが多々あり、こ
れを除去した後に河川や海に排出することは環境保全お
よび生活環境の安全性の観点から極めて重要である。2. Description of the Related Art Mine wastewater from mines and wastewater from smelters and other factories often contain lead. It is important to remove lead and then discharge it into rivers and the sea for environmental protection. It is extremely important from the viewpoint of safety of living environment.
【0003】廃水から鉛を除去する公知の方法としては
水酸化物を形成し共沈させる共沈法、硫化物生成法、フ
ェライトとした後これを磁気分離する磁気分離法、イオ
ン交換樹脂に吸着させる吸着法、鉄粉法等があり、排水
中に共存する各種成分に合わせて適当な方法が選択さ
れ、実施されてきた。Known methods for removing lead from wastewater include a coprecipitation method in which a hydroxide is formed and coprecipitated, a sulfide generation method, a magnetic separation method in which ferrite is magnetically separated, and adsorbed on an ion exchange resin. There are adsorption method, iron powder method and the like, and an appropriate method has been selected and implemented according to various components coexisting in the waste water.
【0004】しかし、平成6年に施行された新しい排水
基準によって、2年間の猶予期間はあるものの、鉛は排
出基準は1ppmから0.1ppmに強化される。とこ
ろが、上記従来の方法ではこの新排水基準を遵守するこ
とが困難となっている。However, due to the new drainage standard enforced in 1994, although there is a grace period of two years, the emission standard of lead is strengthened from 1 ppm to 0.1 ppm. However, it is difficult for the above-mentioned conventional methods to comply with this new drainage standard.
【0005】例えば、銅製錬の副産物として生じる転炉
ガラミより選鉱法を用いて有価物を回収する工程の廃水
に含まれる鉛を共沈法で除去する場合について示すと、
まず廃水に鉄塩を添加し、pHを調整して水酸化鉄に鉛
を共沈させ、凝集剤を加えて水酸化物を凝集させ、シッ
クナー等で沈降させ、上澄みはオーバーフローとしてそ
のまま放流し、アンダーフローをベルトフィルターなど
を用いて固液分離し、水酸化物を得る。ここで、シック
ナー等を用いて沈殿分を濃縮するのは、低スラリー濃度
の処理水を全量濾過機で処理するには多量の濾過面積の
濾過機を必要とし、経済性を極めて損なうからである。For example, when the lead contained in the wastewater of the step of recovering valuable substances from the converter lice generated as a by-product of copper smelting by the beneficiation method is removed by the coprecipitation method,
First, iron salt is added to the wastewater, pH is adjusted to coprecipitate lead in iron hydroxide, a flocculant is added to flocculate the hydroxide, and the mixture is allowed to settle with a thickener, and the supernatant is discharged as an overflow as it is, Underflow is solid-liquid separated using a belt filter or the like to obtain hydroxide. Here, the reason why the precipitate is concentrated using a thickener or the like is that treatment of low-slurry concentration treated water with a full-scale filter requires a filter with a large amount of filtration area, which significantly impairs economic efficiency. .
【0006】ところで、廃水中の鉛には溶解性の鉛の他
に、非常に微細な固体懸濁物中に固溶体として存在する
鉛がある。このような排水に上記共沈法を適用すると、
シックナーのオーバーフロー中に微細な殿物が漏洩する
ため、鉛の除去が不十分となる。これを防ぐためには、
いっそう大きなシックナー等を使用するか、経済性を無
視して全量濾過する方法を採用しなければならない。By the way, as lead in the waste water, in addition to soluble lead, there is lead which exists as a solid solution in a very fine solid suspension. When the above coprecipitation method is applied to such wastewater,
Lead removal is inadequate due to the leakage of fine particles during the thickener overflow. To prevent this,
It is necessary to use a larger thickener or the like, or to adopt a method of filtering the whole amount while ignoring the economical efficiency.
【0007】また、硫化物生成法も共沈法と同様の問題
を持ち、吸着法は固体懸濁物として含まれる鉛を除去す
るには不適当である。The sulfide production method also has the same problems as the coprecipitation method, and the adsorption method is not suitable for removing lead contained as a solid suspension.
【0008】磁気分離法は固体懸濁物が磁性体の場合に
有効であり、鉛が磁鉄鉱等の鉄酸化物と結合して固体懸
濁物になっている場合には最適な方法となる。しかし、
溶存鉛が存在する場合は二価の鉄イオン源と酸化剤とを
添加し、鉛を含むフェライトを生成させ、これにを磁気
分離しなければならず、多量の薬剤とフェライト生成の
ための反応槽が必要となる。The magnetic separation method is effective when the solid suspension is a magnetic substance, and is the optimum method when lead is combined with iron oxide such as magnetite to form a solid suspension. But,
When dissolved lead is present, a divalent iron ion source and an oxidizing agent must be added to produce ferrite containing lead, which must be magnetically separated, and a large amount of drug and the reaction for producing ferrite must be generated. A tank is required.
【0009】[0009]
【発明が解決しようとする課題】本発明の目的は、上記
の問題を解決し、イオンとして溶解している鉛、あるい
は、化合物粒子として懸濁している鉛、あるいはその両
方を含む排水から安価、かつ簡単に鉛を除去しうる方法
の提供を課題とする。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide inexpensive lead from a solution containing lead dissolved as an ion or lead suspended as a compound particle, or both. Another object is to provide a method for easily removing lead.
【0010】[0010]
【課題を解決するための手段】本発明は、上記の目的を
達成するために、含鉛排水1m3に対し三価の鉄イオン
が5〜20gとなるように第二鉄塩、たとえば塩化第二
鉄を添加し、pHを5.0〜9.0に調整した後、殿物
を磁力選別することを特徴とする排水処理方法である。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a ferric salt, for example, a chlorinated ferric salt so that trivalent iron ions are 5 to 20 g per 1 m 3 of lead-containing wastewater. This is a wastewater treatment method characterized in that ferric iron is magnetically selected after diiron is added to adjust the pH to 5.0 to 9.0.
【0011】添加する第二鉄塩としては、塩化第二鉄の
他に硫酸第二鉄、硝酸第二鉄、水酸化第二鉄、鉄を含む
高分子凝集剤などがあり、これらを単独で用いてもよ
く、複数組み合わせて用いてもよい。殿物の除去に用い
る磁力選別装置は磁場強度が10kOe以上、20kO
e以下のものが望ましい。Examples of the ferric salt to be added include ferric chloride, ferric sulfate, ferric nitrate, ferric hydroxide, and polymer flocculants containing iron. These are used alone. They may be used, or a plurality of them may be used in combination. The magnetic force sorting device used to remove the impurities has a magnetic field strength of 10 kOe or more, 20 kO
e or less is desirable.
【0012】pH調整に用いるアルカリとしては消石
灰、生石灰、炭酸カルシウム、水酸化ナトリウム、水酸
化カリウム、炭酸ナトリウム、炭酸カリウムなどを用い
ることができるが、経済性より消石灰、生石灰、炭酸カ
ルシウムなどが好ましい。As the alkali used for pH adjustment, slaked lime, quick lime, calcium carbonate, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate and the like can be used, but slaked lime, quick lime, calcium carbonate and the like are preferable from the economical viewpoint. .
【0013】また、本発明の方法では磁力選別装置を用
いるため処理水と殿物との分離にシックナーのような滞
留時間が長い大型の沈降槽は必要ではなく、全体の設備
の設置面積が小さくて良いという利点もある。さらに、
磁着物として得られる水酸化鉄は、共沈法で得られる殿
物より水分が低い。Further, in the method of the present invention, since a magnetic separation device is used, a large settling tank such as a thickener having a long residence time is not required for separating treated water and a substance, and the installation area of the whole equipment is small. There is also the advantage of being good. further,
Iron hydroxide obtained as a magnetic substance has a lower water content than that of the substance obtained by the coprecipitation method.
【0014】[0014]
【発明の実施の形態】本発明において、まず、処理対象
である含鉛排水中の第二鉄イオンの共存量を調整する
が、これは溶存している鉛を水酸化第二鉄に十分共沈さ
せると共に、微細な固体懸濁物として存在している鉛を
凝集させるためである。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, first, the coexisting amount of ferric iron ions in the lead-containing wastewater to be treated is adjusted. This is because the lead, which is present as a fine solid suspension, is agglomerated as it is allowed to settle.
【0015】第二鉄イオンの共存量は、含鉛排水の性状
に応じて適宜調整するが、含鉛排水1m3に対し第二鉄
イオンが5〜20gとなる量が適当である。これよりも
共存量が少ないと水酸化鉄の沈殿がコロイド状になり、
磁力選別装置に磁着させ分離することが難しくなる。こ
の結果、処理後の排水中の鉛濃度が高くなり、排水基準
を下回ることが困難になる。The coexisting amount of ferric iron ions is appropriately adjusted according to the properties of the lead-containing wastewater, and an amount of 5-20 g of ferric ion per 1 m 3 of the lead-containing wastewater is suitable. If the amount of coexistence is less than this, the precipitate of iron hydroxide becomes colloidal,
It becomes difficult to separate by magnetically attaching to the magnetic force sorting device. As a result, the lead concentration in the wastewater after treatment becomes high, and it becomes difficult to fall below the wastewater standard.
【0016】また、逆に20gを越えて共存させても更
なる効果は少なく、使用する薬剤の量が増加し、コスト
が上昇するばかりでなく、磁力選別装置に磁着する殿物
量が多くなり、不必要に装置の大型化をもたらすことに
なる。Conversely, coexistence of more than 20 g has little further effect, the amount of chemicals used increases, not only the cost rises, but also the amount of magnetic substances attached to the magnetic force sorting device increases. However, this will unnecessarily increase the size of the device.
【0017】次に、水酸化第二鉄の沈澱を生じさせるた
めに消石灰などのアルカリ剤でpHを調整する。このp
Hは水酸化第二鉄の沈澱が生じる程度でよいが、処理後
の排水を放流するためにはpH7前後に調整するのが望
ましい。本発明の方法では、従来のフェライト法と異な
り、水酸化第二鉄の鉄源として三価の第二鉄イオンを用
いるため、酸化剤が不要となるばかりでなく、pH調整
剤として必要とされるアルカリの量も少なくてすむ。Next, the pH is adjusted with an alkaline agent such as slaked lime in order to cause the precipitation of ferric hydroxide. This p
The amount of H may be such that ferric hydroxide precipitates, but it is desirable to adjust the pH to around 7 in order to discharge the treated wastewater. In the method of the present invention, unlike the conventional ferrite method, since the trivalent ferric ion is used as the iron source of ferric hydroxide, not only is the oxidizing agent unnecessary, but it is also required as a pH adjusting agent. It requires less alkali.
【0018】このようにして得られた水酸化第二鉄の沈
殿には溶存していた鉛が吸着され、凝集した固形鉛化合
物も包み込まれる。この結果、水酸化第二鉄の殿物を磁
着物として回収すれば含鉛排水中の鉛を十分に除去する
ことができる。Dissolved lead is adsorbed on the thus obtained ferric hydroxide precipitate, and the agglomerated solid lead compound is also included. As a result, the lead in the lead-containing wastewater can be sufficiently removed by recovering the ferric hydroxide precipitate as the magnetic deposit.
【0019】[0019]
【実施例】次に実施例を用いて本発明をさらに説明す
る。Next, the present invention will be further described with reference to examples.
【0020】(実施例1)銅製錬の副産物として生じる
転炉ガラミを粉砕、選鉱処理している工場の排水(鉛濃
度0.73ppm)を用いて以下の条件で処理した。第
二鉄塩として塩化第二鉄を用い、鉄イオンとして5pp
mから20ppm共存するように添加した。次に、消石
灰を添加してpH7に調整し、水酸化鉄の沈澱を生じさ
せて磁選した。磁力選別装置として高勾配磁力選鉱機を
用い、磁場強度を9.9kOeから22kOeの間で変
化させた。処理液中の第二鉄イオンの濃度と磁場強度と
処理終液中の鉛濃度とを表1に示す。Example 1 Converter lice produced as a by-product of copper smelting was pulverized and treated under the following conditions using wastewater (lead concentration 0.73 ppm) from a factory that is conducting beneficiation. Ferric chloride is used as the ferric salt and 5 pp as the iron ion
It was added so as to coexist with 20 ppm from m. Next, slaked lime was added to adjust the pH to 7, and precipitation of iron hydroxide was caused to perform magnetic separation. A high-gradient magnetic separator was used as a magnetic separator, and the magnetic field strength was changed from 9.9 kOe to 22 kOe. Table 1 shows the concentration of ferric ion in the treatment liquid, the magnetic field strength, and the lead concentration in the treatment end liquid.
【0021】 本発明の方法によれば、少量の第二鉄イオンを添加させ
るのみで十分な鉛除去効果が得られる。[0021] According to the method of the present invention, a sufficient lead removing effect can be obtained by adding a small amount of ferric ion.
【0022】(比較例1)比較例として、実施例と同じ
排水を用いて第二鉄イオンを添加し、中和し、凝集剤を
加えて水酸化第二鉄を凝集沈降させ、上澄みを得る共沈
法により鉛の除去試験を試みた。処理条件は次の通りで
ある。(Comparative Example 1) As a comparative example, ferric ion was added and neutralized using the same wastewater as in Example, and a coagulant was added to cause ferric hydroxide to aggregate and settle to obtain a supernatant. A lead removal test was attempted by the coprecipitation method. The processing conditions are as follows.
【0023】第二鉄塩として塩化第二鉄を用い、鉄とし
て20ppmから100ppmになるように添加した。
消石灰でpH7に調整して殿物を生じせしめた後、凝集
剤としてアニオン系有機高分子凝集剤2ppm添加し
た。薬剤を添加して攪拌後、1時間静置した後、上澄液
を採取して鉛を分析した。第2表に処理液中の第二鉄イ
オンの濃度(塩化第二鉄添加後の濃度)と上澄み中の鉛
濃度とを表2に示す。Ferric chloride was used as the ferric salt and was added so that the iron content would be 20 to 100 ppm.
After adjusting the pH to 7 with slaked lime to generate a residue, 2 ppm of an anionic organic polymer flocculant was added as a flocculant. After adding the chemicals and stirring, the mixture was allowed to stand for 1 hour, then the supernatant was collected and analyzed for lead. Table 2 shows the concentration of ferric ion in the treatment liquid (concentration after addition of ferric chloride) and the lead concentration in the supernatant.
【0024】 共沈法では少なくとも100g/m3の水酸化第二鉄イ
オンの共存がなければ本発明の方法と同程度の効果が得
られず、経済性に劣ることは明白である。[0024] In the coprecipitation method, the same degree of effect as that of the method of the present invention cannot be obtained unless at least 100 g / m 3 of ferric hydroxide ions coexist, and it is obvious that the economy is poor.
【0025】[0025]
【発明の効果】本発明の方法を用いれば、比較例に対し
て非常に少ない試薬量で新排水基準をクリアする事がで
きる。また、試薬量が少ないので得られる殿物(磁着
物)も少なくなり、凝集沈澱法で得られる殿物より後処
理が容易である。このように、本発明による方法は鉛含
有排水に対して効果が大きい。According to the method of the present invention, the new wastewater standard can be satisfied with a very small amount of reagent compared to the comparative example. In addition, since the amount of the reagent is small, the amount of deposits (magnetism) obtained is also small, and post-treatment is easier than the deposits obtained by the coagulation precipitation method. Thus, the method according to the present invention is highly effective for lead-containing wastewater.
Claims (4)
が5〜20gとなるように第二鉄塩を添加し、pHを
5.0〜9.0に調整した後、殿物を磁力選別すること
を特徴とする含鉛排水の処理方法。1. A ferric salt is added to 1 m 3 of lead-containing wastewater so that the amount of trivalent iron ions is 5 to 20 g and the pH is adjusted to 5.0 to 9.0. A method for treating lead-containing wastewater, which is characterized by magnetic separation.
第二鉄、硝酸第二鉄、水酸化第二鉄、鉄を含む高分子凝
集剤からなる群から選ばれる少なくともいずれか一つで
ある請求項1記載の方法。2. The ferric salt to be added is at least one selected from the group consisting of ferric chloride, ferric sulfate, ferric nitrate, ferric hydroxide, and a polymer flocculant containing iron. The method of claim 1, wherein
生石灰、炭酸カルシウムからなる群から選ばれる少なく
ともいずれか一つである請求項1または2記載の方法。3. The alkali used for pH adjustment is slaked lime,
The method according to claim 1 or 2, wherein the method is at least one selected from the group consisting of quick lime and calcium carbonate.
上、20kOe以下である請求項1〜3記載のいずれか
の方法。4. The method according to claim 1, wherein the magnetic field strength during magnetic force selection is 10 kOe or more and 20 kOe or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8008544A JPH09192676A (en) | 1996-01-22 | 1996-01-22 | Treatment of lead-containing waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8008544A JPH09192676A (en) | 1996-01-22 | 1996-01-22 | Treatment of lead-containing waste water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09192676A true JPH09192676A (en) | 1997-07-29 |
Family
ID=11696092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8008544A Pending JPH09192676A (en) | 1996-01-22 | 1996-01-22 | Treatment of lead-containing waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09192676A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110436697A (en) * | 2019-07-16 | 2019-11-12 | 北京科技大学 | Materialization-superconduction HGMS coupling technique clean circulating water system method of scale inhibition |
JP2021020163A (en) * | 2019-07-27 | 2021-02-18 | 三菱マテリアル株式会社 | Lead-containing pit external water treatment method |
CN116116881A (en) * | 2023-01-29 | 2023-05-16 | 西部矿业股份有限公司 | Method for cooperatively treating lead-containing wastewater by utilizing modified stone coal vanadium extraction smelting waste residues |
-
1996
- 1996-01-22 JP JP8008544A patent/JPH09192676A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110436697A (en) * | 2019-07-16 | 2019-11-12 | 北京科技大学 | Materialization-superconduction HGMS coupling technique clean circulating water system method of scale inhibition |
JP2021020163A (en) * | 2019-07-27 | 2021-02-18 | 三菱マテリアル株式会社 | Lead-containing pit external water treatment method |
CN116116881A (en) * | 2023-01-29 | 2023-05-16 | 西部矿业股份有限公司 | Method for cooperatively treating lead-containing wastewater by utilizing modified stone coal vanadium extraction smelting waste residues |
CN116116881B (en) * | 2023-01-29 | 2024-02-23 | 西部矿业股份有限公司 | Method for cooperatively treating lead-containing wastewater by utilizing modified stone coal vanadium extraction smelting waste residues |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5698107A (en) | Treatment for acid mine drainage | |
Zouboulis et al. | Use of red mud for toxic metals removal: the case of nickel | |
AU648059B2 (en) | Waste water treatment process using improved recycle of high density sludge | |
JP2011050809A (en) | Method of treating selenium-containing waste water | |
JPH1190165A (en) | Treatment of waste water from flue gas desulfurization | |
KR100387029B1 (en) | Treatment of wastewater with heavy metals by used iron oxide catalyst | |
CN105567976A (en) | Method for treating vanadium extracting industrial acid wastewater and comprehensively recycling valuable metal | |
JPH1147764A (en) | Method for treating As-containing wastewater | |
WO2015095269A1 (en) | Methods for removing contaminants from aqueous systems | |
US2232296A (en) | Process for treating liquids | |
US9334180B2 (en) | Process for treating acid mine drainage | |
US5720886A (en) | Process for removing metal values from mine waste water | |
US20180111856A1 (en) | Process for Treating Acid Mine Drainage | |
KR100259563B1 (en) | Method for treating waste water containing heavy metal using material containing calsium, magnesium | |
JPH09192676A (en) | Treatment of lead-containing waste water | |
WO1989009192A1 (en) | Hydrometallurgical effluent treatment | |
AU2019430430B2 (en) | Method and process arrangement for removing Si based compounds from a leaching liquor and use | |
JP7259620B2 (en) | Method for treating lead-containing outside water | |
JPH10249362A (en) | Treatment of manganese-containing waste water | |
JP7351199B2 (en) | Treatment method for arsenic-containing wastewater | |
JP2002126758A (en) | Method for treating water | |
JP2005144336A (en) | Method for removing fluorine in waste water and method for reducing sediment | |
JP7259619B2 (en) | Method for treating lead-containing outside water | |
JP7303430B2 (en) | Collection method | |
Quiton et al. | Reclamation of Cobalt and Copper from Single-and Co-contaminated Wastewater via Carbonate and Hydroxide Precipitation |