JPH09181000A - Compound semiconductor thin film forming method and manufacture of solar cell - Google Patents
Compound semiconductor thin film forming method and manufacture of solar cellInfo
- Publication number
- JPH09181000A JPH09181000A JP7338878A JP33887895A JPH09181000A JP H09181000 A JPH09181000 A JP H09181000A JP 7338878 A JP7338878 A JP 7338878A JP 33887895 A JP33887895 A JP 33887895A JP H09181000 A JPH09181000 A JP H09181000A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- compound semiconductor
- semiconductor thin
- compound
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 67
- 239000004065 semiconductor Substances 0.000 title claims abstract description 53
- 150000001875 compounds Chemical class 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 150000004678 hydrides Chemical class 0.000 claims abstract description 18
- 229910052755 nonmetal Inorganic materials 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000003960 organic solvent Substances 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 11
- 150000002902 organometallic compounds Chemical class 0.000 claims description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000011521 glass Substances 0.000 abstract description 11
- 229910004613 CdTe Inorganic materials 0.000 abstract description 8
- 238000000576 coating method Methods 0.000 abstract description 8
- 239000011248 coating agent Substances 0.000 abstract description 6
- 239000010408 film Substances 0.000 abstract description 4
- 150000002736 metal compounds Chemical class 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000010949 copper Substances 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical class [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- VJWQKBDLTVGKQE-UHFFFAOYSA-N benzene;cadmium(2+) Chemical compound [Cd+2].C1=CC=[C-]C=C1.C1=CC=[C-]C=C1 VJWQKBDLTVGKQE-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BBUKMFLZOHNUQU-UHFFFAOYSA-N copper;1,3,5-trimethylcyclohexa-1,3,5-triene Chemical compound CC1=CC(C)=C([Cu])C(C)=C1 BBUKMFLZOHNUQU-UHFFFAOYSA-N 0.000 description 2
- IGOGAEYHSPSTHS-UHFFFAOYSA-N dimethylgallium Chemical compound C[Ga]C IGOGAEYHSPSTHS-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910021478 group 5 element Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 description 2
- 229910000058 selane Inorganic materials 0.000 description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- VTLHPSMQDDEFRU-UHFFFAOYSA-N tellane Chemical compound [TeH2] VTLHPSMQDDEFRU-UHFFFAOYSA-N 0.000 description 2
- 229910000059 tellane Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 101100194704 Mus musculus Arhgap31 gene Proteins 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- -1 trimethylphenylcopper Chemical compound 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/543—Solar cells from Group II-VI materials
Landscapes
- Chemically Coating (AREA)
- Photovoltaic Devices (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は新規な化合物半導体
薄膜形成方法およびこの方法を利用した太陽電池の製造
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel compound semiconductor thin film forming method and a solar cell manufacturing method using this method.
【0002】[0002]
【従来の技術】従来、化合物半導体薄膜の形成方法とし
ては、蒸着法、スパッタ法、MOCVD法、分子線エピ
タキシー法などが用いられている。これらの方法はいず
れも、大気中の酸素の混入を避けるために、成膜工程に
おいて気密性の高い反応容器を使用することが必須であ
り、大面積の基板上に均一な化合物半導体薄膜を形成す
るには不向きであった。2. Description of the Related Art Conventionally, a vapor deposition method, a sputtering method, a MOCVD method, a molecular beam epitaxy method, etc. have been used as a method for forming a compound semiconductor thin film. In all of these methods, it is essential to use a highly airtight reaction container in the film formation process in order to avoid mixing of oxygen in the atmosphere, and to form a uniform compound semiconductor thin film on a large-area substrate. It was not suitable for.
【0003】例えば、MOCVD(Metal Org
anic Chemical Vapor Depos
ition)法では、化合物半導体の構成元素の供給原
料となる材料を気体として反応容器内に送り、気相から
の固体析出反応により化合物半導体薄膜を形成してい
る。したがって、析出を行う基板の面積は反応容器のサ
イズで規定され、大面積化には限界がある。For example, MOCVD (Metal Org)
anic Chemical Vapor Depos
In the ionization method, a material serving as a feedstock of constituent elements of a compound semiconductor is sent as a gas into a reaction vessel, and a compound semiconductor thin film is formed by a solid deposition reaction from a gas phase. Therefore, the area of the substrate on which the deposition is performed is defined by the size of the reaction vessel, and there is a limit to the increase in area.
【0004】この点を改善する一つの手法として、III
族元素とV族元素とを含有する熱分解性の配位化合物か
らなる前駆体を用い、基板上にIII −V族化合物半導体
を蒸着させる方法が提案されている(特開平5−503
319号公報)。しかし、この方法では、目的とする析
出反応条件に合わせた分子種の選定に大きな制約を生
じ、しかもIII 族元素とV族元素との組成比を自由に制
御することができないため、実用化には至っていない。
このため、化合物半導体薄膜を有する応用製品、例えば
太陽電池でも、従来比で一桁以上面積の大きいものを製
造するには限界があった。As one method for improving this point, III
A method of depositing a III-V group compound semiconductor on a substrate using a precursor composed of a thermally decomposable coordination compound containing a group element and a group V element has been proposed (JP-A-5-503).
319). However, this method places great restrictions on the selection of molecular species according to the desired precipitation reaction conditions, and since the composition ratio of the group III element and the group V element cannot be freely controlled, it is practically applicable. Has not arrived.
For this reason, there is a limit to manufacturing applied products having a compound semiconductor thin film, for example, solar cells having a large area by one digit or more as compared with conventional products.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、大面
積の化合物半導体薄膜を容易に形成できる方法、および
この方法を利用して大面積の太陽電池を製造する方法を
提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for easily forming a large area compound semiconductor thin film, and a method for manufacturing a large area solar cell using this method. .
【0006】[0006]
【課題を解決するための手段】本発明の化合物半導体薄
膜形成方法は、基板上に、有機金属化合物を有機溶媒に
溶解した溶液を塗布した後、非金属元素の水素化物また
はその誘導体を含有する還元性雰囲気中で熱処理するこ
とにより、前記有機金属化合物から金属を遊離させると
ともに前記非金属元素水素化物またはその誘導体と反応
させて、化合物半導体薄膜を形成することを特徴とする
ものである。According to the method for forming a compound semiconductor thin film of the present invention, a solution of an organometallic compound dissolved in an organic solvent is applied onto a substrate and then a hydride of a non-metal element or a derivative thereof is contained. By heat-treating in a reducing atmosphere, a metal is released from the organometallic compound and reacted with the non-metal element hydride or its derivative to form a compound semiconductor thin film.
【0007】また、本発明の太陽電池の製造方法は、1
対の電極間に、i型、p型およびn型のうちいずれかの
導電型を有する化合物半導体薄膜を2層以上設けて半導
体接合を形成した太陽電池を製造するにあたり、有機金
属化合物を有機溶媒に溶解した溶液を塗布した後、非金
属元素の水素化物またはその誘導体を含有する還元性雰
囲気中で熱処理することにより、前記有機金属化合物か
ら金属を遊離させるとともに前記非金属元素の水素化物
またはその誘導体と反応させて、化合物半導体薄膜を形
成する工程を、前記有機金属化合物または非金属元素水
素化物もしくはその誘導体のうち少なくともいずれか一
方の種類を変化させて繰り返して2層以上の化合物半導
体薄膜を形成することを特徴とするものである。The method of manufacturing a solar cell according to the present invention is
In producing a solar cell in which two or more layers of compound semiconductor thin films having any one of i-type, p-type, and n-type conductivity are provided between a pair of electrodes to manufacture a solar cell, an organic metal compound is used as an organic solvent. After applying a solution dissolved in, by heat treatment in a reducing atmosphere containing a hydride of a non-metal element or a derivative thereof, to release the metal from the organometallic compound and the hydride of the non-metal element or its The step of reacting with a derivative to form a compound semiconductor thin film is repeated by changing at least one of the organometallic compound, the non-metal element hydride or the derivative thereof to form a compound semiconductor thin film having two or more layers. It is characterized by forming.
【0008】[0008]
【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明において、基板材料としては、シリコンな
どの半導体、ガラス、透明電極を有するガラス、金属、
セラミックス、耐熱性高分子などから選択される任意の
材料を用いることができる。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. In the present invention, as the substrate material, a semiconductor such as silicon, glass, glass having a transparent electrode, metal,
Any material selected from ceramics, heat resistant polymers and the like can be used.
【0009】本発明の対象となる化合物半導体は、II−
VI族化合物半導体、III −V族化合物半導体、カルコパ
イライト型化合物半導体などが挙げられる。より具体的
には、II−VI族化合物半導体としてZnS、ZnTe、
CdS、CdSe、CdTeなど、III −V族化合物半
導体としてGaN、GaP、GaAs、InN、In
P、InAs、カルコパイライト型化合物半導体として
CuInSe2 、CuAlTe2 、CdGaP2 、Zn
GeAs2 などが挙げられる。The compound semiconductor to which the present invention is applied is II-
Examples thereof include Group VI compound semiconductors, III-V group compound semiconductors, chalcopyrite type compound semiconductors, and the like. More specifically, as the II-VI group compound semiconductor, ZnS, ZnTe,
GaN, GaP, GaAs, InN, In as III-V group compound semiconductors such as CdS, CdSe and CdTe.
P, InAs, chalcopyrite type compound semiconductors such as CuInSe 2 , CuAlTe 2 , CdGaP 2 , and Zn
GeAs 2 and the like can be mentioned.
【0010】本発明において、有機金属化合物として
は、上記の化合物半導体を構成するII族またはIII 族の
金属元素、例えばZn、Cd、Cu、Ga、In、Al
を含有するものが用いられる。これらの有機金属化合物
は、酸素原子を含まず、熱解離温度すなわち金属元素を
遊離する温度(200〜400℃)での蒸気圧が比較的
低く(例えば200℃で1mmHg以下)、しかも有機
溶媒に1g/L以上の溶解とで溶解するものである。In the present invention, the organometallic compound is a group II or group III metal element constituting the above compound semiconductor, such as Zn, Cd, Cu, Ga, In or Al.
Those containing are used. These organometallic compounds do not contain oxygen atoms, have a relatively low vapor pressure at the thermal dissociation temperature, that is, the temperature at which metal elements are liberated (200 to 400 ° C.) (for example, 1 mmHg or less at 200 ° C.), and are organic solvents It dissolves with a dissolution of 1 g / L or more.
【0011】本発明において用いられる有機金属化合物
は、上記のように有機溶媒に溶解させることができるの
で、大気圧下でディッピング、スピンコーティング、ス
プレーコーティングなど任意の塗布法により大面積の基
板上に成膜できる。この際、塗布工程で用いられる器具
は基板の大きさに応じて任意に選択でき、大気の混入を
防止できれば十分であり、気相成長法の場合のような気
密性の高い大規模な減圧装置は不要である。なお、有機
金属酸化物が酸化されやすいものである場合には、不活
性ガス雰囲気中で塗布工程を行うことが望ましい。Since the organometallic compound used in the present invention can be dissolved in an organic solvent as described above, it can be applied on a large-area substrate by any coating method such as dipping, spin coating or spray coating under atmospheric pressure. Can form a film. At this time, the equipment used in the coating process can be arbitrarily selected according to the size of the substrate, and it is sufficient if it is possible to prevent the entry of air, and a large-scale decompression device with high airtightness as in the case of vapor phase growth method. Is unnecessary. When the organic metal oxide is easily oxidized, it is desirable to perform the coating step in an inert gas atmosphere.
【0012】本発明においては、基板上に塗布された有
機金属化合物の塗膜を熱処理する雰囲気として、非金属
元素の水素化物またはその誘導体を含有する還元性雰囲
気が用いられる。還元性雰囲気は水素を主体とするもの
である。非金属元素は上述した化合物半導体を構成する
V族またはIV族の非金属元素、例えばSe、Te、S、
P、Asであり、その水素化物としてはセレン化水素
(H2 Se)、テルル化水素(H2 Te)、硫化水素
(H2 S)、ホスフィン(PH3 )、アルシン(AsH
3 )などが挙げられる。In the present invention, a reducing atmosphere containing a hydride of a non-metal element or a derivative thereof is used as an atmosphere for heat-treating the coating film of the organometallic compound applied on the substrate. The reducing atmosphere is mainly composed of hydrogen. The non-metal element is a non-metal element of group V or group IV, such as Se, Te, S, which constitutes the compound semiconductor described above.
P and As, and as hydrides thereof, hydrogen selenide (H 2 Se), hydrogen telluride (H 2 Te), hydrogen sulfide (H 2 S), phosphine (PH 3 ), arsine (AsH
3 ) and so on.
【0013】本発明においては、基板上に塗布された有
機金属化合物の溶液を非金属元素の水素化物またはその
誘導体を含有する還元性雰囲気中で熱処理することによ
り、まず有機溶媒を蒸発させ、次に有機金属化合物から
金属を遊離させるとともに非金属元素の水素化物または
その誘導体と反応させて、金属−非金属からなる化合物
半導体薄膜を形成することができる。この場合、具体的
な熱分解温度は使用する有機金属化合物および非金属元
素の水素化物またはその誘導体によって異なるが、多く
の場合300〜700℃の範囲に収まる。このような熱
処理により多結晶の化合物半導体薄膜、さらに条件によ
ってはアモルファスの化合物半導体薄膜を形成できる。In the present invention, the solution of the organometallic compound coated on the substrate is heat-treated in a reducing atmosphere containing a hydride of a non-metal element or its derivative to evaporate the organic solvent first, and then A metal-nonmetal compound semiconductor thin film can be formed by liberating a metal from an organometallic compound and reacting the metal with a hydride of a nonmetal element or a derivative thereof. In this case, the specific thermal decomposition temperature varies depending on the organometallic compound used and the hydride of the nonmetallic element or its derivative, but in many cases falls within the range of 300 to 700 ° C. By such heat treatment, a polycrystalline compound semiconductor thin film, and further an amorphous compound semiconductor thin film can be formed depending on conditions.
【0014】さらに、本発明においては上述したような
化合物半導体薄膜の形成方法を利用して大面積の太陽電
池を製造することができる。すなわち、太陽電池は1対
の電極間にi型、p型およびn型のうちいずれかの導電
型を有する半導体薄膜を2層以上設けて半導体接合を形
成した構造を有するので、上述した方法を繰り返して2
層以上の化合物半導体薄膜を形成することにより、p−
n、pin、i−p、i−nなどの半導体接合を実現す
ることができる。Further, in the present invention, a large area solar cell can be manufactured by utilizing the above-described method of forming a compound semiconductor thin film. That is, since the solar cell has a structure in which two or more semiconductor thin films having any one of i-type, p-type, and n-type conductivity are provided between a pair of electrodes to form a semiconductor junction, the method described above is used. Repeat 2
By forming a compound semiconductor thin film of more than one layer, p-
Semiconductor junctions such as n, pin, ip, and in can be realized.
【0015】以上のように、本発明では最初に有機金属
化合物の溶液を塗布し、その後に熱分解により有機金属
化合物から金属元素を遊離させるとともに非金属元素の
水素化物またはその誘導体との反応を起こさせる。この
際、化合物半導体薄膜の酸化防止対策は後者の工程での
み考慮すればよいので、装置上の制約は少ない。したが
って、基板が大面積であっても均一な化合物半導体薄膜
を形成でき、さらにこのような方法を利用して大面積の
太陽電池を製造できる。As described above, in the present invention, the solution of the organometallic compound is first applied, and then the metal element is released from the organometallic compound by thermal decomposition and the reaction with the hydride of the nonmetallic element or its derivative is performed. Wake up. At this time, measures for preventing the oxidation of the compound semiconductor thin film may be taken into consideration only in the latter step, so that there are few restrictions on the apparatus. Therefore, a uniform compound semiconductor thin film can be formed even if the substrate has a large area, and a large area solar cell can be manufactured by using such a method.
【0016】[0016]
【実施例】以下、本発明の実施例を説明する。 実施例1 III −V族化合物半導体であるInPの多結晶薄膜を形
成した実施例を説明する。Embodiments of the present invention will be described below. Example 1 An example in which a polycrystalline thin film of InP which is a III-V group compound semiconductor is formed will be described.
【0017】インジウムの供給原料となる有機金属化合
物としてトリメチルインジウムを用いた。この化合物は
常温で結晶であるが有機溶媒に溶解する。窒素ガス雰囲
気中でトリメチルインジウムの溶液をステンレスホイル
上に塗布した。次に、このステンレスホイルを水素炉に
入れ、ホスフィンを10%含有する水素ガス雰囲気中で
加熱して溶媒を蒸発させ、さらに700℃で反応させて
ほぼ化学量論組成のInP多結晶薄膜を成膜した。ま
た、紫外線照射によって析出反応温度を550℃にまで
下げることができた。このとき析出した薄膜はアモルフ
ァス薄膜であった。Trimethylindium was used as an organometallic compound serving as a raw material for supplying indium. Although this compound is crystalline at room temperature, it dissolves in an organic solvent. A solution of trimethylindium was applied on a stainless foil in a nitrogen gas atmosphere. Next, this stainless foil was put into a hydrogen furnace, heated in a hydrogen gas atmosphere containing 10% of phosphine to evaporate the solvent, and further reacted at 700 ° C. to form an InP polycrystalline thin film having a substantially stoichiometric composition. Filmed Moreover, the deposition reaction temperature could be lowered to 550 ° C. by irradiation with ultraviolet rays. The thin film deposited at this time was an amorphous thin film.
【0018】実施例2 II−VI族化合物半導体であるZnSeの多結晶薄膜を形
成した実施例を説明する。Example 2 An example of forming a polycrystalline thin film of ZnSe which is a II-VI group compound semiconductor will be described.
【0019】亜鉛の供給原料となる有機金属化合物とし
てビスペンタフルオロフェニル亜鉛を用いた。この化合
物は常温で結晶であるが有機溶媒に溶解する。窒素ガス
雰囲気中でビスペンタフルオロフェニル亜鉛の溶液をガ
ラス基板上に塗布した。次に、このガラス基板を水素炉
に入れ、セレン化水素を10%含有する水素ガス雰囲気
中で加熱して溶媒を蒸発させ、さらに450℃で反応さ
せてZnSe多結晶薄膜を成膜した。また、反応条件に
よってはアモルファス薄膜の形成も観測された。Bispentafluorophenylzinc was used as an organometallic compound as a zinc feedstock. Although this compound is crystalline at room temperature, it dissolves in an organic solvent. A solution of bispentafluorophenylzinc was applied onto a glass substrate in a nitrogen gas atmosphere. Next, this glass substrate was placed in a hydrogen furnace, heated in a hydrogen gas atmosphere containing 10% hydrogen selenide to evaporate the solvent, and further reacted at 450 ° C. to form a ZnSe polycrystalline thin film. In addition, formation of an amorphous thin film was also observed depending on the reaction conditions.
【0020】実施例3 II−VI族化合物半導体であるCdTeおよびCdSの多
結晶薄膜を形成した実施例を説明する。Example 3 An example in which a polycrystalline thin film of CdTe and CdS which is a II-VI group compound semiconductor was formed will be described.
【0021】カドミウムの供給原料となる有機金属化合
物としてジフェニルカドミウムを用いた。この化合物は
常温で結晶であるが有機溶媒に溶解する。窒素ガス雰囲
気中でジフェニルカドミウムの溶液をガラス基板上に塗
布した。次に、このガラス基板を水素炉に入れ、テルル
化水素を10%含有する水素ガス雰囲気中で加熱して溶
媒を蒸発させ、さらに470℃で反応させてCdTe多
結晶薄膜を成膜した。同様に、テルル化水素の代わりに
硫化水素を用いることにより、CdS多結晶薄膜が得ら
れた。Diphenylcadmium was used as an organometallic compound serving as a feedstock for cadmium. Although this compound is crystalline at room temperature, it dissolves in an organic solvent. A solution of diphenylcadmium was applied onto a glass substrate in a nitrogen gas atmosphere. Next, this glass substrate was placed in a hydrogen furnace, heated in a hydrogen gas atmosphere containing 10% hydrogen telluride to evaporate the solvent, and further reacted at 470 ° C. to form a CdTe polycrystalline thin film. Similarly, a CdS polycrystalline thin film was obtained by using hydrogen sulfide instead of hydrogen telluride.
【0022】さらに、以上のような化合物半導体薄膜の
形成方法を利用して図1に示すCdTe/CdSのp−
n接合を有する太陽電池を作製した。図1において、ガ
ラス基板11上には、n型CdS多結晶薄膜12が形成
されている。このn型CdS多結晶薄膜12上の一部に
は、p型CdTe多結晶薄膜13が形成されている。こ
のp型CdTe多結晶薄膜13上にはAuからなるオー
ム性電極14が形成されている。また、露出したn型C
dS多結晶薄膜12上にはInからなるオーム性電極1
5が形成されている。この素子は量子収率が13%であ
り、良好な太陽電池として機能することが明らかとなっ
た。Further, by using the above-described method of forming a compound semiconductor thin film, the p-type of CdTe / CdS shown in FIG.
A solar cell having an n-junction was manufactured. In FIG. 1, an n-type CdS polycrystalline thin film 12 is formed on a glass substrate 11. A p-type CdTe polycrystalline thin film 13 is formed on a part of the n-type CdS polycrystalline thin film 12. An ohmic electrode 14 made of Au is formed on the p-type CdTe polycrystalline thin film 13. Also, exposed n-type C
An ohmic electrode 1 made of In is formed on the dS polycrystalline thin film 12.
5 are formed. This device had a quantum yield of 13%, which proved to function as a good solar cell.
【0023】実施例4 カルコパイライト型化合物半導体であるCuInSe2
の多結晶薄膜を形成した実施例を説明する。Example 4 CuInSe 2 which is a chalcopyrite type compound semiconductor
An example in which the polycrystalline thin film is formed will be described.
【0024】銅の供給原料となる有機金属化合物として
2,4,6−トリメチルフェニル銅を用いた。この分子
は5個でペンタマーを形成し、これは常温で結晶である
がトルエンに溶解する。窒素ガス雰囲気中で2,4,6
−トリメチルフェニル銅の溶液をステンレスフォイル上
に塗布した。次に、このステンレスフォイルを水素炉に
入れ、450℃で熱分解により銅を遊離させた。この結
果、ステンレスフォイル上には純銅の薄膜が形成され
た。2,4,6-Trimethylphenyl copper was used as an organometallic compound as a copper feed material. Five molecules of this molecule form a pentamer, which is crystalline at room temperature but dissolves in toluene. 2,4,6 in nitrogen gas atmosphere
A solution of trimethylphenylcopper was applied on a stainless foil. Next, this stainless foil was placed in a hydrogen furnace, and copper was liberated by thermal decomposition at 450 ° C. As a result, a pure copper thin film was formed on the stainless foil.
【0025】また、インジウムの供給原料となる有機金
属化合物として実施例1と同じくトリメチルインジウム
を用いた。窒素ガス雰囲気中で2,4,6−トリメチル
フェニル銅およびトリメチルインジウムのトルエン溶液
をアルミフォイル上に塗布した。次に、このアルミフォ
イルを水素炉に入れ、セレン化水素を10%含有する水
素ガス雰囲気中で加熱して溶媒を蒸発させ、さらに65
0℃で反応させてほぼ化学量論組成を有するCuInS
e2 多結晶薄膜を成膜した。電気伝導特性はp型であっ
た。また、反応条件によってはアモルファス薄膜の形成
も観測された。Further, as in Example 1, trimethylindium was used as the organometallic compound serving as the indium feed material. A toluene solution of 2,4,6-trimethylphenyl copper and trimethylindium was coated on an aluminum foil in a nitrogen gas atmosphere. Next, this aluminum foil was placed in a hydrogen furnace and heated in a hydrogen gas atmosphere containing 10% hydrogen selenide to evaporate the solvent.
CuInS having almost stoichiometric composition when reacted at 0 ° C
An e 2 polycrystalline thin film was formed. The electric conduction characteristic was p-type. In addition, formation of an amorphous thin film was also observed depending on the reaction conditions.
【0026】また、トリメチルインジウムの代わりに
(η5 −2−4−シクロペンタジエン−1−イル)ジメ
チルガリウムを用いることにより、p型CuGaSe2
多結晶薄膜が得られた。さらに、トリメチルインジウム
と(η5 −2−4−シクロペンタジエン−1−イル)ジ
メチルガリウムとを併用することにより、p型Cu(I
n1-x Gax )Se2 多結晶薄膜が得られた。By using (η 5 -2-4-cyclopentadien-1-yl) dimethylgallium instead of trimethylindium, p-type CuGaSe 2
A polycrystalline thin film was obtained. Further, by using trimethylindium and (η 5 -2-4-cyclopentadien-1-yl) dimethylgallium in combination, p-type Cu (I
An n 1-x Ga x ) Se 2 polycrystalline thin film was obtained.
【0027】さらに、以上のような化合物半導体薄膜の
形成方法を利用して図2および図3に示すp−n接合を
有する太陽電池を作製した。図2において、ガラス基板
21上には、酸化インジウム錫(ITO)からなる透明
電極22が形成されている。この透明電極22上の一部
には、n型CdS多結晶薄膜23およびp型CuInS
e2 多結晶薄膜24が形成されている。このp型CuI
nSe2 多結晶薄膜24上にはオーム性電極25が形成
されている。また、露出した透明電極22上にもオーム
性電極26が形成されている。Further, a solar cell having a pn junction shown in FIGS. 2 and 3 was manufactured by utilizing the above-described method of forming a compound semiconductor thin film. In FIG. 2, a transparent electrode 22 made of indium tin oxide (ITO) is formed on a glass substrate 21. An n-type CdS polycrystalline thin film 23 and a p-type CuInS are partially formed on the transparent electrode 22.
An e 2 polycrystalline thin film 24 is formed. This p-type CuI
An ohmic electrode 25 is formed on the nSe 2 polycrystalline thin film 24. An ohmic electrode 26 is also formed on the exposed transparent electrode 22.
【0028】図3において、ステンレス基板31上に
は、モリブデン電極32が形成されている。このモリブ
デン電極32上には、p型Cu(In1-x Gax )Se
2 多結晶薄膜33、n型CdS多結晶薄膜34およびI
TOからなる透明電極35が形成されている。これらの
素子は、従来知られている太陽電池と同レベルの特性を
示すことが明らかとなった。In FIG. 3, a molybdenum electrode 32 is formed on a stainless steel substrate 31. On the molybdenum electrode 32, p-type Cu (In 1-x Ga x ) Se is formed.
2 Polycrystalline thin film 33, n-type CdS polycrystalline thin film 34 and I
A transparent electrode 35 made of TO is formed. It has been clarified that these elements show the same level of characteristics as those of conventionally known solar cells.
【0029】[0029]
【発明の効果】以上詳述したように本発明の方法を用い
れば、有機金属化合物の溶液の塗布および熱解離・非金
属元素との反応という2つの工程を採用することによ
り、大面積の基板上に化合物半導体薄膜を容易に形成で
き、さらにこの方法を利用して大面積の太陽電池を製造
できる。As described in detail above, according to the method of the present invention, a large-area substrate can be obtained by adopting the two steps of coating a solution of an organometallic compound and thermally dissociating and reacting with a nonmetallic element. A compound semiconductor thin film can be easily formed thereon, and a large-area solar cell can be manufactured by using this method.
【0030】なお、塗布装置および化合物半導体の合成
装置を相互に連結し、用いる基板材料をロール状に巻か
れた連続体とすることもできる。また、これらの装置の
組み合わせを複数セット連結することにより、多層の化
合物半導体薄膜を一貫した連続工程で積層成膜でき、大
面積の太陽電池の製造に有利である。The coating device and the compound semiconductor synthesizing device may be connected to each other, and the substrate material used may be a continuous body wound in a roll shape. Further, by connecting a plurality of sets of these devices, a multi-layer compound semiconductor thin film can be laminated in a consistent continuous process, which is advantageous for manufacturing a large-area solar cell.
【図1】本発明の実施例において製造された太陽電池の
一例を示す断面図。FIG. 1 is a sectional view showing an example of a solar cell manufactured in an example of the present invention.
【図2】本発明の実施例において製造された太陽電池の
他の例を示す断面図。FIG. 2 is a cross-sectional view showing another example of the solar cell manufactured in the example of the present invention.
【図3】本発明の実施例において製造された太陽電池の
さらに他の例を示す断面図。FIG. 3 is a cross-sectional view showing still another example of the solar cell manufactured in the example of the present invention.
11…ガラス基板、12…n型CdS多結晶薄膜、13
…p型CdTe多結晶薄膜、14、15…オーム性電
極、21…ガラス基板、22…透明電極、23…n型C
dS多結晶薄膜、24…p型CuInSe2 多結晶薄
膜、25、26…オーム性電極、31…ステンレス基
板、32…モリブデン電極、33…p型Cu(In1-x
Gax )Se2 多結晶薄膜、34…n型CdS多結晶薄
膜、35…透明電極。11 ... Glass substrate, 12 ... N-type CdS polycrystalline thin film, 13
... p-type CdTe polycrystalline thin film, 14, 15 ... Ohmic electrode, 21 ... Glass substrate, 22 ... Transparent electrode, 23 ... N-type C
dS polycrystalline thin film, 24 ... p-type CuInSe 2 polycrystalline thin film, 25, 26 ... ohmic electrode, 31 ... stainless steel substrate, 32 ... molybdenum electrode, 33 ... p-type Cu (In 1-x
Ga x ) Se 2 polycrystalline thin film, 34 ... N-type CdS polycrystalline thin film, 35 ... Transparent electrode.
Claims (3)
溶解した溶液を塗布した後、非金属元素の水素化物また
はその誘導体を含有する還元性雰囲気中で熱処理するこ
とにより、前記有機金属化合物から金属を遊離させると
ともに前記非金属元素水素化物またはその誘導体と反応
させて、化合物半導体薄膜を形成することを特徴とする
化合物半導体薄膜形成方法。1. A solution of an organometallic compound dissolved in an organic solvent is applied onto a substrate and then heat-treated in a reducing atmosphere containing a hydride of a non-metallic element or a derivative thereof to obtain the organometallic compound. A method for forming a compound semiconductor thin film, which comprises forming a compound semiconductor thin film by releasing a metal from the compound and reacting it with the non-metal element hydride or a derivative thereof.
のであることを特徴とする請求項1記載の化合物半導体
薄膜形成方法。2. The compound semiconductor thin film forming method according to claim 1, wherein the reducing atmosphere is mainly composed of hydrogen.
のうちいずれかの導電型を有する化合物半導体薄膜を2
層以上設けて半導体接合を形成した太陽電池を製造する
にあたり、有機金属化合物を有機溶媒に溶解した溶液を
塗布した後、非金属元素水素化物またはその誘導体を含
有する還元性雰囲気中で熱処理することにより、前記有
機金属化合物から金属を遊離させるとともに前記非金属
元素水素化物またはその誘導体と反応させて、化合物半
導体薄膜を形成する工程を、前記有機金属化合物または
非金属元素の水素化物もしくはその誘導体のうち少なく
ともいずれか一方の種類を変化させて繰り返して2層以
上の化合物半導体薄膜を形成することを特徴とする太陽
電池の製造方法。3. A compound semiconductor thin film having any one of i-type, p-type, and n-type conductivity is formed between a pair of electrodes.
When manufacturing a solar cell in which more than one layer is formed to form a semiconductor junction, after applying a solution of an organometallic compound dissolved in an organic solvent, heat treatment in a reducing atmosphere containing a non-metal element hydride or its derivative The step of releasing a metal from the organometallic compound and reacting with the non-metal element hydride or a derivative thereof to form a compound semiconductor thin film. A method for manufacturing a solar cell, comprising forming a compound semiconductor thin film having two or more layers by repeatedly changing at least one of the types.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7338878A JPH09181000A (en) | 1995-12-26 | 1995-12-26 | Compound semiconductor thin film forming method and manufacture of solar cell |
US08/773,127 US5866471A (en) | 1995-12-26 | 1996-12-26 | Method of forming semiconductor thin film and method of fabricating solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7338878A JPH09181000A (en) | 1995-12-26 | 1995-12-26 | Compound semiconductor thin film forming method and manufacture of solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09181000A true JPH09181000A (en) | 1997-07-11 |
Family
ID=18322247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7338878A Pending JPH09181000A (en) | 1995-12-26 | 1995-12-26 | Compound semiconductor thin film forming method and manufacture of solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09181000A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007220931A (en) * | 2006-02-17 | 2007-08-30 | Sharp Corp | Thin film compound solar cell, and its manufacturing method |
JP2008187133A (en) * | 2007-01-31 | 2008-08-14 | Jsr Corp | Copper thin film forming material and copper thin film forming method |
JP2009044049A (en) * | 2007-08-10 | 2009-02-26 | Sharp Corp | Solar cell array and solar cell module |
US7619261B2 (en) | 2000-08-07 | 2009-11-17 | Toyoda Gosei Co., Ltd. | Method for manufacturing gallium nitride compound semiconductor |
JP2010141307A (en) * | 2008-11-11 | 2010-06-24 | Kyocera Corp | Method for manufacturing thin-film solar cell |
JP2011114109A (en) * | 2009-11-26 | 2011-06-09 | Kyocera Corp | Manufacturing method of semiconductor layer and manufacturing method of photoelectric converter |
CN111095627A (en) * | 2017-06-20 | 2020-05-01 | 核壳科技公司 | Methods, systems, and compositions for liquid phase deposition of thin films onto surfaces of battery electrodes |
-
1995
- 1995-12-26 JP JP7338878A patent/JPH09181000A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7619261B2 (en) | 2000-08-07 | 2009-11-17 | Toyoda Gosei Co., Ltd. | Method for manufacturing gallium nitride compound semiconductor |
JP2007220931A (en) * | 2006-02-17 | 2007-08-30 | Sharp Corp | Thin film compound solar cell, and its manufacturing method |
JP2008187133A (en) * | 2007-01-31 | 2008-08-14 | Jsr Corp | Copper thin film forming material and copper thin film forming method |
JP2009044049A (en) * | 2007-08-10 | 2009-02-26 | Sharp Corp | Solar cell array and solar cell module |
US8373059B2 (en) | 2007-08-10 | 2013-02-12 | Sharp Kabushiki Kaisha | Solar cell array and solar cell module |
JP2010141307A (en) * | 2008-11-11 | 2010-06-24 | Kyocera Corp | Method for manufacturing thin-film solar cell |
JP2011114109A (en) * | 2009-11-26 | 2011-06-09 | Kyocera Corp | Manufacturing method of semiconductor layer and manufacturing method of photoelectric converter |
CN111095627A (en) * | 2017-06-20 | 2020-05-01 | 核壳科技公司 | Methods, systems, and compositions for liquid phase deposition of thin films onto surfaces of battery electrodes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bosio et al. | Polycrystalline CdTe thin films for photovoltaic applications | |
US5948176A (en) | Cadmium-free junction fabrication process for CuInSe2 thin film solar cells | |
Birkmire et al. | Polycrystalline thin film solar cells: present status and future potential | |
US8431430B2 (en) | Method for forming a compound semi-conductor thin-film | |
US8691619B2 (en) | Laminated structure for CIS based solar cell, and integrated structure and manufacturing method for CIS based thin-film solar cell | |
US8497503B2 (en) | Manufacture of photovoltaic devices | |
WO2007129097A2 (en) | Manufacture of cdte photovoltaic cells using mocvd | |
US7910396B2 (en) | Three-stage formation of thin-films for photovoltaic devices | |
US11437535B2 (en) | Voltage-matched multi-junction solar module made of 2D materials | |
US8647915B2 (en) | Hetero-junction photovoltaic device and method of fabricating the device | |
EP1784871B1 (en) | Method for producing a thin-film chalcopyrite compound | |
KR20230000470A (en) | Method for manufacturing Bi2O2Se thin film using organometallic chemical vapor deposition method and precursor for the same | |
JPH09181000A (en) | Compound semiconductor thin film forming method and manufacture of solar cell | |
AU2011202979B8 (en) | Apparatus and methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device | |
US9818898B2 (en) | Method for producing a photovoltaic module with an etching step P3 and an optional step P1 | |
Burgess | Review of tailoring ZnO for optoelectronics through atomic layer deposition experimental variables | |
Kakishita et al. | Zn3P2 photovoltaic film growth for Zn3P2/ZnSe solar cell | |
US20140134838A1 (en) | Methods of annealing a conductive transparent oxide film layer for use in a thin film photovoltaic device | |
Basol et al. | Preparation of Cd (Zn) Te and CuInSe2 films and devices by a two-stage process | |
US8632851B1 (en) | Method of forming an I-II-VI2 compound semiconductor thin film of chalcopyrite structure | |
EP3404725A1 (en) | Solar cell comprising cigs light absorbing layer and method for manufacturing same | |
US8647897B2 (en) | Air-stable ink for scalable, high-throughput layer deposition | |
JPH11195658A (en) | Method and device for manufacturing cadmium sulfide film and solar battery using the same | |
Jin et al. | Thin film CuInS/sub 2/prepared by spray pyrolysis with single-source precursors | |
US20150096606A1 (en) | Method for producing a photovoltaic module with an etching step p3 and an optional step p2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040713 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050118 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050517 |