[go: up one dir, main page]

JPH09187942A - Ink-jet head and its manufacture - Google Patents

Ink-jet head and its manufacture

Info

Publication number
JPH09187942A
JPH09187942A JP184496A JP184496A JPH09187942A JP H09187942 A JPH09187942 A JP H09187942A JP 184496 A JP184496 A JP 184496A JP 184496 A JP184496 A JP 184496A JP H09187942 A JPH09187942 A JP H09187942A
Authority
JP
Japan
Prior art keywords
layer
heat generating
head
resistance layer
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP184496A
Other languages
Japanese (ja)
Inventor
Kenji Hasegawa
研二 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP184496A priority Critical patent/JPH09187942A/en
Publication of JPH09187942A publication Critical patent/JPH09187942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ink-jet head that can be produced by simple processes without the need of an additional protective layer other than an anodic oxidation film on a resistance heating layer of a heating part and is excellent in thermal efficiency, and its manufacturing method. SOLUTION: When a head is energized, ink is foamed and spouted by the heat energy generated by power supply. A resistance heating layer 3 substantially made of an alloy of Ta and Al, and the main ingredient of an electrode layer 4 to supply power to a heating part is Al. At least the surface layers of the resistance heating layer 3 of the heat generation part and the electrode layer 4 near the resistance heating layer 3 are covered with an insulating layer formed by anodic oxidation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、バブルジェット方
式において、量産性、信頼性に優れ、全体の消費電力が
低く、入力信号に対する応答性に優れ、特にノズル数の
多い、高速記録に適したバルブジェット記録ヘッド及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bubble jet system, which is excellent in mass productivity and reliability, has low overall power consumption, and has excellent responsiveness to an input signal, and is particularly suitable for high speed recording with a large number of nozzles. The present invention relates to a valve jet recording head and a manufacturing method thereof.

【0002】[0002]

【従来の技術】バブルジェット方式は、高速高密度印字
が可能で、かつカラー化、コンパクト化に適しており、
近年とみに注目を集めている。この方式においては、記
録用液体(すなわちインク等)を熱エネルギーの利用で
吐出させるため、熱を液体に作用させる熱作用部が存在
する。この熱作用部及びその近傍の構成は、従来のいわ
ゆるサーマルヘッドの構成と類似している。しかしなが
ら、液体に直接接する点や、インクの発泡、消泡の繰り
返しによる機械的衝撃(キャビテーションエロージョ
ン)に曝される点、さらに数マイクロ秒という短い時間
に1000℃近い温度の上昇、下降に曝される点で、サ
ーマルヘッドとは大きく異なる。そのため、従来のバブ
ルジェットヘッドにおいては、図5に示すように、発熱
抵抗体や電極上に、例えばSiO2 ,SiC,Si3
4 等による酸化及び電食防止兼電気絶縁層と、その上に
Ta等の耐キャビテーションエロージョン層とを設ける
構造とし、熱作用部及びその近傍を保護しているのが一
般的である。
2. Description of the Related Art The bubble jet method is capable of high-speed, high-density printing, and is suitable for colorization and compactness.
In recent years, it has attracted attention. In this method, since the recording liquid (that is, ink or the like) is ejected by utilizing the thermal energy, there is a heat acting portion that applies heat to the liquid. The structure of the heat acting portion and its vicinity is similar to that of a conventional so-called thermal head. However, it is exposed to direct contact with liquids, mechanical shock (cavitation erosion) due to repeated ink bubbling and defoaming, and is exposed to temperature rises and falls near 1000 ° C in a short time of a few microseconds. It is very different from the thermal head. Therefore, in the conventional bubble jet head, as shown in FIG. 5, for example, SiO 2 , SiC, Si 3 N is formed on the heating resistor or the electrode.
It is general that the heat acting part and its vicinity are protected by a structure in which an oxidation and electrolytic corrosion preventing and electrical insulating layer due to 4 etc. and an anti-cavitation erosion layer such as Ta are provided thereon.

【0003】前述のような構成のバブルジェットヘッド
では、耐久性等の点で実用上満足のいくものが得られて
いるが、この場合、SiO2 等の絶縁性保護膜は、発熱
抵抗体と同時に電極をインクによる電食等から保護しな
ければならない。この保護膜は、十分に厚くすればその
保護特性が向上するが、一方で発熱抵抗体からインクへ
の熱伝達効率が低下して消費電力が増大したり、保護膜
成膜時の所要時間が増加してスループットが低下する等
の問題が生じ、逆に薄くすれば熱効率やスループットは
向上するが、ピンホール等が増加したり、特に電極等の
エッジ部のカバレッジが悪化して充分な保護機能が得ら
れなくなるという、いわゆるトレードオフの関係にある
問題点を有している。また、高速化のために望まれるノ
ズル数の多いヘッドでは、保護膜の覆うべき面積が増加
し、保護膜の欠陥による歩留まりの低下が大きな問題と
なる。
The bubble jet head having the above-described structure has been practically satisfactory in terms of durability and the like. In this case, the insulating protective film such as SiO 2 is used as a heating resistor. At the same time, the electrodes must be protected from electrolytic corrosion caused by ink. If this protective film is made sufficiently thick, its protective characteristics are improved, but on the other hand, the heat transfer efficiency from the heating resistor to the ink is reduced, power consumption is increased, and the time required for forming the protective film is increased. If it is thinned, thermal efficiency and throughput will be improved, but pinholes will increase and the coverage of the edge part of the electrodes will deteriorate and the protection function will be sufficient. However, there is a problem in a so-called trade-off relationship that is not obtained. Further, in a head having a large number of nozzles, which is desired for speeding up, the area to be covered by the protective film is increased, and a decrease in yield due to defects in the protective film is a serious problem.

【0004】この問題を一部解決するために、熱発生部
の発熱抵抗層上のみ薄い保護膜を形成し、電極上は別途
厚い保護膜を形成するという作成方法も考えられている
が、この方法では工程が複雑化し、またスループットの
問題は解決されない。
In order to partially solve this problem, a method of forming a thin protective film only on the heat generating resistance layer of the heat generating portion and separately forming a thick protective film on the electrodes has been considered. The method complicates the process and does not solve the throughput problem.

【0005】また、熱発生部の発熱抵抗層に保護膜を必
要としない構成のバブルジェットヘッドも考案されてい
るが、この場合にも電極には保護膜が必要であり、やは
りスループットの問題は十分に解決されない。
Further, a bubble jet head having a constitution in which a protective film is not required for the heat generating resistance layer of the heat generating portion has been devised, but in this case as well, a protective film is required for the electrodes, and the problem of throughput is still a problem. Not fully resolved.

【0006】特開昭59−143650、特開昭60−
109850等に記載のバブルジェットヘッドは、発熱
抵抗層と電極のパターンを形成した後に、それらの表層
を陽極酸化等の方法によって変質することによって保護
層を形成するというものである。この方法は、保護膜を
発熱抵抗層や電極の材料自身の変質によって形成するの
で、薄くてもピンホール等の欠陥の少ない保護膜が容易
に得られる。そのため、熱的な効率の優れたバブルジェ
ットヘッドを形成する方法として優れたものである。し
かしながら、この場合でも、保護層が発熱抵抗層の酸化
物のみであると、熱発生部の耐酸化性、耐熱性は必ずし
も十分ではなく、高い耐久性を得るためには、さらにS
iO2 、SiN等、酸素遮断性の高い保護膜を追加する
必要がある。もし、これらの追加保護膜が不要なインク
ジェットヘッドが得られるならば、さらに工程を簡素化
し、熱効率を向上することができる。
JP-A-59-143650 and JP-A-60-
The bubble jet head described in, for example, 109850 is that a protective layer is formed by forming a pattern of a heating resistance layer and an electrode and then modifying the surface layer of the heating resistance layer and the electrode by a method such as anodic oxidation. In this method, since the protective film is formed by the alteration of the material of the heating resistance layer or the electrode itself, a protective film having few defects such as pinholes can be easily obtained even if it is thin. Therefore, it is an excellent method for forming a bubble jet head with excellent thermal efficiency. However, even in this case, if the protective layer is only the oxide of the heating resistance layer, the oxidation resistance and heat resistance of the heat generating portion are not always sufficient, and in order to obtain high durability, S
It is necessary to add a protective film having a high oxygen blocking property such as iO 2 and SiN. If an inkjet head that does not require these additional protective films can be obtained, the process can be further simplified and the thermal efficiency can be improved.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、熱発
生部において、発熱抵抗層の陽極酸化被膜以外の保護層
を必要としない、工程の簡単な、かつ熱効率にも優れた
バブルジェットヘッドを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a bubble jet head which does not require a protective layer other than an anodic oxide coating of a heat generating resistance layer in a heat generating portion, has a simple process and is excellent in thermal efficiency. To provide.

【0008】[0008]

【課題を解決するための手段】前記目的は以下の手段に
よって達成される。すなわち、本発明は、通電によって
発生する熱エネルギーによりインクを発泡吐出させるイ
ンクジェット方式のインクジェットヘッドにおいて、下
記(a)〜(c)の特徴、(a)発熱抵抗層が、実質的
にTaとAlの合金からなること、(b)発熱部に給電
するための電極層がAlを主成分とすること、(c)少
なくとも熱発生部の発熱抵抗層及びその近傍の電極層の
表層が陽極酸化によって形成された絶縁層によって被覆
されていること、を有することを特徴とするインクジェ
ットヘッドを提案するものであり、発熱抵抗層を構成す
る成分の比率がTa 37〜81原子%であり、Al
19〜63原子%であること、前記電極上に有機保護層
を設けたことを含む。
The above object is achieved by the following means. That is, according to the present invention, in an inkjet type inkjet head that foams and ejects ink by thermal energy generated by energization, the following features (a) to (c), (a) the heating resistance layer is substantially Ta and Al. (B) the electrode layer for supplying power to the heat generating portion contains Al as a main component, and (c) at least the heat generating resistance layer of the heat generating portion and the surface layer of the electrode layer in the vicinity thereof are anodized. An inkjet head characterized in that it is covered with a formed insulating layer, wherein the ratio of the components constituting the heating resistance layer is Ta 37 to 81 atomic%, and Al
It is from 19 to 63 atomic%, including that an organic protective layer is provided on the electrode.

【0009】また、本発明はインクジェット方式のイン
クジェットヘッドの製造方法において、発熱抵抗層を実
質的にTaとAlとからなる合金で構成すると共に該発
熱抵抗層上にAlを主成分とする電極層を形成し、少な
くとも熱発生部の発熱抵抗層及びその近傍の電極層の表
層を陽極酸化によって形成された絶縁層によって被覆す
ることを特徴とするインクジェットヘッドの製造方法を
提案するものである。
Further, the present invention is a method for manufacturing an ink jet head of an ink jet system, wherein the heat generating resistance layer is made of an alloy substantially consisting of Ta and Al, and an electrode layer containing Al as a main component is formed on the heat generating resistance layer. The present invention proposes a method for manufacturing an ink jet head, characterized in that at least the heat generating resistance layer of the heat generating portion and the surface layer of the electrode layer in the vicinity thereof are covered with an insulating layer formed by anodic oxidation.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の好
ましい態様を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0011】図1(a)は、本発明のヘッドの作成にお
いて発熱抵抗層と電極層を成膜し、パターニングを終え
た段階でのヘッドの一部、熱発生部近傍の平面図であ
り、(b)は(a)のA−A’線での断面図である。図
中1は支持体であり、Si,Al,ステンレス、ガラ
ス、セラミクス等公知の基板材料を用いることができ
る。通常は熱伝導率の高い材料が好ましい。図中2は、
発熱抵抗層で発生した熱を効率よくインクへ伝えるため
の下部層である。SiO2 等、絶縁性があって熱伝導率
が小さく、かつ発熱抵抗体の発生する熱に耐える材料が
用いられる。図中3は、発熱抵抗層であり、本発明の特
徴の1つは、この発熱抵抗層の材料としてTaとAlの
合金を用いることにある。組成の好ましい比率はTa
37〜81原子%、Al 19〜63原子%であり、こ
の組成範囲を外れると十分な耐久性が得られない。図中
4は電極層であり、本発明の2つ目の特徴は、この電極
Alを主成分とする材料によって形成することにある。
これは、純Alでもよいし、いわゆるバリアー型陽極酸
化被膜の形成を妨げず、比抵抗を高くしてしまうことが
なければAlに他の物質が混合されていても構わない。
電極層を陽極酸化によって安定な皮膜が形成可能な他の
金属を用いることも可能であるが、その場合には比抵抗
が高くなってあまり実用的ではない。
FIG. 1 (a) is a plan view of a part of the head and the vicinity of the heat generating portion at the stage when the heating resistance layer and the electrode layer are formed and patterning is completed in the production of the head of the present invention. (B) is sectional drawing in the AA 'line of (a). In the figure, 1 is a support, and a known substrate material such as Si, Al, stainless steel, glass, or ceramics can be used. In general, a material having high thermal conductivity is preferable. 2 in the figure
This is a lower layer for efficiently transmitting the heat generated in the heating resistance layer to the ink. A material such as SiO 2 having an insulating property, a low thermal conductivity and withstanding the heat generated by the heating resistor is used. Reference numeral 3 in the drawing is a heating resistance layer, and one of the features of the present invention is that an alloy of Ta and Al is used as the material of the heating resistance layer. The preferable ratio of the composition is Ta
It is 37 to 81 atomic% and Al is 19 to 63 atomic%, and if it deviates from this composition range, sufficient durability cannot be obtained. Reference numeral 4 in the drawing denotes an electrode layer, and the second feature of the present invention is that the electrode is formed of a material containing Al as a main component.
This may be pure Al, or other substance may be mixed with Al as long as it does not hinder the formation of a so-called barrier type anodic oxide film and does not increase the specific resistance.
It is possible to use other metals capable of forming a stable film on the electrode layer by anodic oxidation, but in that case, the specific resistance becomes high, which is not very practical.

【0012】図2(a),(b)は、図1の状態のヘッ
ドに本発明の第3の特徴である陽極酸化処理を行い、発
熱抵抗層及び電極層上に陽極酸化皮膜を形成した状態を
示す。この陽極酸化処理は、Alにバリア型酸化皮膜を
形成する公知の方法が使用できる。陽極酸化の電圧によ
って酸化皮膜の膜厚を制御することができるが、この電
圧が低過ぎると酸化皮膜が薄くて十分な保護機能が得ら
れず、高すぎると陽極酸化処理中に絶縁破壊が生じた
り、酸化膜が厚くなって熱効率が低下する。この陽極酸
化処理の際に、電極とヘッドの駆動系とを連結する部分
には、絶縁層が形成されぬようフォトレジスト等によっ
てマスクをしておく必要がある。この陽極酸化処理によ
る絶縁皮膜の形成は、発熱抵抗層や電極層自体を変質す
るため、ウェット処理であることとも関連して、薄くて
もピンホールのない絶縁層を得ることが容易であり、特
にノズル数の多い面積の大きなヘッドの作成に適し、さ
らに、装置も安価で、スループットの点でも望ましい、
非常に優れた方法と言うことができる。この方法自体
は、先述のように特公昭59−143650等に既に記
載があるが、本発明者らは、特にTaとAlの合金を陽
極酸化して得られる酸化皮膜がバブルジェットの熱発生
部に高い耐久性を与えることを見いだしたものである。
2 (a) and 2 (b), the head in the state of FIG. 1 is anodized, which is the third feature of the present invention, to form an anodized film on the heating resistance layer and the electrode layer. Indicates the status. For this anodic oxidation treatment, a known method of forming a barrier type oxide film on Al can be used. The thickness of the oxide film can be controlled by the anodizing voltage, but if this voltage is too low, the oxide film is too thin to provide sufficient protection, and if it is too high, dielectric breakdown occurs during anodizing. Or, the oxide film becomes thick and the thermal efficiency decreases. During this anodic oxidation treatment, it is necessary to mask the portion connecting the electrode and the drive system of the head with a photoresist or the like so that the insulating layer is not formed. Since the formation of the insulating film by this anodizing treatment deteriorates the heat generating resistance layer and the electrode layer itself, it is easy to obtain a thin insulating layer having no pinholes in connection with the wet treatment. Especially suitable for creating a large head with a large number of nozzles. Furthermore, the device is inexpensive and desirable in terms of throughput.
It can be said to be a very good method. This method itself has already been described in Japanese Examined Patent Publication No. 59-143650 and the like, but the present inventors have found that an oxide film obtained by anodizing an alloy of Ta and Al has a bubble jet heat generating portion. It has been found to give high durability to.

【0013】この段階で既にバブルジェットヘッドの基
板部分として使用可能ではあるが、より望ましい形態と
して、電極部分に有機保護層を設けることにより、さら
に電極部分の耐食性、信頼性を向上することができる。
有機保護層は、塗布によって、しかも比較的低温(〜3
50℃程度)形成することが可能なため、真空成膜が必
要なSiO2 ,SiN等の無機絶縁膜に比べて、コス
ト、スループットの点で有利である。しかし、もし、A
lを主成分とした電極が、本発明のように陽極酸化皮膜
によって保護されておらず、有機保護膜のみの被覆で
は、電極はインクと接する部分で容易に腐食してしまい
実用となり得ない。有機保護膜としては、ポリイミドや
ポリエーテルアミド等公知の耐熱性有機材料が適する。
図3は有機保護層を形成した段階でのヘッドの部分であ
る。
Although it can be used as a substrate portion of the bubble jet head at this stage, as a more desirable form, by providing an organic protective layer on the electrode portion, the corrosion resistance and reliability of the electrode portion can be further improved. .
The organic protective layer is applied at a relatively low temperature (~ 3
Since it can be formed (about 50 ° C.), it is advantageous in terms of cost and throughput as compared with an inorganic insulating film such as SiO 2 or SiN that requires vacuum film formation. But if A
The electrode containing 1 as a main component is not protected by the anodized film as in the present invention, and if the electrode is coated only with the organic protective film, the electrode is easily corroded at the portion in contact with the ink, which is not practical. As the organic protective film, a known heat-resistant organic material such as polyimide or polyetheramide is suitable.
FIG. 3 shows the head portion at the stage when the organic protective layer is formed.

【0014】このようにして得られた熱発生部を有する
インクジェット用基板に、吐出口や液流路を形成し、さ
らに駆動系と接続することによってインクジェットジェ
ットヘッドが完成する。
An ink jet jet head is completed by forming a discharge port and a liquid flow path on the ink jet substrate having the heat generating portion thus obtained and further connecting it to a drive system.

【0015】[0015]

【実施例】以下実施例にしたがって本発明をさらに詳細
に説明する。 実施例1バブルジェットヘッドの作成 支持体1及び下部層としてのSi単結晶ウェハーに熱酸
化処理を行い、厚さ2.5μmのSiO2 を設けたもの
(WACKER−CHEMITRONIC GMBH
製)を用いた。これを高周波スパッタリング装置(日電
アネルバ(株)製SPF−730H)にセットし、純度
が99.999wt%以上のAlのターゲット上に、純
度が99.99wt%以上のTaシートをおいてTaと
Alの共スパッタリング(スパッタリングガスはAr)
を行い、発熱抵抗層3を約270nmの厚さに成膜し
た。続いて今度はAlターゲットのみでスパッタリング
を行って、発熱抵抗層3上に電極層4を約1μmの厚さ
になるように成膜した。次にフォトリソ工程によって、
電極層4のAlのパターニング、続いて発熱抵抗層3の
Ta−Al合金層のパターニングを行って、図1に示す
ような状態のヘッド基板部分を得た。ここで、各熱発生
部のピッチは約70μm、熱発生部の発熱抵抗層のサイ
ズは、30×90μmである。
The present invention will be described in more detail with reference to the following examples. Example 1 Preparation of Bubble Jet Head The support 1 and a Si single crystal wafer as a lower layer were subjected to thermal oxidation treatment and provided with SiO 2 having a thickness of 2.5 μm (WACKER-CHEMITRONIC GMBH
Was used. This was set in a high-frequency sputtering apparatus (SPF-730H manufactured by Nichiden Anelva Co., Ltd.), and a Ta sheet having a purity of 99.99 wt% or higher was placed on a target of Al having a purity of 99.999 wt% or higher, Ta and Al. Co-sputtering (sputtering gas is Ar)
The heating resistance layer 3 was formed into a film having a thickness of about 270 nm. Subsequently, this time, sputtering was performed using only the Al target to form the electrode layer 4 on the heating resistance layer 3 so as to have a thickness of about 1 μm. Next, by the photolithography process,
By patterning Al of the electrode layer 4 and then by patterning the Ta-Al alloy layer of the heating resistance layer 3, a head substrate portion in a state as shown in FIG. 1 was obtained. Here, the pitch of each heat generating portion is about 70 μm, and the size of the heat generating resistance layer of the heat generating portion is 30 × 90 μm.

【0016】この状態のヘッドに、さらにフォトリソ工
程によって電気的接続部等にフォトレジストのマスクを
形成し、その部分が陽極酸化されないようにした後に、
以下のような方法で陽極酸化処理を行った。
After a mask of photoresist is formed on the head in this state by a photolithography process in electrical connection portions and the like to prevent the portion from being anodized,
Anodizing treatment was performed by the following method.

【0017】 処理液 酒石酸アンモウム水溶液+エチレングリコール 対向電極 Pt 電流電圧条件 電圧が100Vに達するまで、約1mA/cm2 で定電流、 電圧が100Vに達した後は、定電圧で10分間保持。 陽極酸化処理後、洗浄とレジストの剥離を行って図2に
示す状態のヘッドを得た。
Treatment Liquid Ammonium Tartrate Aqueous Solution + Ethylene Glycol Counter Electrode Pt Current / Voltage Condition Constant current at about 1 mA / cm 2 until voltage reaches 100 V, then hold at constant voltage for 10 minutes after voltage reaches 100 V. After the anodizing treatment, cleaning and stripping of the resist were performed to obtain a head in the state shown in FIG.

【0018】次に、この状態のヘッドに感光性ポリイミ
ド(東レ(株)製 フォトニースUR−3100)をス
ピンコートし、フォトリソ工程によって熱発生部の発熱
抵抗体上及び電気的接続部を除去した後に300℃の硬
化を行い、電極の有機保護層6を形成して図3の状態の
ヘッドを得た。
Next, the head in this state was spin-coated with a photosensitive polyimide (Photo Nice UR-3100 manufactured by Toray Industries, Inc.), and the heat generating resistor on the heat generating portion and the electrical connection portion were removed by a photolithography process. After that, curing was carried out at 300 ° C. to form the organic protective layer 6 of the electrode, and the head in the state of FIG. 3 was obtained.

【0019】さらに、この状態のヘッドに感光性ドライ
フィルムをラミネートした後にフォトリソ工程によって
液流路を形成した。次いでガラス製の天板を貼り合わせ
た後に所定の大きさに切断し、電気的な実装を行って図
4に示すようなバブルジェットヘッドを得た。発熱抵抗層組成の分析 発熱抵抗層の成膜が終わった段階でその一部を取り出
し、EPMA((株)島津製作所製EPM−810M)
によって、発熱抵抗層のTaとAlの組成を分析した。
分析結果を表1に示す。ステップストレス試験 図3の状態でのヘッドを一部取り出し、ヘッドの熱耐久
性、耐熱衝撃性を評価するために、ステップストレス試
験を行った。これは、発熱部に印加するパルスの電圧を
徐々に増加させ、抵抗値の変化を見るものである。結果
を図6に示す。この図で横軸は、 Vop/Vth Vop:実際の駆動パルス電圧 Vth:インクを安定して発泡させることのできる最低 パルス電圧 縦軸は、初期抵抗に対する駆動後の抵抗変化率を示す。
パルス幅は10μsec.パルスの印加周波数は5kH
z、1ステップでのパルス印加数は105 パルスであ
る。また表1には、抵抗変化率が±5%になるときのV
op/Vthの値を記載した。この価が大きいほど熱的
な耐熱性が優れている。吐出耐久試験 図4に示す最終形態のヘッドに下記組成のインクを供給
し、パルスを印加して実際にインク滴を吐出させて耐久
性試験を行った。このとき駆動電圧は、Vop/Vth
が1.15となるように設定した。その結果も表1に示
す。1億パルス後にも問題なく吐出するものを○、破断
等が生じて不吐出なるものを×とした。
Further, after laminating a photosensitive dry film on the head in this state, a liquid flow path was formed by a photolithography process. Next, a glass top plate was attached, cut into a predetermined size, and electrically mounted to obtain a bubble jet head as shown in FIG. Analysis of composition of heating resistance layer A part of the composition is taken out at the stage when the film formation of the heating resistance layer is completed, and EPMA (manufactured by Shimadzu Corporation EPM-810M) is used.
The composition of Ta and Al of the heating resistance layer was analyzed by.
Table 1 shows the analysis results. Step stress test A part of the head in the state of FIG. 3 was taken out, and a step stress test was conducted to evaluate the thermal durability and thermal shock resistance of the head. In this method, the voltage of the pulse applied to the heat generating portion is gradually increased and the change in the resistance value is observed. FIG. 6 shows the results. In this figure, the horizontal axis indicates Vop / Vth Vop: actual drive pulse voltage Vth: minimum pulse voltage at which ink can be stably bubbled. The vertical axis indicates the resistance change rate after driving with respect to the initial resistance.
The pulse width is 10 μsec. The applied frequency of the pulse is 5 kHz
The number of pulses applied in 1 step of z is 10 5 pulses. Table 1 also shows V when the resistance change rate is ± 5%.
The value of op / Vth is described. The higher this value, the better the thermal resistance. Ejection Durability Test An ink having the following composition was supplied to the head of the final form shown in FIG. 4, and pulses were applied to actually eject ink droplets to perform a durability test. At this time, the drive voltage is Vop / Vth
Was set to 1.15. Table 1 also shows the results. The sample that was ejected without any problem even after 100 million pulses was evaluated as ◯, and the sample that was not ejected due to breakage was evaluated as x.

【0020】 インク組成 水 77部 ジエチレングリコール 20部 黒色染料(CI Food Black 2) 3部 pH調整剤(CH3 COONa) 0.1部以下 実施例2〜4、比較例1,2 発熱抵抗層の成膜時にAlターゲット上のTaシートの
量を変えてスパッタリングを行った以外は実施例1と同
様。 比較例3 発熱抵抗層の形成を純度99.99wt%以上のTaタ
ーゲットのスパッタリングで行った以外は、実施例1と
同様。 比較例4 発熱抵抗層形成時のスパッタリングガスにAr+1%N
2 を用いた以外は比較例3と同様。
Ink composition Water 77 parts Diethylene glycol 20 parts Black dye (CI Food Black 2) 3 parts pH adjuster (CH 3 COONa) 0.1 parts or less Examples 2 to 4, Comparative Examples 1 and 2 Formation of heating resistance layer Same as Example 1 except that sputtering was performed while changing the amount of Ta sheet on the Al target during film formation. Comparative Example 3 The same as Example 1 except that the heating resistance layer was formed by sputtering a Ta target having a purity of 99.99 wt% or higher. Comparative Example 4 Ar + 1% N was used as the sputtering gas when the heating resistance layer was formed.
Same as Comparative Example 3 except that 2 was used.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】発熱抵抗層の材料にTaとAlの合金を
用い、電極にAlを主成分とする材料を用いることによ
って、陽極酸化法による保護膜の形成が可能であり、し
かも熱発生部においての保護膜が、その陽極酸化膜(T
a−Al合金の酸化膜)だけであっても、バルブジェッ
トヘッドとして高い耐久性が得られるため、工程が簡素
で、熱効率に優れたヘッドを得ることができる。特にノ
ズル数の多い、高速印字に適したヘッドの歩留まり、信
頼性の向上に適する。
EFFECTS OF THE INVENTION By using an alloy of Ta and Al for the material of the heating resistance layer and using a material containing Al as the main component for the electrodes, it is possible to form a protective film by the anodic oxidation method, and moreover, the heat generating portion. The protective film in the above is the anodic oxide film (T
Since a high durability can be obtained as a valve jet head even with only an a-Al alloy oxide film), a head having a simple process and excellent thermal efficiency can be obtained. Particularly, it is suitable for improving the yield and reliability of a head having a large number of nozzles and suitable for high-speed printing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は本発明のヘッドの工程途中におけ
る熱発生部近傍の平面図であり、図1(b)は図1
(a)のA−A’断面図である。
1A is a plan view of the vicinity of a heat generating portion in the middle of a process of a head of the present invention, and FIG. 1B is a plan view of FIG.
It is AA 'sectional drawing of (a).

【図2】図(a)は発熱抵抗層及び電極層上に陽極酸化
した状態を示す平面図であり、図2(b)は図2(a)
A−A’断面図である。
FIG. 2 (a) is a plan view showing a state in which anodic oxidation is performed on a heating resistance layer and an electrode layer, and FIG. 2 (b) is FIG. 2 (a).
It is an AA 'sectional view.

【図3】(a)は本発明のヘッドの熱発生部近傍の平面
図であり、図3(b)は図3(a)のA−A’断面図で
ある。
3A is a plan view of the vicinity of a heat generating portion of the head of the present invention, and FIG. 3B is a sectional view taken along the line AA ′ of FIG.

【図4】本発明のインクジェットヘッドの部分断面図で
ある。
FIG. 4 is a partial cross-sectional view of the inkjet head of the present invention.

【図5】図4に対応する従来構成のインクジェットヘッ
ドの部分断面図である。
5 is a partial cross-sectional view of a conventional inkjet head corresponding to FIG.

【図6】各実施例及び比較例のステップストレス試験の
結果を示すグラフである。
FIG. 6 is a graph showing the results of a step stress test of each example and comparative example.

【符号の説明】[Explanation of symbols]

1 支持体 2 下部層 3 発熱抵抗層 3’ 発熱抵抗層の陽極酸化皮膜 4 電極層 4’ 電極層の陽極酸化皮膜 5 有機電極保護膜 6 液流路 7 吐出口 8 熱発生部 9 天板 10 SiO2 等の無機保護層 11 Ta等の耐キャビテーション層1 Support 2 Lower layer 3 Heating resistance layer 3'Anodic oxide film of heating resistance layer 4 Electrode layer 4'Anodic oxide film of electrode layer 5 Organic electrode protective film 6 Liquid flow path 7 Discharge port 8 Heat generating part 9 Top plate 10 Inorganic protective layer such as SiO 2 11 Anti-cavitation layer such as Ta

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 通電によって発生する熱エネルギーによ
りインクを発泡吐出させるインクジェット方式のインク
ジェットヘッドにおいて、下記(a)〜(c)の特徴、 (a)発熱抵抗層が、実質的にTaとAlの合金からな
ること、 (b)発熱部に給電するための電極層がAlを主成分と
すること、 (c)少なくとも熱発生部の発熱抵抗層及びその近傍の
電極層の表層が陽極酸化によって形成された絶縁層によ
って被覆されていること、を有することを特徴とするイ
ンクジェットヘッド。
1. An ink jet head of an ink jet system for foaming and ejecting ink by thermal energy generated by energization, wherein the following features (a) to (c) are provided: (a) The heating resistance layer is substantially composed of Ta and Al. (B) The electrode layer for supplying power to the heat generating portion is mainly composed of Al. (C) At least the heat generating resistance layer of the heat generating portion and the surface layer of the electrode layer in the vicinity thereof are formed by anodic oxidation. An inkjet head, which is covered with an insulating layer.
【請求項2】 発熱抵抗層を構成する成分の比率がTa
37〜81原子%であり、Al 19〜63原子%で
ある請求項1記載のインクジェットヘッド。
2. The ratio of the components constituting the heating resistance layer is Ta.
The inkjet head according to claim 1, wherein the content is 37 to 81 atomic% and the content of Al is 19 to 63 atomic%.
【請求項3】 電極上に有機保護層を設けた請求項1記
載のインクジェットヘッド。
3. The ink jet head according to claim 1, wherein an organic protective layer is provided on the electrodes.
【請求項4】 インクジェット方式のインクジェットヘ
ッドの製造方法において、発熱抵抗層を実質的にTaと
Alとからなる合金で構成すると共に該発熱抵抗層上に
Alを主成分とする電極層を形成し、少なくとも熱発生
部の発熱抵抗層及びその近傍の電極層の表層を陽極酸化
によって形成された絶縁層によって被覆することを特徴
とするインクジェットヘッドの製造方法。
4. A method for manufacturing an inkjet head of an inkjet method, wherein the heating resistance layer is composed of an alloy substantially consisting of Ta and Al, and an electrode layer containing Al as a main component is formed on the heating resistance layer. A method for manufacturing an inkjet head, characterized in that at least a surface layer of a heat generating resistance layer of a heat generating portion and an electrode layer in the vicinity thereof is covered with an insulating layer formed by anodic oxidation.
JP184496A 1996-01-10 1996-01-10 Ink-jet head and its manufacture Pending JPH09187942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP184496A JPH09187942A (en) 1996-01-10 1996-01-10 Ink-jet head and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP184496A JPH09187942A (en) 1996-01-10 1996-01-10 Ink-jet head and its manufacture

Publications (1)

Publication Number Publication Date
JPH09187942A true JPH09187942A (en) 1997-07-22

Family

ID=11512865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP184496A Pending JPH09187942A (en) 1996-01-10 1996-01-10 Ink-jet head and its manufacture

Country Status (1)

Country Link
JP (1) JPH09187942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088400A (en) * 2004-09-21 2006-04-06 Fuji Xerox Co Ltd Inkjet recording head, manufacturing method therefor, and inkjet recording device equipped with the head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088400A (en) * 2004-09-21 2006-04-06 Fuji Xerox Co Ltd Inkjet recording head, manufacturing method therefor, and inkjet recording device equipped with the head

Similar Documents

Publication Publication Date Title
KR100191743B1 (en) Resistor generating heat, head and apparatus of ejecting liquid, and substrate for head ejecting liquid
US4336548A (en) Droplets forming device
JP2971473B2 (en) Ink-jet head and method for manufacturing head substrate
JP2010030282A (en) Liquid ejection head
JP5311975B2 (en) Substrate for liquid ejection head and liquid ejection head using the same
JPH09187942A (en) Ink-jet head and its manufacture
JPH05131624A (en) Ink-jet recording head and ink-jet recording device
JP3461246B2 (en) Heating element substrate for inkjet recording head
JP2865943B2 (en) INK JET HEAD, METHOD OF MANUFACTURING THE SAME, AND INK JET RECORDING APPARATUS USING THE SAME
JP2866256B2 (en) INK JET HEAD, METHOD OF MANUFACTURING THE SAME, AND INK JET RECORDING APPARATUS USING THE SAME
US6238041B1 (en) Heat-generator supporting member for ink-jet head and ink-jet head employing the same
JPH064326B2 (en) Liquid jet recording head
JP3461245B2 (en) Heating element substrate for inkjet recording head
JP3124594B2 (en) Base for liquid jet recording head, method for manufacturing the same, and liquid jet recording head
JPH058391A (en) Ink jet recording head and production thereof
JPH08244228A (en) Heating element board for ink jet recording head and forming method for the same board
JP3903749B2 (en) Thermal ink jet print head and method of manufacturing heating resistor
JP2865945B2 (en) INK JET HEAD, METHOD OF MANUFACTURING THE SAME, AND INK JET RECORDING APPARATUS USING THE SAME
JP2003237089A (en) Method for setting driving condition of printer and printer
JP2865946B2 (en) INK JET HEAD, METHOD OF MANUFACTURING THE SAME, AND INK JET RECORDING APPARATUS USING THE SAME
JPH08187858A (en) Ink jet head and manufacture thereof
JP2866253B2 (en) INK JET HEAD, METHOD OF MANUFACTURING THE SAME, AND INK JET RECORDING APPARATUS USING THE SAME
JPH08267749A (en) Ink jet head, ink jet device and manufacture of the ink jet head
JPH0858098A (en) Ink jet head and manufacture thereof
JPH0691884A (en) Manufacture of base for recording head and correcting method of film thickness of positive type photosensitive resist