JPH09188527A - Temperature control device of glass discharge pipe - Google Patents
Temperature control device of glass discharge pipeInfo
- Publication number
- JPH09188527A JPH09188527A JP59196A JP59196A JPH09188527A JP H09188527 A JPH09188527 A JP H09188527A JP 59196 A JP59196 A JP 59196A JP 59196 A JP59196 A JP 59196A JP H09188527 A JPH09188527 A JP H09188527A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- outflow pipe
- electrodes
- plate
- discharge pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 122
- 238000002844 melting Methods 0.000 claims abstract description 25
- 239000006060 molten glass Substances 0.000 claims abstract description 11
- 230000008018 melting Effects 0.000 claims description 23
- 230000005489 elastic deformation Effects 0.000 claims description 9
- 238000009795 derivation Methods 0.000 claims description 4
- 238000005485 electric heating Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 7
- 230000004044 response Effects 0.000 abstract description 2
- 238000007599 discharging Methods 0.000 abstract 1
- 230000004043 responsiveness Effects 0.000 description 7
- 238000005452 bending Methods 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910001260 Pt alloy Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 101100110018 Arabidopsis thaliana ASK3 gene Proteins 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B7/00—Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
- C03B7/08—Feeder spouts, e.g. gob feeders
- C03B7/094—Means for heating, cooling or insulation
- C03B7/096—Means for heating, cooling or insulation for heating
- C03B7/098—Means for heating, cooling or insulation for heating electric
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ガラス溶融炉に設
置したガラス溶融容器からガラス流出管を介して所要温
度の溶融ガラスを受け型に導出する際に、ガラス流出管
の鉛直方向に延びる部分領域に通電加熱を行う電極を配
置すると共に、ガラス流出管の開口部に板状電極を装着
して、導出時のガラス温度を所要値に維持するようにし
たガラス流出管の温度制御装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a portion of a glass outflow pipe extending in a vertical direction when it is drawn out from a glass melting container installed in a glass melting furnace into a mold through a glass outflow pipe. A temperature control device for a glass outflow pipe, in which an electrode for electrically heating is arranged in a region and a plate-like electrode is attached to the opening of the glass outflow pipe to maintain the glass temperature at the time of derivation at a required value. Is.
【0002】[0002]
【従来の技術】従来、受け型に対して溶融ガラスを流出
するための、白金または白金合金製のガラス流出管に
は、これに直接電流を流して、流通する溶融ガラスの温
度を所定値に維持する温度制御装置(例えば、特公昭4
0−11742号公報所載の装置)が知られている。し
かし、このような温度制御装置では、流出管の開口部
(流出口)が外部に露出している関係で、この箇所で、
溶融ガラスの温度が下がり、結晶化を生じるおそれがあ
り、あるいは、ガラスの流出開始を困難にしたり、1回
のガラス流出量の制御範囲が制限されたりする問題があ
った。2. Description of the Related Art Conventionally, a glass outflow pipe made of platinum or a platinum alloy for flowing out molten glass to a receiving mold is supplied with an electric current directly to bring the temperature of the flowing molten glass to a predetermined value. Temperature control device to maintain (for example, Japanese Patent Publication No.
A device disclosed in Japanese Patent Laid-Open No. 0-11742) is known. However, in such a temperature control device, since the opening (outlet) of the outflow pipe is exposed to the outside,
There is a problem that the temperature of the molten glass may be lowered and crystallization may occur, or it may be difficult to start the outflow of the glass or the control range of the outflow amount of the glass once may be limited.
【0003】そこで、流出管の開口部での温度低下を防
止する意図で、例えば、特開昭62−270427号公
報に所載の装置が提供されたが、ここでは、流出管およ
びその開口部を、外部のヒーターで加熱するため、加熱
方法が間接的で、温度制御の応答性が悪く、制御精度も
低下する欠点があった。Therefore, for the purpose of preventing the temperature drop at the opening of the outflow pipe, for example, a device disclosed in Japanese Patent Laid-Open No. 62-270427 is provided. Here, the outflow pipe and the opening thereof are provided. Since it is heated by an external heater, the heating method is indirect, the response of the temperature control is poor, and the control accuracy is reduced.
【0004】この点を配慮した温度制御装置として、図
9に示すような構造の加熱用電極が流出管の開口部に装
備され、直接的な、開口部の加熱を実現している(これ
は、特開平7−81944号公報参照)。ここで、符号
3はガラス溶融炉に設置したガラス溶融容器(図示せ
ず)から下方に向けて鉛直に延びた流出管であり、その
鉛直に延びる所定領域では、電極(図示せず)により流
出管3に通電する直接の加熱が行われ、また、その先端
の開口部4(流出口)には、これを囲む共通の環状部を
備えた板状電極11、11’が装着されている。As a temperature control device in consideration of this point, a heating electrode having a structure as shown in FIG. 9 is provided in the opening of the outflow pipe to realize direct heating of the opening (this is , JP-A-7-81944). Here, reference numeral 3 is an outflow pipe which vertically extends downward from a glass melting container (not shown) installed in a glass melting furnace, and an outflow pipe flows out by an electrode (not shown) in a predetermined vertically extending region. Direct heating is performed by energizing the tube 3, and plate-shaped electrodes 11 and 11 'having a common annular portion surrounding the opening 4 (outflow port) are attached to the tip end thereof.
【0005】板状電極11、11’はその共通の環状部
の両側に延びる加熱部12、12’と電極接続部13、
13’とを有し、また、各電極接続部の端末(ターミナ
ル部)14、14’にリード線(図示せず)を接続する
ようになっている。このため、温度制御の応答性がよ
く、制御精度が高くなるなどのメリットが得られた。The plate-shaped electrodes 11 and 11 'have heating portions 12 and 12' and electrode connecting portions 13 extending on both sides of the common annular portion.
13 ', and lead wires (not shown) are connected to the terminals (terminal portions) 14 and 14' of each electrode connecting portion. Therefore, the responsiveness of the temperature control is good, and the advantages such as high control accuracy are obtained.
【0006】[0006]
【発明が解決しようとしている課題】しかしながら、上
述の板状電極は、流出管3の鉛直方向の厚みが小さく、
扁平な構造であるから、上下方向の曲げ力に対しての剛
性に欠ける。このため、溶融ガラスを受ける状態での受
け型に対して、流出管3の開口部を、常温で、所要レベ
ルに位置させるように、位置調整をしても、ガラス溶融
温度において、流出管が熱膨張で伸長した際に、板状電
極(これは架台側に位置調整可能に保持、固定されてい
る)を、その弾性変形の範囲で押し曲げて、その開口部
を下げ、その結果、ガラス流出量などに影響を与えるお
それがある。However, in the above plate-shaped electrode, the vertical thickness of the outflow pipe 3 is small,
Since it has a flat structure, it lacks rigidity against vertical bending forces. Therefore, even if the position is adjusted so that the opening of the outflow pipe 3 is positioned at a required level at room temperature with respect to the receiving mold in the state of receiving the molten glass, the outflow pipe will not be opened at the glass melting temperature. When expanded by thermal expansion, the plate-shaped electrode (which is held and fixed on the pedestal side so that its position can be adjusted) is pressed and bent within the range of its elastic deformation, and its opening is lowered. There is a risk of affecting the amount of outflow.
【0007】そこで、ガラス流出温度条件で、流出管3
の開口部のレベルを調整する必要があるが、これでは、
高温下での調整作業となり、また、ガラス材質などの違
いによる温度条件の変化の都度、開口部のレベル調整を
行わなければならないという問題がある。Therefore, under the glass outflow temperature condition, the outflow pipe 3
It is necessary to adjust the level of the opening of
There is a problem that the adjustment work is performed at a high temperature, and the level of the opening must be adjusted every time the temperature condition changes due to a difference in glass material or the like.
【0008】このため、流出管3が熱膨張しても、その
鉛直方向の伸長量を、流出管の曲がり部分での弾性変形
やガラス溶融容器底部の接続箇所での弾性変形で吸収
し、板状電極側での弾性変形を抑制して、常温で、開口
部のレベル調整が実現できるようにすることが考えられ
る。このためには、板状電極の剛性を増すように、電極
を十分な大きさにすればよいが、質量の増加で、板状電
極の熱容量が大きくなり、温度管理のためのセンサに対
する応答性が低下する。Therefore, even if the outflow pipe 3 thermally expands, the amount of extension in the vertical direction is absorbed by elastic deformation at the bent portion of the outflow pipe and elastic deformation at the connection portion at the bottom of the glass melting container, and the plate It is conceivable to suppress the elastic deformation on the electrode side so that the level of the opening can be adjusted at room temperature. For this purpose, it is sufficient to make the electrode large enough to increase the rigidity of the plate electrode, but the increase in mass increases the heat capacity of the plate electrode and increases the responsiveness to the sensor for temperature control. Is reduced.
【0009】本発明は、上記事情に基づいてなされたも
ので、板状電極の質量増加をもたらすことなく、温度制
御の高い応答性を確保し、しかも、ガラス流出管の熱膨
張による負荷に耐えられる剛性を確保し、ガラス材質な
どの違いによる温度条件の変化に係わりなく、常温での
開口部のレベル調整が行えるように構成したガラス流出
管の温度制御装置を提供することを目的としている。The present invention has been made based on the above-mentioned circumstances, and secures high responsiveness of temperature control without increasing the mass of the plate electrode, and can withstand the load due to the thermal expansion of the glass outflow pipe. It is an object of the present invention to provide a temperature control device for a glass outflow pipe configured to secure the required rigidity and adjust the level of the opening at room temperature regardless of changes in temperature conditions due to differences in glass materials and the like.
【0010】[0010]
【課題を解決するための手段】前記目的を達成するため
に、本発明では、ガラス溶融炉に設置したガラス溶融容
器からガラス流出管を介して所要温度の溶融ガラスを受
け型に導出する際に、ガラス流出管の鉛直方向に延びる
部分領域に通電加熱を行う電極を配置すると共に、ガラ
ス流出管の開口部に板状電極を装着して、導出時のガラ
ス温度を所要値に維持するようにしたガラス流出管の温
度制御装置において、上記板状電極は、少なくとも、ガ
ラスを受ける状態での受け型に対して、所要レベルに調
整され、保持固定されており、上記ガラス流出管の熱膨
張により負荷される応力に耐えるように、その電極接続
部の断面係数が、ガラス流出管の鉛直方向に大きくなる
形状に構成されていることを特徴とする。In order to achieve the above object, according to the present invention, when a molten glass having a required temperature is led to a mold from a glass melting container installed in a glass melting furnace through a glass outflow pipe. In order to maintain the glass temperature at the time of derivation at a required value, an electrode for conducting electric heating is arranged in a vertical region of the glass outflow pipe, and a plate electrode is attached to the opening of the glass outflow pipe. In the temperature control device for a glass outflow pipe, the plate-shaped electrode is adjusted to a required level at least with respect to the receiving mold in a state of receiving glass, and is held and fixed by the thermal expansion of the glass outflow pipe. It is characterized in that the section modulus of the electrode connecting portion is configured to increase in the vertical direction of the glass outflow pipe so as to withstand the stress applied.
【0011】[0011]
(実施の形態1)以下に、本発明に係る実施の形態の1
つを、図1ないし図3を参照しながら、具体的に説明す
る。ここで、符号1はガラス溶融炉(図示せず)に設置
したガラス溶融容器、2はガラス溶融容器1内の溶融ガ
ラスを加熱するための、外付けの電熱ヒーター、3は白
金または白金合金製のガラス流出管である。この実施の
形態では、ガラス流出管3は、鉛直方向に延び、その上
端をガラス溶融炉1の底部に連通している。(Embodiment 1) The following is a description of Embodiment 1 of the present invention.
One will be specifically described with reference to FIGS. 1 to 3. Here, reference numeral 1 is a glass melting vessel installed in a glass melting furnace (not shown), 2 is an external electric heater for heating the molten glass in the glass melting vessel 1, and 3 is made of platinum or platinum alloy It is a glass outflow pipe. In this embodiment, the glass outflow pipe 3 extends in the vertical direction, and its upper end communicates with the bottom of the glass melting furnace 1.
【0012】また、符号4はガラス流出管3の下端に開
口する開口部(流出口)、5は流出ガラス、6はこの流
出ガラス5を受ける受け型である。また、符号7、8、
9、10は、それぞれ電極であり、電極7および8、ま
た、電極9および10の間にはガラス流出管3を介し
て、直流もしくは交流の電圧が印加され、ガラス流出管
3内の溶融ガラスを加熱する。これら電極7、8の対お
よび電極9、10の対には、電源ケーブルとしてのリー
ド線(図示せず)が接続される。Reference numeral 4 is an opening (outlet) which opens at the lower end of the glass outflow pipe 3, 5 is outflow glass, and 6 is a receiving type for receiving this outflow glass 5. Also, reference numerals 7 and 8,
Reference numerals 9 and 10 denote electrodes, and a DC or AC voltage is applied between the electrodes 7 and 8 and the electrodes 9 and 10 via the glass outflow pipe 3, and the molten glass in the glass outflow pipe 3 is applied. To heat. A lead wire (not shown) as a power cable is connected to the pair of electrodes 7 and 8 and the pair of electrodes 9 and 10.
【0013】更に詳述すれば、電極9、10は、板状で
あり、ガラス流出管3の先端の開口部4(流出口)を囲
む共通の環状部を備えており、また、その共通の環状部
の両側に延びる加熱部12、12’と電極接続部13、
13’とを有し、また、各電極接続部の端末(ターミナ
ル部)14、14’に上述のリード線(図示せず)を接
続するようになっているが、この実施の形態では、少な
くとも、流出ガラスを受ける状態での受け型6に対し
て、所要レベルに位置調整され、架台(図示せず)に保
持固定されており、ガラス流出管3の熱膨張により負荷
される応力に耐えるように、その電極の断面係数が、ガ
ラス流出管3の鉛直方向に大きくなる形状に構成されて
いる(図2および図3参照)。More specifically, the electrodes 9 and 10 are plate-shaped, and are provided with a common annular portion surrounding the opening 4 (outlet) at the tip of the glass outflow pipe 3, and the common annular portion. Heating parts 12 and 12 'extending to both sides of the annular part and electrode connecting parts 13,
13 ', and the above-mentioned lead wires (not shown) are connected to the terminals (terminal portions) 14 and 14' of the respective electrode connecting portions. In this embodiment, at least The receiving mold 6 in a state of receiving the outflowing glass is adjusted to a required level, and is held and fixed on a frame (not shown) so as to withstand the stress applied by the thermal expansion of the glass outflow pipe 3. In addition, the cross-section coefficient of the electrode is configured to increase in the vertical direction of the glass outflow pipe 3 (see FIGS. 2 and 3).
【0014】例えば、電極10の断面a(ここでは、特
に、電極接続部の端末の断面)における断面係数を考慮
すると、その断面aの中立軸回りに曲げモーメントMを
受ける際の断面aに生じる最大垂直応力σは、断面係数
Zを用いると、一般にσ=M/Zで与えられる。従っ
て、ガラス流出管3が熱膨張する際に電極9、10に負
荷される応力が、断面係数の大きさによって変化するこ
とになる。なお、中立軸とは、この軸方向に沿って、曲
げモーメントMが作用する際の応力が、断面aにおいて
0となる線である。For example, considering the section modulus in the section a of the electrode 10 (here, in particular, the section of the terminal of the electrode connecting portion), it occurs in the section a when it receives the bending moment M about the neutral axis of the section a. The maximum normal stress σ is generally given by σ = M / Z using the section modulus Z. Therefore, the stress applied to the electrodes 9 and 10 when the glass outflow pipe 3 thermally expands changes depending on the magnitude of the section modulus. The neutral axis is a line along which the stress when the bending moment M acts becomes zero in the cross section a.
【0015】即ち、曲げモーメントMが同じなら、断面
係数Zが大きいほど、応力σが小さくなって、板状電極
9、10は曲がり難くなる。図示のように、板状電極の
断面を縦長にすると、水平の中立軸xと垂直の中立軸y
とでは、その断面係数が相違してくる。例えば、断面a
の横幅を1.5mm、縦幅を40mmとすれば、x軸回
りの断面係数Zx=(1.5)×(40)2/6=40
0 であり、y軸回りの断面係数Zy=(40)×
(1.5)2/6=15であって、板状電極に縦長の断
面形状を採用することが有利である。That is, when the bending moment M is the same, the larger the section modulus Z is, the smaller the stress σ is, and the plate electrodes 9 and 10 are difficult to bend. As shown in the figure, when the cross section of the plate electrode is vertically long, the horizontal neutral axis x and the vertical neutral axis y
And, the section modulus is different. For example, cross section a
If the width 1.5 mm, a vertical width and 40 mm, x-axis section modulus Zx = (1.5) × (40 ) 2/6 = 40
0, and the section modulus around the y axis Zy = (40) ×
(1.5) A 2/6 = 15, it is advantageous to employ a longitudinal cross-sectional shape in the plate electrodes.
【0016】勿論、熱膨張によって伸長したガラス流出
管3の部分は、ガラス溶融容器1の底部の接続箇所での
弾性変形で吸収しているが、この弾性変形に要する負荷
に耐える剛性が板状電極9、10に要求される訳であ
る。Of course, the portion of the glass outflow pipe 3 expanded by thermal expansion is absorbed by elastic deformation at the connection portion of the bottom of the glass melting container 1, but the rigidity is sufficient to withstand the load required for this elastic deformation. This is a requirement for the electrodes 9 and 10.
【0017】なお、実際の設計に当たっては、ガラス流
出管3の熱膨張の際の鉛直方向における板状電極9、1
0の弾性変形量が、調整された開口部4の所要レベルの
許容誤差範囲に維持されるように、上記電極の断面係数
を設定することが必要となる。In the actual design, the plate-shaped electrodes 9 and 1 in the vertical direction when the glass outflow pipe 3 is thermally expanded.
It is necessary to set the section modulus of the electrode so that the elastic deformation amount of 0 is maintained within the tolerance level of the required level of the adjusted opening 4.
【0018】このようにして、この実施の形態では、板
状電極9、10の質量増加をもたらすことなく、温度制
御の高い応答性を確保し、しかも、ガラス流出管3の熱
膨張による負荷に耐えられる剛性を確保し、使用される
ガラス材質などの違いによる温度条件の変化に係わりな
く、常温での開口部のレベル調整が行えるのである。 (実施の形態2)図4ないし図6は、本発明の第2の実
施の形態を示すもので、最初の実施の形態と相違する点
は、ガラス流出管3がその上部において水平に曲げられ
ており、この曲がり箇所3Aで、ガラス流出管3の熱膨
張による伸長量を吸収する点であり、また、ガラス流出
管3に通電する電極7、8に対して、更に、電極15を
追加し、電圧印加の領域を2ゾーンに分けている点にあ
る。そして、他の構成は、最初の実施の形態と相違して
いないので、その構成要素には、同一符号を付して、説
明を省略する。In this way, in this embodiment, high responsiveness of temperature control is ensured without increasing the mass of the plate electrodes 9 and 10, and the load due to the thermal expansion of the glass outflow pipe 3 is ensured. The rigidity that can be endured is ensured, and the level of the opening can be adjusted at room temperature regardless of changes in temperature conditions due to differences in the glass material used. (Embodiment 2) FIGS. 4 to 6 show a second embodiment of the present invention. The difference from the first embodiment is that the glass outflow pipe 3 is bent horizontally at its upper portion. This is the point where the bent portion 3A absorbs the amount of expansion due to the thermal expansion of the glass outflow pipe 3, and an electrode 15 is added to the electrodes 7 and 8 which are energized to the glass outflow pipe 3. The voltage application area is divided into two zones. Since other configurations are not different from those of the first embodiment, the same components are designated by the same reference numerals and the description thereof will be omitted.
【0019】ここでも、板状電極9、10は、ガラス流
出管3の熱膨張により負荷される応力に耐えるように、
その電極の断面係数が、ガラス流出管3の鉛直方向に大
きくなる形状に構成されている。従って、この実施の形
態においても、板状電極9、10の質量増加をもたらす
ことなく、温度制御の高い応答性を確保し、しかも、ガ
ラス流出管3の熱膨張による負荷に耐えられる剛性を確
保し、使用されるガラス材質などの違いによる温度条件
の変化に係わりなく、常温での開口部のレベル調整が行
えるのである。 (実施の形態3)図7および図8は、本発明の第3の実
施の形態を示すもので、最初の実施の形態と相違する点
は、ガラス流出管3がその上部において水平に曲げられ
ており、この曲がり箇所3Aで、ガラス流出管3の熱膨
張による伸長量を吸収する点であり、また、ガラス流出
管3に通電する電極7、8に対して、更に、電極15を
追加し、電圧印加の領域を2ゾーンに分けている点にあ
る。また、第2の実施の形態との相違は、板状電極9、
10の取り付け方向が、平面視で90度、位相をずらし
た点にある。そして、他の構成は、最初の実施の形態と
相違していないので、その構成要素には、同一符号を付
して、説明を省略する。Here, too, the plate electrodes 9 and 10 are designed to withstand the stress applied by the thermal expansion of the glass outflow pipe 3,
The cross-sectional modulus of the electrode is configured to be large in the vertical direction of the glass outflow pipe 3. Therefore, also in this embodiment, a high responsiveness of temperature control is ensured without increasing the mass of the plate-shaped electrodes 9 and 10, and moreover, a rigidity capable of withstanding a load due to thermal expansion of the glass outflow pipe 3 is secured. However, it is possible to adjust the level of the opening at room temperature regardless of changes in temperature conditions due to differences in the glass material used. (Third Embodiment) FIGS. 7 and 8 show a third embodiment of the present invention. The difference from the first embodiment is that the glass outflow pipe 3 is bent horizontally at the upper portion thereof. This is the point where the bent portion 3A absorbs the amount of expansion due to the thermal expansion of the glass outflow pipe 3, and an electrode 15 is added to the electrodes 7 and 8 which are energized to the glass outflow pipe 3. The voltage application area is divided into two zones. Further, the difference from the second embodiment is that the plate-shaped electrode 9,
The mounting direction of 10 is at a point where the phase is shifted by 90 degrees in a plan view. Since other configurations are not different from those of the first embodiment, the same components are designated by the same reference numerals and the description thereof will be omitted.
【0020】ここでも、板状電極9、10は、ガラス流
出管3の熱膨張により負荷される応力に耐えるように、
その電極の断面係数が、ガラス流出管3の鉛直方向に大
きくなる形状に構成されている。従って、この実施の形
態においても、板状電極9、10の質量増加をもたらす
ことなく、温度制御の高い応答性を確保し、しかも、ガ
ラス流出管3の熱膨張による負荷に耐えられる剛性を確
保し、使用されるガラス材質などの違いによる温度条件
の変化に係わりなく、常温での開口部のレベル調整が行
えるのである。Here, too, the plate electrodes 9 and 10 are designed to withstand the stress applied by the thermal expansion of the glass outflow pipe 3,
The cross-sectional modulus of the electrode is configured to be large in the vertical direction of the glass outflow pipe 3. Therefore, also in this embodiment, a high responsiveness of temperature control is ensured without increasing the mass of the plate-shaped electrodes 9 and 10, and moreover, a rigidity capable of withstanding a load due to thermal expansion of the glass outflow pipe 3 is secured. However, it is possible to adjust the level of the opening at room temperature regardless of changes in temperature conditions due to differences in the glass material used.
【0021】[0021]
【実施例】本発明の構成とその作用効果を明確にするた
めに、既に、図9に示している従来の板状電極を実際に
採用した場合の比較例(図10および図11を参照)と
共に、本発明の板状電極の効能を、以下に具体的、数値
的に開示する。 (実施例1)本発明の実施例1として、図1ないし図3
に示す実施の形態の構成において、ガラス流出管3は、
内径=7mm、外径=10mm、全長(ガラス溶融容器
1の底の接続箇所から開口部(流出口)4までの長さ)
=350mm、電極7、8間の距離=200mmとし、
ヒーター部12、12’の断面を、横幅=7mm、縦幅
=7mmとし、電極接続部の端末14、14’の断面
を、横幅=1.5mm、縦幅=40mmとする。また、
溶融ガラス材料には、SK12(BaO、B2O3、Si
O2 を主成分とするガラス)を用い、また、受け型6に
対する開口部4のレベルを常温で調整し、その状態で、
板状電極9、10を架台(図示せず)に保持固定する。
流出ガラスを受ける状態での、開口部4と受け型6の上
面との間隔は常温において10.0±0.1mmとす
る。EXAMPLE In order to clarify the constitution of the present invention and its function and effect, a comparative example in which the conventional plate electrode shown in FIG. 9 has been actually adopted (see FIGS. 10 and 11). At the same time, the efficacy of the plate electrode of the present invention will be specifically and numerically disclosed below. (Embodiment 1) As Embodiment 1 of the present invention, FIGS.
In the configuration of the embodiment shown in FIG.
Inner diameter = 7 mm, outer diameter = 10 mm, full length (length from the connection point at the bottom of the glass melting container 1 to the opening (outlet) 4)
= 350 mm, the distance between the electrodes 7 and 8 = 200 mm,
The cross sections of the heater parts 12 and 12 'have a width of 7 mm and a length of 7 mm, and the terminals 14 and 14' of the electrode connection part have a width of 1.5 mm and a length of 40 mm. Also,
SK12 (BaO, B 2 O 3 , Si
O 2 as a main component), the level of the opening 4 with respect to the receiving mold 6 is adjusted at room temperature, and in that state,
The plate-shaped electrodes 9 and 10 are held and fixed on a mount (not shown).
The distance between the opening 4 and the upper surface of the receiving die 6 in the state of receiving the outflowing glass is 10.0 ± 0.1 mm at room temperature.
【0022】また、ガラス流出に際しては、電極7、8
間の流出管温度を800〜1000℃に変えることで、
ガラス流出量を2〜30g/minに変化させた。この
時、ガラス溶融容器1の温度は1100℃、板状電極
9、10の共通の環状部での温度は1160℃に保持さ
れている。When the glass flows out, the electrodes 7 and 8 are used.
By changing the outflow pipe temperature between 800 ~ 1000 ℃,
The glass outflow rate was changed to 2 to 30 g / min. At this time, the temperature of the glass melting container 1 is maintained at 1100 ° C., and the temperature at the common annular portion of the plate electrodes 9 and 10 is maintained at 1160 ° C.
【0023】常温の場合に比較して、電極7、8間の流
出管温度を800〜1000℃にした場合には、流出管
3の長さは1.7〜2.2mm程、伸長されたが、これ
はガラス溶融炉1の底部の接続箇所での、弾性的な凹み
で吸収する形となり、変形箇所に損傷をもたらすことも
なく、また、この負荷に相当する応力が板状電極9、1
0に負荷され、これらに若干の弾性変形をもたらしてい
るが、しかし、板状電極9、10の断面係数が大きいた
めに、開口部4と受け型6の上面との間隔には実質的な
変化がなく、許容誤差の範囲内にある。従って、常温で
開口部4のレベル調整をしておけば、高温状態での再調
整が不要となる。When the temperature of the outflow pipe between the electrodes 7 and 8 is set to 800 to 1000 ° C., the length of the outflow pipe 3 is extended by 1.7 to 2.2 mm as compared with the case of normal temperature. However, this is in the form of being absorbed by the elastic dent at the connection point at the bottom of the glass melting furnace 1 and does not cause damage to the deformation point, and the stress corresponding to this load causes the plate-shaped electrode 9, 1
However, since the plate-shaped electrodes 9 and 10 have a large section modulus, the distance between the opening 4 and the upper surface of the receiving die 6 is substantially zero. There is no change and it is within the tolerance. Therefore, if the level of the opening 4 is adjusted at room temperature, readjustment at high temperature becomes unnecessary.
【0024】上述の板状電極9、10に代えて、図9に
示す従来型の板状電極11、11’(電気接続部の端末
14、14’の断面aについては、横幅と縦幅が本発明
の板状電極9、10とは逆の値、即ち、横幅=40m
m、縦幅=1.5mmとなっている)を用いて、上述と
同じ条件を与えた場合に、流出管温度を常温から800
〜1000℃に温度が変化すると、板状電極11、1
1’が、ガラス流出管3の熱膨張にともなう伸長によ
り、電極接続部13、13’付近で、下方に押し曲げら
れ、ガラス流出管の開口部4と受け型6の上面との間隔
が、その設定値である10.0±0.1mmより短くな
ってしまった。その結果、このような高温度の条件で、
再度、開口部4の位置レベル調整が必要となった。 (実施例2)この実施例では、板状電極9、10の電極
接続部の端末14、14’の断面aについて、横幅=
2.3mm、縦幅=26mmとし、他の条件は、実施例
1と同様にした。この場合の断面係数を計算すると、水
平方向のx軸回りの断面係数は、Zx=(2.3)×
(26)2/6=259、鉛直方向のy軸回りの断面係
数は、Zy=(26)×(2.3)2/6=23とな
り、断面係数が大きい。Instead of the above-mentioned plate-shaped electrodes 9 and 10, the conventional plate-shaped electrodes 11 and 11 'shown in FIG. 9 (the cross-section a of the terminals 14 and 14' of the electrical connection portion has a horizontal width and a vertical width). A value opposite to that of the plate electrodes 9 and 10 of the present invention, that is, width = 40 m
m, vertical width = 1.5 mm) and the same conditions as above are applied, the temperature of the outflow pipe is changed from room temperature to 800
When the temperature changes to ˜1000 ° C., the plate electrodes 11, 1
1'is pressed and bent downward near the electrode connection portions 13 and 13 'due to the expansion accompanying the thermal expansion of the glass outflow pipe 3, and the distance between the opening 4 of the glass outflow pipe and the upper surface of the receiving mold 6 becomes It became shorter than the set value of 10.0 ± 0.1 mm. As a result, under such high temperature conditions,
Again, it became necessary to adjust the position level of the opening 4. (Embodiment 2) In this embodiment, with respect to the cross section a of the terminals 14 and 14 'of the electrode connecting portions of the plate electrodes 9 and 10, the lateral width =
2.3 mm, vertical width = 26 mm, and other conditions were the same as in Example 1. When the section modulus in this case is calculated, the section modulus around the horizontal x-axis is Zx = (2.3) ×
(26) 2/6 = 259, and the section modulus around the vertical y axis is Zy = (26) × (2.3) 2/6 = 23, which is a large section modulus.
【0025】その結果、実施例1と同様に、板状電極
9、10の断面係数が大きいために、開口部4と受け型
6の上面との間隔には実質的な変化がなく、許容誤差の
範囲内にある。従って、常温で開口部4のレベル調整を
しておけば、高温状態での再調整が不要となる。As a result, as in the first embodiment, since the plate-shaped electrodes 9 and 10 have large section modulus, there is substantially no change in the distance between the opening 4 and the upper surface of the receiving die 6, and the tolerance is small. Is within the range of. Therefore, if the level of the opening 4 is adjusted at room temperature, readjustment at high temperature becomes unnecessary.
【0026】上述の板状電極9、10に代えて、図9に
示す従来型の板状電極11、11’(電極接続部の端末
14、14’の断面aについては、横幅と縦幅が本発明
の板状電極9、10とは逆の値、即ち、横幅=26m
m、縦幅=2.3mmとなっている)を用いて、上述と
同じ条件を与えた場合に、流出管温度を常温から800
〜1000℃に温度が変化すると、板状電極11、1
1’が、ガラス流出管3の熱膨張にともなう伸長によ
り、電極接続部13、13’付近で、下方に押し曲げら
れ、ガラス流出管の開口部4と受け型6の上面との間隔
が、その設定値である10.0±0.1mmより短くな
ってしまった。その結果、このような高温度の条件で、
再度、開口部4の位置レベル調整が必要となった。 (実施例3)本発明の実施例3として、図4ないし図6
に示す実施の形態の構成において、ガラス流出管3は、
内径=6mm、外径=8.5mm、全長(ガラス溶融容
器1の接続箇所から開口部(流出口)4までの長さ)=
600mm、電極7、15および電極15、8間の距離
=300mmおよび200mmとし、ヒーター部12、
12’の断面を、横幅=6mm、縦幅=6mmとし、電
極接続部の端末14、14’の断面を、横幅=2mm、
縦幅=30mmとする。また、溶融ガラス材料には、L
aK12(B2O3、La2O3を主成分とするガラス)を
用い、また、受け型6に対する開口部4のレベルを常温
で調整し、その状態で、板状電極9、10を架台(図示
せず)に保持固定する。流出ガラスを受ける状態での、
開口部4と受け型6の上面との間隔は常温において7.
0±0.1mmとする。Instead of the above-mentioned plate-shaped electrodes 9 and 10, the conventional plate-shaped electrodes 11 and 11 'shown in FIG. 9 (the cross-section a of the terminals 14 and 14' of the electrode connecting portion have a horizontal width and a vertical width). A value opposite to that of the plate electrodes 9 and 10 of the present invention, that is, width = 26 m
m, vertical width = 2.3 mm) and the same conditions as above are applied, the temperature of the outflow pipe is changed from room temperature to 800
When the temperature changes to ˜1000 ° C., the plate electrodes 11, 1
1'is pressed and bent downward near the electrode connection portions 13 and 13 'due to the expansion accompanying the thermal expansion of the glass outflow pipe 3, and the distance between the opening 4 of the glass outflow pipe and the upper surface of the receiving mold 6 becomes It became shorter than the set value of 10.0 ± 0.1 mm. As a result, under such high temperature conditions,
Again, it became necessary to adjust the position level of the opening 4. (Embodiment 3) As Embodiment 3 of the present invention, FIGS.
In the configuration of the embodiment shown in FIG.
Inner diameter = 6 mm, outer diameter = 8.5 mm, full length (length from the connection point of the glass melting container 1 to the opening (outlet) 4) =
600 mm, the distance between the electrodes 7, 15 and the electrodes 15, 8 = 300 mm and 200 mm, and the heater unit 12,
The cross section of 12 'has a horizontal width of 6 mm and a vertical width of 6 mm, and the cross section of the terminals 14, 14' of the electrode connecting portion has a horizontal width of 2 mm.
The vertical width is 30 mm. In addition, for the molten glass material, L
aK12 (glass containing B 2 O 3 and La 2 O 3 as main components) is used, and the level of the opening 4 with respect to the receiving mold 6 is adjusted at room temperature. It is held and fixed to (not shown). While receiving the spilled glass,
The space between the opening 4 and the upper surface of the receiving mold 6 is 7.
It is set to 0 ± 0.1 mm.
【0027】また、ガラス流出に際しては、電極7、8
間の流出管温度を700〜950℃に変えることで、ガ
ラス流出量を0.5〜40g/minに変化させた。こ
の時、ガラス溶融容器1の温度は1000℃、板状電極
9、10の共通の環状部での温度は1080℃に保持さ
れている。When the glass flows out, the electrodes 7 and 8 are used.
The glass outflow rate was changed to 0.5 to 40 g / min by changing the outflow pipe temperature to 700 to 950 ° C. At this time, the temperature of the glass melting container 1 is maintained at 1000 ° C., and the temperature at the common annular portion of the plate electrodes 9, 10 is maintained at 1080 ° C.
【0028】常温の場合に比較して、電極7、15間お
よび電極15、8間の流出管温度を700〜950℃に
した場合には、流出管3の長さは図4の右側へ1〜1.
4mm程、また、鉛直下向きに2.4〜3.3mm程、
伸長されたが、これはガラス流出管3の曲がり箇所3A
での、弾性的な撓みで吸収する形となり、変形箇所に損
傷をもたらすこともなく、また、この負荷に相当する応
力が板状電極9、10に負荷され、これらに若干の弾性
変形をもたらしているが、しかし、板状電極9、10の
断面係数が大きいために、開口部4と受け型6の上面と
の間隔には実質的な変化がなく、許容誤差の範囲内にあ
る。従って、常温で開口部4のレベル調整をしておけ
ば、高温状態での再調整が不要となる。When the temperature of the outflow pipe between the electrodes 7 and 15 and between the electrodes 15 and 8 is set to 700 to 950 ° C., the length of the outflow pipe 3 is 1 toward the right side of FIG. ~ 1.
About 4 mm, or about 2.4 to 3.3 mm vertically downward,
It has been stretched, but this is the bent portion 3A of the glass outflow pipe 3.
In this case, the shape is absorbed by elastic bending, and the deformed portion is not damaged, and the stress corresponding to this load is applied to the plate-shaped electrodes 9 and 10 to cause a slight elastic deformation. However, since the plate-shaped electrodes 9 and 10 have a large section modulus, there is substantially no change in the distance between the opening 4 and the upper surface of the receiving die 6, which is within the allowable error range. Therefore, if the level of the opening 4 is adjusted at room temperature, readjustment at high temperature becomes unnecessary.
【0029】これに引き替え、上述の板状電極9、10
に代えて、図9に示す従来型の板状電極11、11’
(電極接続部の端末14、14’の断面aについては、
横幅と縦幅が本発明の板状電極9、10とは逆の値、即
ち、横幅=30mm、縦幅=2mmとなっている)を用
いて、上述の発明の実施例と同じ条件を与えた場合(図
10および図11を参照)に、流出管温度を常温から7
00〜950℃に温度が変化すると、板状電極11、1
1’が、ガラス流出管3の熱膨張にともなう伸長によ
り、電極接続部13、13’付近で、下方に押し曲げら
れ、ガラス流出管の開口部4と受け型6の上面との間隔
が、その設定値である7.0±0.1mmより短くなっ
てしまった。その結果、このような高温度の条件で、再
度、開口部4の位置レベル調整が必要となった。 (実施例4)なお、更に別の実施例として、図7および
図8に示す実施の形態で、実施例3と同じ具体的数値を
当てはめた場合、その成果は、実施例3の場合と全く同
様であった。In exchange for this, the plate electrodes 9 and 10 described above are used.
Instead of the conventional plate-shaped electrodes 11 and 11 'shown in FIG.
(For the cross section a of the terminals 14 and 14 'of the electrode connecting portion,
The width and height are opposite to those of the plate electrodes 9 and 10 of the present invention, that is, the width is 30 mm and the height is 2 mm. In case (see Fig. 10 and Fig. 11), the temperature of the outflow pipe is changed from room temperature to 7
When the temperature changes from 00 to 950 ° C, the plate electrodes 11 and 1
1'is pressed and bent downward near the electrode connection portions 13 and 13 'due to the expansion accompanying the thermal expansion of the glass outflow pipe 3, and the distance between the opening 4 of the glass outflow pipe and the upper surface of the receiving mold 6 becomes It became shorter than the set value of 7.0 ± 0.1 mm. As a result, it becomes necessary to adjust the position level of the opening 4 again under such a high temperature condition. (Fourth Embodiment) As yet another embodiment, when the same concrete numerical values as in the third embodiment are applied in the embodiment shown in FIGS. 7 and 8, the result is completely different from that in the third embodiment. It was similar.
【0030】[0030]
【発明の効果】本発明は、以上詳述したようになり、ガ
ラス溶融炉に設置したガラス溶融容器からガラス流出管
を介して所要温度の溶融ガラスを受け型に導出する際
に、ガラス流出管の鉛直方向に延びる部分領域に通電加
熱を行う電極を配置すると共に、ガラス流出管の開口部
に板状電極を装着して、導出時のガラス温度を所要値に
維持するようにしたガラス流出管の温度制御装置におい
て、上記板状電極は、少なくとも、ガラスを受ける状態
での受け型に対して、所要レベルに調整され、保持固定
されており、上記ガラス流出管の熱膨張により負荷され
る応力に耐えるように、その電極の断面係数が、ガラス
流出管の鉛直方向に大きくなる形状に構成されている。The present invention has been described in detail above, and when a molten glass having a required temperature is discharged from a glass melting vessel installed in a glass melting furnace to a mold through a glass outflow tube, the glass outflow tube is used. A glass outflow tube is provided with an electrode for electrically heating in a vertically extending partial area of the glass outflow tube, and a plate electrode is attached to the opening of the glass outflow tube to maintain the glass temperature at the time of derivation at a required value. In the temperature control device, the plate electrode is adjusted to a required level at least with respect to the receiving mold in a state of receiving glass, and is held and fixed, and the stress applied by the thermal expansion of the glass outflow pipe. In order to withstand the above, the cross-sectional modulus of the electrode is configured to increase in the vertical direction of the glass outflow pipe.
【0031】従って、板状電極の質量増加をもたらすこ
となく、温度制御の高い応答性を確保し、しかも、ガラ
ス流出管の熱膨張による負荷に耐えられる剛性を確保
し、ガラス材質などの違いによる温度条件の変化に係わ
りなく、常温での開口部のレベル調整が行える効果が得
られる。Therefore, a high responsiveness of temperature control is ensured without increasing the mass of the plate-like electrode, and a rigidity capable of withstanding the load due to the thermal expansion of the glass outflow pipe is ensured. An effect that the level of the opening can be adjusted at room temperature regardless of changes in temperature conditions can be obtained.
【図1】本発明の実施の形態の1つに係わる温度制御装
置の概略構成図である。FIG. 1 is a schematic configuration diagram of a temperature control device according to an embodiment of the present invention.
【図2】同じく、要部の斜視図である。FIG. 2 is a perspective view of a main part, similarly.
【図3】同じく、図1の断面aを示す図である。FIG. 3 is likewise a view showing a section a of FIG.
【図4】本発明の第2の実施の形態を示す概略正面図で
ある。FIG. 4 is a schematic front view showing a second embodiment of the present invention.
【図5】同じく、概略側面図である。FIG. 5 is likewise a schematic side view.
【図6】同じく、図4の断面aを示す図である。FIG. 6 is likewise a view showing a section a of FIG.
【図7】本発明の更に別の形態を示す概略正面図であ
る。FIG. 7 is a schematic front view showing still another embodiment of the present invention.
【図8】同じく、概略側面図である。FIG. 8 is likewise a schematic side view.
【図9】従来例の要部を示す概略斜視図である。FIG. 9 is a schematic perspective view showing a main part of a conventional example.
【図10】同じく、概略正面図である。FIG. 10 is likewise a schematic front view.
【図11】同じく、概略側面図である。FIG. 11 is likewise a schematic side view.
1 ガラス溶融容器 2 ヒーター 3 ガラス流出管 3A 曲がり箇所 4 開口部 5 流出ガラス 6 受け型 7、8、15 電極 9、10 板状電極 11、11’ 板状電極 12、12’ ヒーター部 13、13’ 電極接続部 14、14’ 端末 DESCRIPTION OF SYMBOLS 1 Glass melting container 2 Heater 3 Glass outflow pipe 3A Bent part 4 Opening 5 Outflow glass 6 Receiving type 7, 8, 15 Electrode 9, 10 Plate electrode 11, 11 'Plate electrode 12, 12' Heater part 13, 13 'Electrode connection 14, 14' Terminal
───────────────────────────────────────────────────── フロントページの続き (72)発明者 執行 勇 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isamu Isamu 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.
Claims (2)
からガラス流出管を介して所要温度の溶融ガラスを受け
型に導出する際に、ガラス流出管の鉛直方向に延びる部
分領域に通電加熱を行う電極を配置すると共に、ガラス
流出管の開口部に板状電極を装着して、導出時のガラス
温度を所要値に維持するようにしたガラス流出管の温度
制御装置において、上記板状電極は、少なくとも、ガラ
スを受ける状態での受け型に対して、所要レベルに調整
され、保持固定されており、上記ガラス流出管の熱膨張
により負荷される応力に耐えるように、その電極の断面
係数が、ガラス流出管の鉛直方向に大きくなる形状に構
成されていることを特徴とするガラス流出管の温度制御
装置。1. When a molten glass having a required temperature is discharged from a glass melting container installed in a glass melting furnace into a receiving mold through a glass outflow pipe, electric heating is performed on a partial region extending in the vertical direction of the glass outflow pipe. With the arrangement of electrodes, the plate-shaped electrode is attached to the opening of the glass outflow pipe, and in the temperature control device for the glass outflow pipe, which is configured to maintain the glass temperature at the time of derivation at a required value, the plate-shaped electrode is At least, with respect to the receiving mold in the state of receiving the glass, it is adjusted to a required level, is held and fixed, and the sectional modulus of the electrode is so as to withstand the stress applied by the thermal expansion of the glass outflow pipe, A glass outflow pipe temperature control device, characterized in that the glass outflow pipe has a shape that increases in the vertical direction.
おける上記板状電極の弾性変形量が、調整された上記所
要レベルの許容誤差範囲に維持されるように、上記電極
の断面係数を設定していることを特徴とする請求項1に
記載のガラス流出管の温度制御装置。2. The cross-section coefficient of the electrode is adjusted so that the elastic deformation amount of the plate electrode in the vertical direction during thermal expansion of the glass outflow pipe is maintained within the adjusted tolerance level of the required level. The temperature control device for a glass outflow pipe according to claim 1, wherein the temperature control device is set.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59196A JPH09188527A (en) | 1996-01-08 | 1996-01-08 | Temperature control device of glass discharge pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59196A JPH09188527A (en) | 1996-01-08 | 1996-01-08 | Temperature control device of glass discharge pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09188527A true JPH09188527A (en) | 1997-07-22 |
Family
ID=11477983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59196A Pending JPH09188527A (en) | 1996-01-08 | 1996-01-08 | Temperature control device of glass discharge pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09188527A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100387534C (en) * | 2004-10-21 | 2008-05-14 | Hoya株式会社 | Glass discharge tube, glass shaping body and optical element production |
JP2016115620A (en) * | 2014-12-17 | 2016-06-23 | 日本電気硝子株式会社 | Exothermic body and manufacturing method of the same |
CN112645564A (en) * | 2021-01-18 | 2021-04-13 | 河南光远新材料股份有限公司 | Overflow device used on 5G low-dielectric glass fiber kiln |
CN114477720A (en) * | 2022-02-14 | 2022-05-13 | 河北光兴半导体技术有限公司 | Molten glass stirring barrel and molten glass discharging method |
-
1996
- 1996-01-08 JP JP59196A patent/JPH09188527A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100387534C (en) * | 2004-10-21 | 2008-05-14 | Hoya株式会社 | Glass discharge tube, glass shaping body and optical element production |
JP2016115620A (en) * | 2014-12-17 | 2016-06-23 | 日本電気硝子株式会社 | Exothermic body and manufacturing method of the same |
CN112645564A (en) * | 2021-01-18 | 2021-04-13 | 河南光远新材料股份有限公司 | Overflow device used on 5G low-dielectric glass fiber kiln |
CN114477720A (en) * | 2022-02-14 | 2022-05-13 | 河北光兴半导体技术有限公司 | Molten glass stirring barrel and molten glass discharging method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101034368B1 (en) | Heating apparatus including electrodes for melt conduction heating | |
CN1146934C (en) | Thermal protector | |
EP0846940B1 (en) | Method and device for effecting temperature compensation in load cell type load detector | |
JP5620797B2 (en) | Method and apparatus for controlling heating during glass sheet manufacture | |
EP3377452B1 (en) | Method and apparatuses for forming glass ribbons | |
KR20110002016A (en) | Nickel-containing flange for use in direct resistive heating of platinum-containing vessels | |
KR102398012B1 (en) | Methods and apparatuses for regulating glass flow into glass forming apparatuses | |
CA1263537A (en) | Flow control system for a glass melter | |
US4155731A (en) | Fiber forming bushing construction | |
JPH09188527A (en) | Temperature control device of glass discharge pipe | |
EP1268353B1 (en) | A bushing including a terminal ear and a method of manufacturing the bushing | |
UA80324C2 (en) | Reinforcing device for a spinneret and spinneret for the glass filaments production | |
JP4741217B2 (en) | Glass melt refining equipment | |
JP3675699B2 (en) | Anti-fog glass heating structure | |
JPH03152390A (en) | Method and device for temperature control of fusion furnace | |
SE509760C2 (en) | Device at a pressure vessel for hot isostatic pressing | |
JP2530750Y2 (en) | Heater panel | |
JP3046694B2 (en) | Molten glass outflow equipment | |
JP2956575B2 (en) | Resistance heating element for growing single crystals | |
JPH0427174B2 (en) | ||
CN222359514U (en) | A welding steel plate heating device | |
JPS621336B2 (en) | ||
JPH0133625Y2 (en) | ||
JPH0781944A (en) | Temperature controller for fused glass | |
JP2025509581A (en) | Directly Heated Edge Director Assembly |