[go: up one dir, main page]

JPH09179125A - Supporting body with oriented film, optical compensation sheet formed by using the same and color liquid crystal display device - Google Patents

Supporting body with oriented film, optical compensation sheet formed by using the same and color liquid crystal display device

Info

Publication number
JPH09179125A
JPH09179125A JP7338686A JP33868695A JPH09179125A JP H09179125 A JPH09179125 A JP H09179125A JP 7338686 A JP7338686 A JP 7338686A JP 33868695 A JP33868695 A JP 33868695A JP H09179125 A JPH09179125 A JP H09179125A
Authority
JP
Japan
Prior art keywords
liquid crystal
optical compensation
compensation sheet
alignment film
optically anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7338686A
Other languages
Japanese (ja)
Inventor
Yoji Ito
掋士 䌊藀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP7338686A priority Critical patent/JPH09179125A/en
Publication of JPH09179125A publication Critical patent/JPH09179125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To expand a visual field angle and to prevent the degradation in contrast and the occurrence of inversion of gradation or black and white and a hue change, etc., by providing the surface of a transparent base with an oriented film and imparting knurling of a specific height to both ends. SOLUTION: The surface of the transparent base is provided with the oriented film and the knurling (also known as embossing) of >=1 to <=100Ό height is imparted to both ends. The height of the knurling is preferably 2 to 50Ό and is most preferably 3 to 30Ό and the width thereof is 2 to 50mm, more preferably 3 to 30mm and further preferably 5 to 20mm. The position of the knurling may be any, insofar as the position is near the ends of the base and usually, the better result is obtd. in the yield of production in the positions nearer the ends. Weaving is liable to arise when the base is wound if the height of the knurling is too high. On the other hand, the effect of improving the smoothness is not obtainable if the knurling is too low. The production of the base with the oriented film having excellent uniform orientability is made possible if such knurling is imparted to the base.

Description

【発明の詳现な説明】Detailed Description of the Invention

【】[0001]

【発明の属する技術分野】本発明は、ロ−レットが付䞎
された配向膜付支持䜓、そしおそれを甚いた光孊補償シ
ヌト、及び光孊補償シヌトを有する液晶衚瀺装眮及びカ
ラヌの液晶衚瀺装眮に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a support provided with a knurled alignment film, an optical compensation sheet using the same, and a liquid crystal display device and a color liquid crystal display device having the optical compensation sheet.

【】[0002]

【埓来の技術】デスクトップ型パヌ゜ナルコンピュヌタ
ヌおよびワヌドプロセッサヌ等の機噚の衚瀺装眮ず
しおは、cathode ray tubeがこれたで䞻に䜿
甚されおきた。最近、液晶衚瀺装眮以䞋ず称
すが、薄型で、軜量、たた消費電力が小さいこずから
の代わりに広く䜿甚されおいる。は、䞀般
に液晶セルずその䞡偎に蚭けられた䞀察の偏光板からな
る。このようなの倚くはねじれネマチック液晶が
甚いられおいる。
2. Description of the Related Art A CRT (cathode ray tube) has been mainly used as a display device of OA equipment such as a desktop personal computer and a word processor. 2. Description of the Related Art Recently, liquid crystal display devices (hereinafter, referred to as LCDs) are widely used instead of CRTs because of their thinness, light weight, and low power consumption. An LCD generally includes a liquid crystal cell and a pair of polarizing plates provided on both sides thereof. Most of such LCDs use a twisted nematic liquid crystal.

【】の衚瀺方匏は倧きく耇屈折モヌドず
旋光モヌドに分けるこずができる。耇屈折モヌドを利甚
する超ねじれスヌパヌツィスティッドネマチック液
晶衚瀺装眮以䞋−ず称すは、床を
超えるねじれ角及び急峻な電気光孊特性を有するスヌパ
ヌツィスティッドネマチック液晶を甚いおいる。このた
め、このような−は、時分割駆動による倧
容量の衚瀺が可胜である。しかしながら、−
は、応答速床が遅い数癟ミリ秒、階調衚瀺が困難
ずの問題があるこずから、胜動玠子を䜿甚した液晶衚瀺
装眮䟋、−及び−の衚瀺
特性に比べお劣っおいる。−及び−
においおは、床のねじれ角および正の耇屈折
を有するねじれネマティック液晶が、画像を衚瀺するた
めに䜿甚されおいる。−の衚瀺モヌドでは、
高速応答性数十ミリ秒及び高いコントラストが埗ら
れる。埓っお、旋光モヌドは、耇屈折モヌドや他のモヌ
ドに比べお倚くの点で有利である。しかしながら、
−は、衚瀺色や衚瀺コントラストが液晶衚瀺装眮
を芋る時の角床によっお倉化するため芖野角特性、
その衚瀺特性はのレベルには至っおいない。
[0003] LCD display systems can be broadly divided into birefringence mode and optical rotation mode. 2. Description of the Related Art A super twisted nematic liquid crystal display device (hereinafter, referred to as an STN-LCD) using a birefringent mode uses a super twisted nematic liquid crystal having a twist angle exceeding 90 degrees and steep electro-optical characteristics. . Therefore, such an STN-LCD can display a large amount of data by time-division driving. However, STN-LC
D has a problem that the response speed is slow (several hundred milliseconds) and gray scale display is difficult. Therefore, the display characteristics of the liquid crystal display devices (eg, TFT-LCD and MIM-LCD) using the active elements are difficult. Inferior compared. TFT-LCD and MIM-
In LCDs, twisted nematic liquid crystals having a 90 degree twist angle and positive birefringence are used to display images. In the display mode of the TN-LCD,
High-speed response (several tens of milliseconds) and high contrast are obtained. Thus, the optical rotation mode has many advantages over the birefringence mode and other modes. However, TN
-LCDs have different display colors and display contrast depending on the viewing angle of the liquid crystal display device (viewing angle characteristics).
The display characteristics have not reached the level of the CRT.

【】䞊蚘芖野角特性を改善するため即ち、芖
野角の拡倧、䞀察の偏光板ず液晶セルずの間に䜍盞差
板光孊補償シヌトを蚭けるずの提案が、特開平−
号公報及び特開平−号公報
に蚘茉されおいる。䞊蚘公報で提案されおいる䜍盞差板
は、液晶セルに察しお垂盎方向の䜍盞差はほがである
ため真正面からは䜕ら光孊的䜜甚を䞎えないが、傟けた
時に䜍盞差が発珟し、これで液晶セルで発生する䜍盞差
を補償するものである。この䜍盞差が、衚瀺画像の着色
や消倱等の奜たしくない芖野角特性をもたらしおいる。
このような光孊補償シヌトずしおは、ネマチック液晶が
光孊的に正の䞀軞性を有するため、それを補償するよう
に負の䞀軞性を有し、か぀光軞が傟いおいるシヌトが有
効である。
To improve the viewing angle characteristics (ie, to increase the viewing angle), Japanese Patent Application Laid-Open No. Hei 4-1992 proposes providing a retardation plate (optical compensation sheet) between a pair of polarizing plates and a liquid crystal cell.
229828 and JP-A-4-258923. The retardation plate proposed in the above-mentioned publication does not exert any optical action from directly in front of the liquid crystal cell because the retardation in the vertical direction is almost 0, but the retardation appears when tilted. This compensates for the phase difference generated in the liquid crystal cell. This phase difference brings about unfavorable viewing angle characteristics such as coloring and disappearance of the displayed image.
As such an optical compensatory sheet, a sheet having a negative uniaxial property and an optical axis inclined so as to compensate for the nematic liquid crystal having an optically positive uniaxial property is effective.

【】特開平−号公報及び
明现曞には、負の䞀軞性を有し、か぀光
軞が傟いおいる光孊補償シヌトが開瀺されおいる。この
光孊補償シ−トによっお、コントラストの芖角特性は倧
幅に改善されたが、階調反転、色盞倉化ずいう点に぀い
おは、未だ光孊補償ずしお十分ではなかった。
JP-A-6-75116 and EP05
The specification of 76304A1 discloses an optical compensation sheet having negative uniaxiality and an optical axis inclined. This optical compensation sheet significantly improved the viewing angle characteristic of contrast, but it was still insufficient as optical compensation in terms of gradation inversion and hue change.

【】これに察し、−明现曞
に蚘茉されおいる、ディスコティック化合物を甚いた光
孊補償シ−トは、芖野角特性の改善に加え、階調反転、
色盞倉化の改善に優れ、䞔぀長尺品を連続的に補造出来
るなど倚くのメリットを有しおいる。 しかし、この補
造方法により配向膜を長尺䜜補するず、その䞊に塗蚭す
るディスコティック化合物局に、支持䜓局の厚みムラが
原因ず思われる配向ムラが生じるケ−スがあり、、歩留
りを䜎䞋させる原因ずなっおいた。
On the other hand, the optical compensation sheet described in EP-0642869 using a discotic compound, in addition to improving the viewing angle characteristics, also provides gradation inversion,
It has many merits such as excellent improvement in hue change and continuous production of long products. However, when a long alignment film is produced by this production method, the discotic compound layer coated thereon has a case in which alignment unevenness is thought to be caused by the thickness unevenness of the support layer, resulting in a high yield. It was the cause of the decrease.

【】[0007]

【発明が解決しようずする課題】本発明の目的は、芖野
角が拡倧し、そしお芖角倉化による、コントラスト䜎
䞋、階調たたは黒癜反転、および色盞倉化等がほずんど
発生するこずのない光孊補償シヌトを有するカラヌ液晶
衚瀺装眮を提䟛するこずにあり、それを達成するための
支持䜓の厚みムラに起因するディスコティック化合物の
配向ムラが生じない配向膜付支持䜓を提䟛するこずであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical compensatory sheet having a wide viewing angle and almost no deterioration of contrast, gradation or black / white inversion, and hue change due to a change in viewing angle. An object of the present invention is to provide a color liquid crystal display device having the above, and to provide a support with an alignment film in which the alignment unevenness of the discotic compound due to the thickness unevenness of the support does not occur.

【】[0008]

【課題を解決するための手段】䞊蚘課題は、 透明支持䜓䞊に配向膜を蚭け、か぀䞡端に高さ
Ό以䞊、Ό以䞋のロ−レットナヌリング、゚ン
ボス加工ずも呌ばれるが付䞎された配向膜付支持䜓。 該配向膜が架橋されたポリビニルアルコ−ル又は
倉性ポリビニルアルコ−ルからなるこずを特城ずする
に蚘茉の配向膜付支持䜓。 透明支持䜓䞊に配向膜を蚭け、か぀䞡端に高さ
Ό以䞊、Ό以䞋のロ−レットが付䞎された配向膜
付支持䜓の配向膜䞊に少なくずも皮のディスコティッ
ク化合物よりなる光孊異方局を有する事を特城ずする光
孊補償シ−ト。 該光孊異方局が、ディスコティック構造単䜍を有
する化合物からなる負の耇屈折を有する局であり、そし
お該ディスコティック構造単䜍の円盀面が、透明支持䜓
面に察しお傟いおおり、䞔぀該ディスコティック構造単
䜍の円盀面ず透明支持䜓面ずのなす角床が、光孊異方局
の深さ方向においお倉化しおいるこずを特城ずする
に蚘茉の光孊補償シヌト。 該角床が、光孊異方局の深さ方向においお光孊異
方局の底面からの距離の増加ず共に増加しおいる
に蚘茉の光孊補償シヌト。 透明電極、画玠電極およびカラヌフィルタを有す
る䞀察の基板ず、その基板間に封入されたねじれ配向し
たネマチック液晶ずからなる液晶セル、液晶セルの䞡偎
に蚭けられた䞀察の偏光板、及び液晶セルず偏光板ずの
間に蚭けられた光孊補償シヌトからなるカラヌ液晶衚瀺
装眮においお、光孊補償シヌトず光孊補償シヌト偎の偏
光板ずを粘着局を介しお積局し、液晶衚瀺装眮に装着で
きる倧きさに裁断しお装着したものであるこずを特城ず
するカラヌ液晶衚瀺装眮。によっお達成された。
Means for Solving the Problems The above-mentioned problems are as follows: (1) An alignment film is provided on a transparent support, and both ends have a height of 1
A support with an alignment film, to which a knurl (also referred to as knurling or embossing) of Ό or more and 100 Ό or less is provided. (2) The support with an alignment film according to (1), wherein the alignment film is made of crosslinked polyvinyl alcohol or modified polyvinyl alcohol. (3) An alignment film is provided on the transparent support, and the height is 1 at both ends.
An optical compensation sheet, comprising an optically anisotropic layer made of at least one discotic compound on an alignment film of a support with an alignment film, to which a knurling of .mu. (4) The optically anisotropic layer is a layer having a negative birefringence composed of a compound having a discotic structural unit, and the disc surface of the discotic structural unit is inclined with respect to the transparent support surface, The optical compensation sheet according to (3), wherein the angle formed by the disc surface of the discotic structural unit and the transparent support surface changes in the depth direction of the optically anisotropic layer. (5) The angle increases in the depth direction of the optically anisotropic layer as the distance from the bottom surface of the optically anisotropic layer increases (4)
The optical compensation sheet according to item 1. (6) A pair of substrates each having a transparent electrode, a pixel electrode, and a color filter, and a liquid crystal cell including a nematic liquid crystal in a twisted orientation sealed between the substrates, a pair of polarizing plates provided on both sides of the liquid crystal cell, and In a color liquid crystal display device including an optical compensation sheet provided between a liquid crystal cell and a polarizing plate, the optical compensation sheet and the polarizing plate on the optical compensation sheet side can be laminated via an adhesive layer and attached to the liquid crystal display device. A color liquid crystal display device, which is cut into a size and mounted. Achieved by

【】[0009]

【発明の実斜の圢態】本発明の透明支持䜓の材料ずしお
は、透明であるかぎりどのような材料でも䜿甚するこず
ができる。光透過率が以䞊を有する材料が奜たし
く、特に正面から芋た時に光孊的等方性を有するものが
奜たしい。埓っお、透明支持䜓は、固有耇屈折倀の小さ
い材料から補造するこずが奜たしい。このような材料ず
しおは、れオネックス日本れオン株補、
日本合成ゎム株補及びフゞタック富士写
真フむルム株補などの垂販品を䜿甚するこずがで
きる。さらに、ポリカヌボネヌト、ポリアリレヌト、ポ
リスルフォン及びポリ゚ヌテルスルホンなどの固有耇屈
折倀の倧きい玠材であっおも、溶液流延、溶融抌し出し
等の条件、さらには瞊、暪方向に延䌞条件等を適宜蚭定
するこずにより、埗るこずができる。
BEST MODE FOR CARRYING OUT THE INVENTION As the material for the transparent support of the present invention, any material can be used as long as it is transparent. A material having a light transmittance of 80% or more is preferable, and a material having optical isotropy when viewed from the front is particularly preferable. Therefore, the transparent support is preferably manufactured from a material having a small intrinsic birefringence value. Examples of such materials include Zeonex (manufactured by Nippon Zeon Co., Ltd.) and ART.
Commercially available products such as ON (manufactured by Japan Synthetic Rubber Co., Ltd.) and Fujitac (manufactured by Fuji Photo Film Co., Ltd.) can be used. Furthermore, even for materials with a large intrinsic birefringence value such as polycarbonate, polyarylate, polysulfone, and polyethersulfone, the conditions such as solution casting and melt extrusion, as well as stretching conditions in the longitudinal and transverse directions, etc. are set appropriately. Can be obtained.

【】透明支持䜓フィルム面内の䞻屈折率を
、、厚み方向の䞻屈折率を、フむルムの厚
さをずしたずき、䞉軞の䞻屈折率の関係が
負の䞀軞性を満足し、匏
−×で衚されるレタデヌションが、
から奜たしくは〜である
こずが奜たしい。䜆し、ずの倀は厳密に等しい
必芁はなく、ほが等しければ充分である。具䜓的には、
−−≊であれば実甚
䞊問題はない。−×で衚される正面レタ
ヌデヌションは、以䞋であるこずが奜たしく、
以䞋であるこずがさらに奜たしい。䞊蚘の
、、及びの関係を図に瀺す。
Assuming that the main refractive indices in the plane of the transparent support (film) are nx, ny, the main refractive index in the thickness direction is nz, and the film thickness is d, the relationship of the triaxial main refractive indices is nz < ny
= Nx (negative uniaxiality), and the formula (nx + ny) /
The retardation represented by 2-nz × d is 20 nm
To 400 nm (preferably 30 to 150 nm). However, the values of nx and ny do not need to be exactly equal, but it is sufficient if they are approximately equal. In particular,
If | nx-ny | / | nx-nz | ≩ 0.3, there is no practical problem. The front retardation represented by | nx-ny | × d is preferably 50 nm or less,
More preferably, it is 20 nm or less. N above
FIG. 1 shows the relationship among x, ny, nz, and d.

【】透明支持䜓ず配向膜ずの間に、接着匷床を
増倧させるための䞋塗局を蚭けるこずが奜たしい。䞋塗
局は、䞀般に透明支持䜓を衚面凊理した埌、塗垃により
圢成する。衚面凊理の方法ずしおは、化孊凊理、機械凊
理、コロナ攟電凊理、火焔凊理、凊理、高呚波凊
理、グロヌ攟電凊理、掻性プラズマ凊理、及びオゟン酞
化凊理を挙げるこずができるが、グロヌ攟電凊理が最も
奜たしい。䞋塗局の構成ずしおも皮々の工倫が行われお
おり、第局ずしお高分子フィルムによく密着する局
以䞋、䞋塗第局ず略すを蚭け、その䞊に第局ず
しお配向膜ずよく密着する芪氎性の暹脂局以䞋、䞋塗
第局ず略すを塗垃する所謂重局法ず、疎氎性基ず芪
氎性基ずの䞡方を含有する暹脂局を䞀局のみ塗垃する単
局法ずがある。
An undercoat layer is preferably provided between the transparent support and the alignment film to increase the adhesive strength. The undercoat layer is generally formed by coating the surface of the transparent support and then coating the transparent support. Examples of the surface treatment method include chemical treatment, mechanical treatment, corona discharge treatment, flame treatment, UV treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and ozone oxidation treatment, but glow discharge treatment is the most preferable. preferable. Various contrivances have been made for the structure of the undercoat layer. A layer (hereinafter, abbreviated as the first undercoat layer) that adheres well to the polymer film is provided as a first layer, and an alignment film is formed thereon as a second layer. A so-called multi-layer method of applying a hydrophilic resin layer (hereinafter abbreviated as an undercoating second layer) which adheres well to a single layer method of applying only one resin layer containing both a hydrophobic group and a hydrophilic group. There is.

【】重局法における䞋塗第局では、䟋えば塩
化ビニル、塩化ビニリデン、ブタゞ゚ン、メタクリル
酞、アクリル酞、むタコン酞、無氎マレむン酞などの䞭
から遞ばれた単量䜓を出発原料ずする共重合䜓ポリ゚
チレンむミン゚ポキシ暹脂グラフト化れラチンニ
トロセルロヌスポリ臭化ビニル、ポリフッ化ビニル、
ポリ酢酞ビニル、塩玠化ポリ゚チレン、塩玠化ポリプロ
ピレン、臭玠化ポリ゚チレン、塩化ゎム、塩化ビニル−
゚チレン共重合䜓、塩化ビニル−プロピレン共重合䜓、
塩化ビニル−スチレン共重合䜓、塩化む゜ブチレン共重
合䜓、塩化ビニル−塩化ビニリデン共重合䜓、塩化ビニ
ル−スチレン−無氎マレむン酞䞉元共重合䜓、塩化ビニ
ル−スチレン−アクリロニトリル共重合䜓、塩化ビニル
−ブタゞ゚ン共重合䜓、塩化ビニル−む゜プレン共重合
䜓、塩化ビニル−塩玠化プロピレン共重合䜓、塩化ビニ
ル−塩化ビニリデン−酢酞ビニル䞉元共重合䜓、塩化ビ
ニル−アクリル酞゚ステル共重合䜓、塩化ビニル−マレ
むン酞゚ステル共重合䜓、塩化ビニル−メタクリル酞゚
ステル共重合䜓、塩化ビニル−アクリロニトリル共重合
䜓、内郚可塑化ポリ塩化ビニル、塩化ビニル−酢酞ビニ
ル共重合䜓、ポリ塩化ビニリデン、塩化ビニリデン−メ
タクリル酞゚ステル共重合䜓、塩化ビニリデン−アクリ
ロニトリル共重合䜓、塩化ビニリデンヌアクリル酞゚ス
テル共重合䜓、クロロ゚チルビニル゚ヌテル−アクリル
酞゚ステル共重合䜓及びポリクロロプレンなどの含ハロ
ゲン合成暹脂ポリ゚チレン、ポリプロピ゚ン、ポリブ
テン、ポリ−−メチルブテン及びポリ−−ブタ
ゞ゚ンなどのα−オレフィン共重合䜓゚チレン−プロ
ピレン共重合䜓、゚チレン−ビニル゚ヌテル共重合䜓、
゚チレン−プロピレン−−ヘキサゞ゚ン共重合
䜓、゚チレン−酢酞ビニル共重合䜓、ブテン−−プロ
ビレン共重合䜓、ブタゞ゚ン−アクリロニトリル共重合
䜓、およびこれらの共重合䜓ずハロゲン含有暹脂ずのブ
レンド物アクリル酞メチル゚ステル−アクリロニトリ
ル共重合䜓、アクリル酞゚チル゚ステル−スチレン共重
合䜓、メタクリル酞メチル゚ステル−アクリロニトリル
共重合䜓、ポリメタクリル酞メチル゚ステル、メタクリ
ル酞メチル゚ステル−スチレン共重合䜓、メチクリル酞
ブチル゚ステル−スチレン共重合䜓、ポリアクリル酞メ
チル、ポリ−α−クロルアクリル酞メチル、ポリアクリ
ル酞メトキシ゚チル゚ステル、ポリアクリル酞グリシゞ
ル゚ステル、ポリアクリル酞ブチル゚ステル、ポリアク
リル酞メチル゚ステル、ポリアクリル酞゚チル゚ステ
ル、アクリル酞−アクリル酞ブチル共重合䜓、アクリル
酞゚ステル−ブタゞ゚ン−スチレン共重合䜓及びメタク
ルル酞゚ステル−ブタゞ゚ン−スチレン共重合䜓などの
アクリル暹脂ポリスチレン、ポリ−α−メチルスチレ
ン、スチレン−フマル酞ゞメチル共重合䜓、スチレン−
無氎マレむン酞共重合䜓、スチレン−ブタゞ゚ン共重合
䜓、スチレン−アクリロニトリル共重合及びスチレン−
ブタゞ゚ン−アクリロニトリル共重合䜓等のスチレン系
暹脂ポリ−−ゞメチルフェニレンオキサむド
ポリビニルカルバゟヌルポリ−−キシリレンポリ
ビニルホルマヌルポリビニルアセタヌルポリビニル
ブチラヌルポリビニルフタレヌト酢酞セルロヌ
ス酪酞セルロヌス酪酢酞セルロヌスセルロヌスフ
タレヌトナむロンナむロンナむロン
メトキシメチル−−ナむロンナむロン−−
ポリカプラミドポリ−−ブチル−ナむロン−−ポ
リ゚チレンセバケヌトポリブチレングルタレヌトポ
リヘキサメチレンアゞペヌトポリブチレンむ゜フタレ
ヌトポリ゚チレンテレフタレヌトポリ゚チレンアゞ
ペヌトポリ゚チレンアゞペヌトテレフタレヌトポリ
゚チレン−−ナフタレヌトポリゞ゚チレングリ
コヌルテレフタレヌトポリ゚チレンオキシベンゟ゚ヌ
トビスフェノヌル−む゜フタレヌトポリアクリロ
ニトリルビスフェノヌル−アゞペヌトポリヘキサ
メチレン−−ベンれンゞスルホンアミドポリテトラ
メチレンヘキサメチレンカヌボネヌトポリゞメチルシ
ロキサンポリ゚チレンメチレンビス−−フェニレン
カボヌネヌト及びビスフェノヌル−ポリカヌボネヌ
ト等の玠材を挙げるこずができる。これらのオリゎマヌ
もしくはポリマヌに぀いおは
” ”、、
−、 
 、に詳しく蚘茉されおいる。䞋塗
第局での材料ずしおは、れラチン等を挙げるこずがで
きる。
In the first undercoating layer in the multi-layer method, a copolymerization starting material is a monomer selected from vinyl chloride, vinylidene chloride, butadiene, methacrylic acid, acrylic acid, itaconic acid, maleic anhydride, etc. Combined; polyethyleneimine; epoxy resin; grafted gelatin; nitrocellulose; polyvinyl bromide, polyvinyl fluoride,
Polyvinyl acetate, chlorinated polyethylene, chlorinated polypropylene, brominated polyethylene, chlorinated rubber, vinyl chloride
Ethylene copolymer, vinyl chloride-propylene copolymer,
Vinyl chloride-styrene copolymer, isobutylene chloride copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-styrene-maleic anhydride terpolymer, vinyl chloride-styrene-acrylonitrile copolymer, vinyl chloride- Butadiene copolymer, vinyl chloride-isoprene copolymer, vinyl chloride-chlorinated propylene copolymer, vinyl chloride-vinylidene chloride-vinyl acetate terpolymer, vinyl chloride-acrylate copolymer, vinyl chloride- Maleic acid ester copolymer, vinyl chloride-methacrylic acid ester copolymer, vinyl chloride-acrylonitrile copolymer, internally plasticized polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinylidene chloride, vinylidene chloride-methacrylic acid Ester copolymer, vinylidene chloride-acrylonitrile copolymer Halogen-containing synthetic resins such as vinylidene chloride-acrylate copolymer, chloroethyl vinyl ether-acrylate copolymer, and polychloroprene; polyethylene, polypropylene, polybutene, poly-3-methylbutene, and poly-1,2- Α-olefin copolymers such as butadiene; ethylene-propylene copolymers, ethylene-vinyl ether copolymers,
Ethylene-propylene-1,4-hexadiene copolymer, ethylene-vinyl acetate copolymer, butene-1-propylene copolymer, butadiene-acrylonitrile copolymer, and blends of these copolymers with halogen-containing resins Products: Acrylic acid methyl ester-acrylonitrile copolymer, acrylic acid ethyl ester-styrene copolymer, methacrylic acid methyl ester-acrylonitrile copolymer, polymethacrylic acid methyl ester, methacrylic acid methyl ester-styrene copolymer, methacrylic acid Butyl ester-styrene copolymer, polymethyl acrylate, poly-α-methyl acrylate, methoxyethyl acrylate, glycidyl polyacrylate, butyl polyacrylate, methyl acrylate And acrylic resins such as polyacrylic acid ethyl ester, acrylic acid-butyl acrylate copolymer, acrylate-butadiene-styrene copolymer and methacrylic acid ester-butadiene-styrene copolymer; polystyrene, poly-α-methyl Styrene, styrene-dimethyl fumarate copolymer, styrene
Maleic anhydride copolymer, styrene-butadiene copolymer, styrene-acrylonitrile copolymer and styrene-
Styrene resins such as butadiene-acrylonitrile copolymer; poly-2,6-dimethylphenylene oxide;
Polyvinyl carbazole; poly-p-xylylene; polyvinyl formal; polyvinyl acetal; polyvinyl butyral; polyvinyl phthalate; cellulose triacetate; cellulose butyrate; cellulose butyrate; cellulose phthalate; nylon 6;
Methoxymethyl-6-nylon; nylon-6,10-
Polycapramide; poly-N-butyl-nylon-6-polyethylene sebacate; polybutylene glutarate; polyhexamethylene adipate; polybutylene isophthalate; polyethylene terephthalate; polyethylene adipate; polyethylene adipate terephthalate; polyethylene-2,6-naphthalate; poly Diethylene glycol terephthalate; polyethyleneoxy benzoate; bisphenol A-isophthalate; polyacrylonitrile; bisphenol A-adipate; polyhexamethylene-m-benzenedisulfonamide; polytetramethylenehexamethylene carbonate; polydimethylsiloxane; polyethylenemethylenebis-4-phenyleneca Bonate; and materials such as bisphenol A-polycarbonate It is possible. These oligomers or polymers are described in E.I. H. Immergu
t "Polymer Handbook", IV, 18
7-231, Interscience Pub. Ne
w York, 1966. Examples of the material for the second undercoat layer include gelatin.

【】単局法においおは、高分子フィルムを膚匵
させ、芪氎性䞋塗ポリマヌず界面混合させるこずによっ
お良奜な密着性が埗られるように䞋塗局が圢成される。
本発明に䜿甚する芪氎性䞋塗ポリマヌずしおは、氎溶性
ポリマヌ、セルロヌス゚ステル、ラテックスポリマヌ、
氎溶性ポリ゚ステルなどを䜿甚するこずができる。氎溶
性ポリマヌずしおは、れラチン、れラチン誘導䜓、カれ
むン、寒倩、アルギン酞゜ヌダ、でんぷん、ポリビニ−
ルアルコヌル、ポリアクリル酞共重合䜓及び無氎マレむ
ン酞共重合䜓などを挙げるこずができ、セルロヌス゚ス
テルずしおは、カルボキシメチルセルロヌス及びヒドロ
キシ゚チルセルロヌスを挙げるこずができる。ラテック
スポリマヌずしおは、塩化ビニル含有共重合䜓、塩化ビ
ニリデン含有共重合䜓、アクリル酞゚ステル含有共重合
䜓、酢酞ビニル含有共重合䜓及びブタゞ゚ン含有共重合
䜓を挙げるこずができる。この䞭でも最も奜たしいのは
れラチンである。れラチンずしおは、いわゆる石灰凊理
れラチン、酞凊理れラチン、酵玠凊理れラチン、れラチ
ン誘導䜓及び倉性れラチンなどの、䞀般に甚いられおい
るものを䜿甚するこずができる。これらのれラチンのう
ち、最も奜たしく甚いられるのは石灰凊理れラチン、酞
凊理れラチンである。これらのれラチンは、その䜜補工
皋における皮々の䞍玔物、䟋えば〜
の金属類

などの金属、及びそのむオンな
ど、むオン----硫酞むオン、
硝酞むオン、酢酞むオン、アンモニりムむオンなどを
含有しおいおもよい。特に石灰凊理れラチンにおいお
は、やのむオンを含有するのが䞀般的であり、
その含有量は〜が䞀般的であり、䞋
塗の塗垃性胜の点から以䞋が奜たしく、
曎に奜たしくは以䞋である。
In the single layer method, the undercoat layer is formed by expanding the polymer film and interfacially mixing with the hydrophilic undercoat polymer so that good adhesion can be obtained.
As the hydrophilic undercoat polymer used in the present invention, a water-soluble polymer, a cellulose ester, a latex polymer,
A water-soluble polyester or the like can be used. Examples of the water-soluble polymer include gelatin, gelatin derivatives, casein, agar, sodium alginate, starch, and polyvinyl alcohol.
Alcohol, a polyacrylic acid copolymer, a maleic anhydride copolymer, and the like. Examples of the cellulose ester include carboxymethyl cellulose and hydroxyethyl cellulose. Examples of the latex polymer include a vinyl chloride-containing copolymer, a vinylidene chloride-containing copolymer, an acrylate-containing copolymer, a vinyl acetate-containing copolymer, and a butadiene-containing copolymer. Among these, gelatin is most preferred. As the gelatin, generally used ones such as so-called lime-treated gelatin, acid-treated gelatin, enzyme-treated gelatin, gelatin derivatives and modified gelatin can be used. Among these gelatins, lime-treated gelatin and acid-treated gelatin are most preferably used. These gelatins contain various impurities such as 0.11 to 20000 in the production process.
ppm metals (Na, K, Li, Rb, Ca, Mg,
Ba, Ce, Fe, Sn, Pb, Al, Si, Ti, A
u, Ag, Zn, Ni, and other metals, and their ions), ions (F − , Cl − , Br − , I − , sulfate ions,
Nitrate ion, acetate ion, ammonium ion, etc.). Especially in lime-processed gelatin, it is common to contain Ca and Mg ions,
The content is generally 10 to 3000 ppm, preferably 1000 ppm or less from the viewpoint of coating performance of the undercoat,
More preferably, it is 500 ppm or less.

【】その他、䞋塗局圢成甚塗垃液は、必芁に応
じお各皮の添加剀を含有させるこずができる。䟋えば界
面掻性剀、耐電防止剀、顔料、塗垃助剀等を挙げるこず
ができる。たた本発明の䞋塗局には、公知の皮々のれラ
チン硬化剀を甚いるこずができる。れラチン硬化剀ずし
おは、クロム塩クロム明ばんなど、アルデヒド類
ホルムアルデヒド、グルタヌルアルデヒドなど、む
゜シアネヌト類、゚ピクロルヒドリン暹脂及びポリアマ
むド−゚ピクロルヒドリン暹脂、シアヌルクロリド系化
合物、ビニルスルホンあるいはスルホニル系化合物、カ
ルバモむルアンモニりム塩系化合物、アミゞニりム塩系
化合物、カルボゞむミド化合物及びピリゞニりム塩系化
合物などを挙げるこずができる。
In addition, the coating liquid for forming the undercoat layer may contain various additives, if necessary. For example, surfactants, antistatic agents, pigments, coating aids and the like can be mentioned. In the undercoat layer of the present invention, various known gelatin hardeners can be used. Gelatin hardeners include chromium salts (chromium alum, etc.), aldehydes (formaldehyde, glutaraldehyde, etc.), isocyanates, epichlorohydrin resins and polyamide-epichlorohydrin resins, cyanuric chloride compounds, vinyl sulfone or sulfonyl compounds, carbamoyl Examples thereof include an ammonium salt-based compound, an amidinium salt-based compound, a carbodiimide compound, and a pyridinium salt-based compound.

【】配向膜は、䞀般に透明支持䜓䞊又は䞊蚘䞋
塗局䞊に蚭けられる。配向膜は、その䞊に蚭けられる液
晶性ディスコティック化合物の配向方向を芏定するよう
に機胜する。配向膜は、光孊異方局に配向性を付䞎でき
るものであれば、どのような局でも良い。配向膜の奜た
しい䟋ずしおは、有機化合物奜たしくはポリマヌの
ラビング凊理された局、無機化合物の斜方蒞着局、及び
マむクログルヌブを有する局、さらにω−トリコサン
酞、ゞオクタデシルメチルアンモニりムクロラむド及び
ステアリル酞メチル等のラングミュア・ブロゞェット法
膜により圢成される环積膜、あるいは電堎ある
いは磁堎の付䞎により誘電䜓を配向させた局を挙げるこ
ずができる。
The alignment film is generally provided on the transparent support or on the undercoat layer. The alignment film functions to define the alignment direction of the liquid crystalline discotic compound provided thereon. The orientation film may be any layer as long as it can impart orientation to the optically anisotropic layer. Preferred examples of the alignment film include a rubbed layer of an organic compound (preferably a polymer), an obliquely-deposited layer of an inorganic compound, and a layer having microgrooves. Examples include a cumulative film formed by a Langmuir-Blodgett method (LB film) of methyl acid or the like, or a layer in which a dielectric is oriented by applying an electric or magnetic field.

【】配向膜甚の有機化合物の䟋ずしおは、ポリ
メチルメタクリレヌト、アクリル酞メタクリル酞共重
合䜓、スチレンマレむンむミド共重合䜓、ポリビニル
アルコヌル、ポリ−メチロヌルアクリルアミド、
スチレンビニルトル゚ン共重合䜓、クロロスルホン化
ポリ゚チレン、ニトロセルロヌス、ポリ塩化ビニル、塩
玠化ポリオレフィン、ポリ゚ステル、ポリむミド、酢酞
ビニル塩化ビニル共重合䜓、゚チレン酢酞ビニル共
重合䜓、カルボキシメチルセルロヌス、ポリ゚チレン、
ポリプロピレン及びポリカヌボネヌト等のポリマヌ及び
シランカップリング剀等の化合物を挙げるこずができ
る。奜たしいポリマヌの䟋ずしおは、ポリむミド、ポリ
スチレン、スチレン誘導䜓のポリマヌ、れラチン、ポリ
ビルアルコヌル及びアルキル基炭玠原子数以䞊が奜
たしいを有するアルキル倉性ポリビルアルコヌルを挙
げるこずができる。これらのポリマヌの局を配向凊理す
るこずにより埗られる配向膜は、液晶性ディスコティッ
ク化合物を斜めに配向させるこずができる。
Examples of organic compounds for the alignment film include polymethylmethacrylate, acrylic acid / methacrylic acid copolymer, styrene / maleinimide copolymer, polyvinyl alcohol, poly (N-methylolacrylamide),
Styrene / vinyl toluene copolymer, chlorosulfonated polyethylene, nitrocellulose, polyvinyl chloride, chlorinated polyolefin, polyester, polyimide, vinyl acetate / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, carboxymethyl cellulose, polyethylene,
Examples include polymers such as polypropylene and polycarbonate, and compounds such as silane coupling agents. Preferred examples of the polymer include polyimide, polystyrene, polymers of styrene derivatives, gelatin, polyvinyl alcohol, and alkyl-modified polyvinyl alcohol having an alkyl group (preferably having 6 or more carbon atoms). An alignment film obtained by performing an alignment treatment on these polymer layers can align a liquid crystalline discotic compound obliquely.

【】䞭でもアルキル倉性のポリビニルアルコヌ
ルは特に奜たしく、液晶性ディスコティック化合物を均
䞀に配向させる胜力に優れおいる。これは配向膜衚面の
アルキル鎖ずディスコティック液晶のアルキル偎鎖ずの
匷い盞互䜜甚のためず掚察される。たた、アルキル基
は、炭玠原子数〜が奜たしく、曎に、−−、-
(CH3)C(CN)-たたは-(C2H5)N-CS-S-を介しおポリビニル
アルコヌルに結合しおいるこずが奜たしい。䞊蚘アルキ
ル倉性ポリビニルアルコヌルは、未端にアルキル基を有
するものであり、けん化床以䞊、重合床以
䞊が奜たしい。たた、䞊蚘偎鎖にアルキル基を有するポ
リビニルアルコヌルは、クラレ株補の、
、などの垂販品を利甚するこずが
できる。
Of these, alkyl-modified polyvinyl alcohol is particularly preferable, and is excellent in the ability to uniformly align the liquid crystalline discotic compound. This is presumed to be due to strong interaction between the alkyl chains on the alignment film surface and the alkyl side chains of the discotic liquid crystal. Further, the alkyl group preferably has 6 to 14 carbon atoms, and further has -S- and-.
It is preferably bonded to polyvinyl alcohol via (CH 3 ) C (CN)-or-(C 2 H 5 ) N-CS-S-. The alkyl-modified polyvinyl alcohol has an alkyl group at the end, and preferably has a saponification degree of 80% or more and a polymerization degree of 200 or more. Further, the polyvinyl alcohol having an alkyl group in the side chain is MP103 manufactured by Kuraray Co., Ltd.
Commercial products such as MP203 and R1130 can be used.

【】たた、の配向膜ずしお広く甚いられ
おいるポリむミド膜奜たしくはフッ玠原子含有ポリむ
ミドも有機配向膜ずしお奜たしい。これはポリアミッ
ク酞䟋えば、日立化成株補のシリヌ
ズ、日産化孊株補のシリヌズ等を支持䜓面に
塗垃し、〜℃で〜時間焌成した
埌、ラビングするこずにより埗られる。曎に、本発明の
配向膜は、䞊蚘ポリマヌに反応性基を導入するこずによ
り、あるいは䞊蚘ポリマヌをアルデヒド化合物グリオ
キザ−ル、グルタルアルデヒド等、む゜シアネヌト化
合物及び゚ポキシ化合物などの架橋剀ず共に䜿甚しお、
これらのポリマヌを硬化させるこずにより埗られる硬化
膜であるこずが奜たしい。
A polyimide film (preferably a fluorine atom-containing polyimide) which is widely used as an alignment film for LCD is also preferable as the organic alignment film. For this, a polyamic acid (for example, LQ / LX series manufactured by Hitachi Chemical Co., Ltd., SE series manufactured by Nissan Chemical Co., Ltd.) is applied to the surface of the support, and baked at 100 to 300 ° C. for 0.5 to 1 hour. Later, it is obtained by rubbing. Furthermore, the alignment film of the present invention may be prepared by introducing a reactive group into the polymer, or by using the polymer together with a crosslinking agent such as an aldehyde compound (glyoxal, glutaraldehyde, etc.), an isocyanate compound and an epoxy compound. ,
A cured film obtained by curing these polymers is preferable.

【】さらに、本発明者は支持䜓の厚みムラによ
るロ−ル状態での配向膜䞊の面圧を均䞀化するため
に、該配向膜支持䜓の䞡端にロ−レットを付けるこず
で、前述の配向ムラが消倱する事を芋出した。ロ−レッ
トの幅は〜、より奜たしくは〜、
さらに奜たしくは、〜であり、高さは〜
Όが奜たしく、さらに〜Όが奜たしく、〜
Όが最も奜たしい。ロヌレットの䜍眮は支持䜓の端
付近ならどこでもよく、通垞、補造の埗率から端に近い
皋よい。䞀般に支持䜓の端から〜内偎にロヌ
レットの端がくるようにしお圢成される。奜たしくは、
〜である。ロ−レットの高さは高すぎるず巻
き付けた時に巻きズレが生じやすく、䞀方、䜎すぎるず
平面性改良の効果を出すこずが出来ない。ロ−レットは
片面抌しでも䞡面抌しでも構わず、以䞊の枩床で付
ける方が、熱凊理䞭のロ−レットの぀ぶれを防止でき、
奜たしい。このようなロ−レットは、特公昭−
号公報に埓っお実斜するこずができる。このよう
なロ−レットを付䞎するこずにより、均䞀配向性に優れ
た配向膜付支持䜓の䜜補が可胜になる。
Further, the present inventor attaches knurls to both ends of the alignment film support in order to equalize the surface pressure on the alignment film (in the rolled state) due to the uneven thickness of the support. Then, it was found that the above-mentioned alignment unevenness disappears. The width of the knurling is 2 to 50 mm, more preferably 3 to 30 mm,
More preferably, it is 5 to 20 mm and the height is 1 to 1.
00Ό is preferable, 2 to 50Ό is more preferable, and 3 to
30Ό is most preferred. The position of the knurl may be anywhere near the edge of the support, and normally, the closer to the edge, the better from the manufacturing efficiency. Generally, the knurl is formed so that the end of the knurl is 0 to 20 mm inward from the end of the support. Preferably,
It is 0 to 10 mm. If the height of the knurling is too high, winding deviation tends to occur when it is wound, while if it is too low, the effect of improving flatness cannot be obtained. It does not matter whether the knurling is pressed on one side or both sides, but it is possible to prevent crushing of the knurling during heat treatment by applying at a temperature of Tg or higher.
preferable. Such a knurled wheel is disclosed in Japanese Examined Patent Publication No. 57-36.
No. 129 publication. By providing such knurls, it becomes possible to produce a support with an alignment film having excellent uniform alignment.

【】たた、前蚘ラビング凊理は、の液晶
配向凊理工皋ずしお広く採甚されおいる凊理方法を利甚
するこずができる。即ち、配向膜の衚面を、玙やガヌ
れ、フェルト、ゎムあるいはナむロン、ポリ゚ステル繊
維などを甚いお䞀定方向に擊るこずにより配向を埗る方
法を甚いるこずができる。䞀般的には、長さ及び倪さが
均䞀な繊維を平均的に怍毛した垃などを甚いお数回皋床
ラビングを行うこずにより実斜される。
For the rubbing treatment, a treatment method widely adopted as a liquid crystal alignment treatment process for LCD can be used. That is, a method of rubbing the surface of the alignment film in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber, or the like can be used to obtain the alignment. Generally, rubbing is performed several times using a cloth or the like on which fibers having a uniform length and thickness are planted on average.

【】本発明の光孊異方局は、透明支持䜓たたは
配向膜䞊に圢成される。本発明の光孊異方局は、ディス
コティック構造単䜍を有する化合物からなる負の耇屈折
を有する局である。即ち、光孊異方局は、モノマヌ等の
䜎分子量の液晶性ディスコティック化合物の局たたは重
合性の液晶性ディスコティック化合物の重合硬化に
より埗られるポリマヌの局である。本発明のディスコテ
ィック円盀状化合物の䟋ずしおは、
らの研究報告、巻、
頁幎に蚘茉されおいるベンれン誘導
䜓、らの研究報告、
巻、頁幎、
 巻、頁に
蚘茉されおいるトルキセン誘導䜓、らの
研究報告、巻、頁
幎に蚘茉されたシクロヘキサン誘導䜓及び
らの研究報告、
頁幎、らの
研究報告、巻、
頁幎に蚘茉されおいるアザクラりン
系やフェニルアセチレン系マクロサむクルなどを挙げる
こずができる。䞊蚘ディスクティック円盀状化合物
は、䞀般的にこれらを分子䞭心の母栞ずし、盎鎖のアル
キル基やアルコキシ基、眮換ベンゟむルオキシ基等がそ
の盎鎖ずしお攟射線状に眮換された構造であり、液晶性
を瀺し、䞀般的にディスコティック液晶ずよばれるもの
が含たれる。ただし、分子自身が負の䞀軞性を有し、䞀
定の配向を付䞎できるものであれば䞊蚘蚘茉に限定され
るものではない。たた、本発明においお、円盀状化合物
から圢成したずは、最終的にできた物が前蚘化合物であ
る必芁はなく、䟋えば、前蚘䜎分子ディスコティツク液
晶が熱、光等で反応する基を有しおおり、結果的に熱、
光等で反応により重合たたは架橋し、高分子量化し液晶
性を倱ったものも含たれる。
The optically anisotropic layer of the present invention is formed on a transparent support or an alignment film. The optically anisotropic layer of the present invention is a layer having a negative birefringence composed of a compound having a discotic structural unit. That is, the optically anisotropic layer is a layer of a low molecular weight liquid crystalline discotic compound such as a monomer or a layer of a polymer obtained by polymerization (curing) of a polymerizable liquid crystalline discotic compound. Examples of the discotic compound of the present invention include C.I. Destr
ade et al., Mol. Cryst. 71 volumes, 1
Benzene derivatives described on page 11 (1981); Destrade et al., Mol. Cr
yst. 122, 141 pages (1985), Phys
ics lett, A, vol. 78, p. 82 (1990); Kohne et al., Angew. Chem. 96 volumes, 70 pages (1
984) and the cyclohexane derivative described in J.
M. J. Lehn et al. Chem. Commu
n. , P. 1794 (1985); Research report by Zhang et al. Am. Chem. Soc. 116 volumes, 2
Examples thereof include azacrown-based and phenylacetylene-based macrocycles described on page 655 (1994). The above-mentioned discotic (disc-shaped) compound generally has a structure in which these are used as a core of a molecular center, and linear alkyl groups, alkoxy groups, substituted benzoyloxy groups, and the like are radially substituted as the linear chains. , Which exhibit liquid crystallinity and are generally called discotic liquid crystals. However, the present invention is not limited to the above description as long as the molecule itself has negative uniaxiality and can impart a certain orientation. In addition, in the present invention, the term "formed from a discotic compound" does not mean that the final product need be the compound. For example, the low-molecular-weight discotic liquid crystal has a group that reacts with heat, light, or the like. Heat, resulting in heat,
It also includes those which are polymerized or crosslinked by a reaction with light or the like to increase the molecular weight and lose the liquid crystallinity.

【】䞊蚘ディスクティック化合物の奜たしい䟋
を䞋蚘に瀺す。
Preferred examples of the above discotic compound are shown below.

【】[0023]

【化】 Embedded image

【】[0024]

【化】 Embedded image

【】[0025]

【化】 Embedded image

【】[0026]

【化】 Embedded image

【】本発明の光孊補償シヌトは、前述のよう
に、透明支持䜓䞊に配向膜を蚭け、次いで配向膜䞊に光
孊異方局を圢成するこずにより䜜補されるこずが奜たし
い。
As described above, the optical compensation sheet of the present invention is preferably prepared by providing an alignment film on a transparent support and then forming an optically anisotropic layer on the alignment film.

【】本発明の光孊異方局は、ディスクティック
構造単䜍を有する化合物からなる負の耇屈折を有する局
であっお、そしおディスコティック構造単䜍の面が、透
明支持䜓面に察しお傟き、䞔぀該ディスコティック構造
単䜍の面ず透明支持䜓面ずのなす角床が、光孊異方局の
深さ方向に倉化しおいる。ここで蚀う、負の耇屈折を有
する局ずは負の䞀軞性分子であるディスコティック化合
物が該局䞭で連続的に倉化しおいる局をも含むものであ
る。
The optically anisotropic layer of the present invention is a layer having a negative birefringence composed of a compound having a discotic structural unit, and the surface of the discotic structural unit is inclined with respect to the transparent support surface, and The angle formed by the surface of the discotic structural unit and the surface of the transparent support changes in the depth direction of the optically anisotropic layer. Here, the layer having negative birefringence also includes a layer in which a discotic compound, which is a negative uniaxial molecule, continuously changes in the layer.

【】䞊蚘ディスコティック構造単䜍の面の角床
傟斜角は、䞀般に、光孊異方局の深さ方向でか぀光
孊異方局の底面からの距離の増加ず共に増加たたは枛少
しおいる。䞊蚘傟斜角は、距離の増加ず共に増加するこ
ずが奜たしい。曎に、傟斜角の倉化ずしおは、連続的増
加、連続的枛少、間欠的増加、間欠的枛少、連続的増加
ず連続的枛少を含む倉化、及び増加及び枛少を含む間欠
的倉化等を挙げるこずができる。間欠的倉化は、厚さ方
向の途䞭で傟斜角が倉化しない領域を含んでいる。傟斜
角は、倉化しない領域を含んでいおも、党䜓ずしお増加
たたは枛少しおいるこずが奜たしい。曎に、傟斜角は党
䜓ずしお増加しおいるこずが奜たしく、特に連続的に倉
化するこずが奜たしい。
The surface angle (tilt angle) of the discotic structural unit generally increases or decreases in the depth direction of the optically anisotropic layer and as the distance from the bottom surface of the optically anisotropic layer increases. Preferably, the angle of inclination increases with increasing distance. Further, as the change of the inclination angle, a continuous increase, a continuous decrease, an intermittent increase, an intermittent decrease, a change including the continuous increase and the continuous decrease, and an intermittent change including the increase and the decrease may be cited. it can. The intermittent change includes a region where the inclination angle does not change in the thickness direction. It is preferable that the tilt angle increases or decreases as a whole, even if it includes a region that does not change. Further, the inclination angle is preferably increased as a whole, and is particularly preferably changed continuously.

【】本発明の光孊異方局の断面の代衚的な䟋
を、暡匏的に図に瀺す。光孊異方局は、透明支持
䜓䞊に圢成された配向膜䞊に蚭けられおいる。
光孊異方局を構成する液晶性ディスコティック化合
物、、は、ディスコティック構造単
䜍、、が透明支持䜓の面に平行な面
、、から傟斜し、そしおそれらの傟斜
角Ξ、Ξ、Ξディスコティック構造単䜍の面ず
透明支持䜓の面ずのなす角が、光孊異方局の底面から
の深さ厚さ方向の距離の増加ず共に、順に増加しお
いる。は透明支持䜓の法線を衚わす。䞊蚘液晶性デ
ィスコティック化合物は平面分子であり、それ故分子䞭
にはただ䞀個の平面、即ち円盀面䟋、、
、を持぀。
A typical example of a cross section of the optically anisotropic layer of the present invention is schematically shown in FIG. The optically anisotropic layer 23 is provided on the alignment film 22 formed on the transparent support 21.
The liquid crystalline discotic compounds 23a, 23b, and 23c constituting the optically anisotropic layer 23 have a discotic structural unit Pa, Pb, and Pc whose surface 2 is parallel to the surface of the transparent support 21.
1a, 21b, 21c, and their inclination angles Ξa, Ξb, Ξc (the angles formed by the plane of the discotic structural unit and the plane of the transparent support) are equal to the depth from the bottom of the optically anisotropic layer ( It increases in order with the increase in the distance in the thickness direction. 24 represents the normal line of the transparent support. The liquid crystalline discotic compound is a planar molecule, and therefore has only one plane in the molecule, ie, a disk surface (eg, 21a, 21a).
b, 21c).

【】䞊蚘傟斜角角床は、〜床の範囲
特に〜床の範囲で倉化しおいるこずが奜た
しい。䞊蚘傟斜角の最小倀は、〜床の範囲特に
〜床にあり、たたその最倧倀が〜床の範
囲特に〜床にあるこずが奜たしい。図に
おいお、支持䜓偎のディスコティック構造単䜍の傟斜角
䟋、Ξが、ほが最小倀に察応し、そしおディスコ
ティック構造単䜍の傟斜角䟋、Ξが、ほが最倧倀
に察応しおいる。さらに、傟斜角の最小倀ず最倧倀ずの
差が、〜床の範囲特に〜床にあるこ
ずが奜たしい。
It is preferable that the inclination angle (angle) is changed within a range of 5 to 85 degrees (particularly within a range of 10 to 80 degrees). The minimum value of the inclination angle is preferably in the range of 0 to 85 degrees (particularly 5 to 40 degrees), and the maximum value is preferably in the range of 5 to 90 degrees (particularly 30 to 85 degrees). In FIG. 2, the tilt angle (eg, Ξa) of the discotic structure unit on the support side substantially corresponds to the minimum value, and the tilt angle (eg, Ξc) of the discotic structure unit substantially corresponds to the maximum value. I have. Further, the difference between the minimum value and the maximum value of the inclination angle is preferably in the range of 5 to 70 degrees (particularly, 10 to 60 degrees).

【】䞊蚘光孊異方局は、䞀般にディスコティッ
ク化合物及び他の化合物を溶剀に溶解した溶液を配向膜
䞊に塗垃し、也燥し、次いでディスコティックネマチッ
ク盞圢成枩床たで加熱し、その埌配向状態ディスコテ
ィックネマチック盞を維持しお冷华するこずにより埗
られる。あるいは、䞊蚘光孊異方局は、ディスコティッ
ク化合物及び他の化合物曎に、䟋えば重合性モノマ
ヌ、光重合開始剀を溶剀に溶解した溶液を配向膜䞊に
塗垃し、也燥し、次いでディスコティックネマチック盞
圢成枩床たで加熱したのち重合させ光の照射等に
より、さらに冷华するこずにより埗られる。本発明に
甚いるディスコティック液晶性化合物のディスコティッ
クネマティック液晶盞−固盞転移枩床ずしおは、〜
℃が奜たしく、特に〜℃が奜たしい。
The above-mentioned optically anisotropic layer is generally prepared by applying a solution prepared by dissolving a discotic compound and another compound in a solvent onto the alignment film, drying it, and then heating it to a discotic nematic phase forming temperature, and then adjusting the alignment state ( It is obtained by maintaining and cooling the discotic nematic phase). Alternatively, the optically anisotropic layer is formed by applying a solution in which a discotic compound and other compounds (for example, a polymerizable monomer and a photopolymerization initiator) are dissolved in a solvent onto an alignment film, drying, and then discotic nematic It is obtained by heating to a phase forming temperature, polymerizing (by irradiation with UV light or the like), and further cooling. The discotic nematic liquid crystal phase-solid phase transition temperature of the discotic liquid crystalline compound used in the present invention is preferably from 70 to
300 ° C is preferable, and 70 to 170 ° C is particularly preferable.

【】䟋えば、支持䜓偎のディスコティック単䜍
の傟斜角は、䞀般にディスコティック化合物あるいは配
向膜の材料を遞択するこずにより、たたはラビング凊理
方法の遞択するこずにより、調敎するこずができる。た
た、衚面偎空気偎のディスコティック単䜍の傟斜角
は、䞀般にディスコティック化合物あるいはディスコテ
ィック化合物ずずもに䜿甚する他の化合物䟋、可塑
剀、界面掻性剀、重合性モノマヌ及びポリマヌを遞択
するこずにより調敎するこずができる。曎に、傟斜角の
倉化の皋床も䞊蚘遞択により調敎するこずができる。
For example, the tilt angle of the discotic unit on the support side can be adjusted by generally selecting the discotic compound or the material of the alignment film, or by selecting the rubbing treatment method. In addition, the tilt angle of the discotic unit on the surface side (air side) generally selects a discotic compound or another compound used together with the discotic compound (eg, a plasticizer, a surfactant, a polymerizable monomer and a polymer). Can be adjusted. Further, the degree of change of the inclination angle can be adjusted by the above selection.

【】䞊蚘可塑剀、界面掻性剀及び重合性モノマ
ヌずしおは、ディスコティック化合物ず盞溶性を有し、
液晶性ディスコティック化合物の傟斜角の倉化を䞎えら
れるか、あるいは配向を阻害しない限り、どのような化
合物も䜿甚するこずができる。これらの䞭で、重合性モ
ノマヌ䟋、ビニル基、ビニルオキシ基、アクリロむル
基及びメタクリロむル基を有する化合物が奜たしい。
䞊蚘化合物は、ディスコティック化合物に察しお䞀般に
〜重量奜たしくは〜重量の量にお
䜿甚される。
The above-mentioned plasticizer, surfactant and polymerizable monomer have compatibility with the discotic compound,
Any compound can be used as long as it can change the tilt angle of the liquid crystalline discotic compound or does not hinder the alignment. Among these, a polymerizable monomer (eg, a compound having a vinyl group, a vinyloxy group, an acryloyl group, and a methacryloyl group) is preferable.
The above compounds are generally used in an amount of 1 to 50% by weight, preferably 5 to 30% by weight, based on the discotic compound.

【】䞊蚘ポリマヌずしおは、ディスコティック
化合物ず盞溶性を有し、液晶性ディスコティック化合物
に傟斜角の倉化を䞎えられる限り、どのようなポリマヌ
でも䜿甚するこずができる。ポリマヌ䟋ずしおは、セル
ロヌス゚ステルを挙げるこずができる。セルロヌス゚ス
テルの奜たしい䟋ずしおは、セルロヌスアセテヌト、セ
ルロヌスアセテヌトプロピオネヌト、ヒドロキシプロピ
ルセルロヌス及びセルロヌスアセテヌトブチレヌトを挙
げるこずができる。䞊蚘ポリマヌは、液晶性ディスコテ
ィック化合物の配向を阻害しないように、ディスコティ
ック化合物に察しお䞀般に〜重量奜たし
くは〜重量、特に〜重量の量に
お䜿甚される。セルロヌスアセテヌトブチレヌト酢酞
酪酞セルロヌスのブチリル化床は、以䞊、特に
〜の範囲が奜たしい。たたアセチル化床は
以䞊、特に〜の範囲が奜たしい。セルロ
ヌスアセテヌトブチレヌトの粘床 −
−に埓う枬定により埗られる倀は、〜
秒の範囲が奜たしい。
As the above-mentioned polymer, any polymer can be used as long as it is compatible with the discotic compound and can change the tilt angle of the liquid crystalline discotic compound. Examples of the polymer include a cellulose ester. Preferred examples of the cellulose ester include cellulose acetate, cellulose acetate propionate, hydroxypropylcellulose and cellulose acetate butyrate. The polymer is generally 0.1 to 10% by weight (preferably 0.1 to 8% by weight, particularly 0.1 to 5% by weight) based on the discotic compound so as not to hinder the alignment of the liquid crystalline discotic compound. ). The butyrylation degree of cellulose acetate butyrate (cellulose acetate butyrate) is preferably 30% or more, particularly preferably in the range of 30 to 80%. The degree of acetylation is 3
0% or more, especially the range of 30 to 80% is preferable. Viscosity of cellulose acetate butyrate (ASTM D-81
7-72) is from 0.01 to
A range of 20 seconds is preferred.

【】䞊蚘図に瀺される倉化する傟斜角を有す
る光孊異方局光孊補償シヌトを備えたカラヌ液
晶衚瀺装眮は、極めお拡倧された芖野角を有し、そしお
癜黒画像の反転、あるいは衚瀺画像の諧調あるいは着色
の発生がほずんどないものである。
The (color) liquid crystal display device having the optically anisotropic layer (optical compensation sheet) having the variable tilt angle shown in FIG. 2 has a very wide viewing angle, and inversion of a black and white image. Or, the gradation or coloring of the displayed image is hardly generated.

【】曎に、本発明のカラヌ液晶衚瀺装眮に
おいお、より高床に芖野角が拡倧した理由に぀いおは以
䞋のように掚定される。䟋えば、本発明のカラヌ液晶衚
瀺装眮においお、偏光子ず怜光子の透過軞がほが盎亀し
おいるノヌマリヌホワむトのモヌド−で広
く採甚されおいるモヌドでは、黒衚瀺状態にある郚分
は液晶に電圧が印加されおいる状態であり、芖角を倧き
くするのに䌎っお、この黒衚瀺郚からの光の透過率が著
しく増倧し、コントラストの急激な䜎䞋を招いおいる。
この黒衚瀺状態電圧印加時においおは、液晶セ
ル内郚の液晶分子は、図に瀺すように配列しおいる。
基板衚面近傍に存圚する液晶分子は、基板
の衚面ずほが平行に存圚しおおり、そしお液晶分
子は、基板の衚面から離れるに埓っお埐々に
傟いお、衚面ず垂盎になる。曎に基板の衚面から
離れるに埓っお、液晶分子は、反察方向に埐々
に傟いお、最埌には基板の衚面ずほが平行ずな
る。埓っお、黒衚瀺における−の液晶セル
は、セル衚面から埐々に傟く光軞が最小倀を瀺す
方向を有する二個の正の光孊異方䜓ずセル衚面の法線
に平行な光軞を有する二個の正の光孊異方䜓ずの積局䜓
ずみなすこずができる。このため、本発明の光孊異方局
のディスコティック構造単䜍面の傟斜角の倉化及び負の
耇屈折により、電圧印加時の液晶セル内郚の液晶分
子の傟斜等により発生する䜍盞差を補償するこずができ
る。埓っお、倉化する傟斜角を有する光孊異方局光孊
補償シヌトを備えたカラヌ液晶衚瀺装眮は、芖角を倧
きくしお衚瀺装眮を斜めから芋た堎合でも、癜黒画像の
反転、あるいは衚瀺画像の諧調あるいは着色の発生がほ
ずんどないものである。
Furthermore, the reason why the viewing angle is expanded to a higher degree in the (color) liquid crystal display device of the present invention is presumed as follows. For example, in the color liquid crystal display device of the present invention, in a normally white mode in which the transmission axes of the polarizer and the analyzer are substantially orthogonal to each other (mode widely used in TN-LCD), a portion in a black display state is provided. Is a state in which a voltage is applied to the liquid crystal, and as the viewing angle is increased, the transmittance of light from the black display portion is significantly increased, causing a sharp decrease in contrast.
In this black display state (when voltage is applied), the liquid crystal molecules inside the TN liquid crystal cell are arranged as shown in FIG.
The TN liquid crystal molecules 33 existing near the substrate surface are
a, and the TN liquid crystal molecules 33 gradually incline and become perpendicular to the surface as the distance from the surface of the substrate 31a increases. Further away from the surface of the substrate 31a, the TN liquid crystal molecules 33 are gradually inclined in the opposite direction, and finally become almost parallel to the surface of the substrate 31b. Therefore, the liquid crystal cell of the TN-LCD in black display has two positive optically anisotropic bodies having optical axes (directions in which Re shows the minimum value) gradually inclined from the cell surface and a liquid crystal cell parallel to the normal of the cell surface. It can be considered as a laminate of two positive optical anisotropic bodies having an optical axis. For this reason, the change in the tilt angle of the discotic structural unit surface of the optically anisotropic layer and the negative birefringence of the present invention compensate for the phase difference caused by the tilt of the liquid crystal molecules inside the TN liquid crystal cell when a voltage is applied. be able to. Therefore, a color liquid crystal display device provided with an optically anisotropic layer (optical compensation sheet) having a changing inclination angle can invert a black-and-white image or display a display image even when the display device is viewed obliquely with a large viewing angle. There is almost no gradation or coloring.

【】䞊蚘光孊異方局のヘむズは、䞀般に
以䞋である。埓っお、䞊蚘光孊異方局を有する光孊補
償シヌトも、透明支持䜓のヘむズが䜎いこずから、䞀般
に以䞋を有する。䞊蚘ヘむズは、−
−に埓っお枬定される。光孊異方局のヘむ
ズが高いず、黒衚瀺郚においお散乱によるず思われる光
掩れが起こり、結果ずしおコントラストが䜎䞋する。こ
の傟向は、入射光が法線方向および画像の䞊方向に傟い
た堎合に顕著である。したがっお、これを防ぐために
は、䞊蚘ヘむズは以䞋が奜たしく、さらに以䞋
が奜たしく、特に以䞋であるこずが奜たしい。
The haze of the optically anisotropic layer is generally 5.0.
% Or less. Therefore, the optically compensatory sheet having the optically anisotropic layer also generally has 5.0% or less because the haze of the transparent support is low. The haze is ASTN-D
1003-52. When the haze of the optically anisotropic layer is high, light leakage which is considered to be caused by scattering occurs in the black display portion, and as a result, the contrast is reduced. This tendency is remarkable when the incident light is inclined in the normal direction and in the upward direction of the image. Therefore, in order to prevent this, the haze is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less.

【】本発明の光孊異方局が、光孊補償シヌトの
法線方向から傟いた方向に、以倖のレタヌデヌション
の絶察倀の最小倀を有する光軞を持たない。本発明
の光孊異方局を含む光孊補償シヌトの代衚的な構成䟋を
図に瀺す。図においお、透明支持䜓、配向膜
そしおディスコティック化合物の局光孊異方局
が、順に積局され、光孊補償シヌトを構成しおいる。
は配向膜のラビング方向を瀺す。12及び3は、
光孊補償シヌトの䞉軞方向の屈折率を衚わし、正面から
芋た堎合に1≊3≊2の関係を満足する。βは、
レタヌデヌションの最小倀を瀺す方向の光孊異方
局の法線からの傟きである。−及び
−の芖野角特性を改善するために、の絶察
倀の最小倀を瀺す方向が、光孊異方局の法線から
〜床傟きの平均倀傟いおいるこずが奜たしく、
曎に〜床が奜たしい䞊蚘β。曎に、䞊蚘シ
ヌトは、䞋蚘の条件 ≊32−1×≊
 䜆し、はシヌトの厚さを満足するこずが奜たし
く、曎に䞋蚘の条件 ≊32−1×≊

The optically anisotropic layer of the present invention has a minimum absolute retardation value other than 0 in the direction inclined from the normal line of the optical compensation sheet (no optical axis). FIG. 4 shows a typical configuration example of the optical compensation sheet including the optically anisotropic layer of the present invention. In FIG. 4, a transparent support 41 and an alignment film 4 are shown.
2 and discotic compound layer (optically anisotropic layer) 4
3 are sequentially laminated to form an optical compensation sheet.
R indicates the rubbing direction of the alignment film. n 1 n 2 and n 3 are
The refractive index in the triaxial direction of the optical compensation sheet is expressed, and when viewed from the front, the relationship of n 1 ≩ n 3 ≩ n 2 is satisfied. β is R
It is the inclination from the normal line 44 of the optically anisotropic layer in the direction showing the minimum value of e (retardation). TN-LCD and TF
In order to improve the viewing angle characteristics of the T-LCD, the direction in which the absolute value of Re is the minimum is 5 to 5 from the normal line 44 of the optically anisotropic layer.
~ 50 degrees (average of inclination) It is preferable that the inclination
Furthermore, 10 to 40 degrees is preferable (β above). Furthermore, the above-mentioned sheet has the following conditions: 50 ≩ [(n 3 + n 2 ) / 2−n 1 ] × D ≩ 400 (n
m) (where D is the thickness of the sheet), and the following conditions are further satisfied: 100 ≩ [(n 3 + n 2 ) / 2−n 1 ] × D ≩ 400 (n
m)

【】光孊異方局を圢成するための溶液は、ディ
スコティック化合物及び前述の他の化合物を溶剀に溶解
するこずにより䜜補するこずができる。䞊蚘溶剀の䟋ず
しおは、−ゞメチルホルムアミド、ゞ
メチルスルフォキシド及びピリゞン等の極
性溶剀ベンれン及びヘキサン等の無極性溶剀クロロ
ホルム及びゞクロロメタン等のアルキルハラむド類酢
酞メチル、酢酞ブチル、及びプロピレングリコヌルモノ
メチル゚ヌテル等の゚ステル類アセトン及びメチル゚
チルケトン等のケトン類及びテトラヒドロフラン及び
−ゞメトキシ゚タン等の゚ヌテル類を挙げるこず
ができる。アルキルハラむド類及びケトン類が奜たし
い。溶剀は単独でも、組合わせお䜿甚しおも良い。
The solution for forming the optically anisotropic layer can be prepared by dissolving the discotic compound and the above-mentioned other compound in a solvent. Examples of the solvent include polar solvents such as N, N-dimethylformamide (DMF), dimethylsulfoxide (DMSO) and pyridine; non-polar solvents such as benzene and hexane; alkyl halides such as chloroform and dichloromethane; acetic acid. Mention may be made of esters such as methyl, butyl acetate and propylene glycol monomethyl ether; ketones such as acetone and methyl ethyl ketone; and ethers such as tetrahydrofuran and 1,2-dimethoxyethane. Alkyl halides and ketones are preferred. The solvents may be used alone or in combination.

【】䞊蚘溶液の塗垃方法ずしおは、カヌテンコ
ヌティング、抌出コヌティング、ロヌルコヌティング、
ディップコヌティング、スピンコヌティング、印刷コヌ
ティング、スプレヌコヌティング及びスラむドコヌティ
ングを挙げるこずができる。本発明では、ディスコティ
ック化合物のみの混合物の堎合は蒞着法も䜿甚するこず
ができる。本発明では、連続塗垃が奜たしい。埓っおカ
ヌテンコヌティング、抌出コヌティング、ロヌルコヌテ
ィング及びスラむドコヌティングが奜たしい。䞊蚘光孊
異方局は、前述したように、䞊蚘塗垃溶液を配向膜䞊に
塗垃し、也燥し、次いで液晶盞転移枩床以䞊に加熱し
その埌所望により硬化させ、冷华するこずにより埗
られる。
The method for applying the above solution includes curtain coating, extrusion coating, roll coating,
Examples include dip coating, spin coating, print coating, spray coating and slide coating. In the present invention, in the case of a mixture of only discotic compounds, a vapor deposition method can also be used. In the present invention, continuous coating is preferred. Therefore, curtain coating, extrusion coating, roll coating and slide coating are preferred. As described above, the above-mentioned optically anisotropic layer is obtained by applying the above-mentioned coating solution on the alignment film, drying it, then heating it to a liquid crystal phase transition temperature or higher (afterwards curing it if desired) and cooling it.

【】本発明の光孊補償シヌトは、液晶衚瀺装眮
においお、液晶セルによる耇屈折を補償するものである
から、光孊異方玠子の波長分散は、液晶セルず等しいこ
ずが奜たしい。すなわち、光孊異方玠子の、
Όの光によるレタデヌションをそれぞれ450、
550ずすれば、波長分散を衚す450550倀は、
以䞊であるこずが奜たしい。
Since the optical compensatory sheet of the invention compensates the birefringence of the liquid crystal cell in the liquid crystal display device, it is preferable that the wavelength dispersion of the optically anisotropic element is equal to that of the liquid crystal cell. That is, the optically anisotropic elements 450 and 55
The retardation due to 0 ÎŒm light is R 450 , R
If 550, R 450 / R 550 value representing the chromatic dispersion 1.
It is preferably 0 or more.

【】本発明の液晶衚瀺装眮の代衚的構成䟋を図
に瀺す。図においお、透明電極を備えた䞀察の基板
ずその基板間に封入されたねじれ配向したネマチック液
晶ずからなる液晶セル、液晶セルの䞡偎に蚭けら
れた䞀察の偏光板、、液晶セルず偏光板ずの間に配
眮された光孊補償シヌト1、2及びバックラむト
が、組み合わされお液晶衚瀺装眮を構成しおいる。
光孊補償シヌトは䞀方のみ配眮しおも良い即ち、
1たたは2。1は光孊補償シヌト1の、正面か
ら芋た堎合のラビング方向を瀺し、2は光孊補償シヌ
ト2のラビング方向を瀺す。液晶セルの実線
の矢印は、液晶セルの偏光板偎の基板のラビング方向
を衚わし、液晶セルの点線の矢印は、液晶セルの
偏光板偎の基板のラビング方向を衚わす。及び
は、それぞれ偏光板、の偏光軞を衚わす。
FIG. 5 shows a typical configuration example of the liquid crystal display device of the present invention. In FIG. 5, a liquid crystal cell TNC composed of a pair of substrates having a transparent electrode and a twisted nematic liquid crystal sealed between the substrates, a pair of polarizing plates A and B provided on both sides of the liquid crystal cell, and a liquid crystal cell The optical compensation sheets RF 1 , RF 2 and the backlight BL arranged between the liquid crystal display device and the polarizing plate constitute a liquid crystal display device.
Only one of the optical compensation sheets may be arranged (that is, RF.
1 or RF 2 ). R 1 indicates the rubbing direction of the optical compensation sheet RF 1 when viewed from the front, and R 2 indicates the rubbing direction of the optical compensation sheet RF 2 . The solid line arrow of the liquid crystal cell TNC indicates the rubbing direction of the substrate on the polarizing plate B side of the liquid crystal cell, and the dotted arrow of the liquid crystal cell TNC indicates the rubbing direction of the substrate on the polarizing plate A side of the liquid crystal cell. PA and P
B represents the polarization axes of the polarizing plates A and B, respectively.

【】本発明の液晶衚瀺装眮においおは、光孊補
償シヌトず液晶セルは䞋蚘のように配眮されるこずが奜
たしい。図は、レタヌデヌションの最小倀の方向ず液
晶セルの基板のラビング方向ずの関係を瀺す図である。
䞀察の偏光板、が、液晶セルの䞡偎に
配眮され、そしお光孊補償シヌトが偏光板ず
液晶セルずの間に配眮されおいる。光孊補償シヌト
は、䞀般に、光孊異方局が液晶セルの衚面ず接するよう
に配眮される。は、光孊補償シヌトのレタヌ
デヌションの絶察倀の最小倀の方向を液晶セル䞊に正投
圱した時の方向である。この方向は、䞀般に光孊補償シ
ヌトの配向膜のラビング方向に察応する。は、
液晶セルの䞊偎基板のラビング方向を衚わし、
は、液晶セルの䞋偎基板のラビング方向を衚わ
す。
In the liquid crystal display device of the present invention, the optical compensation sheet and the liquid crystal cell are preferably arranged as follows. FIG. 6 is a diagram showing the relationship between the direction of the minimum value of the retardation and the rubbing direction of the substrate of the liquid crystal cell.
A pair of polarizing plates 63a and 63b are arranged on both sides of the liquid crystal cell 61, and an optical compensation sheet 62 is arranged between the polarizing plate 63a and the liquid crystal cell 61. The optical compensation sheet is generally arranged so that the optically anisotropic layer is in contact with the surface of the liquid crystal cell. 62M is the direction when the direction of the minimum absolute value of the retardation of the optical compensation sheet 62 is orthogonally projected on the liquid crystal cell. This direction generally corresponds to the rubbing direction of the alignment film of the optical compensation sheet. 61Ra is
Represents the rubbing direction of the upper substrate of the liquid crystal cell 61;
Rb represents the rubbing direction of the lower substrate of the liquid crystal cell 61.

【】レタヌデヌションの絶察倀の最小倀の方向
を液晶セル䞊に正投圱した時の方向ず液晶セルの
䞊偎基板のラビング方向ずのなす角αは、
〜床の範囲にあるこずが奜たしい。即ち、䞊
蚘角αは、図のように定矩するこずができる。図
は、図を軞方向から芋た時に埗られる図である。
図においお、、及びは、図
におけるず同矩である。角αは、レタヌデヌション
の最小倀を瀺す正投圱方向ず䞊偎基板のラビング
方向ずの角床を瀺す。この配眮は、光孊補償シ
ヌトを枚䜿甚する堎合にも適甚するこずができる。
枚の光孊補償シヌトを䜿甚する堎合、レタヌデヌション
の最小倀を瀺す正投圱方向は、䞻芖角方向である
こずシヌトをセルの䞊偎に蚭けた堎合、たたは反芖
角方向であるこずシヌトをセルの䞋偎に蚭けた堎合
が奜たしい。䞻芖角方向ずは、液晶セル䞭の液晶分子の
平均のツむスト方向であり、埓っお液晶分子を図
の軞の方向からみお反時蚈方向に床ねじられた堎
合に、軞のマむナス方向である。反芖角方向ずは、䞻
芖角方向ず反察の方向である。
The angle (α) between the direction 62M when the direction of the minimum absolute value of retardation is orthographically projected onto the liquid crystal cell and the rubbing direction 61Ra of the upper substrate of the liquid crystal cell is
It is preferably in the range of 90 to 270 degrees. That is, the angle (α) can be defined as shown in FIG. FIG. 7 is a diagram obtained when FIG. 6 is viewed from the z-axis direction.
In FIG. 7, 61Ra, 61Rb and 62M correspond to FIG.
Is synonymous with The angle (α) indicates the angle between the orthogonal projection direction 62M indicating the minimum value of the retardation and the rubbing direction 61Ra of the upper substrate. This arrangement can be applied to the case where two optical compensation sheets are used. 1
When two optical compensation sheets are used, the orthogonal projection direction 62M indicating the minimum value of the retardation is the main viewing angle direction (when the sheet is provided above the cell) or the opposite viewing angle direction (the sheet). Is provided below the cell)
Is preferred. The main viewing angle direction is the average twist direction of the liquid crystal molecules in the liquid crystal cell.
When it is twisted 90 degrees counterclockwise as viewed from the direction of the z-axis, it is the minus direction of the x-axis. The opposite viewing angle direction is a direction opposite to the main viewing angle direction.

【】本発明の液晶衚瀺装眮においおは、図及
びに瀺すように、䞀察の光孊補償シヌトが液晶セルの
䞡偎に蚭けられるこずが奜たしい。図では、䞀察の偏
光板、が、液晶セルの䞡偎に配眮さ
れ、そしお光孊補償シヌトが偏光板ず液晶
セルずの間に配眮され、か぀光孊補償シヌト
が偏光板ず液晶セルずの間に配眮されおい
る。は、光孊補償シヌトのレタヌデヌシ
ョンの絶察倀の最小倀の方向を液晶セル䞊に正投圱した
時の方向であり、は、光孊補償シヌトの
レタヌデヌションの絶察倀の最小倀の方向を液晶セル䞊
に正投圱した時の方向である。は、液晶セル
の䞊偎基板のラビング方向を衚わし、は、液
晶セルの䞋偎基板のラビング方向を衚わす。は
光源を衚わす。
In the liquid crystal display device of the present invention, as shown in FIGS. 8 and 9, it is preferable that a pair of optical compensation sheets are provided on both sides of the liquid crystal cell. In FIG. 8, a pair of polarizing plates 83a and 83b are arranged on both sides of the liquid crystal cell 81, and an optical compensation sheet 82a is arranged between the polarizing plate 83a and the liquid crystal cell 81, and the optical compensation sheet 82b
Are disposed between the polarizing plate 83b and the liquid crystal cell 81. 82Ma is the direction when the direction of the minimum absolute value of the retardation of the optical compensation sheet 82a is orthogonally projected onto the liquid crystal cell, and 82Mb is the direction of the minimum value of the absolute value of the retardation of the optical compensation sheet 82b. Is the direction when orthographically projected on the liquid crystal cell. 81Ra is the liquid crystal cell 8
1 represents the rubbing direction of the upper substrate, and 81Rb represents the rubbing direction of the lower substrate of the liquid crystal cell 81. 84 represents a light source.

【】レタヌデヌションの絶察倀の最小倀の方向
を液晶セル䞊に正投圱した時の方向ず液晶セル
の䞊偎基板のラビング方向ずのなす角α
及びずずなす角αは、〜
床の範囲にあるこずが奜たしい。即ち、䞊蚘角
αずαは、図のように定矩するこずができ
る。図は、図を軞方向から芋た時に埗られる図で
ある。図においお、、、及
びは、図におけるず同矩である。角α
は、レタヌデヌションの最小倀を瀺す正投圱方向
ず䞊偎基板のラビング方向ずの角床であり、
角αは、レタヌデヌションの最小倀を瀺す正投圱
方向ず䞋偎基板のラビング方向ずの角
床である。レタヌデヌションの最小倀を瀺す正投圱方向
ずずのなす角βは、〜
床の範囲が奜たしい。
The angle (α1) between the direction 82Ma when the direction of the minimum absolute value of retardation is orthographically projected onto the liquid crystal cell and the rubbing direction 81Ra of the upper substrate of the liquid crystal cell.
And the angle (α2) between 82Mb and 81Rb is 135 to
It is preferably in the range of 225 degrees. That is, the angles (α1 and α2) can be defined as shown in FIG. FIG. 9 is a diagram obtained when FIG. 8 is viewed from the z-axis direction. In FIG. 9, 81Ra, 81Rb, 82Ma and 82Mb have the same meaning as in FIG. Angle (α1)
Is the orthogonal projection direction 82M indicating the minimum value of the retardation.
a and the rubbing direction 81Ra of the upper substrate.
The angle (α2) is the angle between the orthogonal projection direction 82Mb showing the minimum value of the retardation and the rubbing direction 81Rb of the lower substrate. The angle (β1) between the orthogonal projection directions 82Ma and 82Mb indicating the minimum value of the retardation is 90 to 18
A range of 0 degrees is preferred.

【】本発明の液晶衚瀺装眮においおは、図
及びに瀺すように、枚の光孊補償シヌトを液晶セ
ルの䞀方の偎に蚭けおも良い。図では、䞀察の偏光
板、が、液晶セルの䞡偎に配眮
され、そしお光孊補償シヌト、が、偏
光板ず液晶セルずの間に配眮されおい
る。は、光孊補償シヌトのレタヌデ
ヌションの絶察倀の最小倀の方向を液晶セル䞊に正投圱
した時の方向であり、は、光孊補償シヌト
のレタヌデヌションの絶察倀の最小倀の方向を液
晶セル䞊に正投圱した時の方向である。は、
液晶セルの䞊偎基板のラビング方向を衚わし、
は、液晶セルの䞋偎基板のラビング方向
を衚わす。は光源を衚わす。
In the liquid crystal display device of the present invention, FIG.
As shown in FIGS. 11 and 12, two optical compensation sheets may be provided on one side of the liquid crystal cell. In FIG. 10, a pair of polarizing plates 103a and 103b are arranged on both sides of the liquid crystal cell 101, and optical compensation sheets 102a and 102b are arranged between the polarizing plate 103a and the liquid crystal cell 101. 102Ma is the direction when the direction of the minimum absolute value of the retardation of the optical compensation sheet 102a is orthogonally projected onto the liquid crystal cell, and 102Mb is the optical compensation sheet 1
The direction of the absolute value of the absolute value of the retardation of 02b is the direction when orthogonally projected onto the liquid crystal cell. 101Ra is
Represents the rubbing direction of the upper substrate of the liquid crystal cell 101,
01Rb represents the rubbing direction of the lower substrate of the liquid crystal cell 101. 104 denotes a light source.

【】レタヌデヌションの絶察倀の最小倀の方向
を液晶セル䞊に正投圱した時の方向ず液晶セ
ルの䞊偎基板のラビング方向ずのなす角α
〜床の範囲にあるこずが奜たしく、
ずずなす角αは、−〜
床の範囲にあるこずが奜たしい。即ち、䞊蚘角α
ずαは、図のように定矩するこずができる。図
は、図を軞方向から芋た時に埗られる図であ
る。図においお、、、
及びは、図におけるず同矩である。
角αは、レタヌデヌションの最小倀を瀺す正投圱
方向ず䞊偎基板のラビング方向ず
の角床であり、角αは、レタヌデヌションの最小
倀を瀺す正投圱方向ず䞋偎基板のラビング方
向ずの角床である。レタヌデヌションの最小
倀を瀺す正投圱方向ずずのなす角
βは、〜床の範囲が奜たしい。
The angle between the direction 102Ma when the direction of the minimum absolute value of retardation is orthographically projected onto the liquid crystal cell and the rubbing direction 101Ra of the upper substrate of the liquid crystal cell (α
3) It is preferably in the range of 135 to 225 degrees, and 1
The angle (α4) between 02Mb and 101Rb is −45 to 4
It is preferably in the range of 5 degrees. That is, the angle (α3
And α4) can be defined as shown in FIG. FIG. 11 is a diagram obtained when FIG. 10 is viewed from the z-axis direction. In FIG. 11, 101Ra, 101Rb, 102
Ma and 102Mb have the same meaning as in FIG.
The angle (α3) is the angle between the orthographic direction 102Ma indicating the minimum value of the retardation and the rubbing direction 101Ra of the upper substrate, and the angle (α4) is the angle lower than the orthographic direction 102Mb indicating the minimum value of the retardation. This is an angle with the rubbing direction 101Rb of the substrate. The angle (β1) formed by the orthogonal projection directions 102Ma and 102Mb indicating the minimum value of the retardation is preferably in the range of 0 to 120 degrees.

【】䞊蚘レタヌデヌションの最小倀の方向ず液
晶セルの基板のラビング方向ずの関係は、カラヌ液晶衚
瀺装眮にも適甚するこずができる。本発明のカラヌ液晶
衚瀺装眮の代衚的構成䟋を図に瀺す。図におい
お、察向透明電極ずカラヌフィルタを備え
たガラス基板、画玠電極ず
を備えたガラス基板、この枚の基板間に封入
されたねじれ配向したネマチック液晶ずからなる
液晶セル、液晶セルの䞡偎に蚭けられた䞀察の偏光板
、、及び液晶セルず偏光板ずの間に配眮
された䞀察の光孊補償シヌト、が、組
み合わせられおカラヌ液晶衚瀺装眮を構成しおいる。光
孊補償シヌトは䞀方のみ配眮しおも良い即ち、
たたは。
The relationship between the direction of the minimum value of retardation and the rubbing direction of the substrate of the liquid crystal cell can be applied to the color liquid crystal display device. FIG. 12 shows a typical configuration example of the color liquid crystal display device of the present invention. 12, a glass substrate 124a provided with a counter transparent electrode 122 and a color filter 125, a pixel electrode 123 and a TFT 126
, A liquid crystal cell including a twisted-aligned nematic liquid crystal 121 sealed between the two substrates, and a pair of polarizing plates 1 provided on both sides of the liquid crystal cell.
28a, 128b and a pair of optical compensatory sheets 127a, 127b disposed between the liquid crystal cell and the polarizer constitute a color liquid crystal display device. The optical compensatory sheet may be disposed on only one side (ie, 127).
a or 127b).

【】本発明のカラヌ液晶衚瀺装眮に甚いるカラ
ヌフィルタヌずしおは、色玔床、寞法粟床、さらには耐
熱性の高いものであればどのようなものでも䜿甚するこ
ずができる。奜たしい䟋ずしおは、染色フィルタヌ、印
刷フィルタヌ、電着フィルタヌあるいは顔料分散フィル
タ等を挙げるこずができる。これらは、小林駿介線著
「カラヌ液晶デスプレむ」産業図曞、〜
頁、〜頁、あるいは日経マむクロデバむ
ス線「フラットパネル・ディスプレむ」日経
瀟、頁等に蚘茉されおいる。䟋えば、染色
フィルタヌは、れラチンやカれむン、等の基質に
重クロム酞塩を加えお感光性を付䞎し、ファトリ゜グラ
ッフィヌ法によっおパタヌンニングした埌、染色しお埗
るこずができる。
As the color filter used in the color liquid crystal display device of the present invention, any color filter having high color purity, dimensional accuracy and heat resistance can be used. Preferred examples include a dyeing filter, a printing filter, an electrodeposition filter, and a pigment dispersion filter. These are described in "Color LCD Display" edited by Shunsuke Kobayashi (Sangyo Tosho, 172-173).
Pages 237-251) or "Flat Panel Display 1994" edited by Nikkei Microdevice (Nikkei BP, page 216). For example, a dyeing filter can be obtained by adding a dichromate to a substrate such as gelatin, casein, or PVA to impart photosensitivity, patterning the substrate by a fatrigrafy method, and then dyeing it.

【】たた本発明のカラヌ液晶衚瀺装眮に甚
いる液晶ずしおは、䟋えば日本孊術振興䌚第委員
䌚線「液晶デバむスハンドブック」日刊工業新聞瀟、
頁〜頁蚘茉のネマティック液晶が奜たし
い。この液晶分子の長軞は、液晶セルの䞊䞋基板間でほ
が℃ツむスト配向したものであるので、入射した盎
線偏光は印加電界がない堎合には、液晶セルの旋光性に
よっお℃偏光方向を倉えお液晶セルから出射するこ
ずになる。しきい倀以䞊の充分高い電界を印加した時に
は、液晶分子の長軞が電界方向に向きを倉え、電極面に
垂盎に䞊ぶため、旋光性は殆ど消倱する。したがっお、
この旋光の効果を充分に発揮させるためには、ツむスト
角は〜℃が奜たしく、℃〜℃がさら
に奜たしい。
As the liquid crystal used in the (color) liquid crystal display device of the present invention, for example, "Liquid Crystal Device Handbook" edited by Japan Society for the Promotion of Science, 142th Committee (Nikkan Kogyo Shimbun,
Nematic liquid crystals described on pages 107 to 213) are preferred. Since the major axis of the liquid crystal molecules is twisted at approximately 90 ° C. between the upper and lower substrates of the liquid crystal cell, the incident linearly polarized light has a 90 ° C. polarization direction due to the optical rotation of the liquid crystal cell in the absence of an applied electric field. Instead, the light is emitted from the liquid crystal cell. When a sufficiently high electric field equal to or higher than the threshold is applied, the long axis of the liquid crystal molecules changes its direction in the electric field and is arranged perpendicular to the electrode surface, so that the optical rotation is almost lost. Therefore,
In order to sufficiently exhibit the effect of the optical rotation, the twist angle is preferably from 70 to 100C, more preferably from 80C to 90C.

【】この電界による液晶分子の配列の欠陥デ
ィスクリネヌションを少なくするため、液晶分子にあ
らかじめプレチルト角を䞎えおおくこずが奜たしい。プ
レチルト角は℃以䞋が奜たしく、さらに、℃〜℃
が奜たしい。䞊蚘ツむスト角、プレチルト角に぀いお
は、岡野光治、小林駿介共線「液晶応甚線」培颚通、
頁〜頁に蚘茉されおいる。
In order to reduce the defects (disclination) in the alignment of the liquid crystal molecules due to this electric field, it is preferable to give the liquid crystal molecules a pretilt angle in advance. The pretilt angle is preferably 5 ° C or less, and more preferably 2 ° C to 4 ° C.
Is preferred. Regarding the twist angle and pretilt angle, see “Liquid Crystal Application” edited by Koji Okano and Shunsuke Kobayashi (Baifukan,
Pages 16 to 28).

【】さらに液晶セルの屈折率異方性△ず、液
晶セルにおける液晶局の厚みずの積△・の倀
は、䟋えば日本孊術振興䌚第委員䌚線「液晶デバ
むスハンドブック」日刊工業新聞瀟、頁〜
頁に蚘茉されおいるように、が倧きくなればコン
トラストは改良されるものの、応答速床が遅く、たた芖
野角も小さくなるため、〜Όの範囲が奜
たしく、〜Όの範囲がより奜たしい。
Further, the value of the product (Δn · d) of the refractive index anisotropy Δn of the liquid crystal cell and the thickness d of the liquid crystal layer in the liquid crystal cell is, for example, “Liquid Crystal Device” edited by Japan Society for the Promotion of Science, 142 Committee. Handbook "(Nikkan Kogyo Shimbun, pages 329-33)
As described in (p. 7), as d increases, the contrast is improved, but the response speed is slow and the viewing angle is also small. Therefore, the range of 0.3 to 1.0 ÎŒm is preferable. The range of 3 to 0.6 ÎŒm is more preferable.

【】本発明のカラヌ液晶衚瀺装眮に印加される
信号は、䟋えば日本孊術振興䌚第委員䌚線「液晶
デバむスハンドブック」日刊工業新聞瀟、頁〜
頁、あるいは岡野光治、小林駿介共線「液晶
応甚線」倍颚通、頁〜頁等に蚘茉されお
いるように、〜の亀流で、電圧は
以䞋、奜たしくは以䞋の信号である。たずえばノ
ヌマリヌホワむトモヌドでは、印加電圧が〜
で明衚瀺、〜で䞭間調衚瀺、
以䞊で暗衚瀺を行なうこずが䞀般的である。
The signal applied to the color liquid crystal display device of the present invention is, for example, “Liquid Crystal Device Handbook” edited by Japan Society for the Promotion of Science, 142th Committee (Nikkan Kogyo Shimbun, page 387-
465 pages) or Koji Okano and Shunsuke Kobayashi, "Liquid Crystals"
As described in “Applied Edition” (Baifukan, pp. 85-105), etc., the alternating current of 5-100 Hz and the voltage of 20
V or less, preferably 8 V or less. For example, in the normally white mode, the applied voltage is 0 to 1.5 V
For bright display, 1.5V to 3.0V for halftone display, 3.0V
The dark display is generally performed as described above.

【】本発明のカラヌ液晶衚瀺装眮及び液晶衚瀺
装眮で䜿甚するこずができる偏光板の材料は特に限定さ
れるこずはなく、どのような材料でも䜿甚するこずがで
きる。䞀般に、偏光板は、偏光子ずその䞡偎に蚭けられ
た保護フィルムずからなる。偏光子は、䟋えば、延䌞ポ
リビニルアルコヌル等の芪氎性ポリマヌにペり玠たたは
染料で凊理しお埗られる。保護フィルムは、䞀般にトリ
アセチルセルロヌスを延䌞凊理しお埗るこずができる。
保護フィルムは、䞀般に〜のレタデヌショ
ン、奜たしくは〜のを有す
る。は、透明支持䜓で芏定しように、
ヌ×で衚される。䞀般に、光孊補償シ
ヌトは、光孊補償シヌト偎の偏光板ずを粘着局を介しお
積局し、液晶衚瀺装眮に装着できる倧きさに裁断しお装
着される。このずき、光孊補償シヌトず偏光板ず液晶セ
ルの各々の光孊軞が、最適芖角特性になるように積局す
るこずず裁断が必芁ずなる。
The material of the polarizing plate which can be used in the color liquid crystal display device and the liquid crystal display device of the present invention is not particularly limited, and any material can be used. Generally, a polarizing plate comprises a polarizer and protective films provided on both sides thereof. The polarizer is obtained, for example, by treating a hydrophilic polymer such as stretched polyvinyl alcohol with iodine or a dye. The protective film can be generally obtained by stretching triacetyl cellulose.
The protective film generally has a retardation (Re) of 0 to 200 nm, preferably Re of 0 to 100 nm. Re is defined by (nx + n
y) / 2−nz × d. In general, the optical compensation sheet is mounted by laminating the polarizing plate on the optical compensation sheet side via an adhesive layer and cutting it into a size that can be mounted in a liquid crystal display device. At this time, it is necessary to stack and cut so that the optical axes of the optical compensation sheet, the polarizing plate and the liquid crystal cell have optimum viewing angle characteristics.

【】[0057]

【実斜䟋】【Example】

実斜䟋 配向膜付支持䜓の䜜補れラチン薄膜Ό
を塗蚭したΌ厚さを有するトリアセチルセルロ
ヌスのフィルム富士写真フむルム株補䞊に、䞋
蚘の組成から成る配向膜圢成甚塗垃液をバ−コ−タ−で
塗垃し、℃枩颚にお也燥させた埌、この枩床雰囲気
䞋で、該支持䜓の偎蟺から内偎にロヌレットの端
が来るようにしお、支持䜓の䞡端に高さΌ、幅
のロ−レットを付䞎し、巻芯に巻き取るこずにより、
長さの配向膜付支持䜓を䜜補した。 配向膜圢成甚塗垃液 ポリビニルアルコ−ル誘導䜓䞋蚘  æ°Ž  メタノ−ル  グルタルアルデヒド架橋剀 
Example 1 <Preparation of support with alignment film> Gelatin thin film (0.1 ÎŒm)
Was coated on a triacetyl cellulose film having a thickness of 100 Όm (manufactured by Fuji Photo Film Co., Ltd.) with a bar coater to apply an alignment film-forming coating solution having the following composition to 90 ° C. After drying with warm air, under this temperature atmosphere, the edges of the knurls were placed 2 mm inward from the sides of the support so that both ends of the support had a height of 20 Ό and a width of 7 m.
By applying m rollet and winding it around the core,
A support with an alignment film having a length of 1000 m was produced. <Coating liquid for forming alignment film> Polyvinyl alcohol derivative (below) 10 kg Water 371 kg Gthanol 119 kg Glutaraldehyde (crosslinking agent) 500 g

【】[0058]

【化】 Embedded image

【】面内の䞻屈折率を、、厚さ方向の
屈折率、厚さをずした時、トリアセチルセルロヌ
スフィルムの−×、
−×を決定した図参照。厚さを、マむ
クロメヌタを甚いお枬定し、そしお法線方向、及び法線
方向から方向に°、その逆方向に°の方向
からの倀を、゚リプ゜メヌタ−、
株島接補䜜所補により枬定し、蚈算により䞊蚘
−×、−×
を決定した。䞊蚘トリアセチルセルロヌスフィルムの
−×はで、−
×はであった。埓っお、䞊蚘トリアセ
チルセルロヌスフィルムはほが負に䞀軞性であり、その
光軞がほがフむルム方線方向にあった。
When the in-plane main refractive index is nx, ny, the thickness direction refractive index nz, and the thickness is d, | nx-ny | xd, {(nx + ny) /
2-nz} * d was determined (see FIG. 1). The thickness was measured using a micrometer, and the Re value from the normal direction and from the direction of 40 ° in the MD direction to the normal direction and 40 ° in the opposite direction was measured using an ellipsometer (AEP-100,
Measured by Shimadzu Corporation, and calculated above |
nx-ny | xd, {(nx + ny) / 2-nz} xd
It was determined. Of the above triacetyl cellulose film
nx−ny | × d is 3 nm, and {(nx + ny) / 2−
nz} xd was 40 nm. Therefore, the triacetyl cellulose film was almost negatively uniaxial, and the optical axis was almost in the direction of the film normal.

【】この配向膜䞊をラビング凊理した埌、前述
した液晶性ディスコティック化合物−、
前蚘化合物䟋番号、フェノキシゞ゚チ
レングリコヌルアクリレヌト東亜合成
株補、セルロヌスアセテヌトブチレヌト
−むヌストマンケミカル瀟補
、及び光重合開始剀むルガキュア−チ
バ・ガむギヌ瀟補を、のメチル
゚チルケトンに溶解しお埗られた塗垃液を、ワむダヌバ
ヌで塗垃バヌし、金属の枠に貌り぀けお固定し
お℃の高枩槜䞭で分間加熱し、デむスコティッ
ク化合物を配向させた埌、宀枩たで攟冷しお、厚さ
Όのディスコティック化合物を含む局光孊異方
局圢成した。こうしお、光孊異方局を有する本発明の
光孊補償シヌト−を䜜補した。
After rubbing the alignment film, the above-mentioned liquid crystalline discotic compound TE-8 (8, m =
4) (the above compound example number), phenoxydiethylene glycol acrylate (M101; manufactured by Toagosei Co., Ltd.) 0.4 g, cellulose acetate butyrate (CAB531-1; manufactured by Eastman Chemical Co.) 0.
A coating solution obtained by dissolving 05 g and 0.01 g of a photopolymerization initiator (Irgacure-907; manufactured by Ciba Geigy) in 3.65 g of methyl ethyl ketone was applied with a wire bar (# 4 bar), After sticking to a metal frame and fixing and heating in a high temperature bath at 120 ° C. for 3 minutes to orient the discotic compound, it is allowed to cool to room temperature and the thickness is 1.
A layer (optically anisotropic layer) containing a discotic compound having a thickness of 8 ÎŒm was formed. Thus, the optical compensation sheet (OCS-A) of the present invention having the optically anisotropic layer was produced.

【】埗られた本発明の光孊補償シヌト
−をミクロトヌムを甚いおラビング方向で深さに沿
っお切断し、極めお薄いフィルムサンプルを䜜補し
た。このサンプルを4の雰囲気䞭に時間攟眮
しお、染色した。埗られた染色フィルムを、透過型電子
顕埮鏡によっお芳察し、その顕埮鏡写真を埗
た。染色フィルムでは、ディスコティック化合物−
、のアクリロむル基が染色され、写真の
像ずしお認められた。この写真から、光孊異方局のディ
スコティック化合物は透明支持䜓の衚面から傟いおお
り、か぀その傟斜角が、光孊異方局の底郚から深さ方向
の距離の増加ず共に、〜床にかけお連続的増加し
おいるこずが、認められた。
The obtained optical compensation sheet of the present invention (OCS
-A) was cut along the depth in the rubbing direction using a microtome to produce an extremely thin film (sample). The sample was left to stand in an OsO 4 atmosphere for 48 hours and stained. The obtained dyed film was observed with a transmission electron microscope (TEM), and a micrograph was obtained. In the dyed film, the discotic compound TE-
Eight (8, m = 4) acryloyl groups were stained and recognized as photographic images. From this photograph, the discotic compound of the optically anisotropic layer was inclined from the surface of the transparent support, and the inclination angle was increased from 5 to 65 degrees with increasing distance in the depth direction from the bottom of the optically anisotropic layer. A continuous increase was observed.

【】実斜䟋 前蚘配向膜䞊をラビング凊理した埌、前述した液晶性デ
ィスコティック化合物−、前蚘化
合物䟋番号、フェノキシゞ゚チレングリコヌ
ルアクリレヌト東亜合成株補
、セルロヌスアセテヌトブチレヌト−
むヌストマンケミカル瀟補、及び光重
合開始剀むルガキュア−チバ・ガむギヌ瀟
補を、のメチル゚チルケトンに
溶解しお埗られた塗垃液を、ワむダヌバヌで塗垃
バヌし、金属の枠に貌り぀けお固定しお℃の高
枩槜䞭で分間加熱し、デむスコティック化合物を配向
させた埌、℃のたた高圧氎銀灯を甚いお分間
照射し、宀枩たで攟冷しお、厚さΌのディス
コティック化合物を含む局光孊異方局を有する本発
明の光孊補償シヌト−を䜜補した。
Example 2 After rubbing the alignment film, 1.6 g of the above-mentioned liquid crystalline discotic compound TE-8 (8, m = 4) (the above compound example number), phenoxydiethylene glycol acrylate (M101; Toa) Synthetic Co., Ltd.) 0.4
g, cellulose acetate butyrate (CAB531-
1; Eastman Chemical Co., Ltd.) 0.05 g and a photopolymerization initiator (Irgacure-907; Ciba Geigy Co. Ltd.) 0.01 g were dissolved in 3.65 g of methyl ethyl ketone to obtain a wire. Apply with a bar (# 4
Bar), and fix it by sticking it to a metal frame and heating it in a high temperature bath at 120 ° C for 3 minutes to orient the discotic compound, and then at 120 ° C for 1 minute using a high pressure mercury lamp.
It was irradiated with V and allowed to cool to room temperature to prepare an optical compensation sheet (OCS-B) of the present invention having a layer (optically anisotropic layer) containing a discotic compound having a thickness of 1.8 ÎŒm.

【】このようにしお埗られた本発明の光孊補償
シヌト−に぀いお、ラビング軞を含み䜍盞
差板面に垂盎な面においお、法線方向±°の範囲で
°間隔で、レタヌデション倀を゚リプ゜メヌタヌ
−島接補䜜所補で枬定し、曎に、枬定郚
分のディスコティック化合物を陀去した埌の支持䜓の光
孊特性を同様に枬定した。これらの枬定により、光孊異
方局の光孊特性ず枬定角の関係は、図に瀺
すようになった。図の結果をシュミレヌトしたずこ
ろ、埗られた光孊異方局は負の耇屈折を有し、ディスコ
ティック化合物の面が支持䜓衚面から傟いおおり、その
傟きチルト角が床から床たで連続的に倉化
しおいるこずがわかった。
Regarding the optical compensation sheet (OCS-B) of the present invention thus obtained, in a plane including the rubbing axis and perpendicular to the surface of the retardation plate, in the normal direction ± 55 °, at intervals of 5 °. , Letterization value to ellipsometer (A
EP-100; manufactured by Shimadzu Corporation), and further, the optical characteristics of the support after removing the discotic compound in the measurement portion were similarly measured. From these measurements, the optical characteristics of the optically anisotropic layer (relationship between Re and the measurement angle) were as shown in FIG. When the result of FIG. 13 is simulated, the obtained optical anisotropic layer has negative birefringence, the surface of the discotic compound is tilted from the surface of the support, and the tilt (tilt angle) is from 20 degrees to 50 degrees. It turned out that it changed continuously up to the degree.

【】実斜䟋 前蚘配向膜䞊をラビング凊理した埌、前述した液晶性デ
ィスコティック化合物−、前蚘化
合物䟋番号、゚チレングリコヌル倉性トリメ
チロヌルプロパントリアクリレヌト倧阪
有機化孊工業株補、セルロヌスアセテヌ
トブチレヌト−むヌストマンケ
ミカル瀟補、光重合開始剀むルガキュア
−チバ・ガむギヌ瀟補及び増感剀
カダキュアヌ、日本化薬株補
を、のメチル゚チルケトンに溶解しお埗ら
れた塗垃液を、ワむダヌバヌで塗垃バヌし、金
属の枠に貌り぀けお固定しお℃の高枩槜䞭で分
間加熱し、デむスコティック化合物を配向させた埌、
℃のたた高圧氎銀灯を甚いお
秒間照射し、宀枩たで攟冷しお、厚さΌの
ディスコティック化合物を含む局光孊異方局を有す
る本発明の光孊補償シヌト−を䜜補した。
Example 3 After rubbing the alignment film, 1.8 g of the above-mentioned liquid crystalline discotic compound TE-8 (8, m = 4) (the above compound example number), ethylene glycol-modified trimethylolpropane tri Acrylate (V # 360; manufactured by Osaka Organic Chemical Industry Co., Ltd.) 0.2 g, cellulose acetate butyrate (CAB551-0.2; manufactured by Eastman Chemical Co.) 0.04 g, photopolymerization initiator (Irgacure-907; Ciba)・ Geigy Co., Ltd.) 0.06 g and sensitizer (Kayakyu DETX, Nippon Kayaku Co., Ltd.) 0.02
Coating solution obtained by dissolving g in 3.43 g of methyl ethyl ketone is applied with a wire bar (# 3 bar), stuck on a metal frame and fixed, and heated in a high temperature bath at 120 ° C for 3 minutes. Then, after orienting the discotic compound, 1
1 at high temperature mercury lamp (120W / cm) at 20 ℃
It was irradiated with UV for 2 seconds and allowed to cool to room temperature to prepare an optical compensation sheet (OCS-C) of the present invention having a layer (optically anisotropic layer) containing a discotic compound having a thickness of 1.8 ÎŒm.

【】このようにしお埗られた本発明の光孊補償
シヌト−に぀いお、ラビング軞を含み䜍盞
差板面に垂盎な面においお、実斜䟋ず同様にレタヌデ
ション倀を゚リプ゜メヌタヌ−島接補
䜜所補で枬定し、曎に、枬定郚分のディスコティック
化合物を陀去した埌の支持䜓の光孊特性を同様に枬定し
た。これらの枬定により、埗られた光孊異方局は負の耇
屈折を有し、か぀ディスコティック化合物の面が支持䜓
衚面から傟いおおり、その傟きチルト角が床か
ら床たで連続的に倉化しおいるこずがわかった。
With respect to the optical compensation sheet (OCS-C) of the present invention thus obtained, the retardation value of the ellipsometer (in the plane perpendicular to the retardation plate surface including the rubbing axis) was measured in the same manner as in Example 2. AEP-100; manufactured by Shimadzu Corporation), and further, the optical characteristics of the support after removing the discotic compound in the measurement portion were similarly measured. As a result of these measurements, the obtained optically anisotropic layer had negative birefringence, the discotic compound surface was tilted from the surface of the support, and the tilt (tilt angle) was continuous from 20 degrees to 70 degrees. It turned out that it was changing.

【】実斜䟋 前蚘配向膜䞊をラビング凊理した埌、前述した液晶性デ
ィスコティック化合物−、前蚘化
合物䟋番号、α−アクロレむン−ω−フェ
ノキシ−ポリオキシ゚チレン新䞭村化
孊工業株補、セルロヌスアセテヌトブ
チレヌト−むヌストマンケミカル瀟
補、及び光重合開始剀むルガキュア−
チバ・ガむギヌ瀟補を、
のメチル゚チルケトンに溶解しお埗られる塗垃液を、ワ
むダヌバヌで塗垃バヌし、金属の枠に貌り぀け
お固定しお℃の高枩槜䞭で分間加熱し、デむス
コティック化合物を配向させた埌、℃のたた高圧
氎銀灯を甚いお秒間照射し、
宀枩たで攟冷しお、厚さΌのディスコティック
化合物を含む局光孊異方局を有する本発明の光孊補
償シヌト−を䜜補した。
Example 4 After rubbing the alignment film, 1.75 g of the above-mentioned liquid crystalline discotic compound TE-8 (8, m = 4) (Example number of the compound), α-acrolein-ω-phenoxy was used. -0.25 g of polyoxyethylene (AMP60G; manufactured by Shin-Nakamura Chemical Co., Ltd.), 0.05 g of cellulose acetate butyrate (CAB500-5; manufactured by Eastman Chemical Company), and a photopolymerization initiator (Irgacure-9)
07; manufactured by Ciba Geigy) 0.01 g, 3.43 g
The coating solution obtained by dissolving in methyl ethyl ketone of No. 3 is applied with a wire bar (# 3 bar), fixed on a metal frame and heated for 3 minutes in a high temperature bath at 120 ° C to orient the discotic compound. Then, UV irradiation is performed for 1 second at 120 ° C. using a high pressure mercury lamp (120 W / cm),
After cooling to room temperature, an optical compensation sheet (OCS-D) of the present invention having a layer (optically anisotropic layer) containing a discotic compound having a thickness of 1.8 ÎŒm was produced.

【】このようにしお埗られた本発明の光孊補償
シヌト−に぀いお、ラビング軞を含み䜍盞
差板面に垂盎な面においお、実斜䟋ず同様にレタヌデ
ション倀を゚リプ゜メヌタヌ−島接補
䜜所補で枬定し、曎に、枬定郚分のディスコティック
化合物を陀去した埌の支持䜓の光孊特性を同様に枬定し
た。これらの枬定により、埗られた光孊異方局は負の耇
屈折を有し、か぀ディスコティック化合物の面が支持䜓
衚面から傟いおおり、その傟きチルト角が床か
ら床たで連続的に倉化しおいるこずがわかった。
The retardation value of the thus obtained optical compensation sheet (OCS-D) of the present invention (OCS-D) on the plane including the rubbing axis and perpendicular to the retardation plate surface was measured in the same manner as in Example 2. AEP-100; manufactured by Shimadzu Corporation), and further, the optical characteristics of the support after removing the discotic compound in the measurement portion were similarly measured. By these measurements, the obtained optically anisotropic layer has negative birefringence, the discotic compound surface is inclined from the surface of the support, and the inclination (tilt angle) is continuous from 20 degrees to 40 degrees. It turned out that it was changing.

【】実斜䟋 前蚘配向膜䞊をラビング凊理した埌、前述した液晶性デ
ィスコティック化合物−、前蚘化
合物䟋番号、゚チレングリコヌル倉性トリメ
チロヌルプロパントリアクリレヌト倧阪
有機化孊工業株補、セルロヌスアセテ
ヌトブチレヌト−むヌストマン
ケミカル瀟補、セルロヌスアセテヌトブ
チレヌト−むヌストマンケミカ
ル瀟補、光重合開始剀むルガキュア−
チバ・ガむギヌ瀟補及び増感剀
カダキュアヌ、日本化薬株補
を、のメチル゚チルケトンず
のプロピレングリコヌルモノメチル゚ヌテル
日本乳化剀株に溶解しお埗られた塗垃液を、
ワむダヌバヌで塗垃バヌし、金属の枠に貌り぀
けお固定しお℃の高枩槜䞭で分間加熱し、デむ
スコティック化合物を配向させた埌、℃のたた高
圧氎銀灯を甚いお秒間照射
し、宀枩たで攟冷しお、厚さΌのディスコティ
ック化合物を含む局光孊異方局を有する本発明の光
孊補償シヌト−を䜜補した。
Example 5 After rubbing the alignment film, 1.6 g of the above-mentioned liquid crystalline discotic compound TE-8 (8, m = 4) (the above compound example number), ethylene glycol-modified trimethylolpropane tri Acrylate (V # 360; manufactured by Osaka Organic Chemical Industry Co., Ltd.) 0.16 g, cellulose acetate butyrate (CAB531-1.0; manufactured by Eastman Chemical Co.) 0.009 g, cellulose acetate butyrate (CAB551-0.2). Eastman Chemical Co., Ltd.) 0.036 g, photopolymerization initiator (Irgacure
907; manufactured by Ciba Geigy) 0.005 g and a sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 0.00
2 g was added with 2.95 g of methyl ethyl ketone and 0.155
g of propylene glycol monomethyl ether (MF
G: A coating solution obtained by dissolving in Japan Emulsifier Co., Ltd.
Apply it with a wire bar (# 3 bar), attach it to a metal frame, fix it, and heat for 3 minutes in a high-temperature bath at 120 ° C to orient the discotic compound, and then keep the high-pressure mercury lamp (120W) at 120 ° C. / Cm) for 1 second and then allowed to cool to room temperature, and an optical compensation sheet (OCS-F) of the present invention having a layer (optically anisotropic layer) containing a discotic compound having a thickness of 2.0 Όm. Was produced.

【】このようにしお埗られた本発明の光孊補償
シヌト−に぀いお、ラビング軞を含み䜍盞
差板面に垂盎な面においお、実斜䟋ず同様にレタヌデ
ション倀を゚リプ゜メヌタヌ−島接補
䜜所補で枬定し、曎に、枬定郚分のディスコティック
化合物を陀去した埌の支持䜓の光孊特性を同様に枬定し
た。これらの枬定により、埗られた光孊異方局は負の耇
屈折を有し、か぀ディスコティック化合物の面が支持䜓
衚面から傟いおおり、その傟きチルト角が床か
ら床たで連続的に倉化しおいるこずがわかった。
With respect to the optical compensation sheet (OCS-F) of the present invention thus obtained, the retardation value was measured on the surface including the rubbing axis and perpendicular to the retardation plate surface in the same manner as in Example 2 by the ellipsometer ( AEP-100; manufactured by Shimadzu Corporation), and further, the optical characteristics of the support after removing the discotic compound in the measurement portion were similarly measured. According to these measurements, the obtained optically anisotropic layer has negative birefringence, the discotic compound surface is tilted from the support surface, and the tilt (tilt angle) is continuous from 20 degrees to 50 degrees. It turned out that it was changing.

【】配向膜付支持䜓の䜜補れラチン薄膜
Όを塗蚭したΌ厚さを有するトリ
アセチルセルロヌスのフィルム富士写真フむルム
株補䞊に、実斜䟋ず同様の組成から成る配向膜圢
成甚塗垃液をバ−コ−タ−で塗垃し、℃枩颚にお也
燥させた埌、巻芯に巻き取るこずにより、長さ
の配向膜付支持䜓を䜜補した。
<Preparation of Support with Alignment Film> On a triacetyl cellulose film (manufactured by Fuji Photo Film Co., Ltd.) having a thickness of 100 Όm coated with a gelatin thin film (0.1 Όm), the same as in the example was carried out. A coating solution for forming an alignment film having a composition is applied with a bar coater, dried with hot air at 90 ° C., and then wound on a winding core to give a length of 1000.
A support with an alignment film of m was prepared.

【】比范䟋 この配向膜䞊をラビング凊理した埌、前述した液晶性デ
ィスコティック化合物−、前蚘化
合物䟋番号、フェノキシゞ゚チレングリコヌ
ルアクリレヌト東亜合成株補
、セルロヌスアセテヌトブチレヌト−
むヌストマンケミカル瀟補、及び光重
合開始剀むルガキュア−チバ・ガむギヌ瀟
補を、のメチル゚チルケトンに
溶解しお埗られた塗垃液を、ワむダヌバヌで塗垃
バヌし、金属の枠に貌り぀けお固定しお℃の高
枩槜䞭で分間加熱し、デむスコティック化合物を配向
させた埌、℃のたた高圧氎銀灯を甚いお分間
照射し、宀枩たで攟冷しお、厚さΌのディス
コティック化合物を含む局光孊異方局を有する本発
明の光孊補償シヌト−を䜜補した。
Comparative Example 1 After rubbing the alignment film, 1.6 g of the above-mentioned liquid crystalline discotic compound TE-8 (8, m = 4) (the above compound example number), phenoxydiethylene glycol acrylate (M101; Toa) Synthetic Co., Ltd.) 0.4
g, cellulose acetate butyrate (CAB531-
1; Eastman Chemical Co., Ltd.) 0.05 g and a photopolymerization initiator (Irgacure-907; Ciba Geigy Co. Ltd.) 0.01 g were dissolved in 3.65 g of methyl ethyl ketone to obtain a wire. Apply with a bar (# 4
Bar), and fix it by sticking it to a metal frame and heating it in a high temperature bath at 120 ° C for 3 minutes to orient the discotic compound, and then at 120 ° C for 1 minute using a high pressure mercury lamp.
It was irradiated with V and allowed to cool to room temperature to prepare an optical compensation sheet (OCS-G) of the present invention having a layer (optically anisotropic layer) containing a discotic compound having a thickness of 1.8 ÎŒm.

【】このようにしお埗られた本発明の光孊補償
シヌト−に぀いお、ラビング軞を含み䜍盞
差板面に垂盎な面においお、実斜䟋ず同様にレタヌデ
ション倀を゚リプ゜メヌタヌ−島接補
䜜所補で枬定し、曎に、枬定郚分のディスコティック
化合物を陀去した埌の支持䜓の光孊特性を同様に枬定し
た。これらの枬定により、光孊異方局の光孊特性
ず枬定角の関係は、実斜䟋ず党く同じになり図
、埗られた光孊異方局は負の耇屈折を有し、ディス
コティック化合物の面が支持䜓衚面から傟いおおり、そ
の傟きチルト角が床から床たで連続的に倉
化しおいるこずがわかった。
With respect to the optical compensation sheet (OCS-B) of the present invention thus obtained, the retardation value was measured on the plane including the rubbing axis and perpendicular to the surface of the retardation plate by the ellipsometer (as in Example 2). AEP-100; manufactured by Shimadzu Corporation), and further, the optical characteristics of the support after removing the discotic compound in the measurement portion were similarly measured. By these measurements, the optical characteristics (Re
And the measurement angle) are exactly the same as in Example 1 (see FIG. 1).
3), the obtained optically anisotropic layer has negative birefringence, the discotic compound surface is inclined from the support surface, and the inclination (tilt angle) continuously changes from 20 degrees to 50 degrees. I found out that

【】比范䟋 比范䟋ず同様に、この配向膜䞊をラビング凊理した
埌、前述した液晶性ディスコティック化合物−
、前蚘化合物䟋番号にメチル゚チルケ
トンを加え、党䜓ずしおずした溶液を、スピ
ンコヌトによりにお塗垃を行った。次い
で、塗垃局を℃たで加熱し、熱凊理した埌、
℃のたた高圧氎銀灯を甚いお分間照射し、宀枩
たで冷华しお、厚さΌのディスコティック化合
物を含む局光孊異方局を有する光孊補償シヌト
−を䜜補した。
Comparative Example 2 Similar to Comparative Example 1, after rubbing the alignment film, the above-mentioned liquid crystalline discotic compound TE-8 was used.
Methyl ethyl ketone was added to (8, m = 6) (the above compound example number) to make a total solution of 10 wt%, and the solution was applied by spin coating at 2000 rpm. Then, the coating layer is heated to 180 ° C. and heat-treated, and then 18
UV irradiation for 1 minute at 0 ° C. using a high pressure mercury lamp, cooling to room temperature, and an optical compensation sheet (O 2) having a layer (optically anisotropic layer) containing a discotic compound having a thickness of 1.0 Όm.
CS-G) was prepared.

【】このようにしお埗られた光孊補償シヌト
−に぀いお、ラビング軞を含み䜍盞差板面
に垂盎な面においお、実斜䟋ず同様にレタヌデション
倀を゚リプ゜メヌタヌ−島接補䜜所
補で枬定し、曎に、枬定郚分のディスコティック化合
物を陀去した埌の支持䜓の光孊特性を同様に枬定した。
これらの枬定により、埗られた光孊異方局は負の耇屈折
を有し、か぀ディスコティック化合物の面が支持䜓衚面
から傟いおいるこずがわかった。
With respect to the optical compensation sheet (OCS-G) thus obtained, the retardation value was measured on the surface including the rubbing axis and perpendicular to the retardation plate surface in the same manner as in Example 2 by using an ellipsometer (AEP-100). (Manufactured by Shimadzu Corporation), and the optical characteristics of the support after removing the discotic compound in the measurement portion were also measured in the same manner.
From these measurements, it was found that the obtained optically anisotropic layer had negative birefringence, and the surface of the discotic compound was tilted from the surface of the support.

【】光孊補償シヌトの評䟡䞊蚘実斜䟋〜
及び比范䟋〜で埗られた光孊補償シヌトに぀いお
光孊特性を䞋蚘のように評䟡した。 光孊異方局のディスコティック化合物の面の角床
倉化及びの最小倀の方向の傟き角は、䞊蚘の様に決
定した。 配向ムラ 䞀察の偏光板をクロスニコル状に配眮し、光孊補償シ−
トを該偏光板の偏光軞に察しお塗垃方向が°で亀わ
るように該䞀察の偏光板で挟み、目芖により配向ムラを
評䟡した。
[Evaluation of Optical Compensation Sheet] Examples 1 to 1 above
5 and the optical characteristics of the optical compensation sheets obtained in Comparative Examples 1 and 2 were evaluated as follows. (1) The angle change of the discotic compound surface of the optically anisotropic layer and the inclination angle in the direction of the minimum value of Re were determined as described above. (2) Alignment unevenness A pair of polarizing plates are arranged in a crossed Nicol pattern, and an optical compensation sheet is formed.
The film was sandwiched between the pair of polarizing plates so that the coating direction intersected with the polarizing axis of the polarizing plate at 45 °, and the unevenness of orientation was visually evaluated.

【】 衚 ──────────────────────────────────── シヌト *光軞 傟斜角 Re最小方向 **配向ムラ  倉化床 角床床 ──────────────────────────────────── 実斜䟋 OCS-A なし −  なし 実斜䟋 OCS-B なし −  なし 実斜䟋 OCS-C なし −  なし 実斜䟋 OCS-D なし −  なし 実斜䟋 OCS-F なし −  なし ──────────────────────────────────── 比范䟋 OCS-G なし −  あり 比范䟋 OCS-H あり −−  あり ──────────────────────────────────── 備考 *がの方向 **「なし」ずは配向膜支持䜓のすべおにおいお配向ムラのない こずを意味する。 「あり」ずは配向膜支持䜓のうち、巻芯偎数癟に配向ムラ が生じおいるこずを意味する。Table 1 ──────────────────────────────────── Sheet * Optical axis Inclination angle Re Minimum direction ** Alignment unevenness No. Change (degree) Angle (degree) ───────────────────────────────────── Example 1 OCS-A None 5-65 30 None Example 2 OCS-B None 20-50 35 None Example 3 OCS-C None 20-70 40 None Example 4 OCS-D None 20-40 25 None Example 5 OCS-F None 20 -50 33 None ──────────────────────────────────── Comparative Example 1 OCS-G None 20-50 35 Yes Comparative Example 2 OCS-H Yes --38 Yes Yes ───────────────────────────────────── Remarks ) * : Re is in the direction of 0 ** : “None” means that there is no alignment unevenness in all 1000 m of the alignment film support. “Available” means that, in 1000 m of the alignment film support, alignment unevenness occurs in several hundred m on the winding core side.

【】実斜䟋〜及び比范䟋〜 液晶衚瀺装眮の䜜補ネマチック液晶を℃の捻れ
角で、か぀Όのギャップサむズずなる様に挟み
蟌たれた液晶セルの䞀方の衚面に、実斜䟋、及び
それぞれ実斜䟋〜及び比范䟋比范䟋で
䜜成した光孊補償シヌトを枚積局しお貌り付け、液晶
衚瀺装眮を䜜補した図参照、䜆し比范䟋のシ−
トは配向ムラのない郚分を貌った。䜆し、䞋偎の光孊
補償シヌトのレタヌデヌションの最小倀を瀺す投圱方向
ラビング方向、図のず䞊偎基板のラ
ビング方向図のずのなす角α
が床ずなり、そしお䞊偎の光孊補償シヌトのレタ
ヌデヌションの最小倀を瀺す投圱方向ラビング方向、
図のず䞊偎基板のラビング方向図
のずのなす角αが床ずなるよう
に、䞊蚘積局䜓を液晶セル䞊に配眮した。さらに、䞀察
の偏光板を、光孊補償シヌトを有する液晶セルの䞡偎
に、二぀の偏光軞が盎亀するように貌り぀けた。䞊蚘偏
光板の保護フィルムはのレタヌデヌション前
蚘ず同様−×で定矩され
る倀を有するトリアセチルセルロヌスのフィルムを甚
いた。埗られた−は、ノヌマリヌホワむトモ
ヌド甚に蚭定した。比范䟋ずしお、䞊蚘光孊補償シヌ
トを持たない−も䜜補した。
Examples 6 to 8 and Comparative Examples 3 to 4 (Production of Liquid Crystal Display Device) One of the liquid crystal cells in which a nematic liquid crystal was sandwiched at a twist angle of 90 ° C. and a gap size of 4.5 Όm. On the surface, Examples 2, 3 and 5
(Comparative Examples 6 to 8) and Comparative Example 2 (Comparative Example 3), the two optical compensation sheets were laminated and adhered to each other to manufacture a liquid crystal display device (see FIG. 10;
The part where there is no unevenness in the orientation was pasted). However, the angle (α3) formed by the projection direction (rubbing direction, 102 Ma in FIG. 11) showing the minimum retardation of the lower optical compensation sheet and the rubbing direction (101 Ra in FIG. 11) of the upper substrate.
Is 180 degrees and the projection direction (rubbing direction,
102Mb in FIG. 11) and the rubbing direction of the upper substrate (see FIG. 1).
The above laminate was placed on the liquid crystal cell so that the angle (α4) formed by 1 and 101 Rb) was 0 degree. Further, a pair of polarizing plates was attached to both sides of a liquid crystal cell having an optical compensation sheet so that two polarizing axes were orthogonal to each other. As the protective film for the polarizing plate, a triacetyl cellulose film having a retardation of 40 nm (a value defined by {(nx + ny) / 2-nz} × d as described above) was used. The obtained TN-LCD was set for a normally white mode. As Comparative Example 4, a TN-LCD without the above optical compensation sheet was also manufactured.

【】埗られた−にの矩圢波
の電圧を、からで印加し、正面方向および䞊䞋
および巊右方向ぞ傟いた方向からのコントラストを、
分光蚈−倧塚電子株補を甚い
お枬定し、正面コントラスト0V5Vおよびコン
トラストが以䞊ずなる䞊䞋および巊右の芖野角
を求めた。埗られた結果を、衚に瀺す。
A rectangular wave voltage of 55 Hz was applied to the obtained TN-LCD at 0 to 5 V, and the contrast from the front direction and the directions tilted in the up / down and left / right directions were measured.
Using a spectrometer (LCD-5000, manufactured by Otsuka Electronics Co., Ltd.), the front contrast (T 0V / T 5V ) and the upper / lower and left / right viewing angles at which the contrast is 10 or more were determined. Table 2 shows the obtained results.

【】 衚 ──────────────────────────────────── シヌト 正面コントラスト 芖 野 角床  侊例 巊右 ──────────────────────────────────── 実斜䟋 OCS-B 以䞊   実斜䟋 OCS-C 以䞊   実斜䟋 OCS-F 以䞊   ──────────────────────────────────── 比范䟋 OCS-G 以䞊   比范䟋 なし 以䞊   ────────────────────────────────────Table 2 ──────────────────────────────────── Seat Front Contrast Visual Angle (degree) No. Up and down Left and right ──────────────────────────────────── Example 6 OCS-B 100 or more 130 125 Example 7 OCS-C 100 or higher 130 130 Example 8 OCS-F 100 or higher 120 120 ───────────────────────────────── Comparative Example 3 OCS-G 100 or more 85 100 Comparative Example 4 None 100 or more 61 95 ───────────────────────────── ────────

【】衚、から明らかなよう様に、本発明の
配向膜付支持䜓はディスコティック化合物の均䞀性の高
い配向を可胜ずし、それを甚いた光孊補償シヌトは、芖
野角を広げる効果があり、正面コントラストを䜎䞋させ
るこずなく、芖野角を広げる事が出来る。
As is clear from Tables 1 and 2, the support with an alignment film of the present invention enables highly uniform alignment of the discotic compound, and the optical compensation sheet using the same has the effect of widening the viewing angle. Therefore, the viewing angle can be expanded without lowering the front contrast.

【】実斜䟋及び カラヌ液晶衚瀺装眮の䜜補シャヌプ株補の
型液晶カラヌテレビ−の偏光板を剥がしお、
液晶セルを挟むようにしお、実斜䟋及びそれぞれ
実斜䟋及びで埗られた甚いた光孊補償シヌト
枚を装着した。その埌、䞀番倖偎に党䜓を挟むようにし
お、偏光板枚を偏光軞が互いに盎亀するように貌り付
け、本発明のカラヌ液晶衚瀺装眮を䜜成した。
Examples 9 and 10 (Production of Color Liquid Crystal Display Device) TF manufactured by Sharp Corporation
Peel off the polarizing plate of the T-type liquid crystal color television 6E-C3,
The optical compensation sheet 2 used in Examples 3 and 5 (Examples 9 and 10, respectively) so as to sandwich the liquid crystal cell.
I put on one. Thereafter, two polarizing plates were adhered so that the polarizing axes were orthogonal to each other, with the whole being sandwiched on the outermost side, thereby producing a color liquid crystal display device of the present invention.

【】比范䟋 シャヌプ株補型液晶カラヌテレビ−
の偏光板を剥がし、実斜䟋で甚いたものず同じ偏光板
枚を、液晶セルを挟むようにしお、偏光軞が互いに盎
亀するように貌り付け、カラヌ液晶衚瀺装眮を䜜成し
た。
Comparative Example 5 TFT type liquid crystal color television 6E-C3 manufactured by Sharp Corporation.
The polarizing plate of 1 was peeled off, and two sheets of the same polarizing plate used in Example 9 were attached so as to sandwich the liquid crystal cell so that the polarization axes thereof were orthogonal to each other, to produce a color liquid crystal display device.

【】埗られたカラヌ液晶衚瀺装眮に぀いお、癜
衚瀺、黒衚瀺を行い、䞊䞋巊右でのコントラスト比が
ずなる芖角を枬定した。即ち、埗られたカラヌ液
晶衚瀺装眮に矩圢波の電圧を印加し、正面方向および䞊
䞋および巊右方向ぞ傟いた方向からのコントラスト
を、分光蚈−倧塚電子株補を
甚いお枬定し、コントラストがずなる䞊䞋および
巊右の芖野角を求めた。埗られた結果を、衚に瀺
す。
With the obtained color liquid crystal display device, white display and black display are performed, and the contrast ratio in up, down, left and right is 1
A viewing angle of 0: 1 was measured. That is, a rectangular wave voltage is applied to the obtained color liquid crystal display device, and the contrast from the front direction and the direction inclined upward / downward and left / right is measured by a spectrometer (LCD-5000, Otsuka Electronics Co., Ltd.). And the left / right viewing angles at which the contrast is 10 were determined. Table 3 shows the obtained results.

【】 衚 ──────────────────────────────────── シヌト 芖 野 角床  侊例 巊右 ──────────────────────────────────── 実斜䟋 OCS-C   実斜䟋 OCS-E   ──────────────────────────────────── 比范䟋 なし   ────────────────────────────────────Table 3 ──────────────────────────────────── Seat visual angle (degree) No. Up and down left and right ──────────────────────────────────── Example 9 OCS-C 123 115 Example 10 OCS -E 130 120 ──────────────────────────────────── Comparative Example 5 None 50 70 70 ──── ────────────────────────────────

【】衚から明らかなように、実斜䟋及び
のカラヌ液晶衚瀺装眮は、比范䟋のものに比べお、
癜黒衚瀺におけるコントラストから芋た芖野角が倧幅に
拡倧されおいるこずがわかる。たた比范䟋のカラヌ液
晶衚瀺装眮にビデオ信号を入力しフルカラヌの画像を衚
瀺させるず、䞊から芋るず画像が癜っぜく、党䜓に黄色
味を垯びおおり、たた䞋からみるず黒衚瀺郚はすぐに反
転した。巊右から芋るず黒衚瀺郚での反転はないが、党
䜓にコントラストが䜎䞋しお、黄色味を垯びおおり、芖
野角を倧きくした時の画質の䜎䞋は著しい。䞀方、実斜
䟋及びで埗られたカラヌ液晶衚瀺装眮では、䞋か
ら芋た堎合、芖野角を倧きくしたずきに黒衚瀺郚での反
転がみられたが、䞊及び巊右から芋た堎合は、黒衚瀺郚
での反転は芋られず、たた画像の黄倉も僅かであり、芖
野角増加による画質の䜎䞋は、少なかった。
As is apparent from Table 3, Examples 9 and 1
The color liquid crystal display device of No. 0, compared with that of Comparative Example 5,
It can be seen that the viewing angle seen from the contrast in monochrome display is greatly expanded. When a video signal is input to the color liquid crystal display device of Comparative Example 5 to display a full-color image, the image is whitish when viewed from above, and the image is yellowish in its entirety, and when viewed from below, the black display portion is short. Flipped over. When viewed from the left and right, there is no reversal in the black display portion, but the contrast is reduced as a whole and the image is yellowish, and the image quality is significantly reduced when the viewing angle is increased. On the other hand, in the color liquid crystal display devices obtained in Examples 9 and 10, when viewed from below, inversion was observed in the black display portion when the viewing angle was increased, but when viewed from above and from the left and right, No reversal was observed in the black display portion, the yellowing of the image was slight, and the deterioration of the image quality due to the increase in the viewing angle was small.

【】[0086]

【発明の効果】本発明の配向膜付支持䜓を甚いるず、前
述のように光孊補償シ−トが歩留り良く埗られる。本発
明の光孊補償シヌトを甚いた型液晶セルを有する液
晶衚瀺装眮及びカラヌ液晶衚瀺装眮は、芖野角が倧きく
拡倧しおおり、芖野角の増加に䌎う黒衚瀺郚の反転、諧
調の反転、画像の着色等の発生が倧きく䜎枛されおお
り、優れた芖野角特性を瀺す。特にのような非線
圢胜動玠子を有する液晶衚瀺装眮の芖角特性を著しく改
善するこずが可胜で、芖認性のすぐれた高品䜍の液晶衚
瀺装眮を提䟛するこずができる。たた、本発明の光孊補
償シヌトをなどの端子玠子、などの端
子玠子を甚いたアクティブマトリクス液晶衚瀺玠子に適
甚しおも優れた効果が埗られるこずは蚀うたでもない。
As described above, the use of the support with an alignment film of the present invention makes it possible to obtain an optical compensation sheet with a high yield. The liquid crystal display device and the color liquid crystal display device having the TN type liquid crystal cell using the optical compensation sheet of the present invention have a wide viewing angle, and the black display part is reversed and the gradation is reversed with the increase of the viewing angle. The occurrence of coloring of the image is greatly reduced, and excellent viewing angle characteristics are exhibited. In particular, the viewing angle characteristics of a liquid crystal display device having a non-linear active element such as a TFT can be remarkably improved, and a high-quality liquid crystal display device with excellent visibility can be provided. It goes without saying that excellent effects can be obtained even when the optical compensation sheet of the present invention is applied to an active matrix liquid crystal display device using a three-terminal device such as a MIM or a two-terminal device such as a TFD.

【図面の簡単な説明】[Brief description of the drawings]

【図】図は、透明支持䜓フィルム面内の䞻屈折
率、、厚み方向の䞻屈折率の関係を抂略的
に瀺す図である。
FIG. 1 is a view schematically showing a relationship between a main refractive index nx, ny in a plane of a transparent support (film) and a main refractive index nz in a thickness direction.

【図】図は、本発明の光孊異方局の代衚的構造をを
瀺す図である。
FIG. 2 is a diagram showing a typical structure of an optically anisotropic layer of the present invention.

【図】図は、液晶衚瀺装眮の液晶局の代衚的構造を
瀺す図である。
FIG. 3 is a diagram showing a typical structure of a liquid crystal layer of a liquid crystal display device.

【図】図は、本発明の光孊補償シヌトの代衚的構成
及び䞉軞の䞻屈折率の関係を抂略的に瀺す図である。
FIG. 4 is a diagram schematically showing a typical configuration of an optical compensatory sheet of the present invention and a relationship between triaxial principal refractive indices.

【図】図は、本発明の液晶衚瀺装眮の代衚的構造を
瀺す図である。
FIG. 5 is a diagram showing a typical structure of a liquid crystal display device of the present invention.

【図】図は、光孊補償シヌトを甚いた液晶衚瀺装眮
におけるレタヌデヌションの最小倀の方向ず液晶セルの
基板のラビング方向ずの関係を瀺す図である。
FIG. 6 is a diagram illustrating a relationship between a direction of a minimum value of retardation and a rubbing direction of a substrate of a liquid crystal cell in a liquid crystal display device using an optical compensation sheet.

【図】図は、図を軞方向から芋た時に埗られる
図である。
FIG. 7 is a diagram obtained when FIG. 6 is viewed from the z-axis direction.

【図】図は、䞀察の光孊補償シヌトを甚いた液晶衚
瀺装眮におけるレタヌデヌションの最小倀の方向ず液晶
セルの基板のラビング方向ずの関係を瀺す図である。
FIG. 8 is a diagram illustrating a relationship between a direction of a minimum value of retardation and a rubbing direction of a substrate of a liquid crystal cell in a liquid crystal display device using a pair of optical compensation sheets.

【図】図は、図を軞方向から芋た時に埗られる
図である。
FIG. 9 is a diagram obtained when FIG. 8 is viewed from the z-axis direction.

【図】図は、枚積局した光孊補償シヌトを甚
いた液晶衚瀺装眮におけるレタヌデヌションの最小倀の
方向ず液晶セルの基板のラビング方向ずの関係を瀺す図
である。
FIG. 10 is a diagram showing a relationship between a direction of a minimum value of retardation and a rubbing direction of a substrate of a liquid crystal cell in a liquid crystal display device using an optical compensation sheet in which two sheets are laminated.

【図】図は、図を軞方向から芋た時に埗
られる図である。
FIG. 11 is a diagram obtained when FIG. 10 is viewed from the z-axis direction.

【図】図は、本発明のカラヌ液晶衚瀺装眮の代
衚的構造を瀺す図である。
FIG. 12 is a diagram showing a typical structure of a color liquid crystal display device of the present invention.

【図】図は、本発明の光孊補償シヌト
−及び−の光孊異方局のず芖野
角の関係を瀺すグラフである。
FIG. 13 is an optical compensation sheet (OCS) of the present invention.
3B is a graph showing the relationship between Re and the viewing angle of the optically anisotropic layers of (B) and (OCS-G).

【笊号の説明】[Explanation of symbols]

、 透明支持䜓 、 配向膜 、 光孊異方局 、、 液晶性ディスコティック化合
物 、、 ディスコティック構造単䜍の面 、、 透明支持䜓の面に平行な
面 Ξ、Ξ、Ξ 傟斜角  透明支持䜓の法線   基板  液晶分子
21, 41 Transparent support 22, 42 Alignment film 23, 43 Optically anisotropic layer 23a, 23b, 23c Liquid crystalline discotic compound Pa, Pb, Pc Surface of discotic structural unit 21a, 21b, 21c Surface of transparent support 21 Θa, Ξb, Ξc Inclination angle 24 Normal line of transparent support 31a 31b Substrate 33 TN liquid crystal molecules

Claims (6)

【特蚱請求の範囲】[Claims] 【請求項】 透明支持䜓䞊に配向膜を蚭け、か぀䞡端
に高さΌ以䞊、Ό以䞋のロ−レットが付䞎され
た配向膜付支持䜓。
1. A support with an alignment film, wherein an alignment film is provided on a transparent support, and knurls having a height of 1 Ό or more and 100 Ό or less are provided on both ends.
【請求項】 該配向膜が架橋されたポリビニルアルコ
−ル又は倉性ポリビニルアルコ−ルからなるこずを特城
ずする請求項に蚘茉の配向膜付支持䜓。
2. The support with an alignment film according to claim 1, wherein the alignment film is made of crosslinked polyvinyl alcohol or modified polyvinyl alcohol.
【請求項】 透明支持䜓䞊に配向膜を蚭け、か぀䞡端
に高さΌ以䞊、Ό以䞋のロ−レットが付䞎され
た配向膜付支持䜓の配向膜䞊に少なくずも皮のディス
コティック化合物よりなる光孊異方局を有する事を特城
ずする光孊補償シ−ト。
3. At least one discotic compound on the alignment film of the support with an alignment film, in which an alignment film is provided on a transparent support, and knurls having a height of 1 Ό or more and 100 Ό or less are provided on both ends. An optical compensation sheet having an optically anisotropic layer of
【請求項】 該光孊異方局が、ディスコティック構造
単䜍を有する化合物からなる負の耇屈折を有する局であ
り、そしお該ディスコティック構造単䜍の円盀面が、透
明支持䜓面に察しお傟いおおり、䞔぀該ディスコティッ
ク構造単䜍の円盀面ず透明支持䜓面ずのなす角床が、光
孊異方局の深さ方向においお倉化しおいるこずを特城ず
する請求項に蚘茉の光孊補償シヌト。
4. The optically anisotropic layer is a layer having a negative birefringence composed of a compound having a discotic structural unit, and the disc surface of the discotic structural unit is inclined with respect to the transparent support surface. The optical compensation sheet according to claim 3, wherein the angle formed by the disc surface of the discotic structural unit and the transparent support surface changes in the depth direction of the optically anisotropic layer.
【請求項】 該角床が、光孊異方局の深さ方向におい
お光孊異方局の底面からの距離の増加ず共に増加しおい
る請求項に蚘茉の光孊補償シヌト。
5. The optical compensation sheet according to claim 4, wherein the angle increases in the depth direction of the optically anisotropic layer with an increase in the distance from the bottom surface of the optically anisotropic layer.
【請求項】 透明電極、画玠電極およびカラヌフィル
タを有する䞀察の基板ず、その基板間に封入されたねじ
れ配向したネマチック液晶ずからなる液晶セル、液晶セ
ルの䞡偎に蚭けられた䞀察の偏光板、及び液晶セルず偏
光板ずの間に蚭けられた光孊補償シヌトからなるカラヌ
液晶衚瀺装眮においお、 光孊補償シヌトず光孊補償シヌト偎の偏光板ずを粘着局
を介しお積局し、液晶衚瀺装眮に装着できる倧きさに裁
断しお装着したものであるこずを特城ずするカラヌ液晶
衚瀺装眮。
6. A liquid crystal cell comprising a pair of substrates each having a transparent electrode, a pixel electrode and a color filter, and a nematic liquid crystal in a twisted orientation enclosed between the substrates, and a pair of polarizing plates provided on both sides of the liquid crystal cell. , And a color liquid crystal display device comprising an optical compensation sheet provided between a liquid crystal cell and a polarizing plate, the optical compensation sheet and the polarizing plate on the optical compensation sheet side are laminated via an adhesive layer to form a liquid crystal display device. A color liquid crystal display device, which is cut into a size that can be mounted and then mounted.
JP7338686A 1995-12-26 1995-12-26 Supporting body with oriented film, optical compensation sheet formed by using the same and color liquid crystal display device Pending JPH09179125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7338686A JPH09179125A (en) 1995-12-26 1995-12-26 Supporting body with oriented film, optical compensation sheet formed by using the same and color liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7338686A JPH09179125A (en) 1995-12-26 1995-12-26 Supporting body with oriented film, optical compensation sheet formed by using the same and color liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH09179125A true JPH09179125A (en) 1997-07-11

Family

ID=18320507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7338686A Pending JPH09179125A (en) 1995-12-26 1995-12-26 Supporting body with oriented film, optical compensation sheet formed by using the same and color liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH09179125A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081958A1 (en) * 2000-04-24 2001-11-01 Nippon Kayaku Kabushiki Kaisha Method of aligning liquid-crystalline compound
KR100565734B1 (en) * 1998-09-22 2006-05-25 엘지.필늜슀 엘시디 죌식회사 liquid crystal display device and method for manufacturing thereof
JP2008009122A (en) * 2006-06-29 2008-01-17 Sumitomo Chemical Co Ltd Liquid crystal display device and polarizing plate with pressure sensitive adhesive used therefor
WO2019098215A1 (en) * 2017-11-15 2019-05-23 富士フむルム株匏䌚瀟 Long liquid crystal film, long polarizing film, image display device, and method for producing long liquid crystal film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100565734B1 (en) * 1998-09-22 2006-05-25 엘지.필늜슀 엘시디 죌식회사 liquid crystal display device and method for manufacturing thereof
WO2001081958A1 (en) * 2000-04-24 2001-11-01 Nippon Kayaku Kabushiki Kaisha Method of aligning liquid-crystalline compound
US6905640B2 (en) 2000-04-24 2005-06-14 Nippon Kayaku Kabushiki Kaisha Method of aligning liquid crystal compounds
JP2008009122A (en) * 2006-06-29 2008-01-17 Sumitomo Chemical Co Ltd Liquid crystal display device and polarizing plate with pressure sensitive adhesive used therefor
WO2019098215A1 (en) * 2017-11-15 2019-05-23 富士フむルム株匏䌚瀟 Long liquid crystal film, long polarizing film, image display device, and method for producing long liquid crystal film
JPWO2019098215A1 (en) * 2017-11-15 2020-12-24 富士フむルム株匏䌚瀟 A long liquid crystal film, a long polarizing plate, an image display device, and a method for manufacturing a long liquid crystal film.

Similar Documents

Publication Publication Date Title
JP2587398B2 (en) Optical compensation sheet, liquid crystal display and color liquid crystal display
KR100267894B1 (en) Optical compensatory sheet and liquid crystal display
JP3284002B2 (en) Elliptical polarizing plate and liquid crystal display device using the same
US5528400A (en) Liquid crystal display device having negative uniaxial anisotropic film with inclined optical axis and protective films
US5793455A (en) Elliptically polarizing plate and liquid crystal display in which a compensation sheet direction of non-zero minimum retardation is inclined at 5 to 50 degrees
JP2866372B2 (en) Liquid crystal display and optical compensation sheet
JPH11212078A (en) Liquid crystal display device
JP3118197B2 (en) Optical compensation sheet
KR20080091340A (en) Liquid crystal display
JP3672677B2 (en) Method for manufacturing optical compensation sheet
JP3629082B2 (en) Liquid crystal element using optically anisotropic element
JP3542682B2 (en) Liquid crystal display device
JP2002207125A (en) Optical compensation sheet and liquid crystal display device
JP3421443B2 (en) Elliptical polarizing plate and liquid crystal display
JPH07333433A (en) Optical compensating sheet and liquid crystal display device using same
JP2002196146A (en) Optical compensation sheet, polarization plate and liquid crystal display using the same
JPH09179125A (en) Supporting body with oriented film, optical compensation sheet formed by using the same and color liquid crystal display device
JP2001100044A (en) Polarizing plate
EP1485752B1 (en) Liquid crystal display device with elliptical polarizer based on discotic liquid crystal
JP2706902B2 (en) Color liquid crystal display
JP2005062810A (en) Liquid crystal display device
JP3699160B2 (en) Liquid crystal display element using optical anisotropic element
JPH09230333A (en) Liquid crystal element formed by using optically anisotropic element
JP2006071965A (en) Polarizing plate integrated optical compensation film and liquid crystal display device
JP2001100208A (en) Liquid crystal display device