JPH09179125A - Supporting body with oriented film, optical compensation sheet formed by using the same and color liquid crystal display device - Google Patents
Supporting body with oriented film, optical compensation sheet formed by using the same and color liquid crystal display deviceInfo
- Publication number
- JPH09179125A JPH09179125A JP7338686A JP33868695A JPH09179125A JP H09179125 A JPH09179125 A JP H09179125A JP 7338686 A JP7338686 A JP 7338686A JP 33868695 A JP33868695 A JP 33868695A JP H09179125 A JPH09179125 A JP H09179125A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- optical compensation
- compensation sheet
- alignment film
- optically anisotropic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 150
- 230000003287 optical effect Effects 0.000 title claims description 112
- 239000010410 layer Substances 0.000 claims description 105
- 150000001875 compounds Chemical class 0.000 claims description 94
- 210000002858 crystal cell Anatomy 0.000 claims description 72
- 239000000758 substrate Substances 0.000 claims description 39
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 15
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 15
- 239000004988 Nematic liquid crystal Substances 0.000 claims description 12
- 239000012790 adhesive layer Substances 0.000 claims description 3
- 230000008859 change Effects 0.000 abstract description 17
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 5
- 230000000007 visual effect Effects 0.000 abstract description 3
- 238000004049 embossing Methods 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 238000009941 weaving Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 74
- 229920001577 copolymer Polymers 0.000 description 36
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 24
- 239000007788 liquid Substances 0.000 description 23
- 108010010803 Gelatin Proteins 0.000 description 22
- 229920000159 gelatin Polymers 0.000 description 22
- 235000019322 gelatine Nutrition 0.000 description 22
- 235000011852 gelatine desserts Nutrition 0.000 description 22
- -1 polypropylene Polymers 0.000 description 22
- 239000008273 gelatin Substances 0.000 description 20
- 229920000642 polymer Polymers 0.000 description 20
- 239000011248 coating agent Substances 0.000 description 18
- 238000000576 coating method Methods 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 238000005259 measurement Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 229940068984 polyvinyl alcohol Drugs 0.000 description 12
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 11
- 230000007423 decrease Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229920002284 Cellulose triacetate Polymers 0.000 description 7
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 7
- 230000001447 compensatory effect Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000003999 initiator Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 6
- 229910052753 mercury Inorganic materials 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 238000004040 coloring Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- IAMASUILMZETHW-UHFFFAOYSA-N 2-(2-hydroxyethoxy)-1-phenoxyethanol;prop-2-enoic acid Chemical compound OC(=O)C=C.OCCOCC(O)OC1=CC=CC=C1 IAMASUILMZETHW-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 239000004985 Discotic Liquid Crystal Substance Substances 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 3
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- 235000010724 Wisteria floribunda Nutrition 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000004043 dyeing Methods 0.000 description 3
- 229910052745 lead Inorganic materials 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229920003067 (meth)acrylic acid ester copolymer Polymers 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- BTJPUDCSZVCXFQ-UHFFFAOYSA-N 2,4-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC(CC)=C3SC2=C1 BTJPUDCSZVCXFQ-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- UEXCJVNBTNXOEH-UHFFFAOYSA-N Ethynylbenzene Chemical group C#CC1=CC=CC=C1 UEXCJVNBTNXOEH-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910052774 Proactinium Inorganic materials 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- 150000001350 alkyl halides Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 229920001727 cellulose butyrate Polymers 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 238000007766 curtain coating Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 208000028659 discharge Diseases 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000007765 extrusion coating Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000007767 slide coating Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- BVIUYHQPSZOHOV-UHFFFAOYSA-N 1,1-dichloroethene;2-methylprop-2-enoic acid Chemical compound ClC(Cl)=C.CC(=C)C(O)=O BVIUYHQPSZOHOV-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- ICMZFZGUTLNLAJ-UHFFFAOYSA-N 2,6-dimethyl-7-oxabicyclo[4.1.0]hepta-2,4-diene Chemical compound CC1=CC=CC2(C)OC12 ICMZFZGUTLNLAJ-UHFFFAOYSA-N 0.000 description 1
- SLGGJMDAZSEJNG-UHFFFAOYSA-N 2-(2-hydroxyethoxy)ethanol;terephthalic acid Chemical compound OCCOCCO.OC(=O)C1=CC=C(C(O)=O)C=C1 SLGGJMDAZSEJNG-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- HIBWGGKDGCBPTA-UHFFFAOYSA-N C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 HIBWGGKDGCBPTA-UHFFFAOYSA-N 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- IVRFYNSETZKRSJ-UHFFFAOYSA-N ClC=C.N#CC=CC=CC1=CC=CC=C1 Chemical compound ClC=C.N#CC=CC=CC1=CC=CC=C1 IVRFYNSETZKRSJ-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 239000004233 Indanthrene blue RS Substances 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 229920012485 Plasticized Polyvinyl chloride Polymers 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229920002433 Vinyl chloride-vinyl acetate copolymer Polymers 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229940023476 agar Drugs 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229950007019 ambuside Drugs 0.000 description 1
- 125000000909 amidinium group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 125000001231 benzoyloxy group Chemical group C(C1=CC=CC=C1)(=O)O* 0.000 description 1
- 229920000402 bisphenol A polycarbonate polymer Polymers 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000006242 butyrylation Effects 0.000 description 1
- 238000010514 butyrylation reaction Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- ZJPJECQPVMSILT-UHFFFAOYSA-N chloroethene 3-(2-phenylethenyl)furan-2,5-dione Chemical compound ClC=C.O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 ZJPJECQPVMSILT-UHFFFAOYSA-N 0.000 description 1
- IEJNAGSUKYCWCR-UHFFFAOYSA-N chloroethene;1,1-dichloroethene;ethenyl acetate Chemical compound ClC=C.ClC(Cl)=C.CC(=O)OC=C IEJNAGSUKYCWCR-UHFFFAOYSA-N 0.000 description 1
- VSJDEWYENWWMAV-UHFFFAOYSA-N chloroethene;2-methylprop-2-enoic acid Chemical compound ClC=C.CC(=C)C(O)=O VSJDEWYENWWMAV-UHFFFAOYSA-N 0.000 description 1
- KRGNPJFAKZHQPS-UHFFFAOYSA-N chloroethene;ethene Chemical group C=C.ClC=C KRGNPJFAKZHQPS-UHFFFAOYSA-N 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical class ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical class [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 150000002678 macrocyclic compounds Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920005671 poly(vinyl chloride-propylene) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000921 polyethylene adipate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000379 polypropylene carbonate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 229940080313 sodium starch Drugs 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
ãïŒïŒïŒïŒã[0001]
ãçºæã®å±ããæè¡åéãæ¬çºæã¯ããâã¬ãããä»äž
ãããé
åè仿¯æäœããããŠãããçšããå
åŠè£åã·
ãŒããåã³å
åŠè£åã·ãŒããæããæ¶²æ¶è¡šç€ºè£
眮åã³ã«
ã©ãŒã®æ¶²æ¶è¡šç€ºè£
眮ã«é¢ãããBACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a support provided with a knurled alignment film, an optical compensation sheet using the same, and a liquid crystal display device and a color liquid crystal display device having the optical compensation sheet.
ãïŒïŒïŒïŒã[0002]
ãåŸæ¥ã®æè¡ããã¹ã¯ãããåããŒãœãã«ã³ã³ãã¥ãŒã¿
ãŒããã³ã¯ãŒãããã»ããµãŒçã®ïŒ¯ïŒ¡æ©åšã®è¡šç€ºè£
眮ãš
ããŠã¯ãïŒcathode ray tubeïŒããããŸã§äž»ã«äœ¿
çšãããŠãããæè¿ãæ¶²æ¶è¡šç€ºè£
眮ïŒä»¥äžïŒ¬ïŒ£ïŒ€ãšç§°
ãïŒããèåã§ã軜éããŸãæ¶è²»é»åãå°ããããšãã
ã®ä»£ããã«åºã䜿çšãããŠãããã¯ãäžè¬
ã«æ¶²æ¶ã»ã«ãšãã®äž¡åŽã«èšããããäžå¯Ÿã®åå
æ¿ãããª
ãããã®ãããªïŒ¬ïŒ£ïŒ€ã®å€ãã¯ãããããããã¯æ¶²æ¶ã
çšããããŠããã2. Description of the Related Art A CRT (cathode ray tube) has been mainly used as a display device of OA equipment such as a desktop personal computer and a word processor. 2. Description of the Related Art Recently, liquid crystal display devices (hereinafter, referred to as LCDs) are widely used instead of CRTs because of their thinness, light weight, and low power consumption. An LCD generally includes a liquid crystal cell and a pair of polarizing plates provided on both sides thereof. Most of such LCDs use a twisted nematic liquid crystal.
ãïŒïŒïŒïŒãã®è¡šç€ºæ¹åŒã¯å€§ããè€å±æã¢ãŒããš
æå
ã¢ãŒãã«åããããšãã§ãããè€å±æã¢ãŒããå©çš
ããè¶
ãããïŒã¹ãŒããŒãã£ã¹ãã£ããïŒããããã¯æ¶²
æ¶è¡šç€ºè£
眮ïŒä»¥äžïŒ³ïŒŽïŒ®âãšç§°ãïŒã¯ãïŒïŒåºŠã
è¶
ãããããè§åã³æ¥å³»ãªé»æ°å
åŠç¹æ§ãæããã¹ãŒã
ãŒãã£ã¹ãã£ããããããã¯æ¶²æ¶ãçšããŠããããã®ã
ãããã®ãããªïŒ³ïŒŽïŒ®âã¯ãæåå²é§åã«ãã倧
容éã®è¡šç€ºãå¯èœã§ãããããããªãããâ
ã¯ãå¿çé床ãé
ãïŒæ°çŸããªç§ïŒãé調衚瀺ãå°é£
ãšã®åé¡ãããããšãããèœåçŽ åã䜿çšããæ¶²æ¶è¡šç€º
è£
眮ïŒäŸãâåã³ïŒïŒ©ïŒâïŒã®è¡šç€º
ç¹æ§ã«æ¯ã¹ãŠå£ã£ãŠãããâåã³ïŒïŒ©ïŒâ
ã«ãããŠã¯ãïŒïŒåºŠã®ãããè§ããã³æ£ã®è€å±æ
ãæããããããããã£ãã¯æ¶²æ¶ããç»åã衚瀺ããã
ãã«äœ¿çšãããŠãããâã®è¡šç€ºã¢ãŒãã§ã¯ã
é«éå¿çæ§ïŒæ°åããªç§ïŒåã³é«ãã³ã³ãã©ã¹ããåŸã
ãããåŸã£ãŠãæå
ã¢ãŒãã¯ãè€å±æã¢ãŒããä»ã®ã¢ãŒ
ãã«æ¯ã¹ãŠå€ãã®ç¹ã§æå©ã§ãããããããªããã
âã¯ã衚瀺è²ã衚瀺ã³ã³ãã©ã¹ããæ¶²æ¶è¡šç€ºè£
眮
ãèŠãæã®è§åºŠã«ãã£ãŠå€åããããïŒèŠéè§ç¹æ§ïŒã
ãã®è¡šç€ºç¹æ§ã¯ïŒ£ïŒ²ïŒŽã®ã¬ãã«ã«ã¯è³ã£ãŠããªãã[0003] LCD display systems can be broadly divided into birefringence mode and optical rotation mode. 2. Description of the Related Art A super twisted nematic liquid crystal display device (hereinafter, referred to as an STN-LCD) using a birefringent mode uses a super twisted nematic liquid crystal having a twist angle exceeding 90 degrees and steep electro-optical characteristics. . Therefore, such an STN-LCD can display a large amount of data by time-division driving. However, STN-LC
D has a problem that the response speed is slow (several hundred milliseconds) and gray scale display is difficult. Therefore, the display characteristics of the liquid crystal display devices (eg, TFT-LCD and MIM-LCD) using the active elements are difficult. Inferior compared. TFT-LCD and MIM-
In LCDs, twisted nematic liquid crystals having a 90 degree twist angle and positive birefringence are used to display images. In the display mode of the TN-LCD,
High-speed response (several tens of milliseconds) and high contrast are obtained. Thus, the optical rotation mode has many advantages over the birefringence mode and other modes. However, TN
-LCDs have different display colors and display contrast depending on the viewing angle of the liquid crystal display device (viewing angle characteristics).
The display characteristics have not reached the level of the CRT.
ãïŒïŒïŒïŒãäžèšèŠéè§ç¹æ§ãæ¹åããããïŒå³ã¡ãèŠ
éè§ã®æ¡å€§ïŒãäžå¯Ÿã®åå
æ¿ãšæ¶²æ¶ã»ã«ãšã®éã«äœçžå·®
æ¿ïŒå
åŠè£åã·ãŒãïŒãèšãããšã®ææ¡ããç¹éå¹³ïŒâ
ïŒïŒïŒïŒïŒïŒå·å
¬å ±åã³ç¹éå¹³ïŒâïŒïŒïŒïŒïŒïŒå·å
¬å ±
ã«èšèŒãããŠãããäžèšå
¬å ±ã§ææ¡ãããŠããäœçžå·®æ¿
ã¯ãæ¶²æ¶ã»ã«ã«å¯ŸããŠåçŽæ¹åã®äœçžå·®ã¯ã»ãŒïŒã§ãã
ããçæ£é¢ããã¯äœãå
åŠçäœçšãäžããªãããåŸãã
æã«äœçžå·®ãçºçŸããããã§æ¶²æ¶ã»ã«ã§çºçããäœçžå·®
ãè£åãããã®ã§ããããã®äœçžå·®ãã衚瀺ç»åã®çè²
ãæ¶å€±çã®å¥œãŸãããªãèŠéè§ç¹æ§ããããããŠããã
ãã®ãããªå
åŠè£åã·ãŒããšããŠã¯ãããããã¯æ¶²æ¶ã
å
åŠçã«æ£ã®äžè»žæ§ãæããããããããè£åãããã
ã«è² ã®äžè»žæ§ãæãããã€å
軞ãåŸããŠããã·ãŒããæ
å¹ã§ãããTo improve the viewing angle characteristics (ie, to increase the viewing angle), Japanese Patent Application Laid-Open No. Hei 4-1992 proposes providing a retardation plate (optical compensation sheet) between a pair of polarizing plates and a liquid crystal cell.
229828 and JP-A-4-258923. The retardation plate proposed in the above-mentioned publication does not exert any optical action from directly in front of the liquid crystal cell because the retardation in the vertical direction is almost 0, but the retardation appears when tilted. This compensates for the phase difference generated in the liquid crystal cell. This phase difference brings about unfavorable viewing angle characteristics such as coloring and disappearance of the displayed image.
As such an optical compensatory sheet, a sheet having a negative uniaxial property and an optical axis inclined so as to compensate for the nematic liquid crystal having an optically positive uniaxial property is effective.
ãïŒïŒïŒïŒãç¹éå¹³ïŒâïŒïŒïŒïŒïŒå·å
¬å ±åã³ïŒ¥ïŒ°ïŒïŒ
ïŒïŒïŒïŒïŒïŒ¡ïŒæçްæžã«ã¯ãè² ã®äžè»žæ§ãæãããã€å
軞ãåŸããŠããå
åŠè£åã·ãŒããé瀺ãããŠããããã®
å
åŠè£åã·âãã«ãã£ãŠãã³ã³ãã©ã¹ãã®èŠè§ç¹æ§ã¯å€§
å¹
ã«æ¹åãããããé調å転ãè²çžå€åãšããç¹ã«ã€ã
ãŠã¯ãæªã å
åŠè£åãšããŠååã§ã¯ãªãã£ããJP-A-6-75116 and EP05
The specification of 76304A1 discloses an optical compensation sheet having negative uniaxiality and an optical axis inclined. This optical compensation sheet significantly improved the viewing angle characteristic of contrast, but it was still insufficient as optical compensation in terms of gradation inversion and hue change.
ãïŒïŒïŒïŒãããã«å¯ŸããâïŒïŒïŒïŒïŒïŒïŒæçްæž
ã«èšèŒãããŠããããã£ã¹ã³ãã£ãã¯ååç©ãçšããå
åŠè£åã·âãã¯ãèŠéè§ç¹æ§ã®æ¹åã«å ããé調å転ã
è²çžå€åã®æ¹åã«åªããäžã€é·å°ºåãé£ç¶çã«è£œé åºæ¥
ããªã©å€ãã®ã¡ãªãããæããŠããã ãããããã®è£œ
é æ¹æ³ã«ããé
åèãé·å°ºäœè£œãããšããã®äžã«å¡èšã
ããã£ã¹ã³ãã£ãã¯ååç©å±€ã«ãæ¯æäœå±€ã®åã¿ã ã©ã
åå ãšæãããé
åã ã©ãçããã±âã¹ãããããæ©ç
ããäœäžãããåå ãšãªã£ãŠãããOn the other hand, the optical compensation sheet described in EP-0642869 using a discotic compound, in addition to improving the viewing angle characteristics, also provides gradation inversion,
It has many merits such as excellent improvement in hue change and continuous production of long products. However, when a long alignment film is produced by this production method, the discotic compound layer coated thereon has a case in which alignment unevenness is thought to be caused by the thickness unevenness of the support layer, resulting in a high yield. It was the cause of the decrease.
ãïŒïŒïŒïŒã[0007]
ãçºæã解決ããããšãã課é¡ãæ¬çºæã®ç®çã¯ãèŠé
è§ãæ¡å€§ãããããŠèŠè§å€åã«ãããã³ã³ãã©ã¹ãäœ
äžãé調ãŸãã¯é»çœå転ãããã³è²çžå€åçãã»ãšãã©
çºçããããšã®ãªãå
åŠè£åã·ãŒããæããã«ã©ãŒæ¶²æ¶
衚瀺è£
眮ãæäŸããããšã«ããããããéæããããã®
æ¯æäœã®åã¿ã ã©ã«èµ·å ãããã£ã¹ã³ãã£ãã¯ååç©ã®
é
åã ã©ãçããªãé
åè仿¯æäœãæäŸããããšã§ã
ããSUMMARY OF THE INVENTION It is an object of the present invention to provide an optical compensatory sheet having a wide viewing angle and almost no deterioration of contrast, gradation or black / white inversion, and hue change due to a change in viewing angle. An object of the present invention is to provide a color liquid crystal display device having the above, and to provide a support with an alignment film in which the alignment unevenness of the discotic compound due to the thickness unevenness of the support does not occur.
ãïŒïŒïŒïŒã[0008]
ã課é¡ã解決ããããã®ææ®µãäžèšèª²é¡ã¯ã ïŒïŒïŒéææ¯æäœäžã«é
åèãèšãããã€äž¡ç«¯ã«é«ãïŒ
Ό以äžãïŒïŒïŒÎŒä»¥äžã®ãâã¬ããïŒããŒãªã³ã°ããšã³
ãã¹å å·¥ãšãåŒã°ããïŒãä»äžãããé
åè仿¯æäœã ïŒïŒïŒè©²é
åèãæ¶æ©ãããããªããã«ã¢ã«ã³âã«åã¯
倿§ããªããã«ã¢ã«ã³âã«ãããªãããšãç¹åŸŽãšãã
ïŒïŒïŒã«èšèŒã®é
åè仿¯æäœã ïŒïŒïŒéææ¯æäœäžã«é
åèãèšãããã€äž¡ç«¯ã«é«ãïŒ
Ό以äžãïŒïŒïŒÎŒä»¥äžã®ãâã¬ãããä»äžãããé
åè
仿¯æäœã®é
åèäžã«å°ãªããšãïŒçš®ã®ãã£ã¹ã³ãã£ã
ã¯ååç©ãããªãå
åŠç°æ¹å±€ãæããäºãç¹åŸŽãšããå
åŠè£åã·âãã ïŒïŒïŒè©²å
åŠç°æ¹å±€ãããã£ã¹ã³ãã£ãã¯æ§é åäœãæ
ããååç©ãããªãè² ã®è€å±æãæããå±€ã§ããããã
ãŠè©²ãã£ã¹ã³ãã£ãã¯æ§é åäœã®åç€é¢ããéææ¯æäœ
é¢ã«å¯ŸããŠåŸããŠãããäžã€è©²ãã£ã¹ã³ãã£ãã¯æ§é å
äœã®åç€é¢ãšéææ¯æäœé¢ãšã®ãªãè§åºŠããå
åŠç°æ¹å±€
ã®æ·±ãæ¹åã«ãããŠå€åããŠããããšãç¹åŸŽãšãã
ïŒïŒïŒã«èšèŒã®å
åŠè£åã·ãŒãã ïŒïŒïŒè©²è§åºŠããå
åŠç°æ¹å±€ã®æ·±ãæ¹åã«ãããŠå
åŠç°
æ¹å±€ã®åºé¢ããã®è·é¢ã®å¢å ãšå
±ã«å¢å ããŠããïŒïŒïŒ
ã«èšèŒã®å
åŠè£åã·ãŒãã ïŒïŒïŒéæé»æ¥µãç»çŽ é»æ¥µããã³ã«ã©ãŒãã£ã«ã¿ãæã
ãäžå¯Ÿã®åºæ¿ãšããã®åºæ¿éã«å°å
¥ããããããé
åã
ãããããã¯æ¶²æ¶ãšãããªãæ¶²æ¶ã»ã«ãæ¶²æ¶ã»ã«ã®äž¡åŽ
ã«èšããããäžå¯Ÿã®åå
æ¿ãåã³æ¶²æ¶ã»ã«ãšåå
æ¿ãšã®
éã«èšããããå
åŠè£åã·ãŒããããªãã«ã©ãŒæ¶²æ¶è¡šç€º
è£
眮ã«ãããŠãå
åŠè£åã·ãŒããšå
åŠè£åã·ãŒãåŽã®å
å
æ¿ãšãç²çå±€ãä»ããŠç©å±€ããæ¶²æ¶è¡šç€ºè£
眮ã«è£
çã§
ãã倧ããã«è£æããŠè£
çãããã®ã§ããããšãç¹åŸŽãš
ããã«ã©ãŒæ¶²æ¶è¡šç€ºè£
眮ãã«ãã£ãŠéæããããMeans for Solving the Problems The above-mentioned problems are as follows: (1) An alignment film is provided on a transparent support, and both ends have a height of 1
A support with an alignment film, to which a knurl (also referred to as knurling or embossing) of Ό or more and 100 Ό or less is provided. (2) The support with an alignment film according to (1), wherein the alignment film is made of crosslinked polyvinyl alcohol or modified polyvinyl alcohol. (3) An alignment film is provided on the transparent support, and the height is 1 at both ends.
An optical compensation sheet, comprising an optically anisotropic layer made of at least one discotic compound on an alignment film of a support with an alignment film, to which a knurling of .mu. (4) The optically anisotropic layer is a layer having a negative birefringence composed of a compound having a discotic structural unit, and the disc surface of the discotic structural unit is inclined with respect to the transparent support surface, The optical compensation sheet according to (3), wherein the angle formed by the disc surface of the discotic structural unit and the transparent support surface changes in the depth direction of the optically anisotropic layer. (5) The angle increases in the depth direction of the optically anisotropic layer as the distance from the bottom surface of the optically anisotropic layer increases (4)
The optical compensation sheet according to item 1. (6) A pair of substrates each having a transparent electrode, a pixel electrode, and a color filter, and a liquid crystal cell including a nematic liquid crystal in a twisted orientation sealed between the substrates, a pair of polarizing plates provided on both sides of the liquid crystal cell, and In a color liquid crystal display device including an optical compensation sheet provided between a liquid crystal cell and a polarizing plate, the optical compensation sheet and the polarizing plate on the optical compensation sheet side can be laminated via an adhesive layer and attached to the liquid crystal display device. A color liquid crystal display device, which is cut into a size and mounted. Achieved by
ãïŒïŒïŒïŒã[0009]
ãçºæã®å®æœã®åœ¢æ
ãæ¬çºæã®éææ¯æäœã®ææãšããŠ
ã¯ãéæã§ãããããã©ã®ãããªææã§ã䜿çšããããš
ãã§ãããå
ééçãïŒïŒïŒ
以äžãæããææã奜ãŸã
ããç¹ã«æ£é¢ããèŠãæã«å
åŠççæ¹æ§ãæãããã®ã
奜ãŸãããåŸã£ãŠãéææ¯æäœã¯ãåºæè€å±æå€ã®å°ã
ãææãã補é ããããšã奜ãŸããããã®ãããªææãš
ããŠã¯ããŒãªããã¯ã¹ïŒæ¥æ¬ãŒãªã³ïŒæ ªïŒè£œïŒã
ïŒ¯ïŒ®ïŒæ¥æ¬åæãŽã ïŒæ ªïŒè£œïŒåã³ããžã¿ãã¯ïŒå¯å£«å
çãã€ã«ã ïŒæ ªïŒè£œïŒãªã©ã®åžè²©åã䜿çšããããšãã§
ãããããã«ãããªã«ãŒãããŒããããªã¢ãªã¬ãŒããã
ãªã¹ã«ãã©ã³åã³ããªãšãŒãã«ã¹ã«ãã³ãªã©ã®åºæè€å±
æå€ã®å€§ããçŽ æã§ãã£ãŠããæº¶æ¶²æµå»¶ãæº¶èæŒãåºã
çã®æ¡ä»¶ãããã«ã¯çžŠã暪æ¹åã«å»¶äŒžæ¡ä»¶çãé©å®èšå®
ããããšã«ãããåŸãããšãã§ãããBEST MODE FOR CARRYING OUT THE INVENTION As the material for the transparent support of the present invention, any material can be used as long as it is transparent. A material having a light transmittance of 80% or more is preferable, and a material having optical isotropy when viewed from the front is particularly preferable. Therefore, the transparent support is preferably manufactured from a material having a small intrinsic birefringence value. Examples of such materials include Zeonex (manufactured by Nippon Zeon Co., Ltd.) and ART.
Commercially available products such as ON (manufactured by Japan Synthetic Rubber Co., Ltd.) and Fujitac (manufactured by Fuji Photo Film Co., Ltd.) can be used. Furthermore, even for materials with a large intrinsic birefringence value such as polycarbonate, polyarylate, polysulfone, and polyethersulfone, the conditions such as solution casting and melt extrusion, as well as stretching conditions in the longitudinal and transverse directions, etc. are set appropriately. Can be obtained.
ãïŒïŒïŒïŒãéææ¯æäœïŒãã£ã«ã ïŒé¢å
ã®äž»å±æçã
ïœïœãïœïœãåã¿æ¹åã®äž»å±æçãïœïœããã€ã«ã ã®å
ããïœãšãããšããäžè»žã®äž»å±æçã®é¢ä¿ãïœïœïŒïœïœ
ïŒïœïœïŒè² ã®äžè»žæ§ïŒãæºè¶³ããåŒïœïŒïœïœïŒïœïœïŒïŒ
ïŒâïœïœïœÃïœã§è¡šãããã¬ã¿ããŒã·ã§ã³ããïŒïŒïœïœ
ããïŒïŒïŒïœïœïŒå¥œãŸããã¯ïŒïŒãïŒïŒïŒïœïœïŒã§ãã
ããšã奜ãŸãããäœããïœïœãšïœïœã®å€ã¯å³å¯ã«çãã
å¿
èŠã¯ãªããã»ãŒçãããã°å
åã§ãããå
·äœçã«ã¯ã
ïœïœïœâïœïœïœïŒïœïœïœâïœïœïœâŠïŒïŒïŒã§ããã°å®çš
äžåé¡ã¯ãªããïœïœïœâïœïœïœÃïœã§è¡šãããæ£é¢ã¬ã¿
ãŒããŒã·ã§ã³ã¯ãïŒïŒïœïœä»¥äžã§ããããšã奜ãŸããã
ïŒïŒïœïœä»¥äžã§ããããšãããã«å¥œãŸãããäžèšã®ïœ
ïœãïœïœãïœïœåã³ïœã®é¢ä¿ãå³ïŒã«ç€ºããAssuming that the main refractive indices in the plane of the transparent support (film) are nx, ny, the main refractive index in the thickness direction is nz, and the film thickness is d, the relationship of the triaxial main refractive indices is nz < ny
= Nx (negative uniaxiality), and the formula ïœ(nx + ny) /
The retardation represented by 2-nzïœ Ã d is 20 nm
To 400 nm (preferably 30 to 150 nm). However, the values of nx and ny do not need to be exactly equal, but it is sufficient if they are approximately equal. In particular,
If | nx-ny | / | nx-nz | ⊠0.3, there is no practical problem. The front retardation represented by | nx-ny | à d is preferably 50 nm or less,
More preferably, it is 20 nm or less. N above
FIG. 1 shows the relationship among x, ny, nz, and d.
ãïŒïŒïŒïŒãéææ¯æäœãšé
åèãšã®éã«ãæ¥ç匷床ã
å¢å€§ãããããã®äžå¡å±€ãèšããããšã奜ãŸãããäžå¡
å±€ã¯ãäžè¬ã«éææ¯æäœã衚é¢åŠçããåŸãå¡åžã«ãã
圢æããã衚é¢åŠçã®æ¹æ³ãšããŠã¯ãååŠåŠçãæ©æ¢°åŠ
çãã³ããæŸé»åŠçãç«çåŠçãåŠçãé«åšæ³¢åŠ
çãã°ããŒæŸé»åŠçãæŽ»æ§ãã©ãºãåŠçãåã³ãªãŸã³é
ž
ååŠçãæããããšãã§ããããã°ããŒæŸé»åŠçãæã
奜ãŸãããäžå¡å±€ã®æ§æãšããŠãçš®ã
ã®å·¥å€«ãè¡ãããŠ
ããã第ïŒå±€ãšããŠé«ååãã£ã«ã ã«ããå¯çããå±€
ïŒä»¥äžãäžå¡ç¬¬ïŒå±€ãšç¥ãïŒãèšãããã®äžã«ç¬¬ïŒå±€ãš
ããŠé
åèãšããå¯çãã芪氎æ§ã®æš¹èå±€ïŒä»¥äžãäžå¡
第ïŒå±€ãšç¥ãïŒãå¡åžããæè¬éå±€æ³ãšãçæ°Žæ§åºãšèŠª
æ°Žæ§åºãšã®äž¡æ¹ã嫿ããæš¹èå±€ãäžå±€ã®ã¿å¡åžããå
å±€æ³ãšããããAn undercoat layer is preferably provided between the transparent support and the alignment film to increase the adhesive strength. The undercoat layer is generally formed by coating the surface of the transparent support and then coating the transparent support. Examples of the surface treatment method include chemical treatment, mechanical treatment, corona discharge treatment, flame treatment, UV treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and ozone oxidation treatment, but glow discharge treatment is the most preferable. preferable. Various contrivances have been made for the structure of the undercoat layer. A layer (hereinafter, abbreviated as the first undercoat layer) that adheres well to the polymer film is provided as a first layer, and an alignment film is formed thereon as a second layer. A so-called multi-layer method of applying a hydrophilic resin layer (hereinafter abbreviated as an undercoating second layer) which adheres well to a single layer method of applying only one resin layer containing both a hydrophobic group and a hydrophilic group. There is.
ãïŒïŒïŒïŒãéå±€æ³ã«ãããäžå¡ç¬¬ïŒå±€ã§ã¯ãäŸãã°å¡©
åããã«ãå¡©åãããªãã³ããã¿ãžãšã³ãã¡ã¿ã¯ãªã«
é
žãã¢ã¯ãªã«é
žãã€ã¿ã³ã³é
žãç¡æ°Žãã¬ã€ã³é
žãªã©ã®äž
ããéžã°ããåéäœãåºçºåæãšããå
±éåäœïŒããªãš
ãã¬ã³ã€ãã³ïŒãšããã·æš¹èïŒã°ã©ããåãŒã©ãã³ïŒã
ããã»ã«ããŒã¹ïŒããªèåããã«ãããªããåããã«ã
ããªé
¢é
žããã«ãå¡©çŽ åããªãšãã¬ã³ãå¡©çŽ åããªãã
ãã¬ã³ãèçŽ åããªãšãã¬ã³ãå¡©åãŽã ãå¡©åããã«â
ãšãã¬ã³å
±éåäœãå¡©åããã«âãããã¬ã³å
±éåäœã
å¡©åããã«âã¹ãã¬ã³å
±éåäœãå¡©åã€ãœããã¬ã³å
±é
åäœãå¡©åããã«âå¡©åãããªãã³å
±éåäœãå¡©åãã
ã«âã¹ãã¬ã³âç¡æ°Žãã¬ã€ã³é
žäžå
å
±éåäœãå¡©åãã
ã«âã¹ãã¬ã³âã¢ã¯ãªããããªã«å
±éåäœãå¡©åããã«
âãã¿ãžãšã³å
±éåäœãå¡©åããã«âã€ãœãã¬ã³å
±éå
äœãå¡©åããã«âå¡©çŽ åãããã¬ã³å
±éåäœãå¡©åãã
ã«âå¡©åãããªãã³âé
¢é
žããã«äžå
å
±éåäœãå¡©åã
ãã«âã¢ã¯ãªã«é
žãšã¹ãã«å
±éåäœãå¡©åããã«âãã¬
ã€ã³é
žãšã¹ãã«å
±éåäœãå¡©åããã«âã¡ã¿ã¯ãªã«é
žãš
ã¹ãã«å
±éåäœãå¡©åããã«âã¢ã¯ãªããããªã«å
±éå
äœãå
éšå¯å¡åããªå¡©åããã«ãå¡©åããã«âé
¢é
žãã
ã«å
±éåäœãããªå¡©åãããªãã³ãå¡©åãããªãã³âã¡
ã¿ã¯ãªã«é
žãšã¹ãã«å
±éåäœãå¡©åãããªãã³âã¢ã¯ãª
ããããªã«å
±éåäœãå¡©åãããªãã³ãŒã¢ã¯ãªã«é
žãšã¹
ãã«å
±éåäœãã¯ãããšãã«ããã«ãšãŒãã«âã¢ã¯ãªã«
é
žãšã¹ãã«å
±éåäœåã³ããªã¯ãããã¬ã³ãªã©ã®å«ãã
ã²ã³åææš¹èïŒããªãšãã¬ã³ãããªããããšã³ãããªã
ãã³ãããªâïŒâã¡ãã«ããã³åã³ããªâïŒïŒïŒâãã¿
ãžãšã³ãªã©ã®Î±âãªã¬ãã£ã³å
±éåäœïŒãšãã¬ã³âãã
ãã¬ã³å
±éåäœããšãã¬ã³âããã«ãšãŒãã«å
±éåäœã
ãšãã¬ã³âãããã¬ã³âïŒïŒïŒâãããµãžãšã³å
±éå
äœããšãã¬ã³âé
¢é
žããã«å
±éåäœãããã³âïŒâãã
ãã¬ã³å
±éåäœããã¿ãžãšã³âã¢ã¯ãªããããªã«å
±éå
äœãããã³ãããã®å
±éåäœãšããã²ã³å«ææš¹èãšã®ã
ã¬ã³ãç©ïŒã¢ã¯ãªã«é
žã¡ãã«ãšã¹ãã«âã¢ã¯ãªããããª
ã«å
±éåäœãã¢ã¯ãªã«é
žãšãã«ãšã¹ãã«âã¹ãã¬ã³å
±é
åäœãã¡ã¿ã¯ãªã«é
žã¡ãã«ãšã¹ãã«âã¢ã¯ãªããããªã«
å
±éåäœãããªã¡ã¿ã¯ãªã«é
žã¡ãã«ãšã¹ãã«ãã¡ã¿ã¯ãª
ã«é
žã¡ãã«ãšã¹ãã«âã¹ãã¬ã³å
±éåäœãã¡ãã¯ãªã«é
ž
ããã«ãšã¹ãã«âã¹ãã¬ã³å
±éåäœãããªã¢ã¯ãªã«é
žã¡
ãã«ãããªâαâã¯ãã«ã¢ã¯ãªã«é
žã¡ãã«ãããªã¢ã¯ãª
ã«é
žã¡ããã·ãšãã«ãšã¹ãã«ãããªã¢ã¯ãªã«é
žã°ãªã·ãž
ã«ãšã¹ãã«ãããªã¢ã¯ãªã«é
žããã«ãšã¹ãã«ãããªã¢ã¯
ãªã«é
žã¡ãã«ãšã¹ãã«ãããªã¢ã¯ãªã«é
žãšãã«ãšã¹ã
ã«ãã¢ã¯ãªã«é
žâã¢ã¯ãªã«é
žããã«å
±éåäœãã¢ã¯ãªã«
é
žãšã¹ãã«âãã¿ãžãšã³âã¹ãã¬ã³å
±éåäœåã³ã¡ã¿ã¯
ã«ã«é
žãšã¹ãã«âãã¿ãžãšã³âã¹ãã¬ã³å
±éåäœãªã©ã®
ã¢ã¯ãªã«æš¹èïŒããªã¹ãã¬ã³ãããªâαâã¡ãã«ã¹ãã¬
ã³ãã¹ãã¬ã³âããã«é
žãžã¡ãã«å
±éåäœãã¹ãã¬ã³â
ç¡æ°Žãã¬ã€ã³é
žå
±éåäœãã¹ãã¬ã³âãã¿ãžãšã³å
±éå
äœãã¹ãã¬ã³âã¢ã¯ãªããããªã«å
±éååã³ã¹ãã¬ã³â
ãã¿ãžãšã³âã¢ã¯ãªããããªã«å
±éåäœçã®ã¹ãã¬ã³ç³»
æš¹èïŒããªâïŒïŒïŒâãžã¡ãã«ãã§ãã¬ã³ãªããµã€ãïŒ
ããªããã«ã«ã«ããŸãŒã«ïŒããªâïœâãã·ãªã¬ã³ïŒããª
ããã«ãã«ããŒã«ïŒããªããã«ã¢ã»ã¿ãŒã«ïŒããªããã«
ããã©ãŒã«ïŒããªããã«ãã¿ã¬ãŒãïŒïŒé
¢é
žã»ã«ããŒ
ã¹ïŒé
ªé
žã»ã«ããŒã¹ïŒé
ªé
¢é
žã»ã«ããŒã¹ïŒã»ã«ããŒã¹ã
ã¿ã¬ãŒãïŒãã€ãã³ïŒïŒãã€ãã³ïŒïŒïŒãã€ãã³ïŒïŒïŒ
ã¡ããã·ã¡ãã«âïŒâãã€ãã³ïŒãã€ãã³âïŒïŒïŒïŒâ
ããªã«ãã©ããïŒããªââããã«âãã€ãã³âïŒâã
ãªãšãã¬ã³ã»ãã±ãŒãïŒããªããã¬ã³ã°ã«ã¿ã¬ãŒãïŒã
ãªãããµã¡ãã¬ã³ã¢ãžããŒãïŒããªããã¬ã³ã€ãœãã¿ã¬
ãŒãïŒããªãšãã¬ã³ãã¬ãã¿ã¬ãŒãïŒããªãšãã¬ã³ã¢ãž
ããŒãïŒããªãšãã¬ã³ã¢ãžããŒããã¬ãã¿ã¬ãŒãïŒããª
ãšãã¬ã³âïŒïŒïŒâããã¿ã¬ãŒãïŒããªãžãšãã¬ã³ã°ãª
ã³ãŒã«ãã¬ãã¿ã¬ãŒãïŒããªãšãã¬ã³ãªãã·ãã³ãŸãšãŒ
ãïŒãã¹ãã§ããŒã«ïŒ¡âã€ãœãã¿ã¬ãŒãïŒããªã¢ã¯ãªã
ãããªã«ïŒãã¹ãã§ããŒã«ïŒ¡âã¢ãžããŒãïŒããªãããµ
ã¡ãã¬ã³âïœâãã³ãŒã³ãžã¹ã«ãã³ã¢ããïŒããªããã©
ã¡ãã¬ã³ãããµã¡ãã¬ã³ã«ãŒãããŒãïŒããªãžã¡ãã«ã·
ãããµã³ïŒããªãšãã¬ã³ã¡ãã¬ã³ãã¹âïŒâãã§ãã¬ã³
ã«ããŒããŒãïŒåã³ãã¹ãã§ããŒã«ïŒ¡âããªã«ãŒãããŒ
ãçã®çŽ æãæããããšãã§ããããããã®ãªãªãŽããŒ
ãããã¯ããªããŒã«ã€ããŠã¯ïŒ¥ïŒïŒšïŒïŒ©ïœïœïœ
ïœïœïœ
ïœâïœïœïœïœïœ
ïœ ïŒšïœïœïœïœïœïœïœâããïŒïŒ
ïŒâïŒïŒïŒãïœïœïœ
ïœïœïœïœïœ
ïœïœïœ
ïœïœïŒïŒ®ïœ
ïœ ïŒ¹ïœïœïœãïŒïŒïŒïŒã«è©³ããèšèŒãããŠãããäžå¡
第ïŒå±€ã§ã®ææãšããŠã¯ããŒã©ãã³çãæããããšãã§
ãããIn the first undercoating layer in the multi-layer method, a copolymerization starting material is a monomer selected from vinyl chloride, vinylidene chloride, butadiene, methacrylic acid, acrylic acid, itaconic acid, maleic anhydride, etc. Combined; polyethyleneimine; epoxy resin; grafted gelatin; nitrocellulose; polyvinyl bromide, polyvinyl fluoride,
Polyvinyl acetate, chlorinated polyethylene, chlorinated polypropylene, brominated polyethylene, chlorinated rubber, vinyl chloride
Ethylene copolymer, vinyl chloride-propylene copolymer,
Vinyl chloride-styrene copolymer, isobutylene chloride copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-styrene-maleic anhydride terpolymer, vinyl chloride-styrene-acrylonitrile copolymer, vinyl chloride- Butadiene copolymer, vinyl chloride-isoprene copolymer, vinyl chloride-chlorinated propylene copolymer, vinyl chloride-vinylidene chloride-vinyl acetate terpolymer, vinyl chloride-acrylate copolymer, vinyl chloride- Maleic acid ester copolymer, vinyl chloride-methacrylic acid ester copolymer, vinyl chloride-acrylonitrile copolymer, internally plasticized polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinylidene chloride, vinylidene chloride-methacrylic acid Ester copolymer, vinylidene chloride-acrylonitrile copolymer Halogen-containing synthetic resins such as vinylidene chloride-acrylate copolymer, chloroethyl vinyl ether-acrylate copolymer, and polychloroprene; polyethylene, polypropylene, polybutene, poly-3-methylbutene, and poly-1,2- Î-olefin copolymers such as butadiene; ethylene-propylene copolymers, ethylene-vinyl ether copolymers,
Ethylene-propylene-1,4-hexadiene copolymer, ethylene-vinyl acetate copolymer, butene-1-propylene copolymer, butadiene-acrylonitrile copolymer, and blends of these copolymers with halogen-containing resins Products: Acrylic acid methyl ester-acrylonitrile copolymer, acrylic acid ethyl ester-styrene copolymer, methacrylic acid methyl ester-acrylonitrile copolymer, polymethacrylic acid methyl ester, methacrylic acid methyl ester-styrene copolymer, methacrylic acid Butyl ester-styrene copolymer, polymethyl acrylate, poly-α-methyl acrylate, methoxyethyl acrylate, glycidyl polyacrylate, butyl polyacrylate, methyl acrylate And acrylic resins such as polyacrylic acid ethyl ester, acrylic acid-butyl acrylate copolymer, acrylate-butadiene-styrene copolymer and methacrylic acid ester-butadiene-styrene copolymer; polystyrene, poly-α-methyl Styrene, styrene-dimethyl fumarate copolymer, styrene
Maleic anhydride copolymer, styrene-butadiene copolymer, styrene-acrylonitrile copolymer and styrene-
Styrene resins such as butadiene-acrylonitrile copolymer; poly-2,6-dimethylphenylene oxide;
Polyvinyl carbazole; poly-p-xylylene; polyvinyl formal; polyvinyl acetal; polyvinyl butyral; polyvinyl phthalate; cellulose triacetate; cellulose butyrate; cellulose butyrate; cellulose phthalate; nylon 6;
Methoxymethyl-6-nylon; nylon-6,10-
Polycapramide; poly-N-butyl-nylon-6-polyethylene sebacate; polybutylene glutarate; polyhexamethylene adipate; polybutylene isophthalate; polyethylene terephthalate; polyethylene adipate; polyethylene adipate terephthalate; polyethylene-2,6-naphthalate; poly Diethylene glycol terephthalate; polyethyleneoxy benzoate; bisphenol A-isophthalate; polyacrylonitrile; bisphenol A-adipate; polyhexamethylene-m-benzenedisulfonamide; polytetramethylenehexamethylene carbonate; polydimethylsiloxane; polyethylenemethylenebis-4-phenyleneca Bonate; and materials such as bisphenol A-polycarbonate It is possible. These oligomers or polymers are described in E.I. H. Immergu
t "Polymer Handbook", IV, 18
7-231, Interscience Pub. Ne
w York, 1966. Examples of the material for the second undercoat layer include gelatin.
ãïŒïŒïŒïŒãåå±€æ³ã«ãããŠã¯ãé«ååãã£ã«ã ãèšåŒµ
ããã芪氎æ§äžå¡ããªããŒãšç颿··åãããããšã«ãã£
ãŠè¯å¥œãªå¯çæ§ãåŸãããããã«äžå¡å±€ã圢æãããã
æ¬çºæã«äœ¿çšãã芪氎æ§äžå¡ããªããŒãšããŠã¯ã氎溶æ§
ããªããŒãã»ã«ããŒã¹ãšã¹ãã«ãã©ããã¯ã¹ããªããŒã
氎溶æ§ããªãšã¹ãã«ãªã©ã䜿çšããããšãã§ãããæ°Žæº¶
æ§ããªããŒãšããŠã¯ããŒã©ãã³ããŒã©ãã³èªå°äœãã«ãŒ
ã€ã³ãå¯å€©ãã¢ã«ã®ã³é
žãœãŒããã§ãã·ããããªããâ
ã«ã¢ã«ã³ãŒã«ãããªã¢ã¯ãªã«é
žå
±éåäœåã³ç¡æ°Žãã¬ã€
ã³é
žå
±éåäœãªã©ãæããããšãã§ããã»ã«ããŒã¹ãšã¹
ãã«ãšããŠã¯ãã«ã«ããã·ã¡ãã«ã»ã«ããŒã¹åã³ããã
ãã·ãšãã«ã»ã«ããŒã¹ãæããããšãã§ãããã©ããã¯
ã¹ããªããŒãšããŠã¯ãå¡©åããã«å«æå
±éåäœãå¡©åã
ããªãã³å«æå
±éåäœãã¢ã¯ãªã«é
žãšã¹ãã«å«æå
±éå
äœãé
¢é
žããã«å«æå
±éåäœåã³ãã¿ãžãšã³å«æå
±éå
äœãæããããšãã§ããããã®äžã§ãæã奜ãŸããã®ã¯
ãŒã©ãã³ã§ããããŒã©ãã³ãšããŠã¯ãããããç³ç°åŠç
ãŒã©ãã³ãé
žåŠçãŒã©ãã³ãé
µçŽ åŠçãŒã©ãã³ããŒã©ã
ã³èªå°äœåã³å€æ§ãŒã©ãã³ãªã©ã®ãäžè¬ã«çšããããŠã
ããã®ã䜿çšããããšãã§ããããããã®ãŒã©ãã³ã®ã
ã¡ãæã奜ãŸããçšããããã®ã¯ç³ç°åŠçãŒã©ãã³ãé
ž
åŠçãŒã©ãã³ã§ããããããã®ãŒã©ãã³ã¯ããã®äœè£œå·¥
çšã«ãããçš®ã
ã®äžçŽç©ãäŸãã°ïŒïŒïŒïŒãïŒïŒïŒïŒïŒ
ïœïœïœã®éå±é¡ïŒïŒ®ïœïŒïŒ«ïŒïŒ¬ïœïŒïŒ²ïœïŒïŒ£ïœïŒïŒïœïŒ
ïœïŒïŒ£ïœ
ïŒïŒŠïœ
ïŒïŒ³ïœïŒïŒ°ïœïŒïŒ¡ïœïŒïŒ³ïœïŒïŒŽïœïŒïŒ¡
ïœïŒïŒ¡ïœïŒïŒºïœïŒïŒ®ïœãªã©ã®éå±ãåã³ãã®ã€ãªã³ãª
ã©ïŒãã€ãªã³ïŒïŒŠ-ïŒïŒ£ïœ-ïŒïŒ¢ïœ-ïŒïŒ©-ïŒç¡«é
žã€ãªã³ã
ç¡é
žã€ãªã³ãé
¢é
žã€ãªã³ãã¢ã³ã¢ããŠã ã€ãªã³ãªã©ïŒã
嫿ããŠããŠããããç¹ã«ç³ç°åŠçãŒã©ãã³ã«ãããŠ
ã¯ãïœãïŒïœã®ã€ãªã³ã嫿ããã®ãäžè¬çã§ããã
ãã®å«æéã¯ïŒïŒãïŒïŒïŒïŒïœïœïœãäžè¬çã§ãããäž
å¡ã®å¡åžæ§èœã®ç¹ããïŒïŒïŒïŒïœïœïœä»¥äžã奜ãŸããã
æŽã«å¥œãŸããã¯ïŒïŒïŒïœïœïœä»¥äžã§ãããIn the single layer method, the undercoat layer is formed by expanding the polymer film and interfacially mixing with the hydrophilic undercoat polymer so that good adhesion can be obtained.
As the hydrophilic undercoat polymer used in the present invention, a water-soluble polymer, a cellulose ester, a latex polymer,
A water-soluble polyester or the like can be used. Examples of the water-soluble polymer include gelatin, gelatin derivatives, casein, agar, sodium alginate, starch, and polyvinyl alcohol.
Alcohol, a polyacrylic acid copolymer, a maleic anhydride copolymer, and the like. Examples of the cellulose ester include carboxymethyl cellulose and hydroxyethyl cellulose. Examples of the latex polymer include a vinyl chloride-containing copolymer, a vinylidene chloride-containing copolymer, an acrylate-containing copolymer, a vinyl acetate-containing copolymer, and a butadiene-containing copolymer. Among these, gelatin is most preferred. As the gelatin, generally used ones such as so-called lime-treated gelatin, acid-treated gelatin, enzyme-treated gelatin, gelatin derivatives and modified gelatin can be used. Among these gelatins, lime-treated gelatin and acid-treated gelatin are most preferably used. These gelatins contain various impurities such as 0.11 to 20000 in the production process.
ppm metals (Na, K, Li, Rb, Ca, Mg,
Ba, Ce, Fe, Sn, Pb, Al, Si, Ti, A
u, Ag, Zn, Ni, and other metals, and their ions), ions (F â , Cl â , Br â , I â , sulfate ions,
Nitrate ion, acetate ion, ammonium ion, etc.). Especially in lime-processed gelatin, it is common to contain Ca and Mg ions,
The content is generally 10 to 3000 ppm, preferably 1000 ppm or less from the viewpoint of coating performance of the undercoat,
More preferably, it is 500 ppm or less.
ãïŒïŒïŒïŒããã®ä»ãäžå¡å±€åœ¢æçšå¡åžæ¶²ã¯ãå¿
èŠã«å¿
ããŠåçš®ã®æ·»å å€ã嫿ãããããšãã§ãããäŸãã°ç
颿޻æ§å€ãèé»é²æ¢å€ã顿ãå¡åžå©å€çãæããããš
ãã§ããããŸãæ¬çºæã®äžå¡å±€ã«ã¯ãå
¬ç¥ã®çš®ã
ã®ãŒã©
ãã³ç¡¬åå€ãçšããããšãã§ããããŒã©ãã³ç¡¬åå€ãšã
ãŠã¯ãã¯ãã å¡©ïŒã¯ãã æã°ããªã©ïŒãã¢ã«ãããé¡
ïŒãã«ã ã¢ã«ããããã°ã«ã¿ãŒã«ã¢ã«ããããªã©ïŒãã€
ãœã·ã¢ããŒãé¡ããšãã¯ãã«ãããªã³æš¹èåã³ããªã¢ã
ã€ãâãšãã¯ãã«ãããªã³æš¹èãã·ã¢ãã«ã¯ããªãç³»å
åç©ãããã«ã¹ã«ãã³ãããã¯ã¹ã«ããã«ç³»ååç©ãã«
ã«ãã¢ã€ã«ã¢ã³ã¢ããŠã å¡©ç³»ååç©ãã¢ããžããŠã å¡©ç³»
ååç©ãã«ã«ããžã€ããååç©åã³ããªãžããŠã å¡©ç³»å
åç©ãªã©ãæããããšãã§ãããIn addition, the coating liquid for forming the undercoat layer may contain various additives, if necessary. For example, surfactants, antistatic agents, pigments, coating aids and the like can be mentioned. In the undercoat layer of the present invention, various known gelatin hardeners can be used. Gelatin hardeners include chromium salts (chromium alum, etc.), aldehydes (formaldehyde, glutaraldehyde, etc.), isocyanates, epichlorohydrin resins and polyamide-epichlorohydrin resins, cyanuric chloride compounds, vinyl sulfone or sulfonyl compounds, carbamoyl Examples thereof include an ammonium salt-based compound, an amidinium salt-based compound, a carbodiimide compound, and a pyridinium salt-based compound.
ãïŒïŒïŒïŒãé
åèã¯ãäžè¬ã«éææ¯æäœäžåã¯äžèšäž
å¡å±€äžã«èšãããããé
åèã¯ããã®äžã«èšããããæ¶²
æ¶æ§ãã£ã¹ã³ãã£ãã¯ååç©ã®é
åæ¹åãèŠå®ãããã
ã«æ©èœãããé
åèã¯ãå
åŠç°æ¹å±€ã«é
åæ§ãä»äžã§ã
ããã®ã§ããã°ãã©ã®ãããªå±€ã§ãè¯ããé
åèã®å¥œãŸ
ããäŸãšããŠã¯ãææ©ååç©ïŒå¥œãŸããã¯ããªããŒïŒã®
ã©ãã³ã°åŠçãããå±€ãç¡æ©ååç©ã®ææ¹èžçå±€ãåã³
ãã€ã¯ãã°ã«ãŒããæããå±€ãããã«Ïâããªã³ãµã³
é
žããžãªã¯ã¿ãã·ã«ã¡ãã«ã¢ã³ã¢ããŠã ã¯ãã©ã€ãåã³
ã¹ãã¢ãªã«é
žã¡ãã«çã®ã©ã³ã°ãã¥ã¢ã»ãããžã§ããæ³
ïŒïŒ¬ïŒ¢èïŒã«ãã圢æããã环ç©èããããã¯é»å Žãã
ãã¯ç£å Žã®ä»äžã«ããèªé»äœãé
åãããå±€ãæããã
ãšãã§ãããThe alignment film is generally provided on the transparent support or on the undercoat layer. The alignment film functions to define the alignment direction of the liquid crystalline discotic compound provided thereon. The orientation film may be any layer as long as it can impart orientation to the optically anisotropic layer. Preferred examples of the alignment film include a rubbed layer of an organic compound (preferably a polymer), an obliquely-deposited layer of an inorganic compound, and a layer having microgrooves. Examples include a cumulative film formed by a Langmuir-Blodgett method (LB film) of methyl acid or the like, or a layer in which a dielectric is oriented by applying an electric or magnetic field.
ãïŒïŒïŒïŒãé
åèçšã®ææ©ååç©ã®äŸãšããŠã¯ãããª
ã¡ãã«ã¡ã¿ã¯ãªã¬ãŒããã¢ã¯ãªã«é
žïŒã¡ã¿ã¯ãªã«é
žå
±é
åäœãã¹ãã¬ã³ïŒãã¬ã€ã³ã€ããå
±éåäœãããªããã«
ã¢ã«ã³ãŒã«ãããªïŒïŒ®âã¡ãããŒã«ã¢ã¯ãªã«ã¢ããïŒã
ã¹ãã¬ã³ïŒããã«ãã«ãšã³å
±éåäœãã¯ããã¹ã«ãã³å
ããªãšãã¬ã³ããããã»ã«ããŒã¹ãããªå¡©åããã«ãå¡©
çŽ åããªãªã¬ãã£ã³ãããªãšã¹ãã«ãããªã€ãããé
¢é
ž
ããã«ïŒå¡©åããã«å
±éåäœããšãã¬ã³ïŒé
¢é
žããã«å
±
éåäœãã«ã«ããã·ã¡ãã«ã»ã«ããŒã¹ãããªãšãã¬ã³ã
ããªãããã¬ã³åã³ããªã«ãŒãããŒãçã®ããªããŒåã³
ã·ã©ã³ã«ãããªã³ã°å€çã®ååç©ãæããããšãã§ã
ãã奜ãŸããããªããŒã®äŸãšããŠã¯ãããªã€ãããããª
ã¹ãã¬ã³ãã¹ãã¬ã³èªå°äœã®ããªããŒããŒã©ãã³ãããª
ãã«ã¢ã«ã³ãŒã«åã³ã¢ã«ãã«åºïŒççŽ ååæ°ïŒä»¥äžã奜
ãŸããïŒãæããã¢ã«ãã«å€æ§ããªãã«ã¢ã«ã³ãŒã«ãæ
ããããšãã§ããããããã®ããªããŒã®å±€ãé
ååŠçã
ãããšã«ããåŸãããé
åèã¯ãæ¶²æ¶æ§ãã£ã¹ã³ãã£ã
ã¯ååç©ãæãã«é
åãããããšãã§ãããExamples of organic compounds for the alignment film include polymethylmethacrylate, acrylic acid / methacrylic acid copolymer, styrene / maleinimide copolymer, polyvinyl alcohol, poly (N-methylolacrylamide),
Styrene / vinyl toluene copolymer, chlorosulfonated polyethylene, nitrocellulose, polyvinyl chloride, chlorinated polyolefin, polyester, polyimide, vinyl acetate / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, carboxymethyl cellulose, polyethylene,
Examples include polymers such as polypropylene and polycarbonate, and compounds such as silane coupling agents. Preferred examples of the polymer include polyimide, polystyrene, polymers of styrene derivatives, gelatin, polyvinyl alcohol, and alkyl-modified polyvinyl alcohol having an alkyl group (preferably having 6 or more carbon atoms). An alignment film obtained by performing an alignment treatment on these polymer layers can align a liquid crystalline discotic compound obliquely.
ãïŒïŒïŒïŒãäžã§ãã¢ã«ãã«å€æ§ã®ããªããã«ã¢ã«ã³ãŒ
ã«ã¯ç¹ã«å¥œãŸãããæ¶²æ¶æ§ãã£ã¹ã³ãã£ãã¯ååç©ãå
äžã«é
åãããèœåã«åªããŠãããããã¯é
åè衚é¢ã®
ã¢ã«ãã«éãšãã£ã¹ã³ãã£ãã¯æ¶²æ¶ã®ã¢ã«ãã«åŽéãšã®
匷ãçžäºäœçšã®ãããšæšå¯ãããããŸããã¢ã«ãã«åº
ã¯ãççŽ ååæ°ïŒãïŒïŒã奜ãŸãããæŽã«ãââã-
(CH3)C(CN)-ãŸãã¯-(C2H5)N-CS-S-ãä»ããŠããªããã«
ã¢ã«ã³ãŒã«ã«çµåããŠããããšã奜ãŸãããäžèšã¢ã«ã
ã«å€æ§ããªããã«ã¢ã«ã³ãŒã«ã¯ãæªç«¯ã«ã¢ã«ãã«åºãæ
ãããã®ã§ãããããå床ïŒïŒïŒ
以äžãéå床ïŒïŒïŒä»¥
äžã奜ãŸããããŸããäžèšåŽéã«ã¢ã«ãã«åºãæããã
ãªããã«ã¢ã«ã³ãŒã«ã¯ãã¯ã©ã¬ïŒæ ªïŒè£œã®ïŒïŒ°ïŒïŒïŒã
ïŒïŒ°ïŒïŒïŒãïŒïŒïŒïŒãªã©ã®åžè²©åãå©çšããããšã
ã§ãããOf these, alkyl-modified polyvinyl alcohol is particularly preferable, and is excellent in the ability to uniformly align the liquid crystalline discotic compound. This is presumed to be due to strong interaction between the alkyl chains on the alignment film surface and the alkyl side chains of the discotic liquid crystal. Further, the alkyl group preferably has 6 to 14 carbon atoms, and further has -S- and-.
It is preferably bonded to polyvinyl alcohol via (CH 3 ) C (CN)-or-(C 2 H 5 ) N-CS-S-. The alkyl-modified polyvinyl alcohol has an alkyl group at the end, and preferably has a saponification degree of 80% or more and a polymerization degree of 200 or more. Further, the polyvinyl alcohol having an alkyl group in the side chain is MP103 manufactured by Kuraray Co., Ltd.
Commercial products such as MP203 and R1130 can be used.
ãïŒïŒïŒïŒããŸããã®é
åèãšããŠåºãçšããã
ãŠããããªã€ããèïŒå¥œãŸããã¯ããçŽ åå嫿ããªã€
ããïŒãææ©é
åèãšããŠå¥œãŸãããããã¯ããªã¢ãã
ã¯é
žïŒäŸãã°ãæ¥ç«åæïŒæ ªïŒè£œã®ïŒ¬ïŒ±ïŒïŒ¬ïŒžã·ãªãŒ
ãºãæ¥ç£ååŠïŒæ ªïŒè£œã®ïŒ³ïŒ¥ã·ãªãŒãºçïŒãæ¯æäœé¢ã«
å¡åžããïŒïŒïŒãïŒïŒïŒâã§ïŒïŒïŒãïŒæéçŒæãã
åŸãã©ãã³ã°ããããšã«ããåŸããããæŽã«ãæ¬çºæã®
é
åèã¯ãäžèšããªããŒã«åå¿æ§åºãå°å
¥ããããšã«ã
ãããããã¯äžèšããªããŒãã¢ã«ãããååç©ïŒã°ãªãª
ãã¶âã«ãã°ã«ã¿ã«ã¢ã«ãããçïŒãã€ãœã·ã¢ããŒãå
åç©åã³ãšããã·ååç©ãªã©ã®æ¶æ©å€ãšå
±ã«äœ¿çšããŠã
ãããã®ããªããŒã硬åãããããšã«ããåŸããã硬å
èã§ããããšã奜ãŸãããA polyimide film (preferably a fluorine atom-containing polyimide) which is widely used as an alignment film for LCD is also preferable as the organic alignment film. For this, a polyamic acid (for example, LQ / LX series manufactured by Hitachi Chemical Co., Ltd., SE series manufactured by Nissan Chemical Co., Ltd.) is applied to the surface of the support, and baked at 100 to 300 ° C. for 0.5 to 1 hour. Later, it is obtained by rubbing. Furthermore, the alignment film of the present invention may be prepared by introducing a reactive group into the polymer, or by using the polymer together with a crosslinking agent such as an aldehyde compound (glyoxal, glutaraldehyde, etc.), an isocyanate compound and an epoxy compound. ,
A cured film obtained by curing these polymers is preferable.
ãïŒïŒïŒïŒãããã«ãæ¬çºæè
ã¯æ¯æäœã®åã¿ã ã©ã«ã
ãïŒãâã«ç¶æ
ã§ã®ïŒé
åèäžã®é¢å§ãåäžåãããã
ã«ã該é
åèæ¯æäœã®äž¡ç«¯ã«ãâã¬ãããä»ããããš
ã§ãåè¿°ã®é
åã ã©ãæ¶å€±ããäºãèŠåºããããâã¬ã
ãã®å¹
ã¯ïŒãïŒïŒïœïœããã奜ãŸããã¯ïŒãïŒïŒïœïœã
ããã«å¥œãŸããã¯ãïŒãïŒïŒïœïœã§ãããé«ãã¯ïŒãïŒ
ïŒïŒÎŒã奜ãŸãããããã«ïŒãïŒïŒÎŒã奜ãŸãããïŒã
ïŒïŒÎŒãæã奜ãŸãããããŒã¬ããã®äœçœ®ã¯æ¯æäœã®ç«¯
ä»è¿ãªãã©ãã§ããããéåžžã補é ã®åŸçãã端ã«è¿ã
çšãããäžè¬ã«æ¯æäœã®ç«¯ããïŒãïŒïŒïœïœå
åŽã«ããŒ
ã¬ããã®ç«¯ãããããã«ããŠåœ¢æãããã奜ãŸããã¯ã
ïŒãïŒïŒïœïœã§ããããâã¬ããã®é«ãã¯é«ããããšå·»
ãä»ããæã«å·»ããºã¬ãçãããããäžæ¹ãäœããããš
平颿§æ¹è¯ã®å¹æãåºãããšãåºæ¥ãªãããâã¬ããã¯
ç颿Œãã§ãäž¡é¢æŒãã§ãæ§ãããïœä»¥äžã®æž©åºŠã§ä»
ããæ¹ããç±åŠçäžã®ãâã¬ããã®ã€ã¶ãã鲿¢ã§ãã
奜ãŸããããã®ãããªãâã¬ããã¯ãç¹å
¬æïŒïŒâïŒïŒ
ïŒïŒïŒå·å
¬å ±ã«åŸã£ãŠå®æœããããšãã§ããããã®ãã
ãªãâã¬ãããä»äžããããšã«ãããåäžé
åæ§ã«åªã
ãé
åè仿¯æäœã®äœè£œãå¯èœã«ãªããFurther, the present inventor attaches knurls to both ends of the alignment film support in order to equalize the surface pressure on the alignment film (in the rolled state) due to the uneven thickness of the support. Then, it was found that the above-mentioned alignment unevenness disappears. The width of the knurling is 2 to 50 mm, more preferably 3 to 30 mm,
More preferably, it is 5 to 20 mm and the height is 1 to 1.
00Ό is preferable, 2 to 50Ό is more preferable, and 3 to
30Ό is most preferred. The position of the knurl may be anywhere near the edge of the support, and normally, the closer to the edge, the better from the manufacturing efficiency. Generally, the knurl is formed so that the end of the knurl is 0 to 20 mm inward from the end of the support. Preferably,
It is 0 to 10 mm. If the height of the knurling is too high, winding deviation tends to occur when it is wound, while if it is too low, the effect of improving flatness cannot be obtained. It does not matter whether the knurling is pressed on one side or both sides, but it is possible to prevent crushing of the knurling during heat treatment by applying at a temperature of Tg or higher.
preferable. Such a knurled wheel is disclosed in Japanese Examined Patent Publication No. 57-36.
No. 129 publication. By providing such knurls, it becomes possible to produce a support with an alignment film having excellent uniform alignment.
ãïŒïŒïŒïŒããŸããåèšã©ãã³ã°åŠçã¯ãïŒ¬ïŒ£ïŒ€ã®æ¶²æ¶
é
ååŠçå·¥çšãšããŠåºãæ¡çšãããŠããåŠçæ¹æ³ãå©çš
ããããšãã§ãããå³ã¡ãé
åèã®è¡šé¢ããçŽãã¬ãŒ
ãŒããã§ã«ãããŽã ãããã¯ãã€ãã³ãããªãšã¹ãã«ç¹
ç¶ãªã©ãçšããŠäžå®æ¹åã«æŠãããšã«ããé
åãåŸãæ¹
æ³ãçšããããšãã§ãããäžè¬çã«ã¯ãé·ãåã³å€ªãã
åäžãªç¹ç¶ãå¹³åçã«æ€æ¯ããåžãªã©ãçšããŠæ°åçšåºŠ
ã©ãã³ã°ãè¡ãããšã«ãã宿œããããFor the rubbing treatment, a treatment method widely adopted as a liquid crystal alignment treatment process for LCD can be used. That is, a method of rubbing the surface of the alignment film in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber, or the like can be used to obtain the alignment. Generally, rubbing is performed several times using a cloth or the like on which fibers having a uniform length and thickness are planted on average.
ãïŒïŒïŒïŒãæ¬çºæã®å
åŠç°æ¹å±€ã¯ãéææ¯æäœãŸãã¯
é
åèäžã«åœ¢æããããæ¬çºæã®å
åŠç°æ¹å±€ã¯ããã£ã¹
ã³ãã£ãã¯æ§é åäœãæããååç©ãããªãè² ã®è€å±æ
ãæããå±€ã§ãããå³ã¡ãå
åŠç°æ¹å±€ã¯ãã¢ãããŒçã®
äœååéã®æ¶²æ¶æ§ãã£ã¹ã³ãã£ãã¯ååç©ã®å±€ãŸãã¯é
åæ§ã®æ¶²æ¶æ§ãã£ã¹ã³ãã£ãã¯ååç©ã®éåïŒç¡¬åïŒã«
ããåŸãããããªããŒã®å±€ã§ãããæ¬çºæã®ãã£ã¹ã³ã
ã£ãã¯ïŒåç€ç¶ïŒååç©ã®äŸãšããŠã¯ãïŒïŒ€ïœ
ïœïœïœ
ïœïœïœ
ãã®ç ç©¶å ±åãïŒïœïœïŒïŒ£ïœïœïœïœïŒïŒïŒå·»ãïŒ
ïŒïŒé ïŒïŒïŒïŒïŒå¹ŽïŒã«èšèŒãããŠãããã³ãŒã³èªå°
äœãïŒïŒ€ïœ
ïœïœïœïœïœïœ
ãã®ç ç©¶å ±åãïŒïœïœïŒïŒ£ïœ
ïœïœïœïŒïŒïŒïŒå·»ãïŒïŒïŒé ïŒïŒïŒïŒïŒå¹ŽïŒãïœïœïœ
ïœïœïœ ïœïœ
ïœïœïŒïŒ¡ïŒïŒïŒå·»ãïŒïŒé ïŒïŒïŒïŒïŒïŒã«
èšèŒãããŠãããã«ãã»ã³èªå°äœãïŒïŒ«ïœïœïœïœ
ãã®
ç ç©¶å ±åãïœïœïœ
ïœïŒïŒ£ïœïœ
ïœïŒïŒïŒå·»ãïŒïŒé ïŒïŒ
ïŒïŒïŒå¹ŽïŒã«èšèŒãããã·ã¯ããããµã³èªå°äœåã³ïŒªïŒ
ïŒïŒïŒ¬ïœ
ïœïœãã®ç ç©¶å ±åãïŒïŒ£ïœïœ
ïœïŒïŒ£ïœïœïœïœ
ïœïŒïŒïŒïŒïŒïŒé ïŒïŒïŒïŒïŒå¹ŽïŒãïŒïŒºïœïœïœïœãã®
ç ç©¶å ±åãïŒïŒ¡ïœïŒïŒ£ïœïœ
ïœïŒïŒ³ïœïœïŒïŒïŒïŒå·»ãïŒ
ïŒïŒïŒé ïŒïŒïŒïŒïŒå¹ŽïŒã«èšèŒãããŠããã¢ã¶ã¯ã©ãŠã³
ç³»ããã§ãã«ã¢ã»ãã¬ã³ç³»ãã¯ããµã€ã¯ã«ãªã©ãæãã
ããšãã§ãããäžèšãã£ã¹ã¯ãã£ãã¯ïŒåç€ç¶ïŒååç©
ã¯ãäžè¬çã«ããããååäžå¿ã®æ¯æ žãšããçŽéã®ã¢ã«
ãã«åºãã¢ã«ã³ãã·åºã眮æãã³ãŸã€ã«ãªãã·åºçãã
ã®çŽéãšããŠæŸå°ç·ç¶ã«çœ®æãããæ§é ã§ãããæ¶²æ¶æ§
ã瀺ããäžè¬çã«ãã£ã¹ã³ãã£ãã¯æ¶²æ¶ãšãã°ãããã®
ãå«ãŸããããã ããååèªèº«ãè² ã®äžè»žæ§ãæããäž
å®ã®é
åãä»äžã§ãããã®ã§ããã°äžèšèšèŒã«éå®ãã
ããã®ã§ã¯ãªãããŸããæ¬çºæã«ãããŠãåç€ç¶ååç©
ãã圢æãããšã¯ãæçµçã«ã§ããç©ãåèšååç©ã§ã
ãå¿
èŠã¯ãªããäŸãã°ãåèšäœååãã£ã¹ã³ãã£ãã¯æ¶²
æ¶ãç±ãå
çã§åå¿ããåºãæããŠãããçµæçã«ç±ã
å
çã§åå¿ã«ããéåãŸãã¯æ¶æ©ããé«ååéåãæ¶²æ¶
æ§ã倱ã£ããã®ãå«ãŸãããThe optically anisotropic layer of the present invention is formed on a transparent support or an alignment film. The optically anisotropic layer of the present invention is a layer having a negative birefringence composed of a compound having a discotic structural unit. That is, the optically anisotropic layer is a layer of a low molecular weight liquid crystalline discotic compound such as a monomer or a layer of a polymer obtained by polymerization (curing) of a polymerizable liquid crystalline discotic compound. Examples of the discotic compound of the present invention include C.I. Destr
ade et al., Mol. Cryst. 71 volumes, 1
Benzene derivatives described on page 11 (1981); Destrade et al., Mol. Cr
yst. 122, 141 pages (1985), Phys
ics lett, A, vol. 78, p. 82 (1990); Kohne et al., Angew. Chem. 96 volumes, 70 pages (1
984) and the cyclohexane derivative described in J.
M. J. Lehn et al. Chem. Commu
n. , P. 1794 (1985); Research report by Zhang et al. Am. Chem. Soc. 116 volumes, 2
Examples thereof include azacrown-based and phenylacetylene-based macrocycles described on page 655 (1994). The above-mentioned discotic (disc-shaped) compound generally has a structure in which these are used as a core of a molecular center, and linear alkyl groups, alkoxy groups, substituted benzoyloxy groups, and the like are radially substituted as the linear chains. , Which exhibit liquid crystallinity and are generally called discotic liquid crystals. However, the present invention is not limited to the above description as long as the molecule itself has negative uniaxiality and can impart a certain orientation. In addition, in the present invention, the term "formed from a discotic compound" does not mean that the final product need be the compound. For example, the low-molecular-weight discotic liquid crystal has a group that reacts with heat, light, or the like. Heat, resulting in heat,
It also includes those which are polymerized or crosslinked by a reaction with light or the like to increase the molecular weight and lose the liquid crystallinity.
ãïŒïŒïŒïŒãäžèšãã£ã¹ã¯ãã£ãã¯ååç©ã®å¥œãŸããäŸ
ãäžèšã«ç€ºããPreferred examples of the above discotic compound are shown below.
ãïŒïŒïŒïŒã[0023]
ãåïŒã Embedded image
ãïŒïŒïŒïŒã[0024]
ãåïŒã Embedded image
ãïŒïŒïŒïŒã[0025]
ãåïŒã Embedded image
ãïŒïŒïŒïŒã[0026]
ãåïŒã Embedded image
ãïŒïŒïŒïŒãæ¬çºæã®å
åŠè£åã·ãŒãã¯ãåè¿°ã®ãã
ã«ãéææ¯æäœäžã«é
åèãèšããæ¬¡ãã§é
åèäžã«å
åŠç°æ¹å±€ã圢æããããšã«ããäœè£œãããããšã奜ãŸã
ããAs described above, the optical compensation sheet of the present invention is preferably prepared by providing an alignment film on a transparent support and then forming an optically anisotropic layer on the alignment film.
ãïŒïŒïŒïŒãæ¬çºæã®å
åŠç°æ¹å±€ã¯ããã£ã¹ã¯ãã£ãã¯
æ§é åäœãæããååç©ãããªãè² ã®è€å±æãæããå±€
ã§ãã£ãŠããããŠãã£ã¹ã³ãã£ãã¯æ§é åäœã®é¢ããé
ææ¯æäœé¢ã«å¯ŸããŠåŸããäžã€è©²ãã£ã¹ã³ãã£ãã¯æ§é
åäœã®é¢ãšéææ¯æäœé¢ãšã®ãªãè§åºŠããå
åŠç°æ¹å±€ã®
æ·±ãæ¹åã«å€åããŠãããããã§èšããè² ã®è€å±æãæ
ããå±€ãšã¯è² ã®äžè»žæ§ååã§ãããã£ã¹ã³ãã£ãã¯åå
ç©ã該局äžã§é£ç¶çã«å€åããŠããå±€ããå«ããã®ã§ã
ããThe optically anisotropic layer of the present invention is a layer having a negative birefringence composed of a compound having a discotic structural unit, and the surface of the discotic structural unit is inclined with respect to the transparent support surface, and The angle formed by the surface of the discotic structural unit and the surface of the transparent support changes in the depth direction of the optically anisotropic layer. Here, the layer having negative birefringence also includes a layer in which a discotic compound, which is a negative uniaxial molecule, continuously changes in the layer.
ãïŒïŒïŒïŒãäžèšãã£ã¹ã³ãã£ãã¯æ§é åäœã®é¢ã®è§åºŠ
ïŒåŸæè§ïŒã¯ãäžè¬ã«ãå
åŠç°æ¹å±€ã®æ·±ãæ¹åã§ãã€å
åŠç°æ¹å±€ã®åºé¢ããã®è·é¢ã®å¢å ãšå
±ã«å¢å ãŸãã¯æžå°
ããŠãããäžèšåŸæè§ã¯ãè·é¢ã®å¢å ãšå
±ã«å¢å ããã
ãšã奜ãŸãããæŽã«ãåŸæè§ã®å€åãšããŠã¯ãé£ç¶çå¢
å ãé£ç¶çæžå°ã鿬 çå¢å ã鿬 çæžå°ãé£ç¶çå¢å
ãšé£ç¶çæžå°ãå«ãå€åãåã³å¢å åã³æžå°ãå«ã鿬
çå€åçãæããããšãã§ããã鿬 çå€åã¯ãåãæ¹
åã®éäžã§åŸæè§ãå€åããªãé åãå«ãã§ãããåŸæ
è§ã¯ãå€åããªãé åãå«ãã§ããŠããå
šäœãšããŠå¢å
ãŸãã¯æžå°ããŠããããšã奜ãŸãããæŽã«ãåŸæè§ã¯å
š
äœãšããŠå¢å ããŠããããšã奜ãŸãããç¹ã«é£ç¶çã«å€
åããããšã奜ãŸãããThe surface angle (tilt angle) of the discotic structural unit generally increases or decreases in the depth direction of the optically anisotropic layer and as the distance from the bottom surface of the optically anisotropic layer increases. Preferably, the angle of inclination increases with increasing distance. Further, as the change of the inclination angle, a continuous increase, a continuous decrease, an intermittent increase, an intermittent decrease, a change including the continuous increase and the continuous decrease, and an intermittent change including the increase and the decrease may be cited. it can. The intermittent change includes a region where the inclination angle does not change in the thickness direction. It is preferable that the tilt angle increases or decreases as a whole, even if it includes a region that does not change. Further, the inclination angle is preferably increased as a whole, and is particularly preferably changed continuously.
ãïŒïŒïŒïŒãæ¬çºæã®å
åŠç°æ¹å±€ã®æé¢ã®ä»£è¡šçãªäŸ
ããæš¡åŒçã«å³ïŒã«ç€ºããå
åŠç°æ¹å±€ïŒïŒã¯ãéææ¯æ
äœïŒïŒäžã«åœ¢æãããé
åèïŒïŒäžã«èšããããŠããã
å
åŠç°æ¹å±€ïŒïŒãæ§æããæ¶²æ¶æ§ãã£ã¹ã³ãã£ãã¯åå
ç©ïŒïŒïœãïŒïŒïœãïŒïŒïœã¯ããã£ã¹ã³ãã£ãã¯æ§é å
äœïŒ°ïœãïœãïœãéææ¯æäœïŒïŒã®é¢ã«å¹³è¡ãªé¢ïŒ
ïŒïœãïŒïŒïœãïŒïŒïœããåŸæãããããŠãããã®åŸæ
è§ÎžïœãΞïœãΞïœïŒãã£ã¹ã³ãã£ãã¯æ§é åäœã®é¢ãš
éææ¯æäœã®é¢ãšã®ãªãè§ïŒããå
åŠç°æ¹å±€ã®åºé¢ãã
ã®æ·±ãïŒåãïŒæ¹åã®è·é¢ã®å¢å ãšå
±ã«ãé ã«å¢å ããŠ
ãããïŒïŒã¯éææ¯æäœã®æ³ç·ã衚ãããäžèšæ¶²æ¶æ§ã
ã£ã¹ã³ãã£ãã¯ååç©ã¯å¹³é¢ååã§ãããããæ
ååäž
ã«ã¯ãã äžåã®å¹³é¢ãå³ã¡åç€é¢ïŒäŸãïŒïŒïœãïŒïŒ
ïœãïŒïŒïœïŒãæã€ãA typical example of a cross section of the optically anisotropic layer of the present invention is schematically shown in FIG. The optically anisotropic layer 23 is provided on the alignment film 22 formed on the transparent support 21.
The liquid crystalline discotic compounds 23a, 23b, and 23c constituting the optically anisotropic layer 23 have a discotic structural unit Pa, Pb, and Pc whose surface 2 is parallel to the surface of the transparent support 21.
1a, 21b, 21c, and their inclination angles Ξa, Ξb, Ξc (the angles formed by the plane of the discotic structural unit and the plane of the transparent support) are equal to the depth from the bottom of the optically anisotropic layer ( It increases in order with the increase in the distance in the thickness direction. 24 represents the normal line of the transparent support. The liquid crystalline discotic compound is a planar molecule, and therefore has only one plane in the molecule, ie, a disk surface (eg, 21a, 21a).
b, 21c).
ãïŒïŒïŒïŒãäžèšåŸæè§ïŒè§åºŠïŒã¯ãïŒãïŒïŒåºŠã®ç¯å²
ïŒç¹ã«ïŒïŒãïŒïŒåºŠã®ç¯å²ïŒã§å€åããŠããããšã奜ãŸ
ãããäžèšåŸæè§ã®æå°å€ã¯ãïŒãïŒïŒåºŠã®ç¯å²ïŒç¹ã«
ïŒãïŒïŒåºŠïŒã«ããããŸããã®æå€§å€ãïŒãïŒïŒåºŠã®ç¯
å²ïŒç¹ã«ïŒïŒãïŒïŒåºŠïŒã«ããããšã奜ãŸãããå³ïŒã«
ãããŠãæ¯æäœåŽã®ãã£ã¹ã³ãã£ãã¯æ§é åäœã®åŸæè§
ïŒäŸãΞïœïŒããã»ãŒæå°å€ã«å¯Ÿå¿ãããããŠãã£ã¹ã³
ãã£ãã¯æ§é åäœã®åŸæè§ïŒäŸãΞïœïŒããã»ãŒæå€§å€
ã«å¯Ÿå¿ããŠãããããã«ãåŸæè§ã®æå°å€ãšæå€§å€ãšã®
å·®ããïŒãïŒïŒåºŠã®ç¯å²ïŒç¹ã«ïŒïŒãïŒïŒåºŠïŒã«ããã
ãšã奜ãŸãããIt is preferable that the inclination angle (angle) is changed within a range of 5 to 85 degrees (particularly within a range of 10 to 80 degrees). The minimum value of the inclination angle is preferably in the range of 0 to 85 degrees (particularly 5 to 40 degrees), and the maximum value is preferably in the range of 5 to 90 degrees (particularly 30 to 85 degrees). In FIG. 2, the tilt angle (eg, Ξa) of the discotic structure unit on the support side substantially corresponds to the minimum value, and the tilt angle (eg, Ξc) of the discotic structure unit substantially corresponds to the maximum value. I have. Further, the difference between the minimum value and the maximum value of the inclination angle is preferably in the range of 5 to 70 degrees (particularly, 10 to 60 degrees).
ãïŒïŒïŒïŒãäžèšå
åŠç°æ¹å±€ã¯ãäžè¬ã«ãã£ã¹ã³ãã£ã
ã¯ååç©åã³ä»ã®ååç©ã溶å€ã«æº¶è§£ããæº¶æ¶²ãé
åè
äžã«å¡åžãã也ç¥ããæ¬¡ãã§ãã£ã¹ã³ãã£ãã¯ãããã
ã¯çžåœ¢ææž©åºŠãŸã§å ç±ãããã®åŸé
åç¶æ
ïŒãã£ã¹ã³ã
ã£ãã¯ããããã¯çžïŒãç¶æããŠå·åŽããããšã«ããåŸ
ãããããããã¯ãäžèšå
åŠç°æ¹å±€ã¯ããã£ã¹ã³ãã£ã
ã¯ååç©åã³ä»ã®ååç©ïŒæŽã«ãäŸãã°éåæ§ã¢ãã
ãŒãå
éåéå§å€ïŒã溶å€ã«æº¶è§£ããæº¶æ¶²ãé
åèäžã«
å¡åžãã也ç¥ããæ¬¡ãã§ãã£ã¹ã³ãã£ãã¯ããããã¯çž
åœ¢ææž©åºŠãŸã§å ç±ããã®ã¡éåããïŒïŒµïŒ¶å
ã®ç
§å°çã«
ããïŒãããã«å·åŽããããšã«ããåŸããããæ¬çºæã«
çšãããã£ã¹ã³ãã£ãã¯æ¶²æ¶æ§ååç©ã®ãã£ã¹ã³ãã£ã
ã¯ãããã£ãã¯æ¶²æ¶çžâåºçžè»¢ç§»æž©åºŠãšããŠã¯ãïŒïŒã
ïŒïŒïŒâã奜ãŸãããç¹ã«ïŒïŒãïŒïŒïŒâã奜ãŸãããThe above-mentioned optically anisotropic layer is generally prepared by applying a solution prepared by dissolving a discotic compound and another compound in a solvent onto the alignment film, drying it, and then heating it to a discotic nematic phase forming temperature, and then adjusting the alignment state ( It is obtained by maintaining and cooling the discotic nematic phase). Alternatively, the optically anisotropic layer is formed by applying a solution in which a discotic compound and other compounds (for example, a polymerizable monomer and a photopolymerization initiator) are dissolved in a solvent onto an alignment film, drying, and then discotic nematic It is obtained by heating to a phase forming temperature, polymerizing (by irradiation with UV light or the like), and further cooling. The discotic nematic liquid crystal phase-solid phase transition temperature of the discotic liquid crystalline compound used in the present invention is preferably from 70 to
300 ° C is preferable, and 70 to 170 ° C is particularly preferable.
ãïŒïŒïŒïŒãäŸãã°ãæ¯æäœåŽã®ãã£ã¹ã³ãã£ãã¯åäœ
ã®åŸæè§ã¯ãäžè¬ã«ãã£ã¹ã³ãã£ãã¯ååç©ãããã¯é
åèã®ææãéžæããããšã«ããããŸãã¯ã©ãã³ã°åŠç
æ¹æ³ã®éžæããããšã«ããã調æŽããããšãã§ããããŸ
ãã衚é¢åŽïŒç©ºæ°åŽïŒã®ãã£ã¹ã³ãã£ãã¯åäœã®åŸæè§
ã¯ãäžè¬ã«ãã£ã¹ã³ãã£ãã¯ååç©ãããã¯ãã£ã¹ã³ã
ã£ãã¯ååç©ãšãšãã«äœ¿çšããä»ã®ååç©ïŒäŸãå¯å¡
å€ãç颿޻æ§å€ãéåæ§ã¢ãããŒåã³ããªããŒïŒãéžæ
ããããšã«ãã調æŽããããšãã§ãããæŽã«ãåŸæè§ã®
å€åã®çšåºŠãäžèšéžæã«ãã調æŽããããšãã§ãããFor example, the tilt angle of the discotic unit on the support side can be adjusted by generally selecting the discotic compound or the material of the alignment film, or by selecting the rubbing treatment method. In addition, the tilt angle of the discotic unit on the surface side (air side) generally selects a discotic compound or another compound used together with the discotic compound (eg, a plasticizer, a surfactant, a polymerizable monomer and a polymer). Can be adjusted. Further, the degree of change of the inclination angle can be adjusted by the above selection.
ãïŒïŒïŒïŒãäžèšå¯å¡å€ãç颿޻æ§å€åã³éåæ§ã¢ãã
ãŒãšããŠã¯ããã£ã¹ã³ãã£ãã¯ååç©ãšçžæº¶æ§ãæãã
æ¶²æ¶æ§ãã£ã¹ã³ãã£ãã¯ååç©ã®åŸæè§ã®å€åãäžãã
ãããããããã¯é
åãé»å®³ããªãéããã©ã®ãããªå
åç©ã䜿çšããããšãã§ããããããã®äžã§ãéåæ§ã¢
ãããŒïŒäŸãããã«åºãããã«ãªãã·åºãã¢ã¯ãªãã€ã«
åºåã³ã¡ã¿ã¯ãªãã€ã«åºãæããååç©ïŒã奜ãŸããã
äžèšååç©ã¯ããã£ã¹ã³ãã£ãã¯ååç©ã«å¯ŸããŠäžè¬ã«
ïŒãïŒïŒééïŒ
ïŒå¥œãŸããã¯ïŒãïŒïŒééïŒ
ïŒã®éã«ãŠ
䜿çšããããThe above-mentioned plasticizer, surfactant and polymerizable monomer have compatibility with the discotic compound,
Any compound can be used as long as it can change the tilt angle of the liquid crystalline discotic compound or does not hinder the alignment. Among these, a polymerizable monomer (eg, a compound having a vinyl group, a vinyloxy group, an acryloyl group, and a methacryloyl group) is preferable.
The above compounds are generally used in an amount of 1 to 50% by weight, preferably 5 to 30% by weight, based on the discotic compound.
ãïŒïŒïŒïŒãäžèšããªããŒãšããŠã¯ããã£ã¹ã³ãã£ãã¯
ååç©ãšçžæº¶æ§ãæããæ¶²æ¶æ§ãã£ã¹ã³ãã£ãã¯ååç©
ã«åŸæè§ã®å€åãäžããããéããã©ã®ãããªããªããŒ
ã§ã䜿çšããããšãã§ãããããªããŒäŸãšããŠã¯ãã»ã«
ããŒã¹ãšã¹ãã«ãæããããšãã§ãããã»ã«ããŒã¹ãšã¹
ãã«ã®å¥œãŸããäŸãšããŠã¯ãã»ã«ããŒã¹ã¢ã»ããŒããã»
ã«ããŒã¹ã¢ã»ããŒãããããªããŒããããããã·ããã
ã«ã»ã«ããŒã¹åã³ã»ã«ããŒã¹ã¢ã»ããŒãããã¬ãŒããæ
ããããšãã§ãããäžèšããªããŒã¯ãæ¶²æ¶æ§ãã£ã¹ã³ã
ã£ãã¯ååç©ã®é
åãé»å®³ããªãããã«ããã£ã¹ã³ãã£
ãã¯ååç©ã«å¯ŸããŠäžè¬ã«ïŒïŒïŒãïŒïŒééïŒ
ïŒå¥œãŸã
ãã¯ïŒïŒïŒãïŒééïŒ
ãç¹ã«ïŒïŒïŒãïŒééïŒ
ïŒã®éã«
ãŠäœ¿çšããããã»ã«ããŒã¹ã¢ã»ããŒãããã¬ãŒãïŒé
¢é
ž
é
ªé
žã»ã«ããŒã¹ïŒã®ãããªã«å床ã¯ãïŒïŒïŒ
以äžãç¹ã«
ïŒïŒãïŒïŒïŒ
ã®ç¯å²ã奜ãŸããããŸãã¢ã»ãã«å床ã¯ïŒ
ïŒïŒ
以äžãç¹ã«ïŒïŒãïŒïŒïŒ
ã®ç¯å²ã奜ãŸãããã»ã«ã
ãŒã¹ã¢ã»ããŒãããã¬ãŒãã®ç²åºŠïŒïŒ¡ïŒ³ïŒŽïŒ âïŒïŒ
ïŒâïŒïŒã«åŸã枬å®ã«ããåŸãããå€ïŒã¯ãïŒïŒïŒïŒã
ïŒïŒç§ã®ç¯å²ã奜ãŸãããAs the above-mentioned polymer, any polymer can be used as long as it is compatible with the discotic compound and can change the tilt angle of the liquid crystalline discotic compound. Examples of the polymer include a cellulose ester. Preferred examples of the cellulose ester include cellulose acetate, cellulose acetate propionate, hydroxypropylcellulose and cellulose acetate butyrate. The polymer is generally 0.1 to 10% by weight (preferably 0.1 to 8% by weight, particularly 0.1 to 5% by weight) based on the discotic compound so as not to hinder the alignment of the liquid crystalline discotic compound. ). The butyrylation degree of cellulose acetate butyrate (cellulose acetate butyrate) is preferably 30% or more, particularly preferably in the range of 30 to 80%. The degree of acetylation is 3
0% or more, especially the range of 30 to 80% is preferable. Viscosity of cellulose acetate butyrate (ASTM D-81
7-72) is from 0.01 to
A range of 20 seconds is preferred.
ãïŒïŒïŒïŒãäžèšå³ïŒã«ç€ºãããå€åããåŸæè§ãæã
ãå
åŠç°æ¹å±€ïŒå
åŠè£åã·ãŒãïŒãåããïŒã«ã©ãŒïŒæ¶²
æ¶è¡šç€ºè£
眮ã¯ã極ããŠæ¡å€§ãããèŠéè§ãæãããããŠ
çœé»ç»åã®å転ããããã¯è¡šç€ºç»åã®è«§èª¿ãããã¯çè²
ã®çºçãã»ãšãã©ãªããã®ã§ãããThe (color) liquid crystal display device having the optically anisotropic layer (optical compensation sheet) having the variable tilt angle shown in FIG. 2 has a very wide viewing angle, and inversion of a black and white image. Or, the gradation or coloring of the displayed image is hardly generated.
ãïŒïŒïŒïŒãæŽã«ãæ¬çºæã®ïŒã«ã©ãŒïŒæ¶²æ¶è¡šç€ºè£
眮ã«
ãããŠãããé«åºŠã«èŠéè§ãæ¡å€§ããçç±ã«ã€ããŠã¯ä»¥
äžã®ããã«æšå®ããããäŸãã°ãæ¬çºæã®ã«ã©ãŒæ¶²æ¶è¡š
瀺è£
眮ã«ãããŠãåå
åãšæ€å
åã®éé軞ãã»ãŒçŽäº€ã
ãŠããããŒããªãŒãã¯ã€ãã®ã¢ãŒãïŒïŒŽïŒ®âã§åº
ãæ¡çšãããŠããã¢ãŒãïŒã§ã¯ãé»è¡šç€ºç¶æ
ã«ããéšå
ã¯æ¶²æ¶ã«é»å§ãå°å ãããŠããç¶æ
ã§ãããèŠè§ã倧ã
ãããã®ã«äŒŽã£ãŠããã®é»è¡šç€ºéšããã®å
ã®ééçãè
ããå¢å€§ããã³ã³ãã©ã¹ãã®æ¥æ¿ãªäœäžãæããŠããã
ãã®é»è¡šç€ºç¶æ
ïŒé»å§å°å æïŒã«ãããŠã¯ã液æ¶ã»
ã«å
éšã®æ¶²æ¶ååã¯ãå³ïŒã«ç€ºãããã«é
åããŠããã
åºæ¿è¡šé¢è¿åã«ååšãã液æ¶ååïŒïŒã¯ãåºæ¿ïŒïŒ
ïœã®è¡šé¢ãšã»ãŒå¹³è¡ã«ååšããŠããããããŠïŒŽïŒ®æ¶²æ¶å
åïŒïŒã¯ãåºæ¿ïŒïŒïœã®è¡šé¢ããé¢ããã«åŸã£ãŠåŸã
ã«
åŸããŠã衚é¢ãšåçŽã«ãªããæŽã«åºæ¿ïŒïŒïœã®è¡šé¢ãã
é¢ããã«åŸã£ãŠã液æ¶ååïŒïŒã¯ãå察æ¹åã«åŸã
ã«åŸããŠãæåŸã«ã¯åºæ¿ïŒïŒïœã®è¡šé¢ãšã»ãŒå¹³è¡ãšãª
ããåŸã£ãŠãé»è¡šç€ºã«ãããâïŒ¬ïŒ£ïŒ€ã®æ¶²æ¶ã»ã«
ã¯ãã»ã«è¡šé¢ããåŸã
ã«åŸãå
軞ïŒïŒ²ïœ
ãæå°å€ã瀺ã
æ¹åïŒãæããäºåã®æ£ã®å
åŠç°æ¹äœãšã»ã«è¡šé¢ã®æ³ç·
ã«å¹³è¡ãªå
軞ãæããäºåã®æ£ã®å
åŠç°æ¹äœãšã®ç©å±€äœ
ãšã¿ãªãããšãã§ããããã®ãããæ¬çºæã®å
åŠç°æ¹å±€
ã®ãã£ã¹ã³ãã£ãã¯æ§é åäœé¢ã®åŸæè§ã®å€ååã³è² ã®
è€å±æã«ãããé»å§å°å æã®ïŒŽïŒ®æ¶²æ¶ã»ã«å
éšã®æ¶²æ¶å
åã®åŸæçã«ããçºçããäœçžå·®ãè£åããããšãã§ã
ããåŸã£ãŠãå€åããåŸæè§ãæããå
åŠç°æ¹å±€ïŒå
åŠ
è£åã·ãŒãïŒãåããã«ã©ãŒæ¶²æ¶è¡šç€ºè£
眮ã¯ãèŠè§ã倧
ããããŠè¡šç€ºè£
眮ãæãããèŠãå Žåã§ããçœé»ç»åã®
å転ããããã¯è¡šç€ºç»åã®è«§èª¿ãããã¯çè²ã®çºçãã»
ãšãã©ãªããã®ã§ãããFurthermore, the reason why the viewing angle is expanded to a higher degree in the (color) liquid crystal display device of the present invention is presumed as follows. For example, in the color liquid crystal display device of the present invention, in a normally white mode in which the transmission axes of the polarizer and the analyzer are substantially orthogonal to each other (mode widely used in TN-LCD), a portion in a black display state is provided. Is a state in which a voltage is applied to the liquid crystal, and as the viewing angle is increased, the transmittance of light from the black display portion is significantly increased, causing a sharp decrease in contrast.
In this black display state (when voltage is applied), the liquid crystal molecules inside the TN liquid crystal cell are arranged as shown in FIG.
The TN liquid crystal molecules 33 existing near the substrate surface are
a, and the TN liquid crystal molecules 33 gradually incline and become perpendicular to the surface as the distance from the surface of the substrate 31a increases. Further away from the surface of the substrate 31a, the TN liquid crystal molecules 33 are gradually inclined in the opposite direction, and finally become almost parallel to the surface of the substrate 31b. Therefore, the liquid crystal cell of the TN-LCD in black display has two positive optically anisotropic bodies having optical axes (directions in which Re shows the minimum value) gradually inclined from the cell surface and a liquid crystal cell parallel to the normal of the cell surface. It can be considered as a laminate of two positive optical anisotropic bodies having an optical axis. For this reason, the change in the tilt angle of the discotic structural unit surface of the optically anisotropic layer and the negative birefringence of the present invention compensate for the phase difference caused by the tilt of the liquid crystal molecules inside the TN liquid crystal cell when a voltage is applied. be able to. Therefore, a color liquid crystal display device provided with an optically anisotropic layer (optical compensation sheet) having a changing inclination angle can invert a black-and-white image or display a display image even when the display device is viewed obliquely with a large viewing angle. There is almost no gradation or coloring.
ãïŒïŒïŒïŒãäžèšå
åŠç°æ¹å±€ã®ãã€ãºã¯ãäžè¬ã«ïŒïŒïŒ
ïŒ
以äžã§ãããåŸã£ãŠãäžèšå
åŠç°æ¹å±€ãæããå
åŠè£
åã·ãŒãããéææ¯æäœã®ãã€ãºãäœãããšãããäžè¬
ã«ïŒïŒïŒïŒ
以äžãæãããäžèšãã€ãºã¯ãâ
ïŒïŒïŒïŒâïŒïŒã«åŸã£ãŠæž¬å®ããããå
åŠç°æ¹å±€ã®ãã€
ãºãé«ããšãé»è¡šç€ºéšã«ãããŠæ£ä¹±ã«ãããšæãããå
掩ããèµ·ãããçµæãšããŠã³ã³ãã©ã¹ããäœäžãããã
ã®åŸåã¯ãå
¥å°å
ãæ³ç·æ¹åããã³ç»åã®äžæ¹åã«åŸã
ãå Žåã«é¡èã§ããããããã£ãŠããããé²ãããã«
ã¯ãäžèšãã€ãºã¯ïŒïŒ
以äžã奜ãŸãããããã«ïŒïŒ
以äž
ã奜ãŸãããç¹ã«ïŒïŒ
以äžã§ããããšã奜ãŸãããThe haze of the optically anisotropic layer is generally 5.0.
% Or less. Therefore, the optically compensatory sheet having the optically anisotropic layer also generally has 5.0% or less because the haze of the transparent support is low. The haze is ASTN-D
1003-52. When the haze of the optically anisotropic layer is high, light leakage which is considered to be caused by scattering occurs in the black display portion, and as a result, the contrast is reduced. This tendency is remarkable when the incident light is inclined in the normal direction and in the upward direction of the image. Therefore, in order to prevent this, the haze is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less.
ãïŒïŒïŒïŒãæ¬çºæã®å
åŠç°æ¹å±€ããå
åŠè£åã·ãŒãã®
æ³ç·æ¹åããåŸããæ¹åã«ãïŒä»¥å€ã®ã¬ã¿ãŒããŒã·ã§ã³
ã®çµ¶å¯Ÿå€ã®æå°å€ãæããïŒå
軞ãæããªãïŒãæ¬çºæ
ã®å
åŠç°æ¹å±€ãå«ãå
åŠè£åã·ãŒãã®ä»£è¡šçãªæ§æäŸã
å³ïŒã«ç€ºããå³ïŒã«ãããŠãéææ¯æäœïŒïŒãé
åèïŒ
ïŒãããŠãã£ã¹ã³ãã£ãã¯ååç©ã®å±€ïŒå
åŠç°æ¹å±€ïŒïŒ
ïŒããé ã«ç©å±€ãããå
åŠè£åã·ãŒããæ§æããŠããã
ã¯é
åèã®ã©ãã³ã°æ¹åã瀺ããïœ1ïœ2åã³ïœ3ã¯ã
å
åŠè£åã·ãŒãã®äžè»žæ¹åã®å±æçã衚ãããæ£é¢ãã
èŠãå Žåã«ïœ1âŠïœ3âŠïœ2ã®é¢ä¿ãæºè¶³ãããβã¯ã
ïœ
ïŒã¬ã¿ãŒããŒã·ã§ã³ïŒã®æå°å€ãç€ºãæ¹åã®å
åŠç°æ¹
å±€ã®æ³ç·ïŒïŒããã®åŸãã§ãããâåã³ïŒŽïŒŠ
âã®èŠéè§ç¹æ§ãæ¹åããããã«ãïœ
ã®çµ¶å¯Ÿ
å€ã®æå°å€ãç€ºãæ¹åããå
åŠç°æ¹å±€ã®æ³ç·ïŒïŒããïŒ
ãïŒïŒåºŠïŒåŸãã®å¹³åå€ïŒåŸããŠããããšã奜ãŸããã
æŽã«ïŒïŒãïŒïŒåºŠã奜ãŸããïŒäžèšÎ²ïŒãæŽã«ãäžèšã·
ãŒãã¯ãäžèšã®æ¡ä»¶ïŒ ïŒïŒâŠïŒ»ïŒïœ3ïŒïœ2ïŒïŒïŒâïœ1ÃâŠïŒïŒïŒïŒïœ
ïœïŒ ïŒäœããã¯ã·ãŒãã®åãïŒãæºè¶³ããããšã奜ãŸã
ããæŽã«äžèšã®æ¡ä»¶ïŒ ïŒïŒïŒâŠïŒ»ïŒïœ3ïŒïœ2ïŒïŒïŒâïœ1ÃâŠïŒïŒïŒïŒïœ
ïœïŒThe optically anisotropic layer of the present invention has a minimum absolute retardation value other than 0 in the direction inclined from the normal line of the optical compensation sheet (no optical axis). FIG. 4 shows a typical configuration example of the optical compensation sheet including the optically anisotropic layer of the present invention. In FIG. 4, a transparent support 41 and an alignment film 4 are shown.
2 and discotic compound layer (optically anisotropic layer) 4
3 are sequentially laminated to form an optical compensation sheet.
R indicates the rubbing direction of the alignment film. n 1 n 2 and n 3 are
The refractive index in the triaxial direction of the optical compensation sheet is expressed, and when viewed from the front, the relationship of n 1 ⊠n 3 ⊠n 2 is satisfied. β is R
It is the inclination from the normal line 44 of the optically anisotropic layer in the direction showing the minimum value of e (retardation). TN-LCD and TF
In order to improve the viewing angle characteristics of the T-LCD, the direction in which the absolute value of Re is the minimum is 5 to 5 from the normal line 44 of the optically anisotropic layer.
~ 50 degrees (average of inclination) It is preferable that the inclination
Furthermore, 10 to 40 degrees is preferable (β above). Furthermore, the above-mentioned sheet has the following conditions: 50 ⊠[(n 3 + n 2 ) / 2ân 1 ] à D ⊠400 (n
m) (where D is the thickness of the sheet), and the following conditions are further satisfied: 100 ⊠[(n 3 + n 2 ) / 2ân 1 ] à D ⊠400 (n
m)
ãïŒïŒïŒïŒãå
åŠç°æ¹å±€ã圢æããããã®æº¶æ¶²ã¯ããã£
ã¹ã³ãã£ãã¯ååç©åã³åè¿°ã®ä»ã®ååç©ã溶å€ã«æº¶è§£
ããããšã«ããäœè£œããããšãã§ãããäžèšæº¶å€ã®äŸãš
ããŠã¯ãïŒïŒ®âãžã¡ãã«ãã«ã ã¢ããïŒïŒ€ïŒïŒŠïŒããž
ã¡ãã«ã¹ã«ãã©ãã·ãïŒïŒ€ïŒïŒ³ïŒ¯ïŒåã³ããªãžã³çã®æ¥µ
æ§æº¶å€ïŒãã³ãŒã³åã³ãããµã³çã®ç¡æ¥µæ§æº¶å€ïŒã¯ãã
ãã«ã åã³ãžã¯ããã¡ã¿ã³çã®ã¢ã«ãã«ãã©ã€ãé¡ïŒé
¢
é
žã¡ãã«ãé
¢é
žããã«ãåã³ãããã¬ã³ã°ãªã³ãŒã«ã¢ã
ã¡ãã«ãšãŒãã«çã®ãšã¹ãã«é¡ïŒã¢ã»ãã³åã³ã¡ãã«ãš
ãã«ã±ãã³çã®ã±ãã³é¡ïŒåã³ããã©ããããã©ã³åã³
ïŒïŒïŒâãžã¡ããã·ãšã¿ã³çã®ãšãŒãã«é¡ãæããããš
ãã§ãããã¢ã«ãã«ãã©ã€ãé¡åã³ã±ãã³é¡ã奜ãŸã
ããæº¶å€ã¯åç¬ã§ããçµåãããŠäœ¿çšããŠãè¯ããThe solution for forming the optically anisotropic layer can be prepared by dissolving the discotic compound and the above-mentioned other compound in a solvent. Examples of the solvent include polar solvents such as N, N-dimethylformamide (DMF), dimethylsulfoxide (DMSO) and pyridine; non-polar solvents such as benzene and hexane; alkyl halides such as chloroform and dichloromethane; acetic acid. Mention may be made of esters such as methyl, butyl acetate and propylene glycol monomethyl ether; ketones such as acetone and methyl ethyl ketone; and ethers such as tetrahydrofuran and 1,2-dimethoxyethane. Alkyl halides and ketones are preferred. The solvents may be used alone or in combination.
ãïŒïŒïŒïŒãäžèšæº¶æ¶²ã®å¡åžæ¹æ³ãšããŠã¯ãã«ãŒãã³ã³
ãŒãã£ã³ã°ãæŒåºã³ãŒãã£ã³ã°ãããŒã«ã³ãŒãã£ã³ã°ã
ãã£ããã³ãŒãã£ã³ã°ãã¹ãã³ã³ãŒãã£ã³ã°ãå°å·ã³ãŒ
ãã£ã³ã°ãã¹ãã¬ãŒã³ãŒãã£ã³ã°åã³ã¹ã©ã€ãã³ãŒãã£
ã³ã°ãæããããšãã§ãããæ¬çºæã§ã¯ããã£ã¹ã³ãã£
ãã¯ååç©ã®ã¿ã®æ··åç©ã®å Žåã¯èžçæ³ã䜿çšããããš
ãã§ãããæ¬çºæã§ã¯ãé£ç¶å¡åžã奜ãŸãããåŸã£ãŠã«
ãŒãã³ã³ãŒãã£ã³ã°ãæŒåºã³ãŒãã£ã³ã°ãããŒã«ã³ãŒã
ã£ã³ã°åã³ã¹ã©ã€ãã³ãŒãã£ã³ã°ã奜ãŸãããäžèšå
åŠ
ç°æ¹å±€ã¯ãåè¿°ããããã«ãäžèšå¡åžæº¶æ¶²ãé
åèäžã«
å¡åžãã也ç¥ããæ¬¡ãã§æ¶²æ¶çžè»¢ç§»æž©åºŠä»¥äžã«å ç±ã
ïŒãã®åŸææã«ãã硬åããïŒãå·åŽããããšã«ããåŸ
ããããThe method for applying the above solution includes curtain coating, extrusion coating, roll coating,
Examples include dip coating, spin coating, print coating, spray coating and slide coating. In the present invention, in the case of a mixture of only discotic compounds, a vapor deposition method can also be used. In the present invention, continuous coating is preferred. Therefore, curtain coating, extrusion coating, roll coating and slide coating are preferred. As described above, the above-mentioned optically anisotropic layer is obtained by applying the above-mentioned coating solution on the alignment film, drying it, then heating it to a liquid crystal phase transition temperature or higher (afterwards curing it if desired) and cooling it.
ãïŒïŒïŒïŒãæ¬çºæã®å
åŠè£åã·ãŒãã¯ãæ¶²æ¶è¡šç€ºè£
眮
ã«ãããŠãæ¶²æ¶ã»ã«ã«ããè€å±æãè£åãããã®ã§ãã
ãããå
åŠç°æ¹çŽ åã®æ³¢é·åæ£ã¯ãæ¶²æ¶ã»ã«ãšçããã
ãšã奜ãŸãããããªãã¡ãå
åŠç°æ¹çŽ åã®ïŒïŒïŒãïŒïŒ
ïŒÎŒïœã®å
ã«ããã¬ã¿ããŒã·ã§ã³ããããã450ã
550ãšããã°ãæ³¢é·åæ£ã衚ã450ïŒïŒ²550å€ã¯ãïŒïŒ
ïŒä»¥äžã§ããããšã奜ãŸãããSince the optical compensatory sheet of the invention compensates the birefringence of the liquid crystal cell in the liquid crystal display device, it is preferable that the wavelength dispersion of the optically anisotropic element is equal to that of the liquid crystal cell. That is, the optically anisotropic elements 450 and 55
The retardation due to 0 ÎŒm light is R 450 , R
If 550, R 450 / R 550 value representing the chromatic dispersion 1.
It is preferably 0 or more.
ãïŒïŒïŒïŒãæ¬çºæã®æ¶²æ¶è¡šç€ºè£
眮ã®ä»£è¡šçæ§æäŸãå³
ïŒã«ç€ºããå³ïŒã«ãããŠãéæé»æ¥µãåããäžå¯Ÿã®åºæ¿
ãšãã®åºæ¿éã«å°å
¥ããããããé
åããããããã¯æ¶²
æ¶ãšãããªãæ¶²æ¶ã»ã«ïŒŽïŒ®ïŒ£ãæ¶²æ¶ã»ã«ã®äž¡åŽã«èšãã
ããäžå¯Ÿã®åå
æ¿ïŒ¡ãïŒ¢ãæ¶²æ¶ã»ã«ãšåå
æ¿ãšã®éã«é
眮ãããå
åŠè£åã·ãŒã1ã2åã³ããã¯ã©ã€ã
ããçµã¿åããããŠæ¶²æ¶è¡šç€ºè£
çœ®ãæ§æããŠããã
å
åŠè£åã·ãŒãã¯äžæ¹ã®ã¿é
眮ããŠãè¯ãïŒå³ã¡ã
1ãŸãã¯ïŒ²ïŒŠ2ïŒã1ã¯å
åŠè£åã·ãŒã1ã®ãæ£é¢ã
ãèŠãå Žåã®ã©ãã³ã°æ¹åã瀺ãã2ã¯å
åŠè£åã·ãŒ
ã2ã®ã©ãã³ã°æ¹åã瀺ããæ¶²æ¶ã»ã«ïŒŽïŒ®ïŒ£ã®å®ç·
ã®ç¢å°ã¯ãæ¶²æ¶ã»ã«ã®åå
æ¿ïŒ¢åŽã®åºæ¿ã®ã©ãã³ã°æ¹å
ã衚ãããæ¶²æ¶ã»ã«ïŒŽïŒ®ïŒ£ã®ç¹ç·ã®ç¢å°ã¯ãæ¶²æ¶ã»ã«ã®
åå
æ¿ïŒ¡åŽã®åºæ¿ã®ã©ãã³ã°æ¹åã衚ãããåã³ïŒ°
ã¯ãããããåå
æ¿ïŒ¡ãã®åå
軞ã衚ãããFIG. 5 shows a typical configuration example of the liquid crystal display device of the present invention. In FIG. 5, a liquid crystal cell TNC composed of a pair of substrates having a transparent electrode and a twisted nematic liquid crystal sealed between the substrates, a pair of polarizing plates A and B provided on both sides of the liquid crystal cell, and a liquid crystal cell The optical compensation sheets RF 1 , RF 2 and the backlight BL arranged between the liquid crystal display device and the polarizing plate constitute a liquid crystal display device.
Only one of the optical compensation sheets may be arranged (that is, RF.
1 or RF 2 ). R 1 indicates the rubbing direction of the optical compensation sheet RF 1 when viewed from the front, and R 2 indicates the rubbing direction of the optical compensation sheet RF 2 . The solid line arrow of the liquid crystal cell TNC indicates the rubbing direction of the substrate on the polarizing plate B side of the liquid crystal cell, and the dotted arrow of the liquid crystal cell TNC indicates the rubbing direction of the substrate on the polarizing plate A side of the liquid crystal cell. PA and P
B represents the polarization axes of the polarizing plates A and B, respectively.
ãïŒïŒïŒïŒãæ¬çºæã®æ¶²æ¶è¡šç€ºè£
眮ã«ãããŠã¯ãå
åŠè£
åã·ãŒããšæ¶²æ¶ã»ã«ã¯äžèšã®ããã«é
眮ãããããšã奜
ãŸãããå³ïŒã¯ãã¬ã¿ãŒããŒã·ã§ã³ã®æå°å€ã®æ¹åãšæ¶²
æ¶ã»ã«ã®åºæ¿ã®ã©ãã³ã°æ¹åãšã®é¢ä¿ã瀺ãå³ã§ããã
äžå¯Ÿã®åå
æ¿ïŒïŒïœãïŒïŒïœããæ¶²æ¶ã»ã«ïŒïŒã®äž¡åŽã«
é
眮ããããããŠå
åŠè£åã·ãŒãïŒïŒãåå
æ¿ïŒïŒïœãš
æ¶²æ¶ã»ã«ïŒïŒãšã®éã«é
眮ãããŠãããå
åŠè£åã·ãŒã
ã¯ãäžè¬ã«ãå
åŠç°æ¹å±€ãæ¶²æ¶ã»ã«ã®è¡šé¢ãšæ¥ãããã
ã«é
眮ããããïŒïŒïŒã¯ãå
åŠè£åã·ãŒãïŒïŒã®ã¬ã¿ãŒ
ããŒã·ã§ã³ã®çµ¶å¯Ÿå€ã®æå°å€ã®æ¹åãæ¶²æ¶ã»ã«äžã«æ£æ
圱ããæã®æ¹åã§ããããã®æ¹åã¯ãäžè¬ã«å
åŠè£åã·
ãŒãã®é
åèã®ã©ãã³ã°æ¹åã«å¯Ÿå¿ãããïŒïŒïŒ²ïœã¯ã
æ¶²æ¶ã»ã«ïŒïŒã®äžåŽåºæ¿ã®ã©ãã³ã°æ¹åã衚ãããïŒïŒ
ïœã¯ãæ¶²æ¶ã»ã«ïŒïŒã®äžåŽåºæ¿ã®ã©ãã³ã°æ¹åã衚ã
ããIn the liquid crystal display device of the present invention, the optical compensation sheet and the liquid crystal cell are preferably arranged as follows. FIG. 6 is a diagram showing the relationship between the direction of the minimum value of the retardation and the rubbing direction of the substrate of the liquid crystal cell.
A pair of polarizing plates 63a and 63b are arranged on both sides of the liquid crystal cell 61, and an optical compensation sheet 62 is arranged between the polarizing plate 63a and the liquid crystal cell 61. The optical compensation sheet is generally arranged so that the optically anisotropic layer is in contact with the surface of the liquid crystal cell. 62M is the direction when the direction of the minimum absolute value of the retardation of the optical compensation sheet 62 is orthogonally projected on the liquid crystal cell. This direction generally corresponds to the rubbing direction of the alignment film of the optical compensation sheet. 61Ra is
Represents the rubbing direction of the upper substrate of the liquid crystal cell 61;
Rb represents the rubbing direction of the lower substrate of the liquid crystal cell 61.
ãïŒïŒïŒïŒãã¬ã¿ãŒããŒã·ã§ã³ã®çµ¶å¯Ÿå€ã®æå°å€ã®æ¹å
ãæ¶²æ¶ã»ã«äžã«æ£æåœ±ããæã®æ¹åïŒïŒïŒãšæ¶²æ¶ã»ã«ã®
äžåŽåºæ¿ã®ã©ãã³ã°æ¹åïŒïŒïŒ²ïœãšã®ãªãè§ïŒÎ±ïŒã¯ã
ïŒïŒãïŒïŒïŒåºŠã®ç¯å²ã«ããããšã奜ãŸãããå³ã¡ãäž
èšè§ïŒÎ±ïŒã¯ãå³ïŒã®ããã«å®çŸ©ããããšãã§ãããå³
ïŒã¯ãå³ïŒãïœè»žæ¹åããèŠãæã«åŸãããå³ã§ããã
å³ïŒã«ãããŠãïŒïŒïŒ²ïœãïŒïŒïŒ²ïœåã³ïŒïŒïŒã¯ãå³ïŒ
ã«ããããšå矩ã§ãããè§ïŒÎ±ïŒã¯ãã¬ã¿ãŒããŒã·ã§ã³
ã®æå°å€ãç€ºãæ£æåœ±æ¹åïŒïŒïŒãšäžåŽåºæ¿ã®ã©ãã³ã°
æ¹åïŒïŒïŒ²ïœãšã®è§åºŠã瀺ãããã®é
眮ã¯ãå
åŠè£åã·
ãŒããïŒæäœ¿çšããå Žåã«ãé©çšããããšãã§ãããïŒ
æã®å
åŠè£åã·ãŒãã䜿çšããå Žåãã¬ã¿ãŒããŒã·ã§ã³
ã®æå°å€ãç€ºãæ£æåœ±æ¹åïŒïŒïŒã¯ãäž»èŠè§æ¹åã§ãã
ããšïŒã·ãŒããã»ã«ã®äžåŽã«èšããå ŽåïŒããŸãã¯åèŠ
è§æ¹åã§ããããšïŒã·ãŒããã»ã«ã®äžåŽã«èšããå ŽåïŒ
ã奜ãŸãããäž»èŠè§æ¹åãšã¯ãæ¶²æ¶ã»ã«äžã®æ¶²æ¶ååã®
å¹³åã®ãã€ã¹ãæ¹åã§ãããåŸã£ãŠïŒŽïŒ®æ¶²æ¶ååãå³ïŒ
ã®ïœè»žã®æ¹åããã¿ãŠåæèšæ¹åã«ïŒïŒåºŠãããããå Ž
åã«ãïœè»žã®ãã€ãã¹æ¹åã§ãããåèŠè§æ¹åãšã¯ãäž»
èŠè§æ¹åãšåå¯Ÿã®æ¹åã§ãããThe angle (α) between the direction 62M when the direction of the minimum absolute value of retardation is orthographically projected onto the liquid crystal cell and the rubbing direction 61Ra of the upper substrate of the liquid crystal cell is
It is preferably in the range of 90 to 270 degrees. That is, the angle (α) can be defined as shown in FIG. FIG. 7 is a diagram obtained when FIG. 6 is viewed from the z-axis direction.
In FIG. 7, 61Ra, 61Rb and 62M correspond to FIG.
Is synonymous with The angle (α) indicates the angle between the orthogonal projection direction 62M indicating the minimum value of the retardation and the rubbing direction 61Ra of the upper substrate. This arrangement can be applied to the case where two optical compensation sheets are used. 1
When two optical compensation sheets are used, the orthogonal projection direction 62M indicating the minimum value of the retardation is the main viewing angle direction (when the sheet is provided above the cell) or the opposite viewing angle direction (the sheet). Is provided below the cell)
Is preferred. The main viewing angle direction is the average twist direction of the liquid crystal molecules in the liquid crystal cell.
When it is twisted 90 degrees counterclockwise as viewed from the direction of the z-axis, it is the minus direction of the x-axis. The opposite viewing angle direction is a direction opposite to the main viewing angle direction.
ãïŒïŒïŒïŒãæ¬çºæã®æ¶²æ¶è¡šç€ºè£
眮ã«ãããŠã¯ãå³ïŒå
ã³ïŒã«ç€ºãããã«ãäžå¯Ÿã®å
åŠè£åã·ãŒããæ¶²æ¶ã»ã«ã®
äž¡åŽã«èšããããããšã奜ãŸãããå³ïŒã§ã¯ãäžå¯Ÿã®å
å
æ¿ïŒïŒïœãïŒïŒïœããæ¶²æ¶ã»ã«ïŒïŒã®äž¡åŽã«é
眮ã
ãããããŠå
åŠè£åã·ãŒãïŒïŒïœãåå
æ¿ïŒïŒïœãšæ¶²æ¶
ã»ã«ïŒïŒãšã®éã«é
眮ããããã€å
åŠè£åã·ãŒãïŒïŒïœ
ãåå
æ¿ïŒïŒïœãšæ¶²æ¶ã»ã«ïŒïŒãšã®éã«é
眮ãããŠã
ããïŒïŒïŒïœã¯ãå
åŠè£åã·ãŒãïŒïŒïœã®ã¬ã¿ãŒããŒã·
ã§ã³ã®çµ¶å¯Ÿå€ã®æå°å€ã®æ¹åãæ¶²æ¶ã»ã«äžã«æ£æåœ±ãã
æã®æ¹åã§ãããïŒïŒïŒïœã¯ãå
åŠè£åã·ãŒãïŒïŒïœã®
ã¬ã¿ãŒããŒã·ã§ã³ã®çµ¶å¯Ÿå€ã®æå°å€ã®æ¹åãæ¶²æ¶ã»ã«äž
ã«æ£æåœ±ããæã®æ¹åã§ãããïŒïŒïŒ²ïœã¯ãæ¶²æ¶ã»ã«ïŒ
ïŒã®äžåŽåºæ¿ã®ã©ãã³ã°æ¹åã衚ãããïŒïŒïŒ²ïœã¯ãæ¶²
æ¶ã»ã«ïŒïŒã®äžåŽåºæ¿ã®ã©ãã³ã°æ¹åã衚ãããïŒïŒã¯
å
æºã衚ãããIn the liquid crystal display device of the present invention, as shown in FIGS. 8 and 9, it is preferable that a pair of optical compensation sheets are provided on both sides of the liquid crystal cell. In FIG. 8, a pair of polarizing plates 83a and 83b are arranged on both sides of the liquid crystal cell 81, and an optical compensation sheet 82a is arranged between the polarizing plate 83a and the liquid crystal cell 81, and the optical compensation sheet 82b
Are disposed between the polarizing plate 83b and the liquid crystal cell 81. 82Ma is the direction when the direction of the minimum absolute value of the retardation of the optical compensation sheet 82a is orthogonally projected onto the liquid crystal cell, and 82Mb is the direction of the minimum value of the absolute value of the retardation of the optical compensation sheet 82b. Is the direction when orthographically projected on the liquid crystal cell. 81Ra is the liquid crystal cell 8
1 represents the rubbing direction of the upper substrate, and 81Rb represents the rubbing direction of the lower substrate of the liquid crystal cell 81. 84 represents a light source.
ãïŒïŒïŒïŒãã¬ã¿ãŒããŒã·ã§ã³ã®çµ¶å¯Ÿå€ã®æå°å€ã®æ¹å
ãæ¶²æ¶ã»ã«äžã«æ£æåœ±ããæã®æ¹åïŒïŒïŒïœãšæ¶²æ¶ã»ã«
ã®äžåŽåºæ¿ã®ã©ãã³ã°æ¹åïŒïŒïŒ²ïœãšã®ãªãè§ïŒÎ±ïŒïŒ
åã³ïŒïŒïŒïœãšïŒïŒïŒ²ïœãšãªãè§ïŒÎ±ïŒïŒã¯ãïŒïŒïŒã
ïŒïŒïŒåºŠã®ç¯å²ã«ããããšã奜ãŸãããå³ã¡ãäžèšè§
ïŒÎ±ïŒãšÎ±ïŒïŒã¯ãå³ïŒã®ããã«å®çŸ©ããããšãã§ã
ããå³ïŒã¯ãå³ïŒãïœè»žæ¹åããèŠãæã«åŸãããå³ã§
ãããå³ïŒã«ãããŠãïŒïŒïŒ²ïœãïŒïŒïŒ²ïœãïŒïŒïŒïœå
ã³ïŒïŒïŒïœã¯ãå³ïŒã«ããããšå矩ã§ãããè§ïŒÎ±ïŒïŒ
ã¯ãã¬ã¿ãŒããŒã·ã§ã³ã®æå°å€ãç€ºãæ£æåœ±æ¹åïŒïŒïŒ
ïœãšäžåŽåºæ¿ã®ã©ãã³ã°æ¹åïŒïŒïŒ²ïœãšã®è§åºŠã§ããã
è§ïŒÎ±ïŒïŒã¯ãã¬ã¿ãŒããŒã·ã§ã³ã®æå°å€ãç€ºãæ£æåœ±
æ¹åïŒïŒïŒïœãšäžåŽåºæ¿ã®ã©ãã³ã°æ¹åïŒïŒïŒ²ïœãšã®è§
床ã§ãããã¬ã¿ãŒããŒã·ã§ã³ã®æå°å€ãç€ºãæ£æåœ±æ¹å
ïŒïŒïŒïœãšïŒïŒïŒïœãšã®ãªãè§ïŒÎ²ïŒïŒã¯ãïŒïŒãïŒïŒ
ïŒåºŠã®ç¯å²ã奜ãŸãããThe angle (α1) between the direction 82Ma when the direction of the minimum absolute value of retardation is orthographically projected onto the liquid crystal cell and the rubbing direction 81Ra of the upper substrate of the liquid crystal cell.
And the angle (α2) between 82Mb and 81Rb is 135 to
It is preferably in the range of 225 degrees. That is, the angles (α1 and α2) can be defined as shown in FIG. FIG. 9 is a diagram obtained when FIG. 8 is viewed from the z-axis direction. In FIG. 9, 81Ra, 81Rb, 82Ma and 82Mb have the same meaning as in FIG. Angle (α1)
Is the orthogonal projection direction 82M indicating the minimum value of the retardation.
a and the rubbing direction 81Ra of the upper substrate.
The angle (α2) is the angle between the orthogonal projection direction 82Mb showing the minimum value of the retardation and the rubbing direction 81Rb of the lower substrate. The angle (β1) between the orthogonal projection directions 82Ma and 82Mb indicating the minimum value of the retardation is 90 to 18
A range of 0 degrees is preferred.
ãïŒïŒïŒïŒãæ¬çºæã®æ¶²æ¶è¡šç€ºè£
眮ã«ãããŠã¯ãå³ïŒïŒ
åã³ïŒïŒã«ç€ºãããã«ãïŒæã®å
åŠè£åã·ãŒããæ¶²æ¶ã»
ã«ã®äžæ¹ã®åŽã«èšããŠãè¯ããå³ïŒïŒã§ã¯ãäžå¯Ÿã®åå
æ¿ïŒïŒïŒïœãïŒïŒïŒïœããæ¶²æ¶ã»ã«ïŒïŒïŒã®äž¡åŽã«é
眮
ããããããŠå
åŠè£åã·ãŒãïŒïŒïŒïœãïŒïŒïŒïœããå
å
æ¿ïŒïŒïŒïœãšæ¶²æ¶ã»ã«ïŒïŒïŒãšã®éã«é
眮ãããŠã
ããïŒïŒïŒïŒïœã¯ãå
åŠè£åã·ãŒãïŒïŒïŒïœã®ã¬ã¿ãŒã
ãŒã·ã§ã³ã®çµ¶å¯Ÿå€ã®æå°å€ã®æ¹åãæ¶²æ¶ã»ã«äžã«æ£æåœ±
ããæã®æ¹åã§ãããïŒïŒïŒïŒïœã¯ãå
åŠè£åã·ãŒãïŒ
ïŒïŒïœã®ã¬ã¿ãŒããŒã·ã§ã³ã®çµ¶å¯Ÿå€ã®æå°å€ã®æ¹åãæ¶²
æ¶ã»ã«äžã«æ£æåœ±ããæã®æ¹åã§ãããïŒïŒïŒïŒ²ïœã¯ã
æ¶²æ¶ã»ã«ïŒïŒïŒã®äžåŽåºæ¿ã®ã©ãã³ã°æ¹åã衚ãããïŒ
ïŒïŒïŒ²ïœã¯ãæ¶²æ¶ã»ã«ïŒïŒïŒã®äžåŽåºæ¿ã®ã©ãã³ã°æ¹å
ã衚ãããïŒïŒïŒã¯å
æºã衚ãããIn the liquid crystal display device of the present invention, FIG.
As shown in FIGS. 11 and 12, two optical compensation sheets may be provided on one side of the liquid crystal cell. In FIG. 10, a pair of polarizing plates 103a and 103b are arranged on both sides of the liquid crystal cell 101, and optical compensation sheets 102a and 102b are arranged between the polarizing plate 103a and the liquid crystal cell 101. 102Ma is the direction when the direction of the minimum absolute value of the retardation of the optical compensation sheet 102a is orthogonally projected onto the liquid crystal cell, and 102Mb is the optical compensation sheet 1
The direction of the absolute value of the absolute value of the retardation of 02b is the direction when orthogonally projected onto the liquid crystal cell. 101Ra is
Represents the rubbing direction of the upper substrate of the liquid crystal cell 101,
01Rb represents the rubbing direction of the lower substrate of the liquid crystal cell 101. 104 denotes a light source.
ãïŒïŒïŒïŒãã¬ã¿ãŒããŒã·ã§ã³ã®çµ¶å¯Ÿå€ã®æå°å€ã®æ¹å
ãæ¶²æ¶ã»ã«äžã«æ£æåœ±ããæã®æ¹åïŒïŒïŒïŒïœãšæ¶²æ¶ã»
ã«ã®äžåŽåºæ¿ã®ã©ãã³ã°æ¹åïŒïŒïŒïŒ²ïœãšã®ãªãè§ïŒÎ±
ïŒïŒïŒïŒïŒãïŒïŒïŒåºŠã®ç¯å²ã«ããããšã奜ãŸãããïŒ
ïŒïŒïŒïœãšïŒïŒïŒïŒ²ïœãšãªãè§ïŒÎ±ïŒïŒã¯ãâïŒïŒãïŒ
ïŒåºŠã®ç¯å²ã«ããããšã奜ãŸãããå³ã¡ãäžèšè§ïŒÎ±ïŒ
ãšÎ±ïŒïŒã¯ãå³ïŒïŒã®ããã«å®çŸ©ããããšãã§ãããå³
ïŒïŒã¯ãå³ïŒïŒãïœè»žæ¹åããèŠãæã«åŸãããå³ã§ã
ããå³ïŒïŒã«ãããŠãïŒïŒïŒïŒ²ïœãïŒïŒïŒïŒ²ïœãïŒïŒïŒ
ïŒïœåã³ïŒïŒïŒïŒïœã¯ãå³ïŒïŒã«ããããšå矩ã§ããã
è§ïŒÎ±ïŒïŒã¯ãã¬ã¿ãŒããŒã·ã§ã³ã®æå°å€ãç€ºãæ£æåœ±
æ¹åïŒïŒïŒïŒïœãšäžåŽåºæ¿ã®ã©ãã³ã°æ¹åïŒïŒïŒïŒ²ïœãš
ã®è§åºŠã§ãããè§ïŒÎ±ïŒïŒã¯ãã¬ã¿ãŒããŒã·ã§ã³ã®æå°
å€ãç€ºãæ£æåœ±æ¹åïŒïŒïŒïŒïœãšäžåŽåºæ¿ã®ã©ãã³ã°æ¹
åïŒïŒïŒïŒ²ïœãšã®è§åºŠã§ãããã¬ã¿ãŒããŒã·ã§ã³ã®æå°
å€ãç€ºãæ£æåœ±æ¹åïŒïŒïŒïŒïœãšïŒïŒïŒïŒïœãšã®ãªãè§
ïŒÎ²ïŒïŒã¯ãïŒãïŒïŒïŒåºŠã®ç¯å²ã奜ãŸãããThe angle between the direction 102Ma when the direction of the minimum absolute value of retardation is orthographically projected onto the liquid crystal cell and the rubbing direction 101Ra of the upper substrate of the liquid crystal cell (α
3) It is preferably in the range of 135 to 225 degrees, and 1
The angle (α4) between 02Mb and 101Rb is â45 to 4
It is preferably in the range of 5 degrees. That is, the angle (α3
And α4) can be defined as shown in FIG. FIG. 11 is a diagram obtained when FIG. 10 is viewed from the z-axis direction. In FIG. 11, 101Ra, 101Rb, 102
Ma and 102Mb have the same meaning as in FIG.
The angle (α3) is the angle between the orthographic direction 102Ma indicating the minimum value of the retardation and the rubbing direction 101Ra of the upper substrate, and the angle (α4) is the angle lower than the orthographic direction 102Mb indicating the minimum value of the retardation. This is an angle with the rubbing direction 101Rb of the substrate. The angle (β1) formed by the orthogonal projection directions 102Ma and 102Mb indicating the minimum value of the retardation is preferably in the range of 0 to 120 degrees.
ãïŒïŒïŒïŒãäžèšã¬ã¿ãŒããŒã·ã§ã³ã®æå°å€ã®æ¹åãšæ¶²
æ¶ã»ã«ã®åºæ¿ã®ã©ãã³ã°æ¹åãšã®é¢ä¿ã¯ãã«ã©ãŒæ¶²æ¶è¡š
瀺è£
眮ã«ãé©çšããããšãã§ãããæ¬çºæã®ã«ã©ãŒæ¶²æ¶
衚瀺è£
眮ã®ä»£è¡šçæ§æäŸãå³ïŒïŒã«ç€ºããå³ïŒïŒã«ãã
ãŠã察åéæé»æ¥µïŒïŒïŒãšã«ã©ãŒãã£ã«ã¿ïŒïŒïŒãåã
ãã¬ã©ã¹åºæ¿ïŒïŒïŒïœãç»çŽ é»æ¥µïŒïŒïŒãšïŒŽïŒŠïŒŽïŒïŒïŒ
ãåããã¬ã©ã¹åºæ¿ïŒïŒïŒïœããã®ïŒæã®åºæ¿éã«å°å
¥
ããããããé
åããããããã¯æ¶²æ¶ïŒïŒïŒãšãããªã
æ¶²æ¶ã»ã«ãæ¶²æ¶ã»ã«ã®äž¡åŽã«èšããããäžå¯Ÿã®åå
æ¿ïŒ
ïŒïŒïœãïŒïŒïŒïœãåã³æ¶²æ¶ã»ã«ãšåå
æ¿ãšã®éã«é
眮
ãããäžå¯Ÿã®å
åŠè£åã·ãŒãïŒïŒïŒïœãïŒïŒïŒïœããçµ
ã¿åãããããŠã«ã©ãŒæ¶²æ¶è¡šç€ºè£
çœ®ãæ§æããŠãããå
åŠè£åã·ãŒãã¯äžæ¹ã®ã¿é
眮ããŠãè¯ãïŒå³ã¡ãïŒïŒïŒ
ïœãŸãã¯ïŒïŒïŒïœïŒãThe relationship between the direction of the minimum value of retardation and the rubbing direction of the substrate of the liquid crystal cell can be applied to the color liquid crystal display device. FIG. 12 shows a typical configuration example of the color liquid crystal display device of the present invention. 12, a glass substrate 124a provided with a counter transparent electrode 122 and a color filter 125, a pixel electrode 123 and a TFT 126
, A liquid crystal cell including a twisted-aligned nematic liquid crystal 121 sealed between the two substrates, and a pair of polarizing plates 1 provided on both sides of the liquid crystal cell.
28a, 128b and a pair of optical compensatory sheets 127a, 127b disposed between the liquid crystal cell and the polarizer constitute a color liquid crystal display device. The optical compensatory sheet may be disposed on only one side (ie, 127).
a or 127b).
ãïŒïŒïŒïŒãæ¬çºæã®ã«ã©ãŒæ¶²æ¶è¡šç€ºè£
眮ã«çšããã«ã©
ãŒãã£ã«ã¿ãŒãšããŠã¯ãè²çŽåºŠã寞æ³ç²ŸåºŠãããã«ã¯è
ç±æ§ã®é«ããã®ã§ããã°ã©ã®ãããªãã®ã§ã䜿çšããã
ãšãã§ããã奜ãŸããäŸãšããŠã¯ãæè²ãã£ã«ã¿ãŒãå°
å·ãã£ã«ã¿ãŒãé»çãã£ã«ã¿ãŒãããã¯é¡æåæ£ãã£ã«
ã¿çãæããããšãã§ããããããã¯ãå°æé§¿ä»ç·šè
ãã«ã©ãŒæ¶²æ¶ãã¹ãã¬ã€ãïŒç£æ¥å³æžãïŒïŒïŒãïŒïŒïŒ
é ãïŒïŒïŒãïŒïŒïŒé ïŒããããã¯æ¥çµãã€ã¯ãããã€
ã¹ç·šããã©ããããã«ã»ãã£ã¹ãã¬ã€ïŒïŒïŒïŒãïŒæ¥çµ
瀟ãïŒïŒïŒé ïŒçã«èšèŒãããŠãããäŸãã°ãæè²
ãã£ã«ã¿ãŒã¯ããŒã©ãã³ãã«ãŒã€ã³ãçã®åºè³ªã«
éã¯ãã é
žå¡©ãå ããŠæå
æ§ãä»äžãããã¡ããªãœã°ã©
ããã£ãŒæ³ã«ãã£ãŠãã¿ãŒã³ãã³ã°ããåŸãæè²ããŠåŸ
ãããšãã§ãããAs the color filter used in the color liquid crystal display device of the present invention, any color filter having high color purity, dimensional accuracy and heat resistance can be used. Preferred examples include a dyeing filter, a printing filter, an electrodeposition filter, and a pigment dispersion filter. These are described in "Color LCD Display" edited by Shunsuke Kobayashi (Sangyo Tosho, 172-173).
Pages 237-251) or "Flat Panel Display 1994" edited by Nikkei Microdevice (Nikkei BP, page 216). For example, a dyeing filter can be obtained by adding a dichromate to a substrate such as gelatin, casein, or PVA to impart photosensitivity, patterning the substrate by a fatrigrafy method, and then dyeing it.
ãïŒïŒïŒïŒããŸãæ¬çºæã®ïŒã«ã©ãŒïŒæ¶²æ¶è¡šç€ºè£
眮ã«çš
ããæ¶²æ¶ãšããŠã¯ãäŸãã°æ¥æ¬åŠè¡æ¯èäŒç¬¬ïŒïŒïŒå§å¡
äŒç·šãæ¶²æ¶ããã€ã¹ãã³ãããã¯ãïŒæ¥åå·¥æ¥æ°è瀟ã
ïŒïŒïŒé ãïŒïŒïŒé ïŒèšèŒã®ãããã£ãã¯æ¶²æ¶ã奜ãŸã
ãããã®æ¶²æ¶ååã®é·è»žã¯ãæ¶²æ¶ã»ã«ã®äžäžåºæ¿éã§ã»
ãŒïŒïŒâãã€ã¹ãé
åãããã®ã§ããã®ã§ãå
¥å°ããçŽ
ç·åå
ã¯å°å é»çããªãå Žåã«ã¯ãæ¶²æ¶ã»ã«ã®æå
æ§ã«
ãã£ãŠïŒïŒâåå
æ¹åãå€ããŠæ¶²æ¶ã»ã«ããåºå°ããã
ãšã«ãªãããããå€ä»¥äžã®å
åé«ãé»çãå°å ããæã«
ã¯ãæ¶²æ¶ååã®é·è»žãé»çæ¹åã«åããå€ãã黿¥µé¢ã«
åçŽã«äžŠã¶ãããæå
æ§ã¯æ®ã©æ¶å€±ããããããã£ãŠã
ãã®æå
ã®å¹æãå
åã«çºæ®ãããããã«ã¯ããã€ã¹ã
è§ã¯ïŒïŒãïŒïŒïŒâã奜ãŸãããïŒïŒâãïŒïŒâããã
ã«å¥œãŸãããAs the liquid crystal used in the (color) liquid crystal display device of the present invention, for example, "Liquid Crystal Device Handbook" edited by Japan Society for the Promotion of Science, 142th Committee (Nikkan Kogyo Shimbun,
Nematic liquid crystals described on pages 107 to 213) are preferred. Since the major axis of the liquid crystal molecules is twisted at approximately 90 ° C. between the upper and lower substrates of the liquid crystal cell, the incident linearly polarized light has a 90 ° C. polarization direction due to the optical rotation of the liquid crystal cell in the absence of an applied electric field. Instead, the light is emitted from the liquid crystal cell. When a sufficiently high electric field equal to or higher than the threshold is applied, the long axis of the liquid crystal molecules changes its direction in the electric field and is arranged perpendicular to the electrode surface, so that the optical rotation is almost lost. Therefore,
In order to sufficiently exhibit the effect of the optical rotation, the twist angle is preferably from 70 to 100C, more preferably from 80C to 90C.
ãïŒïŒïŒïŒããã®é»çã«ããæ¶²æ¶ååã®é
åã®æ¬ é¥ïŒã
ã£ã¹ã¯ãªããŒã·ã§ã³ïŒãå°ãªããããããæ¶²æ¶ååã«ã
ãããããã¬ãã«ãè§ãäžããŠããããšã奜ãŸãããã
ã¬ãã«ãè§ã¯ïŒâ以äžã奜ãŸãããããã«ãïŒâãïŒâ
ã奜ãŸãããäžèšãã€ã¹ãè§ããã¬ãã«ãè§ã«ã€ããŠ
ã¯ã岡éå
æ²»ãå°æé§¿ä»å
±ç·šãæ¶²æ¶å¿çšç·šãïŒå¹é¢šé€šã
ïŒïŒé ãïŒïŒé ïŒã«èšèŒãããŠãããIn order to reduce the defects (disclination) in the alignment of the liquid crystal molecules due to this electric field, it is preferable to give the liquid crystal molecules a pretilt angle in advance. The pretilt angle is preferably 5 ° C or less, and more preferably 2 ° C to 4 ° C.
Is preferred. Regarding the twist angle and pretilt angle, see âLiquid Crystal Applicationâ edited by Koji Okano and Shunsuke Kobayashi (Baifukan,
Pages 16 to 28).
ãïŒïŒïŒïŒãããã«æ¶²æ¶ã»ã«ã®å±æçç°æ¹æ§â³ïœãšãæ¶²
æ¶ã»ã«ã«ãããæ¶²æ¶å±€ã®åã¿ïœãšã®ç©ïŒâ³ïœã»ïœïŒã®å€
ã¯ãäŸãã°æ¥æ¬åŠè¡æ¯èäŒç¬¬ïŒïŒïŒå§å¡äŒç·šãæ¶²æ¶ãã
ã€ã¹ãã³ãããã¯ãïŒæ¥åå·¥æ¥æ°è瀟ãïŒïŒïŒé ãïŒïŒ
ïŒé ïŒã«èšèŒãããŠããããã«ãïœã倧ãããªãã°ã³ã³
ãã©ã¹ãã¯æ¹è¯ããããã®ã®ãå¿çé床ãé
ãããŸãèŠ
éè§ãå°ãããªããããïŒïŒïŒãïŒïŒïŒÎŒïœã®ç¯å²ã奜
ãŸãããïŒïŒïŒãïŒïŒïŒÎŒïœã®ç¯å²ããã奜ãŸãããFurther, the value of the product (În · d) of the refractive index anisotropy În of the liquid crystal cell and the thickness d of the liquid crystal layer in the liquid crystal cell is, for example, âLiquid Crystal Deviceâ edited by Japan Society for the Promotion of Science, 142 Committee. Handbook "(Nikkan Kogyo Shimbun, pages 329-33)
As described in (p. 7), as d increases, the contrast is improved, but the response speed is slow and the viewing angle is also small. Therefore, the range of 0.3 to 1.0 ÎŒm is preferable. The range of 3 to 0.6 ÎŒm is more preferable.
ãïŒïŒïŒïŒãæ¬çºæã®ã«ã©ãŒæ¶²æ¶è¡šç€ºè£
眮ã«å°å ããã
ä¿¡å·ã¯ãäŸãã°æ¥æ¬åŠè¡æ¯èäŒç¬¬ïŒïŒïŒå§å¡äŒç·šãæ¶²æ¶
ããã€ã¹ãã³ãããã¯ãïŒæ¥åå·¥æ¥æ°è瀟ãïŒïŒïŒé ã
ïŒïŒïŒé ïŒããããã¯å²¡éå
æ²»ãå°æé§¿ä»å
±ç·šãæ¶²æ¶
å¿çšç·šãïŒå颚通ãïŒïŒé ãïŒïŒïŒé ïŒçã«èšèŒãããŠ
ããããã«ãïŒïŒšïœãïŒïŒïŒïŒšïœã®äº€æµã§ãé»å§ã¯ïŒïŒ
以äžã奜ãŸããã¯ïŒïŒ¶ä»¥äžã®ä¿¡å·ã§ãããããšãã°ã
ãŒããªãŒãã¯ã€ãã¢ãŒãã§ã¯ãå°å é»å§ãïŒãïŒïŒïŒïŒ¶
ã§æè¡šç€ºãïŒïŒïŒïŒ¶ãïŒïŒïŒïŒ¶ã§äžé調衚瀺ãïŒïŒïŒïŒ¶
以äžã§æè¡šç€ºãè¡ãªãããšãäžè¬çã§ãããThe signal applied to the color liquid crystal display device of the present invention is, for example, âLiquid Crystal Device Handbookâ edited by Japan Society for the Promotion of Science, 142th Committee (Nikkan Kogyo Shimbun, page 387-
465 pages) or Koji Okano and Shunsuke Kobayashi, "Liquid Crystals"
As described in âApplied Editionâ (Baifukan, pp. 85-105), etc., the alternating current of 5-100 Hz and the voltage of 20
V or less, preferably 8 V or less. For example, in the normally white mode, the applied voltage is 0 to 1.5 V
For bright display, 1.5V to 3.0V for halftone display, 3.0V
The dark display is generally performed as described above.
ãïŒïŒïŒïŒãæ¬çºæã®ã«ã©ãŒæ¶²æ¶è¡šç€ºè£
眮åã³æ¶²æ¶è¡šç€º
è£
眮ã§äœ¿çšããããšãã§ããåå
æ¿ã®ææã¯ç¹ã«éå®ã
ããããšã¯ãªããã©ã®ãããªææã§ã䜿çšããããšãã§
ãããäžè¬ã«ãåå
æ¿ã¯ãåå
åãšãã®äž¡åŽã«èšããã
ãä¿è·ãã£ã«ã ãšãããªããåå
åã¯ãäŸãã°ã延䌞ã
ãªããã«ã¢ã«ã³ãŒã«çã®èŠªæ°Žæ§ããªããŒã«ãšãŠçŽ ãŸãã¯
ææã§åŠçããŠåŸããããä¿è·ãã£ã«ã ã¯ãäžè¬ã«ããª
ã¢ã»ãã«ã»ã«ããŒã¹ã延䌞åŠçããŠåŸãããšãã§ããã
ä¿è·ãã£ã«ã ã¯ãäžè¬ã«ïŒãïŒïŒïŒïœïœã®ã¬ã¿ããŒã·ã§
ã³ïŒïŒ²ïœ
ïŒã奜ãŸããã¯ïŒãïŒïŒïŒïœïœã®ïŒ²ïœ
ãæã
ããïœ
ã¯ãéææ¯æäœã§èŠå®ãããã«ãïœïŒïœïœïŒïœ
ïœïŒïŒïŒãŒïœïœïœÃïœã§è¡šããããäžè¬ã«ãå
åŠè£åã·
ãŒãã¯ãå
åŠè£åã·ãŒãåŽã®åå
æ¿ãšãç²çå±€ãä»ããŠ
ç©å±€ããæ¶²æ¶è¡šç€ºè£
眮ã«è£
çã§ãã倧ããã«è£æããŠè£
çãããããã®ãšããå
åŠè£åã·ãŒããšåå
æ¿ãšæ¶²æ¶ã»
ã«ã®åã
ã®å
åŠè»žããæé©èŠè§ç¹æ§ã«ãªãããã«ç©å±€ã
ãããšãšè£æãå¿
èŠãšãªããThe material of the polarizing plate which can be used in the color liquid crystal display device and the liquid crystal display device of the present invention is not particularly limited, and any material can be used. Generally, a polarizing plate comprises a polarizer and protective films provided on both sides thereof. The polarizer is obtained, for example, by treating a hydrophilic polymer such as stretched polyvinyl alcohol with iodine or a dye. The protective film can be generally obtained by stretching triacetyl cellulose.
The protective film generally has a retardation (Re) of 0 to 200 nm, preferably Re of 0 to 100 nm. Re is defined by ïœ(nx + n
y) / 2ânzïœ Ã d. In general, the optical compensation sheet is mounted by laminating the polarizing plate on the optical compensation sheet side via an adhesive layer and cutting it into a size that can be mounted in a liquid crystal display device. At this time, it is necessary to stack and cut so that the optical axes of the optical compensation sheet, the polarizing plate and the liquid crystal cell have optimum viewing angle characteristics.
ãïŒïŒïŒïŒã[0057]
宿œäŸïŒ ïŒé
åè仿¯æäœã®äœè£œïŒãŒã©ãã³èèïŒïŒïŒïŒÎŒïœïŒ
ãå¡èšããïŒïŒïŒÎŒïœåããæããããªã¢ã»ãã«ã»ã«ã
ãŒã¹ã®ãã£ã«ã ïŒå¯å£«åçãã€ã«ã ïŒæ ªïŒè£œïŒäžã«ãäž
èšã®çµæããæãé
åè圢æçšå¡åžæ¶²ããâã³âã¿âã§
å¡åžããïŒïŒâ枩颚ã«ãŠä¹Ÿç¥ãããåŸããã®æž©åºŠé°å²æ°
äžã§ãè©²æ¯æäœã®åŽèŸºããïŒïœïœå
åŽã«ããŒã¬ããã®ç«¯
ãæ¥ãããã«ããŠãæ¯æäœã®äž¡ç«¯ã«é«ãïŒïŒÎŒãå¹
ïŒïœ
ïœã®ãâã¬ãããä»äžããå·»è¯ã«å·»ãåãããšã«ããã
é·ãïŒïŒïŒïŒïœã®é
åè仿¯æäœãäœè£œããã ïŒé
åè圢æçšå¡åžæ¶²ïŒ ããªããã«ã¢ã«ã³âã«èªå°äœïŒäžèšïŒ ïŒïŒïŒ«ïœ æ°Ž ïŒïŒïŒïŒ«ïœ ã¡ã¿ãâã« ïŒïŒïŒïŒ«ïœ ã°ã«ã¿ã«ã¢ã«ãããïŒæ¶æ©å€ïŒ ïŒïŒïŒïœExample 1 <Preparation of support with alignment film> Gelatin thin film (0.1 ÎŒm)
Was coated on a triacetyl cellulose film having a thickness of 100 Όm (manufactured by Fuji Photo Film Co., Ltd.) with a bar coater to apply an alignment film-forming coating solution having the following composition to 90 ° C. After drying with warm air, under this temperature atmosphere, the edges of the knurls were placed 2 mm inward from the sides of the support so that both ends of the support had a height of 20 Ό and a width of 7 m.
By applying m rollet and winding it around the core,
A support with an alignment film having a length of 1000 m was produced. <Coating liquid for forming alignment film> Polyvinyl alcohol derivative (below) 10 kg Water 371 kg Gthanol 119 kg Glutaraldehyde (crosslinking agent) 500 g
ãïŒïŒïŒïŒã[0058]
ãåïŒã Embedded image
ãïŒïŒïŒïŒãé¢å
ã®äž»å±æçãïœïœãïœïœãåãæ¹åã®
屿çïœïœãåããïœãšããæãããªã¢ã»ãã«ã»ã«ããŒ
ã¹ãã£ã«ã ã®ïœïœïœâïœïœïœÃïœãïœïŒïœïœïŒïœïœïŒïŒ
ïŒâïœïœïœÃïœã決å®ããïŒå³ïŒåç
§ïŒãåããããã€
ã¯ãã¡ãŒã¿ãçšããŠæž¬å®ãããããŠæ³ç·æ¹åãåã³æ³ç·
æ¹åããïŒïŒ€æ¹åã«ïŒïŒÂ°ããã®éæ¹åã«ïŒïŒÂ°ã®æ¹å
ããã®ïŒ²ïœ
å€ãããšãªããœã¡ãŒã¿ïŒïŒ¡ïŒ¥ïŒ°âïŒïŒïŒã
ïŒæ ªïŒå³¶æŽ¥è£œäœæè£œïŒã«ããæž¬å®ããèšç®ã«ããäžèšïœ
ïœïœâïœïœïœÃïœãïœïŒïœïœïŒïœïœïŒïŒïŒâïœïœïœÃïœ
ãæ±ºå®ãããäžèšããªã¢ã»ãã«ã»ã«ããŒã¹ãã£ã«ã ã®ïœ
ïœïœâïœïœïœÃïœã¯ïŒïœïœã§ãïœïŒïœïœïŒïœïœïŒïŒïŒâ
ïœïœïœÃïœã¯ïŒïŒïœïœã§ãã£ããåŸã£ãŠãäžèšããªã¢ã»
ãã«ã»ã«ããŒã¹ãã£ã«ã ã¯ã»ãŒè² ã«äžè»žæ§ã§ããããã®
å
軞ãã»ãŒãã€ã«ã æ¹ç·æ¹åã«ãã£ããWhen the in-plane main refractive index is nx, ny, the thickness direction refractive index nz, and the thickness is d, | nx-ny | xd, {(nx + ny) /
2-nz} * d was determined (see FIG. 1). The thickness was measured using a micrometer, and the Re value from the normal direction and from the direction of 40 ° in the MD direction to the normal direction and 40 ° in the opposite direction was measured using an ellipsometer (AEP-100,
Measured by Shimadzu Corporation, and calculated above |
nx-ny | xd, {(nx + ny) / 2-nz} xd
It was determined. Of the above triacetyl cellulose film
nxâny | Ã d is 3 nm, and {(nx + ny) / 2â
nz} xd was 40 nm. Therefore, the triacetyl cellulose film was almost negatively uniaxial, and the optical axis was almost in the direction of the film normal.
ãïŒïŒïŒïŒããã®é
åèäžãã©ãã³ã°åŠçããåŸãåè¿°
ããæ¶²æ¶æ§ãã£ã¹ã³ãã£ãã¯ååç©ïŒŽïŒ¥âïŒïŒïŒãïœïŒ
ïŒïŒïŒåèšååç©äŸçªå·ïŒïŒïŒïŒïœããã§ããã·ãžãšã
ã¬ã³ã°ãªã³ãŒã«ã¢ã¯ãªã¬ãŒãïŒïŒïŒïŒïŒïŒæ±äºåæ
ïŒæ ªïŒè£œïŒïŒïŒïŒïœãã»ã«ããŒã¹ã¢ã»ããŒãããã¬ãŒã
ïŒïŒ£ïŒ¡ïŒ¢ïŒïŒïŒâïŒïŒã€ãŒã¹ããã³ã±ãã«ã«ç€Ÿè£œïŒïŒïŒ
ïŒïŒïœãåã³å
éåéå§å€ïŒã€ã«ã¬ãã¥ã¢âïŒïŒïŒïŒã
ãã»ã¬ã€ã®ãŒç€Ÿè£œïŒïŒïŒïŒïŒïœããïŒïŒïŒïŒïœã®ã¡ãã«
ãšãã«ã±ãã³ã«æº¶è§£ããŠåŸãããå¡åžæ¶²ããã¯ã€ã€ãŒã
ãŒã§å¡åžïŒïŒïŒããŒïŒããéå±ã®æ ã«è²Œãã€ããŠåºå®ã
ãŠïŒïŒïŒâã®é«æž©æ§œäžã§ïŒåéå ç±ãããã€ã¹ã³ãã£ã
ã¯ååç©ãé
åãããåŸã宀枩ãŸã§æŸå·ããŠãåãïŒïŒ
ïŒÎŒïœã®ãã£ã¹ã³ãã£ãã¯ååç©ãå«ãå±€ïŒå
åŠç°æ¹
å±€ïŒåœ¢æãããããããŠãå
åŠç°æ¹å±€ãæããæ¬çºæã®
å
åŠè£åã·ãŒãïŒïŒ¯ïŒ£ïŒ³âïŒãäœè£œãããAfter rubbing the alignment film, the above-mentioned liquid crystalline discotic compound TE-8 (8, m =
4) (the above compound example number), phenoxydiethylene glycol acrylate (M101; manufactured by Toagosei Co., Ltd.) 0.4 g, cellulose acetate butyrate (CAB531-1; manufactured by Eastman Chemical Co.) 0.
A coating solution obtained by dissolving 05 g and 0.01 g of a photopolymerization initiator (Irgacure-907; manufactured by Ciba Geigy) in 3.65 g of methyl ethyl ketone was applied with a wire bar (# 4 bar), After sticking to a metal frame and fixing and heating in a high temperature bath at 120 ° C. for 3 minutes to orient the discotic compound, it is allowed to cool to room temperature and the thickness is 1.
A layer (optically anisotropic layer) containing a discotic compound having a thickness of 8 ÎŒm was formed. Thus, the optical compensation sheet (OCS-A) of the present invention having the optically anisotropic layer was produced.
ãïŒïŒïŒïŒãåŸãããæ¬çºæã®å
åŠè£åã·ãŒãïŒïŒ¯ïŒ£ïŒ³
âïŒããã¯ãããŒã ãçšããŠã©ãã³ã°æ¹åã§æ·±ãã«æ²¿
ã£ãŠåæããæ¥µããŠèããã£ã«ã ïŒãµã³ãã«ïŒãäœè£œã
ãããã®ãµã³ãã«ãïœïŒ¯4ã®é°å²æ°äžã«ïŒïŒæéæŸçœ®
ããŠãæè²ãããåŸãããæè²ãã£ã«ã ããééåé»å
é¡åŸ®é¡ïŒïŒŽïŒ¥ïŒïŒã«ãã£ãŠèгå¯ãããã®é¡åŸ®é¡åçãåŸ
ããæè²ãã£ã«ã ã§ã¯ããã£ã¹ã³ãã£ãã¯ååç©ïŒŽïŒ¥â
ïŒïŒïŒãïœïŒïŒïŒã®ã¢ã¯ãªãã€ã«åºãæè²ãããåçã®
åãšããŠèªããããããã®åçãããå
åŠç°æ¹å±€ã®ãã£
ã¹ã³ãã£ãã¯ååç©ã¯éææ¯æäœã®è¡šé¢ããåŸããŠã
ãããã€ãã®åŸæè§ããå
åŠç°æ¹å±€ã®åºéšããæ·±ãæ¹å
ã®è·é¢ã®å¢å ãšå
±ã«ãïŒãïŒïŒåºŠã«ãããŠé£ç¶çå¢å ã
ãŠããããšããèªãããããThe obtained optical compensation sheet of the present invention (OCS
-A) was cut along the depth in the rubbing direction using a microtome to produce an extremely thin film (sample). The sample was left to stand in an OsO 4 atmosphere for 48 hours and stained. The obtained dyed film was observed with a transmission electron microscope (TEM), and a micrograph was obtained. In the dyed film, the discotic compound TE-
Eight (8, m = 4) acryloyl groups were stained and recognized as photographic images. From this photograph, the discotic compound of the optically anisotropic layer was inclined from the surface of the transparent support, and the inclination angle was increased from 5 to 65 degrees with increasing distance in the depth direction from the bottom of the optically anisotropic layer. A continuous increase was observed.
ãïŒïŒïŒïŒã宿œäŸïŒ åèšé
åèäžãã©ãã³ã°åŠçããåŸãåè¿°ããæ¶²æ¶æ§ã
ã£ã¹ã³ãã£ãã¯ååç©ïŒŽïŒ¥âïŒïŒïŒãïœïŒïŒïŒïŒåèšå
åç©äŸçªå·ïŒïŒïŒïŒïœããã§ããã·ãžãšãã¬ã³ã°ãªã³ãŒ
ã«ã¢ã¯ãªã¬ãŒãïŒïŒïŒïŒïŒïŒæ±äºåæïŒæ ªïŒè£œïŒïŒïŒïŒ
ïœãã»ã«ããŒã¹ã¢ã»ããŒãããã¬ãŒãïŒïŒ£ïŒ¡ïŒ¢ïŒïŒïŒâ
ïŒïŒã€ãŒã¹ããã³ã±ãã«ã«ç€Ÿè£œïŒïŒïŒïŒïŒïœãåã³å
é
åéå§å€ïŒã€ã«ã¬ãã¥ã¢âïŒïŒïŒïŒããã»ã¬ã€ã®ãŒç€Ÿ
補ïŒïŒïŒïŒïŒïœããïŒïŒïŒïŒïœã®ã¡ãã«ãšãã«ã±ãã³ã«
溶解ããŠåŸãããå¡åžæ¶²ããã¯ã€ã€ãŒããŒã§å¡åžïŒïŒïŒ
ããŒïŒããéå±ã®æ ã«è²Œãã€ããŠåºå®ããŠïŒïŒïŒâã®é«
枩槜äžã§ïŒåéå ç±ãããã€ã¹ã³ãã£ãã¯ååç©ãé
å
ãããåŸãïŒïŒïŒâã®ãŸãŸé«å§æ°Žéç¯ãçšããŠïŒåé
ç
§å°ãã宀枩ãŸã§æŸå·ããŠãåãïŒïŒïŒÎŒïœã®ãã£ã¹
ã³ãã£ãã¯ååç©ãå«ãå±€ïŒå
åŠç°æ¹å±€ïŒãæããæ¬çº
æã®å
åŠè£åã·ãŒãïŒïŒ¯ïŒ£ïŒ³âïŒãäœè£œãããExample 2 After rubbing the alignment film, 1.6 g of the above-mentioned liquid crystalline discotic compound TE-8 (8, m = 4) (the above compound example number), phenoxydiethylene glycol acrylate (M101; Toa) Synthetic Co., Ltd.) 0.4
g, cellulose acetate butyrate (CAB531-
1; Eastman Chemical Co., Ltd.) 0.05 g and a photopolymerization initiator (Irgacure-907; Ciba Geigy Co. Ltd.) 0.01 g were dissolved in 3.65 g of methyl ethyl ketone to obtain a wire. Apply with a bar (# 4
Bar), and fix it by sticking it to a metal frame and heating it in a high temperature bath at 120 ° C for 3 minutes to orient the discotic compound, and then at 120 ° C for 1 minute using a high pressure mercury lamp.
It was irradiated with V and allowed to cool to room temperature to prepare an optical compensation sheet (OCS-B) of the present invention having a layer (optically anisotropic layer) containing a discotic compound having a thickness of 1.8 ÎŒm.
ãïŒïŒïŒïŒããã®ããã«ããŠåŸãããæ¬çºæã®å
åŠè£å
ã·ãŒãïŒïŒ¯ïŒ£ïŒ³âïŒã«ã€ããŠãã©ãã³ã°è»žãå«ã¿äœçž
å·®æ¿é¢ã«åçŽãªé¢ã«ãããŠãæ³ç·æ¹å±ïŒïŒÂ°ã®ç¯å²ã§
ïŒÂ°ééã§ãã¬ã¿ãŒãã·ã§ã³å€ããšãªããœã¡ãŒã¿ãŒïŒïŒ¡
âïŒïŒïŒïŒå³¶æŽ¥è£œäœæè£œïŒã§æž¬å®ããæŽã«ã枬å®éš
åã®ãã£ã¹ã³ãã£ãã¯ååç©ãé€å»ããåŸã®æ¯æäœã®å
åŠç¹æ§ãåæ§ã«æž¬å®ããããããã®æž¬å®ã«ãããå
åŠç°
æ¹å±€ã®å
åŠç¹æ§ïŒïŒ²ïœ
ãšæž¬å®è§ã®é¢ä¿ïŒã¯ãå³ïŒïŒã«ç€º
ãããã«ãªã£ããå³ïŒïŒã®çµæãã·ã¥ãã¬ãŒããããšã
ããåŸãããå
åŠç°æ¹å±€ã¯è² ã®è€å±æãæãããã£ã¹ã³
ãã£ãã¯ååç©ã®é¢ãæ¯æäœè¡šé¢ããåŸããŠããããã®
åŸãïŒãã«ãè§ïŒãïŒïŒåºŠããïŒïŒåºŠãŸã§é£ç¶çã«å€å
ããŠããããšãããã£ããRegarding the optical compensation sheet (OCS-B) of the present invention thus obtained, in a plane including the rubbing axis and perpendicular to the surface of the retardation plate, in the normal direction ± 55 °, at intervals of 5 °. , Letterization value to ellipsometer (A
EP-100; manufactured by Shimadzu Corporation), and further, the optical characteristics of the support after removing the discotic compound in the measurement portion were similarly measured. From these measurements, the optical characteristics of the optically anisotropic layer (relationship between Re and the measurement angle) were as shown in FIG. When the result of FIG. 13 is simulated, the obtained optical anisotropic layer has negative birefringence, the surface of the discotic compound is tilted from the surface of the support, and the tilt (tilt angle) is from 20 degrees to 50 degrees. It turned out that it changed continuously up to the degree.
ãïŒïŒïŒïŒã宿œäŸïŒ åèšé
åèäžãã©ãã³ã°åŠçããåŸãåè¿°ããæ¶²æ¶æ§ã
ã£ã¹ã³ãã£ãã¯ååç©ïŒŽïŒ¥âïŒïŒïŒãïœïŒïŒïŒïŒåèšå
åç©äŸçªå·ïŒïŒïŒïŒïœããšãã¬ã³ã°ãªã³ãŒã«å€æ§ããªã¡
ãããŒã«ãããã³ããªã¢ã¯ãªã¬ãŒãïŒïŒ¶ïŒïŒïŒïŒïŒå€§éª
ææ©ååŠå·¥æ¥ïŒæ ªïŒè£œïŒïŒïŒïŒïœãã»ã«ããŒã¹ã¢ã»ããŒ
ãããã¬ãŒãïŒïŒ£ïŒ¡ïŒ¢ïŒïŒïŒâïŒïŒïŒïŒã€ãŒã¹ããã³ã±
ãã«ã«ç€Ÿè£œïŒïŒïŒïŒïŒïœãå
éåéå§å€ïŒã€ã«ã¬ãã¥ã¢
âïŒïŒïŒïŒããã»ã¬ã€ã®ãŒç€Ÿè£œïŒïŒïŒïŒïŒïœåã³å¢æå€
ïŒã«ã€ãã¥ã¢ãŒïŒ€ïŒ¥ïŒŽïŒžãæ¥æ¬åè¬ïŒæ ªïŒè£œïŒïŒïŒïŒïŒ
ïœããïŒïŒïŒïŒïœã®ã¡ãã«ãšãã«ã±ãã³ã«æº¶è§£ããŠåŸã
ããå¡åžæ¶²ããã¯ã€ã€ãŒããŒã§å¡åžïŒïŒïŒããŒïŒããé
å±ã®æ ã«è²Œãã€ããŠåºå®ããŠïŒïŒïŒâã®é«æž©æ§œäžã§ïŒå
éå ç±ãããã€ã¹ã³ãã£ãã¯ååç©ãé
åãããåŸãïŒ
ïŒïŒâã®ãŸãŸé«å§æ°Žéç¯ïŒïŒïŒïŒïŒ·ïŒïœïœïŒãçšããŠïŒ
ç§éç
§å°ãã宀枩ãŸã§æŸå·ããŠãåãïŒïŒïŒÎŒïœã®
ãã£ã¹ã³ãã£ãã¯ååç©ãå«ãå±€ïŒå
åŠç°æ¹å±€ïŒãæã
ãæ¬çºæã®å
åŠè£åã·ãŒãïŒïŒ¯ïŒ£ïŒ³âïŒãäœè£œãããExample 3 After rubbing the alignment film, 1.8 g of the above-mentioned liquid crystalline discotic compound TE-8 (8, m = 4) (the above compound example number), ethylene glycol-modified trimethylolpropane tri Acrylate (V # 360; manufactured by Osaka Organic Chemical Industry Co., Ltd.) 0.2 g, cellulose acetate butyrate (CAB551-0.2; manufactured by Eastman Chemical Co.) 0.04 g, photopolymerization initiator (Irgacure-907; Ciba)ã» Geigy Co., Ltd.) 0.06 g and sensitizer (Kayakyu DETX, Nippon Kayaku Co., Ltd.) 0.02
Coating solution obtained by dissolving g in 3.43 g of methyl ethyl ketone is applied with a wire bar (# 3 bar), stuck on a metal frame and fixed, and heated in a high temperature bath at 120 ° C for 3 minutes. Then, after orienting the discotic compound, 1
1 at high temperature mercury lamp (120W / cm) at 20 â
It was irradiated with UV for 2 seconds and allowed to cool to room temperature to prepare an optical compensation sheet (OCS-C) of the present invention having a layer (optically anisotropic layer) containing a discotic compound having a thickness of 1.8 ÎŒm.
ãïŒïŒïŒïŒããã®ããã«ããŠåŸãããæ¬çºæã®å
åŠè£å
ã·ãŒãïŒïŒ¯ïŒ£ïŒ³âïŒã«ã€ããŠãã©ãã³ã°è»žãå«ã¿äœçž
å·®æ¿é¢ã«åçŽãªé¢ã«ãããŠã宿œäŸïŒãšåæ§ã«ã¬ã¿ãŒã
ã·ã§ã³å€ããšãªããœã¡ãŒã¿ãŒïŒïŒ¡ïŒ¥ïŒ°âïŒïŒïŒïŒå³¶æŽ¥è£œ
äœæè£œïŒã§æž¬å®ããæŽã«ã枬å®éšåã®ãã£ã¹ã³ãã£ãã¯
ååç©ãé€å»ããåŸã®æ¯æäœã®å
åŠç¹æ§ãåæ§ã«æž¬å®ã
ãããããã®æž¬å®ã«ãããåŸãããå
åŠç°æ¹å±€ã¯è² ã®è€
屿ãæãããã€ãã£ã¹ã³ãã£ãã¯ååç©ã®é¢ãæ¯æäœ
衚é¢ããåŸããŠããããã®åŸãïŒãã«ãè§ïŒãïŒïŒåºŠã
ãïŒïŒåºŠãŸã§é£ç¶çã«å€åããŠããããšãããã£ããWith respect to the optical compensation sheet (OCS-C) of the present invention thus obtained, the retardation value of the ellipsometer (in the plane perpendicular to the retardation plate surface including the rubbing axis) was measured in the same manner as in Example 2. AEP-100; manufactured by Shimadzu Corporation), and further, the optical characteristics of the support after removing the discotic compound in the measurement portion were similarly measured. As a result of these measurements, the obtained optically anisotropic layer had negative birefringence, the discotic compound surface was tilted from the surface of the support, and the tilt (tilt angle) was continuous from 20 degrees to 70 degrees. It turned out that it was changing.
ãïŒïŒïŒïŒã宿œäŸïŒ åèšé
åèäžãã©ãã³ã°åŠçããåŸãåè¿°ããæ¶²æ¶æ§ã
ã£ã¹ã³ãã£ãã¯ååç©ïŒŽïŒ¥âïŒïŒïŒãïœïŒïŒïŒïŒåèšå
åç©äŸçªå·ïŒïŒïŒïŒïŒïœãαâã¢ã¯ãã¬ã€ã³âÏâãã§
ããã·âããªãªãã·ãšãã¬ã³ïŒïŒ¡ïŒïŒ°ïŒïŒïŒ§ïŒæ°äžæå
åŠå·¥æ¥ïŒæ ªïŒè£œïŒïŒïŒïŒïŒïœãã»ã«ããŒã¹ã¢ã»ããŒãã
ãã¬ãŒãïŒïŒ£ïŒ¡ïŒ¢ïŒïŒïŒâïŒïŒã€ãŒã¹ããã³ã±ãã«ã«ç€Ÿ
補ïŒïŒïŒïŒïŒïœãåã³å
éåéå§å€ïŒã€ã«ã¬ãã¥ã¢âïŒ
ïŒïŒïŒããã»ã¬ã€ã®ãŒç€Ÿè£œïŒïŒïŒïŒïŒïœããïŒïŒïŒïŒïœ
ã®ã¡ãã«ãšãã«ã±ãã³ã«æº¶è§£ããŠåŸãããå¡åžæ¶²ããã¯
ã€ã€ãŒããŒã§å¡åžïŒïŒïŒããŒïŒããéå±ã®æ ã«è²Œãã€ã
ãŠåºå®ããŠïŒïŒïŒâã®é«æž©æ§œäžã§ïŒåéå ç±ãããã€ã¹
ã³ãã£ãã¯ååç©ãé
åãããåŸãïŒïŒïŒâã®ãŸãŸé«å§
æ°Žéç¯ïŒïŒïŒïŒïŒ·ïŒïœïœïŒãçšããŠïŒç§éç
§å°ãã
宀枩ãŸã§æŸå·ããŠãåãïŒïŒïŒÎŒïœã®ãã£ã¹ã³ãã£ãã¯
ååç©ãå«ãå±€ïŒå
åŠç°æ¹å±€ïŒãæããæ¬çºæã®å
åŠè£
åã·ãŒãïŒïŒ¯ïŒ£ïŒ³âïŒãäœè£œãããExample 4 After rubbing the alignment film, 1.75 g of the above-mentioned liquid crystalline discotic compound TE-8 (8, m = 4) (Example number of the compound), α-acrolein-Ï-phenoxy was used. -0.25 g of polyoxyethylene (AMP60G; manufactured by Shin-Nakamura Chemical Co., Ltd.), 0.05 g of cellulose acetate butyrate (CAB500-5; manufactured by Eastman Chemical Company), and a photopolymerization initiator (Irgacure-9)
07; manufactured by Ciba Geigy) 0.01 g, 3.43 g
The coating solution obtained by dissolving in methyl ethyl ketone of No. 3 is applied with a wire bar (# 3 bar), fixed on a metal frame and heated for 3 minutes in a high temperature bath at 120 ° C to orient the discotic compound. Then, UV irradiation is performed for 1 second at 120 ° C. using a high pressure mercury lamp (120 W / cm),
After cooling to room temperature, an optical compensation sheet (OCS-D) of the present invention having a layer (optically anisotropic layer) containing a discotic compound having a thickness of 1.8 ÎŒm was produced.
ãïŒïŒïŒïŒããã®ããã«ããŠåŸãããæ¬çºæã®å
åŠè£å
ã·ãŒãïŒïŒ¯ïŒ£ïŒ³âïŒã«ã€ããŠãã©ãã³ã°è»žãå«ã¿äœçž
å·®æ¿é¢ã«åçŽãªé¢ã«ãããŠã宿œäŸïŒãšåæ§ã«ã¬ã¿ãŒã
ã·ã§ã³å€ããšãªããœã¡ãŒã¿ãŒïŒïŒ¡ïŒ¥ïŒ°âïŒïŒïŒïŒå³¶æŽ¥è£œ
äœæè£œïŒã§æž¬å®ããæŽã«ã枬å®éšåã®ãã£ã¹ã³ãã£ãã¯
ååç©ãé€å»ããåŸã®æ¯æäœã®å
åŠç¹æ§ãåæ§ã«æž¬å®ã
ãããããã®æž¬å®ã«ãããåŸãããå
åŠç°æ¹å±€ã¯è² ã®è€
屿ãæãããã€ãã£ã¹ã³ãã£ãã¯ååç©ã®é¢ãæ¯æäœ
衚é¢ããåŸããŠããããã®åŸãïŒãã«ãè§ïŒãïŒïŒåºŠã
ãïŒïŒåºŠãŸã§é£ç¶çã«å€åããŠããããšãããã£ããThe retardation value of the thus obtained optical compensation sheet (OCS-D) of the present invention (OCS-D) on the plane including the rubbing axis and perpendicular to the retardation plate surface was measured in the same manner as in Example 2. AEP-100; manufactured by Shimadzu Corporation), and further, the optical characteristics of the support after removing the discotic compound in the measurement portion were similarly measured. By these measurements, the obtained optically anisotropic layer has negative birefringence, the discotic compound surface is inclined from the surface of the support, and the inclination (tilt angle) is continuous from 20 degrees to 40 degrees. It turned out that it was changing.
ãïŒïŒïŒïŒã宿œäŸïŒ åèšé
åèäžãã©ãã³ã°åŠçããåŸãåè¿°ããæ¶²æ¶æ§ã
ã£ã¹ã³ãã£ãã¯ååç©ïŒŽïŒ¥âïŒïŒïŒãïœïŒïŒïŒïŒåèšå
åç©äŸçªå·ïŒïŒïŒïŒïœããšãã¬ã³ã°ãªã³ãŒã«å€æ§ããªã¡
ãããŒã«ãããã³ããªã¢ã¯ãªã¬ãŒãïŒïŒ¶ïŒïŒïŒïŒïŒå€§éª
ææ©ååŠå·¥æ¥ïŒæ ªïŒè£œïŒïŒïŒïŒïŒïœãã»ã«ããŒã¹ã¢ã»ã
ãŒãããã¬ãŒãïŒïŒ£ïŒ¡ïŒ¢ïŒïŒïŒâïŒïŒïŒïŒã€ãŒã¹ããã³
ã±ãã«ã«ç€Ÿè£œïŒïŒïŒïŒïŒïŒïœãã»ã«ããŒã¹ã¢ã»ããŒãã
ãã¬ãŒãïŒïŒ£ïŒ¡ïŒ¢ïŒïŒïŒâïŒïŒïŒïŒã€ãŒã¹ããã³ã±ãã«
ã«ç€Ÿè£œïŒïŒïŒïŒïŒïŒïœãå
éåéå§å€ïŒã€ã«ã¬ãã¥ã¢â
ïŒïŒïŒïŒããã»ã¬ã€ã®ãŒç€Ÿè£œïŒïŒïŒïŒïŒïŒïœåã³å¢æå€
ïŒã«ã€ãã¥ã¢ãŒïŒ€ïŒ¥ïŒŽïŒžãæ¥æ¬åè¬ïŒæ ªïŒè£œïŒïŒïŒïŒïŒ
ïŒïœããïŒïŒïŒïŒïœã®ã¡ãã«ãšãã«ã±ãã³ãšïŒïŒïŒïŒïŒ
ïœã®ãããã¬ã³ã°ãªã³ãŒã«ã¢ãã¡ãã«ãšãŒãã«ïŒïŒïŒŠ
ïŒ§ïŒæ¥æ¬ä¹³åå€ïŒæ ªïŒïŒã«æº¶è§£ããŠåŸãããå¡åžæ¶²ãã
ã¯ã€ã€ãŒããŒã§å¡åžïŒïŒïŒããŒïŒããéå±ã®æ ã«è²Œãã€
ããŠåºå®ããŠïŒïŒïŒâã®é«æž©æ§œäžã§ïŒåéå ç±ãããã€
ã¹ã³ãã£ãã¯ååç©ãé
åãããåŸãïŒïŒïŒâã®ãŸãŸé«
å§æ°Žéç¯ïŒïŒïŒïŒïŒ·ïŒïœïœïŒãçšããŠïŒç§éç
§å°
ãã宀枩ãŸã§æŸå·ããŠãåãïŒïŒïŒÎŒïœã®ãã£ã¹ã³ãã£
ãã¯ååç©ãå«ãå±€ïŒå
åŠç°æ¹å±€ïŒãæããæ¬çºæã®å
åŠè£åã·ãŒãïŒïŒ¯ïŒ£ïŒ³âïŒãäœè£œãããExample 5 After rubbing the alignment film, 1.6 g of the above-mentioned liquid crystalline discotic compound TE-8 (8, m = 4) (the above compound example number), ethylene glycol-modified trimethylolpropane tri Acrylate (V # 360; manufactured by Osaka Organic Chemical Industry Co., Ltd.) 0.16 g, cellulose acetate butyrate (CAB531-1.0; manufactured by Eastman Chemical Co.) 0.009 g, cellulose acetate butyrate (CAB551-0.2). Eastman Chemical Co., Ltd.) 0.036 g, photopolymerization initiator (Irgacure
907; manufactured by Ciba Geigy) 0.005 g and a sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 0.00
2 g was added with 2.95 g of methyl ethyl ketone and 0.155
g of propylene glycol monomethyl ether (MF
G: A coating solution obtained by dissolving in Japan Emulsifier Co., Ltd.
Apply it with a wire bar (# 3 bar), attach it to a metal frame, fix it, and heat for 3 minutes in a high-temperature bath at 120 ° C to orient the discotic compound, and then keep the high-pressure mercury lamp (120W) at 120 ° C. / Cm) for 1 second and then allowed to cool to room temperature, and an optical compensation sheet (OCS-F) of the present invention having a layer (optically anisotropic layer) containing a discotic compound having a thickness of 2.0 Όm. Was produced.
ãïŒïŒïŒïŒããã®ããã«ããŠåŸãããæ¬çºæã®å
åŠè£å
ã·ãŒãïŒïŒ¯ïŒ£ïŒ³âïŒã«ã€ããŠãã©ãã³ã°è»žãå«ã¿äœçž
å·®æ¿é¢ã«åçŽãªé¢ã«ãããŠã宿œäŸïŒãšåæ§ã«ã¬ã¿ãŒã
ã·ã§ã³å€ããšãªããœã¡ãŒã¿ãŒïŒïŒ¡ïŒ¥ïŒ°âïŒïŒïŒïŒå³¶æŽ¥è£œ
äœæè£œïŒã§æž¬å®ããæŽã«ã枬å®éšåã®ãã£ã¹ã³ãã£ãã¯
ååç©ãé€å»ããåŸã®æ¯æäœã®å
åŠç¹æ§ãåæ§ã«æž¬å®ã
ãããããã®æž¬å®ã«ãããåŸãããå
åŠç°æ¹å±€ã¯è² ã®è€
屿ãæãããã€ãã£ã¹ã³ãã£ãã¯ååç©ã®é¢ãæ¯æäœ
衚é¢ããåŸããŠããããã®åŸãïŒãã«ãè§ïŒãïŒïŒåºŠã
ãïŒïŒåºŠãŸã§é£ç¶çã«å€åããŠããããšãããã£ããWith respect to the optical compensation sheet (OCS-F) of the present invention thus obtained, the retardation value was measured on the surface including the rubbing axis and perpendicular to the retardation plate surface in the same manner as in Example 2 by the ellipsometer ( AEP-100; manufactured by Shimadzu Corporation), and further, the optical characteristics of the support after removing the discotic compound in the measurement portion were similarly measured. According to these measurements, the obtained optically anisotropic layer has negative birefringence, the discotic compound surface is tilted from the support surface, and the tilt (tilt angle) is continuous from 20 degrees to 50 degrees. It turned out that it was changing.
ãïŒïŒïŒïŒãïŒé
åè仿¯æäœã®äœè£œïŒãŒã©ãã³èè
ïŒïŒïŒïŒÎŒïœïŒãå¡èšããïŒïŒïŒÎŒïœåããæããããª
ã¢ã»ãã«ã»ã«ããŒã¹ã®ãã£ã«ã ïŒå¯å£«åçãã€ã«ã
ïŒæ ªïŒè£œïŒäžã«ã宿œäŸãšåæ§ã®çµæããæãé
åè圢
æçšå¡åžæ¶²ããâã³âã¿âã§å¡åžããïŒïŒâ枩颚ã«ãŠä¹Ÿ
ç¥ãããåŸãå·»è¯ã«å·»ãåãããšã«ãããé·ãïŒïŒïŒïŒ
ïœã®é
åè仿¯æäœãäœè£œããã<Preparation of Support with Alignment Film> On a triacetyl cellulose film (manufactured by Fuji Photo Film Co., Ltd.) having a thickness of 100 ÎŒm coated with a gelatin thin film (0.1 ÎŒm), the same as in the example was carried out. A coating solution for forming an alignment film having a composition is applied with a bar coater, dried with hot air at 90 ° C., and then wound on a winding core to give a length of 1000.
A support with an alignment film of m was prepared.
ãïŒïŒïŒïŒãæ¯èŒäŸïŒ ãã®é
åèäžãã©ãã³ã°åŠçããåŸãåè¿°ããæ¶²æ¶æ§ã
ã£ã¹ã³ãã£ãã¯ååç©ïŒŽïŒ¥âïŒïŒïŒãïœïŒïŒïŒïŒåèšå
åç©äŸçªå·ïŒïŒïŒïŒïœããã§ããã·ãžãšãã¬ã³ã°ãªã³ãŒ
ã«ã¢ã¯ãªã¬ãŒãïŒïŒïŒïŒïŒïŒæ±äºåæïŒæ ªïŒè£œïŒïŒïŒïŒ
ïœãã»ã«ããŒã¹ã¢ã»ããŒãããã¬ãŒãïŒïŒ£ïŒ¡ïŒ¢ïŒïŒïŒâ
ïŒïŒã€ãŒã¹ããã³ã±ãã«ã«ç€Ÿè£œïŒïŒïŒïŒïŒïœãåã³å
é
åéå§å€ïŒã€ã«ã¬ãã¥ã¢âïŒïŒïŒïŒããã»ã¬ã€ã®ãŒç€Ÿ
補ïŒïŒïŒïŒïŒïœããïŒïŒïŒïŒïœã®ã¡ãã«ãšãã«ã±ãã³ã«
溶解ããŠåŸãããå¡åžæ¶²ããã¯ã€ã€ãŒããŒã§å¡åžïŒïŒïŒ
ããŒïŒããéå±ã®æ ã«è²Œãã€ããŠåºå®ããŠïŒïŒïŒâã®é«
枩槜äžã§ïŒåéå ç±ãããã€ã¹ã³ãã£ãã¯ååç©ãé
å
ãããåŸãïŒïŒïŒâã®ãŸãŸé«å§æ°Žéç¯ãçšããŠïŒåé
ç
§å°ãã宀枩ãŸã§æŸå·ããŠãåãïŒïŒïŒÎŒïœã®ãã£ã¹
ã³ãã£ãã¯ååç©ãå«ãå±€ïŒå
åŠç°æ¹å±€ïŒãæããæ¬çº
æã®å
åŠè£åã·ãŒãïŒïŒ¯ïŒ£ïŒ³âïŒãäœè£œãããComparative Example 1 After rubbing the alignment film, 1.6 g of the above-mentioned liquid crystalline discotic compound TE-8 (8, m = 4) (the above compound example number), phenoxydiethylene glycol acrylate (M101; Toa) Synthetic Co., Ltd.) 0.4
g, cellulose acetate butyrate (CAB531-
1; Eastman Chemical Co., Ltd.) 0.05 g and a photopolymerization initiator (Irgacure-907; Ciba Geigy Co. Ltd.) 0.01 g were dissolved in 3.65 g of methyl ethyl ketone to obtain a wire. Apply with a bar (# 4
Bar), and fix it by sticking it to a metal frame and heating it in a high temperature bath at 120 ° C for 3 minutes to orient the discotic compound, and then at 120 ° C for 1 minute using a high pressure mercury lamp.
It was irradiated with V and allowed to cool to room temperature to prepare an optical compensation sheet (OCS-G) of the present invention having a layer (optically anisotropic layer) containing a discotic compound having a thickness of 1.8 ÎŒm.
ãïŒïŒïŒïŒããã®ããã«ããŠåŸãããæ¬çºæã®å
åŠè£å
ã·ãŒãïŒïŒ¯ïŒ£ïŒ³âïŒã«ã€ããŠãã©ãã³ã°è»žãå«ã¿äœçž
å·®æ¿é¢ã«åçŽãªé¢ã«ãããŠã宿œäŸïŒãšåæ§ã«ã¬ã¿ãŒã
ã·ã§ã³å€ããšãªããœã¡ãŒã¿ãŒïŒïŒ¡ïŒ¥ïŒ°âïŒïŒïŒïŒå³¶æŽ¥è£œ
äœæè£œïŒã§æž¬å®ããæŽã«ã枬å®éšåã®ãã£ã¹ã³ãã£ãã¯
ååç©ãé€å»ããåŸã®æ¯æäœã®å
åŠç¹æ§ãåæ§ã«æž¬å®ã
ãããããã®æž¬å®ã«ãããå
åŠç°æ¹å±€ã®å
åŠç¹æ§ïŒïŒ²ïœ
ãšæž¬å®è§ã®é¢ä¿ïŒã¯ã宿œäŸïŒãšå
šãåãã«ãªãïŒå³ïŒ
ïŒïŒãåŸãããå
åŠç°æ¹å±€ã¯è² ã®è€å±æãæãããã£ã¹
ã³ãã£ãã¯ååç©ã®é¢ãæ¯æäœè¡šé¢ããåŸããŠãããã
ã®åŸãïŒãã«ãè§ïŒãïŒïŒåºŠããïŒïŒåºŠãŸã§é£ç¶çã«å€
åããŠããããšãããã£ããWith respect to the optical compensation sheet (OCS-B) of the present invention thus obtained, the retardation value was measured on the plane including the rubbing axis and perpendicular to the surface of the retardation plate by the ellipsometer (as in Example 2). AEP-100; manufactured by Shimadzu Corporation), and further, the optical characteristics of the support after removing the discotic compound in the measurement portion were similarly measured. By these measurements, the optical characteristics (Re
And the measurement angle) are exactly the same as in Example 1 (see FIG. 1).
3), the obtained optically anisotropic layer has negative birefringence, the discotic compound surface is inclined from the support surface, and the inclination (tilt angle) continuously changes from 20 degrees to 50 degrees. I found out that
ãïŒïŒïŒïŒãæ¯èŒäŸïŒ æ¯èŒäŸïŒãšåæ§ã«ããã®é
åèäžãã©ãã³ã°åŠçãã
åŸãåè¿°ããæ¶²æ¶æ§ãã£ã¹ã³ãã£ãã¯ååç©ïŒŽïŒ¥âïŒ
ïŒïŒãïœïŒïŒïŒïŒåèšååç©äŸçªå·ïŒã«ã¡ãã«ãšãã«ã±
ãã³ãå ããå
šäœãšããŠïŒïŒïœïœïŒ
ãšããæº¶æ¶²ããã¹ã
ã³ã³ãŒãã«ããïŒïŒïŒïŒïœïœïœã«ãŠå¡åžãè¡ã£ããæ¬¡ã
ã§ãå¡åžå±€ãïŒïŒïŒâãŸã§å ç±ããç±åŠçããåŸãïŒïŒ
ïŒâã®ãŸãŸé«å§æ°Žéç¯ãçšããŠïŒåéç
§å°ãã宀枩
ãŸã§å·åŽããŠãåãïŒïŒïŒÎŒïœã®ãã£ã¹ã³ãã£ãã¯åå
ç©ãå«ãå±€ïŒå
åŠç°æ¹å±€ïŒãæããå
åŠè£åã·ãŒãïŒïŒ¯
âïŒãäœè£œãããComparative Example 2 Similar to Comparative Example 1, after rubbing the alignment film, the above-mentioned liquid crystalline discotic compound TE-8 was used.
Methyl ethyl ketone was added to (8, m = 6) (the above compound example number) to make a total solution of 10 wt%, and the solution was applied by spin coating at 2000 rpm. Then, the coating layer is heated to 180 ° C. and heat-treated, and then 18
UV irradiation for 1 minute at 0 ° C. using a high pressure mercury lamp, cooling to room temperature, and an optical compensation sheet (O 2) having a layer (optically anisotropic layer) containing a discotic compound having a thickness of 1.0 Όm.
CS-G) was prepared.
ãïŒïŒïŒïŒããã®ããã«ããŠåŸãããå
åŠè£åã·ãŒã
ïŒïŒ¯ïŒ£ïŒ³âïŒã«ã€ããŠãã©ãã³ã°è»žãå«ã¿äœçžå·®æ¿é¢
ã«åçŽãªé¢ã«ãããŠã宿œäŸïŒãšåæ§ã«ã¬ã¿ãŒãã·ã§ã³
å€ããšãªããœã¡ãŒã¿ãŒïŒïŒ¡ïŒ¥ïŒ°âïŒïŒïŒïŒå³¶æŽ¥è£œäœæ
補ïŒã§æž¬å®ããæŽã«ã枬å®éšåã®ãã£ã¹ã³ãã£ãã¯åå
ç©ãé€å»ããåŸã®æ¯æäœã®å
åŠç¹æ§ãåæ§ã«æž¬å®ããã
ãããã®æž¬å®ã«ãããåŸãããå
åŠç°æ¹å±€ã¯è² ã®è€å±æ
ãæãããã€ãã£ã¹ã³ãã£ãã¯ååç©ã®é¢ãæ¯æäœè¡šé¢
ããåŸããŠããããšãããã£ããWith respect to the optical compensation sheet (OCS-G) thus obtained, the retardation value was measured on the surface including the rubbing axis and perpendicular to the retardation plate surface in the same manner as in Example 2 by using an ellipsometer (AEP-100). (Manufactured by Shimadzu Corporation), and the optical characteristics of the support after removing the discotic compound in the measurement portion were also measured in the same manner.
From these measurements, it was found that the obtained optically anisotropic layer had negative birefringence, and the surface of the discotic compound was tilted from the surface of the support.
ãïŒïŒïŒïŒãå
åŠè£åã·ãŒãã®è©äŸ¡ïŒœäžèšå®æœäŸïŒã
ïŒåã³æ¯èŒäŸïŒãïŒã§åŸãããå
åŠè£åã·ãŒãã«ã€ããŠ
å
åŠç¹æ§ãäžèšã®ããã«è©äŸ¡ããã ïŒïŒïŒå
åŠç°æ¹å±€ã®ãã£ã¹ã³ãã£ãã¯ååç©ã®é¢ã®è§åºŠ
å€ååã³ïŒ²ïœ
ã®æå°å€ã®æ¹åã®åŸãè§ã¯ãäžèšã®æ§ã«æ±º
å®ããã ïŒïŒïŒé
åã ã© äžå¯Ÿã®åå
æ¿ãã¯ãã¹ãã³ã«ç¶ã«é
眮ããå
åŠè£åã·â
ãã該åå
æ¿ã®åå
軞ã«å¯ŸããŠå¡åžæ¹åãïŒïŒÂ°ã§äº€ã
ãããã«è©²äžå¯Ÿã®åå
æ¿ã§æã¿ãç®èŠã«ããé
åã ã©ã
è©äŸ¡ããã[Evaluation of Optical Compensation Sheet] Examples 1 to 1 above
5 and the optical characteristics of the optical compensation sheets obtained in Comparative Examples 1 and 2 were evaluated as follows. (1) The angle change of the discotic compound surface of the optically anisotropic layer and the inclination angle in the direction of the minimum value of Re were determined as described above. (2) Alignment unevenness A pair of polarizing plates are arranged in a crossed Nicol pattern, and an optical compensation sheet is formed.
The film was sandwiched between the pair of polarizing plates so that the coating direction intersected with the polarizing axis of the polarizing plate at 45 °, and the unevenness of orientation was visually evaluated.
ãïŒïŒïŒïŒã è¡šïŒ ââââââââââââââââââââââââââââââââââââ ã·ãŒã *å 軞 åŸæè§ Reæå°æ¹å **é åã 㩠ïœïŒ å€åïŒåºŠïŒ è§åºŠïŒåºŠïŒ ââââââââââââââââââââââââââââââââââââ 宿œäŸïŒ OCS-A ãªã ïŒâïŒïŒ ïŒïŒ ãªã 宿œäŸïŒ OCS-B ãªã ïŒïŒâïŒïŒ ïŒïŒ ãªã 宿œäŸïŒ OCS-C ãªã ïŒïŒâïŒïŒ ïŒïŒ ãªã 宿œäŸïŒ OCS-D ãªã ïŒïŒâïŒïŒ ïŒïŒ ãªã 宿œäŸïŒ OCS-F ãªã ïŒïŒâïŒïŒ ïŒïŒ ãªã ââââââââââââââââââââââââââââââââââââ æ¯èŒäŸïŒ OCS-G ãªã ïŒïŒâïŒïŒ ïŒïŒ ãã æ¯èŒäŸïŒ OCS-H ãã ââ ïŒïŒ ãã ââââââââââââââââââââââââââââââââââââ åèïŒ *ïŒïŒ²ïœ ãïŒã®æ¹å **ïŒããªãããšã¯é åèæ¯æäœïŒïŒïŒïŒïœã®ãã¹ãŠã«ãããŠé åã ã©ã®ãªã ããšãæå³ããã ãããããšã¯é åèæ¯æäœïŒïŒïŒïŒïœã®ãã¡ãå·»è¯åŽæ°çŸïœã«é åã ã© ãçããŠããããšãæå³ãããTable 1 ââââââââââââââââââââââââââââââââââââ Sheet * Optical axis Inclination angle Re Minimum direction ** Alignment unevenness No. Change (degree) Angle (degree) âââââââââââââââââââââââââââââââââââââ Example 1 OCS-A None 5-65 30 None Example 2 OCS-B None 20-50 35 None Example 3 OCS-C None 20-70 40 None Example 4 OCS-D None 20-40 25 None Example 5 OCS-F None 20 -50 33 None ââââââââââââââââââââââââââââââââââââ Comparative Example 1 OCS-G None 20-50 35 Yes Comparative Example 2 OCS-H Yes --38 Yes Yes âââââââââââââââââââââââââââââââââââââ Remarks ) * : Re is in the direction of 0 ** : âNoneâ means that there is no alignment unevenness in all 1000 m of the alignment film support. âAvailableâ means that, in 1000 m of the alignment film support, alignment unevenness occurs in several hundred m on the winding core side.
ãïŒïŒïŒïŒã宿œäŸïŒãïŒåã³æ¯èŒäŸïŒãïŒ ïŒæ¶²æ¶è¡šç€ºè£
眮ã®äœè£œïŒããããã¯æ¶²æ¶ãïŒïŒâã®æ»ã
è§ã§ããã€ïŒïŒïŒÎŒïœã®ã®ã£ãããµã€ãºãšãªãæ§ã«æã¿
蟌ãŸããæ¶²æ¶ã»ã«ã®äžæ¹ã®è¡šé¢ã«ã宿œäŸïŒãïŒåã³ïŒ
ïŒãããã宿œäŸïŒãïŒïŒåã³æ¯èŒäŸïŒïŒæ¯èŒäŸïŒïŒã§
äœæããå
åŠè£åã·ãŒããïŒæç©å±€ããŠè²Œãä»ããæ¶²æ¶
衚瀺è£
眮ãäœè£œããïŒå³ïŒïŒåç
§ãäœãæ¯èŒäŸïŒã®ã·â
ãã¯é
åã ã©ã®ãªãéšåã貌ã£ãïŒãäœããäžåŽã®å
åŠ
è£åã·ãŒãã®ã¬ã¿ãŒããŒã·ã§ã³ã®æå°å€ã瀺ãæåœ±æ¹å
ïŒã©ãã³ã°æ¹åãå³ïŒïŒã®ïŒïŒïŒïŒïœïŒãšäžåŽåºæ¿ã®ã©
ãã³ã°æ¹åïŒå³ïŒïŒã®ïŒïŒïŒïŒ²ïœïŒãšã®ãªãè§ïŒÎ±ïŒïŒ
ãïŒïŒïŒåºŠãšãªãããããŠäžåŽã®å
åŠè£åã·ãŒãã®ã¬ã¿
ãŒããŒã·ã§ã³ã®æå°å€ã瀺ãæåœ±æ¹åïŒã©ãã³ã°æ¹åã
å³ïŒïŒã®ïŒïŒïŒïŒïœïŒãšäžåŽåºæ¿ã®ã©ãã³ã°æ¹åïŒå³ïŒ
ïŒã®ïŒïŒïŒïŒ²ïœïŒãšã®ãªãè§ïŒÎ±ïŒïŒãïŒåºŠãšãªããã
ã«ãäžèšç©å±€äœãæ¶²æ¶ã»ã«äžã«é
眮ãããããã«ãäžå¯Ÿ
ã®åå
æ¿ããå
åŠè£åã·ãŒããæããæ¶²æ¶ã»ã«ã®äž¡åŽ
ã«ãäºã€ã®åå
軞ãçŽäº€ããããã«è²Œãã€ãããäžèšå
å
æ¿ã®ä¿è·ãã£ã«ã ã¯ïŒïŒïœïœã®ã¬ã¿ãŒããŒã·ã§ã³ïŒå
èšãšåæ§ïœïŒïœïœïŒïœïœïŒïŒïŒâïœïœïœÃïœã§å®çŸ©ãã
ãå€ïŒãæããããªã¢ã»ãã«ã»ã«ããŒã¹ã®ãã£ã«ã ãçš
ãããåŸãããâã¯ãããŒããªãŒãã¯ã€ãã¢
ãŒãçšã«èšå®ãããæ¯èŒäŸïŒãšããŠãäžèšå
åŠè£åã·ãŒ
ããæããªãâãäœè£œãããExamples 6 to 8 and Comparative Examples 3 to 4 (Production of Liquid Crystal Display Device) One of the liquid crystal cells in which a nematic liquid crystal was sandwiched at a twist angle of 90 ° C. and a gap size of 4.5 ÎŒm. On the surface, Examples 2, 3 and 5
(Comparative Examples 6 to 8) and Comparative Example 2 (Comparative Example 3), the two optical compensation sheets were laminated and adhered to each other to manufacture a liquid crystal display device (see FIG. 10;
The part where there is no unevenness in the orientation was pasted). However, the angle (α3) formed by the projection direction (rubbing direction, 102 Ma in FIG. 11) showing the minimum retardation of the lower optical compensation sheet and the rubbing direction (101 Ra in FIG. 11) of the upper substrate.
Is 180 degrees and the projection direction (rubbing direction,
102Mb in FIG. 11) and the rubbing direction of the upper substrate (see FIG. 1).
The above laminate was placed on the liquid crystal cell so that the angle (α4) formed by 1 and 101 Rb) was 0 degree. Further, a pair of polarizing plates was attached to both sides of a liquid crystal cell having an optical compensation sheet so that two polarizing axes were orthogonal to each other. As the protective film for the polarizing plate, a triacetyl cellulose film having a retardation of 40 nm (a value defined by {(nx + ny) / 2-nz} à d as described above) was used. The obtained TN-LCD was set for a normally white mode. As Comparative Example 4, a TN-LCD without the above optical compensation sheet was also manufactured.
ãïŒïŒïŒïŒãåŸãããâã«ïŒïŒïŒšïœã®ç©åœ¢æ³¢
ã®é»å§ããïŒããïŒïŒ¶ã§å°å ããæ£é¢æ¹åããã³äžïŒäž
ããã³å·ŠïŒå³æ¹åãžåŸããæ¹åããã®ã³ã³ãã©ã¹ããã
åå
èšïŒïŒ¬ïŒ£ïŒ€âïŒïŒïŒïŒïŒå€§å¡é»åïŒæ ªïŒè£œïŒãçšã
ãŠæž¬å®ããæ£é¢ã³ã³ãã©ã¹ãïŒïŒŽ0VïŒïŒŽ5VïŒããã³ã³ã³
ãã©ã¹ããïŒïŒä»¥äžãšãªãäžïŒäžããã³å·ŠïŒå³ã®èŠéè§
ãæ±ãããåŸãããçµæãã衚ïŒã«ç€ºããA rectangular wave voltage of 55 Hz was applied to the obtained TN-LCD at 0 to 5 V, and the contrast from the front direction and the directions tilted in the up / down and left / right directions were measured.
Using a spectrometer (LCD-5000, manufactured by Otsuka Electronics Co., Ltd.), the front contrast (T 0V / T 5V ) and the upper / lower and left / right viewing angles at which the contrast is 10 or more were determined. Table 2 shows the obtained results.
ãïŒïŒïŒïŒã è¡šïŒ ââââââââââââââââââââââââââââââââââââ ã·ãŒã æ£é¢ã³ã³ãã©ã¹ã èŠ é è§ïŒåºŠïŒ ïœïŒ äžäž å·Šå³ ââââââââââââââââââââââââââââââââââââ 宿œäŸïŒ OCS-B ïŒïŒïŒä»¥äž ïŒïŒïŒ ïŒïŒïŒ 宿œäŸïŒ OCS-C ïŒïŒïŒä»¥äž ïŒïŒïŒ ïŒïŒïŒ 宿œäŸïŒ OCS-F ïŒïŒïŒä»¥äž ïŒïŒïŒ ïŒïŒïŒ ââââââââââââââââââââââââââââââââââââ æ¯èŒäŸïŒ OCS-G ïŒïŒïŒä»¥äž ïŒïŒ ïŒïŒïŒ æ¯èŒäŸïŒ ãªã ïŒïŒïŒä»¥äž ïŒïŒ ïŒïŒ ââââââââââââââââââââââââââââââââââââTable 2 ââââââââââââââââââââââââââââââââââââ Seat Front Contrast Visual Angle (degree) No. Up and down Left and right ââââââââââââââââââââââââââââââââââââ Example 6 OCS-B 100 or more 130 125 Example 7 OCS-C 100 or higher 130 130 Example 8 OCS-F 100 or higher 120 120 âââââââââââââââââââââââââââââââââ Comparative Example 3 OCS-G 100 or more 85 100 Comparative Example 4 None 100 or more 61 95 âââââââââââââââââââââââââââââ ââââââââ
ãïŒïŒïŒïŒã衚ïŒãïŒããæãããªããæ§ã«ãæ¬çºæã®
é
åè仿¯æäœã¯ãã£ã¹ã³ãã£ãã¯ååç©ã®åäžæ§ã®é«
ãé
åãå¯èœãšãããããçšããå
åŠè£åã·ãŒãã¯ãèŠ
éè§ãåºãã广ããããæ£é¢ã³ã³ãã©ã¹ããäœäžãã
ãããšãªããèŠéè§ãåºããäºãåºæ¥ããAs is clear from Tables 1 and 2, the support with an alignment film of the present invention enables highly uniform alignment of the discotic compound, and the optical compensation sheet using the same has the effect of widening the viewing angle. Therefore, the viewing angle can be expanded without lowering the front contrast.
ãïŒïŒïŒïŒã宿œäŸïŒåã³ïŒïŒ ïŒã«ã©ãŒæ¶²æ¶è¡šç€ºè£
眮ã®äœè£œïŒã·ã£ãŒãïŒæ ªïŒè£œã®ïŒŽïŒŠ
ïŒŽåæ¶²æ¶ã«ã©ãŒãã¬ãïŒïŒ¥âïŒã®åå
æ¿ãå¥ãããŠã
æ¶²æ¶ã»ã«ãæãããã«ããŠã宿œäŸïŒåã³ïŒïŒãããã
宿œäŸïŒåã³ïŒïŒïŒã§åŸãããçšããå
åŠè£åã·ãŒãïŒ
æãè£
çããããã®åŸãäžçªå€åŽã«å
šäœãæãããã«ã
ãŠãåå
æ¿ïŒæãåå
軞ãäºãã«çŽäº€ããããã«è²Œãä»
ããæ¬çºæã®ã«ã©ãŒæ¶²æ¶è¡šç€ºè£
眮ãäœæãããExamples 9 and 10 (Production of Color Liquid Crystal Display Device) TF manufactured by Sharp Corporation
Peel off the polarizing plate of the T-type liquid crystal color television 6E-C3,
The optical compensation sheet 2 used in Examples 3 and 5 (Examples 9 and 10, respectively) so as to sandwich the liquid crystal cell.
I put on one. Thereafter, two polarizing plates were adhered so that the polarizing axes were orthogonal to each other, with the whole being sandwiched on the outermost side, thereby producing a color liquid crystal display device of the present invention.
ãïŒïŒïŒïŒãæ¯èŒäŸïŒ ã·ã£ãŒãïŒæ ªïŒè£œïŒŽïŒŠïŒŽåæ¶²æ¶ã«ã©ãŒãã¬ãïŒïŒ¥âïŒ
ã®åå
æ¿ãå¥ããã宿œäŸïŒã§çšãããã®ãšåãåå
æ¿
ïŒæããæ¶²æ¶ã»ã«ãæãããã«ããŠãåå
軞ãäºãã«çŽ
亀ããããã«è²Œãä»ããã«ã©ãŒæ¶²æ¶è¡šç€ºè£
眮ãäœæã
ããComparative Example 5 TFT type liquid crystal color television 6E-C3 manufactured by Sharp Corporation.
The polarizing plate of 1 was peeled off, and two sheets of the same polarizing plate used in Example 9 were attached so as to sandwich the liquid crystal cell so that the polarization axes thereof were orthogonal to each other, to produce a color liquid crystal display device.
ãïŒïŒïŒïŒãåŸãããã«ã©ãŒæ¶²æ¶è¡šç€ºè£
眮ã«ã€ããŠãçœ
衚瀺ãé»è¡šç€ºãè¡ããäžäžå·Šå³ã§ã®ã³ã³ãã©ã¹ãæ¯ãïŒ
ïŒïŒïŒãšãªãèŠè§ã枬å®ãããå³ã¡ãåŸãããã«ã©ãŒæ¶²
æ¶è¡šç€ºè£
眮ã«ç©åœ¢æ³¢ã®é»å§ãå°å ããæ£é¢æ¹åããã³äž
ïŒäžããã³å·ŠïŒå³æ¹åãžåŸããæ¹åããã®ã³ã³ãã©ã¹ã
ããåå
èšïŒïŒ¬ïŒ£ïŒ€âïŒïŒïŒïŒïŒå€§å¡é»åïŒæ ªïŒè£œïŒã
çšããŠæž¬å®ããã³ã³ãã©ã¹ããïŒïŒãšãªãäžïŒäžããã³
å·ŠïŒå³ã®èŠéè§ãæ±ãããåŸãããçµæãã衚ïŒã«ç€º
ããWith the obtained color liquid crystal display device, white display and black display are performed, and the contrast ratio in up, down, left and right is 1
A viewing angle of 0: 1 was measured. That is, a rectangular wave voltage is applied to the obtained color liquid crystal display device, and the contrast from the front direction and the direction inclined upward / downward and left / right is measured by a spectrometer (LCD-5000, Otsuka Electronics Co., Ltd.). And the left / right viewing angles at which the contrast is 10 were determined. Table 3 shows the obtained results.
ãïŒïŒïŒïŒã è¡šïŒ ââââââââââââââââââââââââââââââââââââ ã·ãŒã èŠ é è§ïŒåºŠïŒ ïœïŒ äžäž å·Šå³ ââââââââââââââââââââââââââââââââââââ 宿œäŸïŒ OCS-C ïŒïŒïŒ ïŒïŒïŒ 宿œäŸïŒïŒ OCS-E ïŒïŒïŒ ïŒïŒïŒ ââââââââââââââââââââââââââââââââââââ æ¯èŒäŸïŒ ãªã ïŒïŒ ïŒïŒ ââââââââââââââââââââââââââââââââââââTable 3 ââââââââââââââââââââââââââââââââââââ Seat visual angle (degree) No. Up and down left and right ââââââââââââââââââââââââââââââââââââ Example 9 OCS-C 123 115 Example 10 OCS -E 130 120 ââââââââââââââââââââââââââââââââââââ Comparative Example 5 None 50 70 70 ââââ ââââââââââââââââââââââââââââââââ
ãïŒïŒïŒïŒã衚ïŒããæãããªããã«ã宿œäŸïŒåã³ïŒ
ïŒã®ã«ã©ãŒæ¶²æ¶è¡šç€ºè£
眮ã¯ãæ¯èŒäŸïŒã®ãã®ã«æ¯ã¹ãŠã
çœé»è¡šç€ºã«ãããã³ã³ãã©ã¹ãããèŠãèŠéè§ã倧å¹
ã«
æ¡å€§ãããŠããããšããããããŸãæ¯èŒäŸïŒã®ã«ã©ãŒæ¶²
æ¶è¡šç€ºè£
眮ã«ãããªä¿¡å·ãå
¥åããã«ã«ã©ãŒã®ç»åã衚
瀺ããããšãäžããèŠããšç»åãçœã£ãœããå
šäœã«é»è²
å³ã垯ã³ãŠããããŸãäžããã¿ããšé»è¡šç€ºéšã¯ããã«å
転ãããå·Šå³ããèŠããšé»è¡šç€ºéšã§ã®å転ã¯ãªãããå
š
äœã«ã³ã³ãã©ã¹ããäœäžããŠãé»è²å³ã垯ã³ãŠãããèŠ
éè§ã倧ããããæã®ç»è³ªã®äœäžã¯èãããäžæ¹ã宿œ
äŸïŒåã³ïŒïŒã§åŸãããã«ã©ãŒæ¶²æ¶è¡šç€ºè£
眮ã§ã¯ãäžã
ãèŠãå ŽåãèŠéè§ã倧ãããããšãã«é»è¡šç€ºéšã§ã®å
転ãã¿ãããããäžåã³å·Šå³ããèŠãå Žåã¯ãé»è¡šç€ºéš
ã§ã®å転ã¯èŠãããããŸãç»åã®é»å€ãå
ãã§ãããèŠ
éè§å¢å ã«ããç»è³ªã®äœäžã¯ãå°ãªãã£ããAs is apparent from Table 3, Examples 9 and 1
The color liquid crystal display device of No. 0, compared with that of Comparative Example 5,
It can be seen that the viewing angle seen from the contrast in monochrome display is greatly expanded. When a video signal is input to the color liquid crystal display device of Comparative Example 5 to display a full-color image, the image is whitish when viewed from above, and the image is yellowish in its entirety, and when viewed from below, the black display portion is short. Flipped over. When viewed from the left and right, there is no reversal in the black display portion, but the contrast is reduced as a whole and the image is yellowish, and the image quality is significantly reduced when the viewing angle is increased. On the other hand, in the color liquid crystal display devices obtained in Examples 9 and 10, when viewed from below, inversion was observed in the black display portion when the viewing angle was increased, but when viewed from above and from the left and right, No reversal was observed in the black display portion, the yellowing of the image was slight, and the deterioration of the image quality due to the increase in the viewing angle was small.
ãïŒïŒïŒïŒã[0086]
ãçºæã®å¹æãæ¬çºæã®é
åè仿¯æäœãçšãããšãå
è¿°ã®ããã«å
åŠè£åã·âããæ©çãè¯ãåŸããããæ¬çº
æã®å
åŠè£åã·ãŒããçšããïŒŽïŒ®åæ¶²æ¶ã»ã«ãæããæ¶²
æ¶è¡šç€ºè£
眮åã³ã«ã©ãŒæ¶²æ¶è¡šç€ºè£
眮ã¯ãèŠéè§ã倧ãã
æ¡å€§ããŠãããèŠéè§ã®å¢å ã«äŒŽãé»è¡šç€ºéšã®å転ãè«§
調ã®å転ãç»åã®çè²çã®çºçã倧ããäœæžãããŠã
ããåªããèŠéè§ç¹æ§ã瀺ããç¹ã«ïŒŽïŒŠïŒŽã®ãããªéç·
圢èœåçŽ åãæããæ¶²æ¶è¡šç€ºè£
眮ã®èŠè§ç¹æ§ãèããæ¹
åããããšãå¯èœã§ãèŠèªæ§ã®ããããé«åäœã®æ¶²æ¶è¡š
瀺è£
眮ãæäŸããããšãã§ããããŸããæ¬çºæã®å
åŠè£
åã·ãŒããïŒïŒ©ïŒãªã©ã®ïŒç«¯åçŽ åããªã©ã®ïŒç«¯
åçŽ åãçšããã¢ã¯ãã£ããããªã¯ã¹æ¶²æ¶è¡šç€ºçŽ åã«é©
çšããŠãåªãã广ãåŸãããããšã¯èšããŸã§ããªããAs described above, the use of the support with an alignment film of the present invention makes it possible to obtain an optical compensation sheet with a high yield. The liquid crystal display device and the color liquid crystal display device having the TN type liquid crystal cell using the optical compensation sheet of the present invention have a wide viewing angle, and the black display part is reversed and the gradation is reversed with the increase of the viewing angle. The occurrence of coloring of the image is greatly reduced, and excellent viewing angle characteristics are exhibited. In particular, the viewing angle characteristics of a liquid crystal display device having a non-linear active element such as a TFT can be remarkably improved, and a high-quality liquid crystal display device with excellent visibility can be provided. It goes without saying that excellent effects can be obtained even when the optical compensation sheet of the present invention is applied to an active matrix liquid crystal display device using a three-terminal device such as a MIM or a two-terminal device such as a TFD.
ãå³ïŒãå³ïŒã¯ãéææ¯æäœïŒãã£ã«ã ïŒé¢å
ã®äž»å±æ
çïœïœãïœïœãåã¿æ¹åã®äž»å±æçïœïœã®é¢ä¿ãæŠç¥ç
ã«ç€ºãå³ã§ãããFIG. 1 is a view schematically showing a relationship between a main refractive index nx, ny in a plane of a transparent support (film) and a main refractive index nz in a thickness direction.
ãå³ïŒãå³ïŒã¯ãæ¬çºæã®å
åŠç°æ¹å±€ã®ä»£è¡šçæ§é ãã
瀺ãå³ã§ãããFIG. 2 is a diagram showing a typical structure of an optically anisotropic layer of the present invention.
ãå³ïŒãå³ïŒã¯ãæ¶²æ¶è¡šç€ºè£
çœ®ã®æ¶²æ¶å±€ã®ä»£è¡šçæ§é ã
瀺ãå³ã§ãããFIG. 3 is a diagram showing a typical structure of a liquid crystal layer of a liquid crystal display device.
ãå³ïŒãå³ïŒã¯ãæ¬çºæã®å
åŠè£åã·ãŒãã®ä»£è¡šçæ§æ
åã³äžè»žã®äž»å±æçã®é¢ä¿ãæŠç¥çã«ç€ºãå³ã§ãããFIG. 4 is a diagram schematically showing a typical configuration of an optical compensatory sheet of the present invention and a relationship between triaxial principal refractive indices.
ãå³ïŒãå³ïŒã¯ãæ¬çºæã®æ¶²æ¶è¡šç€ºè£
眮ã®ä»£è¡šçæ§é ã
瀺ãå³ã§ãããFIG. 5 is a diagram showing a typical structure of a liquid crystal display device of the present invention.
ãå³ïŒãå³ïŒã¯ãå
åŠè£åã·ãŒããçšããæ¶²æ¶è¡šç€ºè£
眮
ã«ãããã¬ã¿ãŒããŒã·ã§ã³ã®æå°å€ã®æ¹åãšæ¶²æ¶ã»ã«ã®
åºæ¿ã®ã©ãã³ã°æ¹åãšã®é¢ä¿ã瀺ãå³ã§ãããFIG. 6 is a diagram illustrating a relationship between a direction of a minimum value of retardation and a rubbing direction of a substrate of a liquid crystal cell in a liquid crystal display device using an optical compensation sheet.
ãå³ïŒãå³ïŒã¯ãå³ïŒãïœè»žæ¹åããèŠãæã«åŸããã
å³ã§ãããFIG. 7 is a diagram obtained when FIG. 6 is viewed from the z-axis direction.
ãå³ïŒãå³ïŒã¯ãäžå¯Ÿã®å
åŠè£åã·ãŒããçšããæ¶²æ¶è¡š
瀺è£
眮ã«ãããã¬ã¿ãŒããŒã·ã§ã³ã®æå°å€ã®æ¹åãšæ¶²æ¶
ã»ã«ã®åºæ¿ã®ã©ãã³ã°æ¹åãšã®é¢ä¿ã瀺ãå³ã§ãããFIG. 8 is a diagram illustrating a relationship between a direction of a minimum value of retardation and a rubbing direction of a substrate of a liquid crystal cell in a liquid crystal display device using a pair of optical compensation sheets.
ãå³ïŒãå³ïŒã¯ãå³ïŒãïœè»žæ¹åããèŠãæã«åŸããã
å³ã§ãããFIG. 9 is a diagram obtained when FIG. 8 is viewed from the z-axis direction.
ãå³ïŒïŒãå³ïŒïŒã¯ãïŒæç©å±€ããå
åŠè£åã·ãŒããçš
ããæ¶²æ¶è¡šç€ºè£
眮ã«ãããã¬ã¿ãŒããŒã·ã§ã³ã®æå°å€ã®
æ¹åãšæ¶²æ¶ã»ã«ã®åºæ¿ã®ã©ãã³ã°æ¹åãšã®é¢ä¿ã瀺ãå³
ã§ãããFIG. 10 is a diagram showing a relationship between a direction of a minimum value of retardation and a rubbing direction of a substrate of a liquid crystal cell in a liquid crystal display device using an optical compensation sheet in which two sheets are laminated.
ãå³ïŒïŒãå³ïŒïŒã¯ãå³ïŒïŒãïœè»žæ¹åããèŠãæã«åŸ
ãããå³ã§ãããFIG. 11 is a diagram obtained when FIG. 10 is viewed from the z-axis direction.
ãå³ïŒïŒãå³ïŒïŒã¯ãæ¬çºæã®ã«ã©ãŒæ¶²æ¶è¡šç€ºè£
眮ã®ä»£
è¡šçæ§é ã瀺ãå³ã§ãããFIG. 12 is a diagram showing a typical structure of a color liquid crystal display device of the present invention.
ãå³ïŒïŒãå³ïŒïŒã¯ãæ¬çºæã®å
åŠè£åã·ãŒãïŒïŒ¯ïŒ£ïŒ³
âïŒïŒåã³ïŒïŒ¯ïŒ£ïŒ³âïŒã®å
åŠç°æ¹å±€ã®ïŒ²ïœ
ãšèŠé
è§ã®é¢ä¿ã瀺ãã°ã©ãã§ãããFIG. 13 is an optical compensation sheet (OCS) of the present invention.
3B is a graph showing the relationship between Re and the viewing angle of the optically anisotropic layers of (B) and (OCS-G).
ïŒïŒãïŒïŒ éææ¯æäœ ïŒïŒãïŒïŒ é
åè ïŒïŒãïŒïŒ å
åŠç°æ¹å±€ ïŒïŒïœãïŒïŒïœãïŒïŒïœ æ¶²æ¶æ§ãã£ã¹ã³ãã£ãã¯åå
ç© ïŒ°ïœãïœãïŒ°ïœ ãã£ã¹ã³ãã£ãã¯æ§é åäœã®é¢ ïŒïŒïœãïŒïŒïœãïŒïŒïœ éææ¯æäœïŒïŒã®é¢ã«å¹³è¡ãª
é¢ ÎžïœãΞïœãÎžïœ åŸæè§ ïŒïŒ éææ¯æäœã®æ³ç· ïŒïŒïœ ïŒïŒïœ åºæ¿ ïŒïŒ 液æ¶åå21, 41 Transparent support 22, 42 Alignment film 23, 43 Optically anisotropic layer 23a, 23b, 23c Liquid crystalline discotic compound Pa, Pb, Pc Surface of discotic structural unit 21a, 21b, 21c Surface of transparent support 21 Îa, Ξb, Ξc Inclination angle 24 Normal line of transparent support 31a 31b Substrate 33 TN liquid crystal molecules
Claims (6)
ã«é«ãïŒÎŒä»¥äžãïŒïŒïŒÎŒä»¥äžã®ãâã¬ãããä»äžãã
ãé åè仿¯æäœã1. A support with an alignment film, wherein an alignment film is provided on a transparent support, and knurls having a height of 1 ÎŒ or more and 100 ÎŒ or less are provided on both ends.
âã«åã¯å€æ§ããªããã«ã¢ã«ã³âã«ãããªãããšãç¹åŸŽ
ãšããè«æ±é ïŒã«èšèŒã®é åè仿¯æäœã2. The support with an alignment film according to claim 1, wherein the alignment film is made of crosslinked polyvinyl alcohol or modified polyvinyl alcohol.
ã«é«ãïŒÎŒä»¥äžãïŒïŒïŒÎŒä»¥äžã®ãâã¬ãããä»äžãã
ãé åè仿¯æäœã®é åèäžã«å°ãªããšãïŒçš®ã®ãã£ã¹
ã³ãã£ãã¯ååç©ãããªãå åŠç°æ¹å±€ãæããäºãç¹åŸŽ
ãšããå åŠè£åã·âãã3. At least one discotic compound on the alignment film of the support with an alignment film, in which an alignment film is provided on a transparent support, and knurls having a height of 1 ÎŒ or more and 100 ÎŒ or less are provided on both ends. An optical compensation sheet having an optically anisotropic layer of
åäœãæããååç©ãããªãè² ã®è€å±æãæããå±€ã§ã
ãããããŠè©²ãã£ã¹ã³ãã£ãã¯æ§é åäœã®åç€é¢ããé
ææ¯æäœé¢ã«å¯ŸããŠåŸããŠãããäžã€è©²ãã£ã¹ã³ãã£ã
ã¯æ§é åäœã®åç€é¢ãšéææ¯æäœé¢ãšã®ãªãè§åºŠããå
åŠç°æ¹å±€ã®æ·±ãæ¹åã«ãããŠå€åããŠããããšãç¹åŸŽãš
ããè«æ±é ïŒã«èšèŒã®å åŠè£åã·ãŒãã4. The optically anisotropic layer is a layer having a negative birefringence composed of a compound having a discotic structural unit, and the disc surface of the discotic structural unit is inclined with respect to the transparent support surface. The optical compensation sheet according to claim 3, wherein the angle formed by the disc surface of the discotic structural unit and the transparent support surface changes in the depth direction of the optically anisotropic layer.
ãŠå åŠç°æ¹å±€ã®åºé¢ããã®è·é¢ã®å¢å ãšå ±ã«å¢å ããŠã
ãè«æ±é ïŒã«èšèŒã®å åŠè£åã·ãŒãã5. The optical compensation sheet according to claim 4, wherein the angle increases in the depth direction of the optically anisotropic layer with an increase in the distance from the bottom surface of the optically anisotropic layer.
ã¿ãæããäžå¯Ÿã®åºæ¿ãšããã®åºæ¿éã«å°å ¥ããããã
ãé åããããããã¯æ¶²æ¶ãšãããªãæ¶²æ¶ã»ã«ãæ¶²æ¶ã»
ã«ã®äž¡åŽã«èšããããäžå¯Ÿã®åå æ¿ãåã³æ¶²æ¶ã»ã«ãšå
å æ¿ãšã®éã«èšããããå åŠè£åã·ãŒããããªãã«ã©ãŒ
æ¶²æ¶è¡šç€ºè£ 眮ã«ãããŠã å åŠè£åã·ãŒããšå åŠè£åã·ãŒãåŽã®åå æ¿ãšãç²çå±€
ãä»ããŠç©å±€ããæ¶²æ¶è¡šç€ºè£ 眮ã«è£ çã§ãã倧ããã«è£
æããŠè£ çãããã®ã§ããããšãç¹åŸŽãšããã«ã©ãŒæ¶²æ¶
è¡šç€ºè£ çœ®ã6. A liquid crystal cell comprising a pair of substrates each having a transparent electrode, a pixel electrode and a color filter, and a nematic liquid crystal in a twisted orientation enclosed between the substrates, and a pair of polarizing plates provided on both sides of the liquid crystal cell. , And a color liquid crystal display device comprising an optical compensation sheet provided between a liquid crystal cell and a polarizing plate, the optical compensation sheet and the polarizing plate on the optical compensation sheet side are laminated via an adhesive layer to form a liquid crystal display device. A color liquid crystal display device, which is cut into a size that can be mounted and then mounted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7338686A JPH09179125A (en) | 1995-12-26 | 1995-12-26 | Supporting body with oriented film, optical compensation sheet formed by using the same and color liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7338686A JPH09179125A (en) | 1995-12-26 | 1995-12-26 | Supporting body with oriented film, optical compensation sheet formed by using the same and color liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09179125A true JPH09179125A (en) | 1997-07-11 |
Family
ID=18320507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7338686A Pending JPH09179125A (en) | 1995-12-26 | 1995-12-26 | Supporting body with oriented film, optical compensation sheet formed by using the same and color liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09179125A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001081958A1 (en) * | 2000-04-24 | 2001-11-01 | Nippon Kayaku Kabushiki Kaisha | Method of aligning liquid-crystalline compound |
KR100565734B1 (en) * | 1998-09-22 | 2006-05-25 | ìì§.íëŠœì€ ììë 죌ìíì¬ | liquid crystal display device and method for manufacturing thereof |
JP2008009122A (en) * | 2006-06-29 | 2008-01-17 | Sumitomo Chemical Co Ltd | Liquid crystal display device and polarizing plate with pressure sensitive adhesive used therefor |
WO2019098215A1 (en) * | 2017-11-15 | 2019-05-23 | å¯å£«ãã€ã«ã æ ªåŒäŒç€Ÿ | Long liquid crystal film, long polarizing film, image display device, and method for producing long liquid crystal film |
-
1995
- 1995-12-26 JP JP7338686A patent/JPH09179125A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100565734B1 (en) * | 1998-09-22 | 2006-05-25 | ìì§.íëŠœì€ ììë 죌ìíì¬ | liquid crystal display device and method for manufacturing thereof |
WO2001081958A1 (en) * | 2000-04-24 | 2001-11-01 | Nippon Kayaku Kabushiki Kaisha | Method of aligning liquid-crystalline compound |
US6905640B2 (en) | 2000-04-24 | 2005-06-14 | Nippon Kayaku Kabushiki Kaisha | Method of aligning liquid crystal compounds |
JP2008009122A (en) * | 2006-06-29 | 2008-01-17 | Sumitomo Chemical Co Ltd | Liquid crystal display device and polarizing plate with pressure sensitive adhesive used therefor |
WO2019098215A1 (en) * | 2017-11-15 | 2019-05-23 | å¯å£«ãã€ã«ã æ ªåŒäŒç€Ÿ | Long liquid crystal film, long polarizing film, image display device, and method for producing long liquid crystal film |
JPWO2019098215A1 (en) * | 2017-11-15 | 2020-12-24 | å¯å£«ãã€ã«ã æ ªåŒäŒç€Ÿ | A long liquid crystal film, a long polarizing plate, an image display device, and a method for manufacturing a long liquid crystal film. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2587398B2 (en) | Optical compensation sheet, liquid crystal display and color liquid crystal display | |
KR100267894B1 (en) | Optical compensatory sheet and liquid crystal display | |
JP3284002B2 (en) | Elliptical polarizing plate and liquid crystal display device using the same | |
US5528400A (en) | Liquid crystal display device having negative uniaxial anisotropic film with inclined optical axis and protective films | |
US5793455A (en) | Elliptically polarizing plate and liquid crystal display in which a compensation sheet direction of non-zero minimum retardation is inclined at 5 to 50 degrees | |
JP2866372B2 (en) | Liquid crystal display and optical compensation sheet | |
JPH11212078A (en) | Liquid crystal display device | |
JP3118197B2 (en) | Optical compensation sheet | |
KR20080091340A (en) | Liquid crystal display | |
JP3672677B2 (en) | Method for manufacturing optical compensation sheet | |
JP3629082B2 (en) | Liquid crystal element using optically anisotropic element | |
JP3542682B2 (en) | Liquid crystal display device | |
JP2002207125A (en) | Optical compensation sheet and liquid crystal display device | |
JP3421443B2 (en) | Elliptical polarizing plate and liquid crystal display | |
JPH07333433A (en) | Optical compensating sheet and liquid crystal display device using same | |
JP2002196146A (en) | Optical compensation sheet, polarization plate and liquid crystal display using the same | |
JPH09179125A (en) | Supporting body with oriented film, optical compensation sheet formed by using the same and color liquid crystal display device | |
JP2001100044A (en) | Polarizing plate | |
EP1485752B1 (en) | Liquid crystal display device with elliptical polarizer based on discotic liquid crystal | |
JP2706902B2 (en) | Color liquid crystal display | |
JP2005062810A (en) | Liquid crystal display device | |
JP3699160B2 (en) | Liquid crystal display element using optical anisotropic element | |
JPH09230333A (en) | Liquid crystal element formed by using optically anisotropic element | |
JP2006071965A (en) | Polarizing plate integrated optical compensation film and liquid crystal display device | |
JP2001100208A (en) | Liquid crystal display device |