[go: up one dir, main page]

JPH09178660A - Method and apparatus for measurement of optical characteristic of light scattering object - Google Patents

Method and apparatus for measurement of optical characteristic of light scattering object

Info

Publication number
JPH09178660A
JPH09178660A JP7354330A JP35433095A JPH09178660A JP H09178660 A JPH09178660 A JP H09178660A JP 7354330 A JP7354330 A JP 7354330A JP 35433095 A JP35433095 A JP 35433095A JP H09178660 A JPH09178660 A JP H09178660A
Authority
JP
Japan
Prior art keywords
light
intensity distribution
scattering
input
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7354330A
Other languages
Japanese (ja)
Other versions
JP2832338B2 (en
Inventor
Aaru Jiyoonzu Mashiyuu
マシュー・アール・ジョーンズ
Yukio Yamada
幸生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7354330A priority Critical patent/JP2832338B2/en
Publication of JPH09178660A publication Critical patent/JPH09178660A/en
Application granted granted Critical
Publication of JP2832338B2 publication Critical patent/JP2832338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply measure an anisotropic scattering parameter by a method wherein the intensity distribution of scattered and reflected light is measured in a part near the input point of beam light on an object and the optical characteristic value of the intensity distribution which agrees with the intensity distribution of a theoretical computation is found. SOLUTION: The light-output part 6 and the light-receiving part 8 of a light input and output element 2 are pressed to the surface of an object 5, a light source 3 is started, and thin beams light is input on an input point P on the object 5 through the output part 6. The input light is scattered inside the object 5, and a part is output as reflected light from the surface of the object 5. Scattered and reflected light whose intensity distribution depends on the scattering characteristic of the object 5 is received in a part near the input point P by the light receiving part 8 whose resolution is fine so as to be guided to a photodetector 12 by a light-receiving element 11. The photodetector 12 detects it so to be sent to a data acquisition system 13. The system 13 stores an intensity distribution by a theoretical computation regarding many scattering characteristics, and it estimates the scattering characteristic value of the object 5 having the scattering characteristic value of a corresponding intensity distribution when the intensity distribution which is measured by the photodetector 12 agrees with, or closely resembles, any intensity distribution by the theoretical computation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、食品、工業材
料、生体等のように光を散乱する物体の光学的特性を表
すパラメータを測定する技術に関するものである。この
技術はプラスチック等の工業材料の光による検査、光に
よる食品検査、光による生体診断、光による治療等に利
用し得る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring a parameter representing an optical characteristic of an object that scatters light, such as a food, an industrial material, a living body, and the like. This technology can be used for inspection of industrial materials such as plastics by light, food inspection by light, biological diagnosis by light, treatment by light, and the like.

【0002】[0002]

【従来の技術】工業材料の光による検査、光による食品
検査、光による生体診断、光による治療等の分野におい
ては、光を強く散乱する対象物の散乱特性および吸収特
性を調べることは重要である。散乱特性としては散乱係
数μs 、等価散乱係数μs ’、散乱の位相関数(角度分
布)p(θ)、非等方散乱パラメータgがあり、吸収特
性としては吸収係数μa がある。等価散乱係数μs ’と
吸収係数μa を測定する簡便な手法はいくつか考えられ
ているが、その他の特性の測定は1mm以下の薄い試料
を用意し、特別な手間のかかる測定を必要とした(R.
A.Groenhuis et al.,“Scatt
ering and absorption of t
urbid materials determine
d from reflection measure
ments.1:Theory,”Applied O
ptics, Vol.22,pp.2456−246
2(1983).および R.A.Groenhuis
et al.,“Scattering and a
bsorption of turbid mater
ials determined from refl
ection measurements.2:Mea
suring methodsand calibra
tion,”Applied Optics,Vol.
22,pp.2463−2467(1983)等参
照)。
2. Description of the Related Art In the fields of inspection of industrial materials by light, food inspection by light, biological diagnosis by light, treatment by light, etc., it is important to investigate the scattering and absorption characteristics of an object that strongly scatters light. is there. The scattering characteristics include a scattering coefficient μ s , an equivalent scattering coefficient μ s ′, a scattering phase function (angular distribution) p (θ), and an anisotropic scattering parameter g. The absorption characteristics include an absorption coefficient μ a . Several simple methods for measuring the equivalent scattering coefficient μ s ′ and the absorption coefficient μ a have been considered, but the measurement of other properties requires preparing a thin sample of 1 mm or less and requiring special and time-consuming measurement. (R.
A. Groenhuis et al. , “Scatt
ering and absoφtion of t
urbid materials determination
d from reflection measurement
ments. 1: Theory, "Applied O
ptics, Vol. 22, pp. 2456-246
2 (1983). And R. A. Groenhuis
et al. , "Scattering and a
bsorption of turbine material
ials determined from refl
action measurements. 2: Mea
surging methods and caliber
, "Applied Optics, Vol.
22, pp. 2463-2467 (1983) and the like).

【0003】[0003]

【発明が解決しようとする課題】然るにこれら従来の技
術は、散乱体にビーム光を照射し、散乱反射光の強度分
布を測定して、等価散乱係数μs ’と吸収係数μa を簡
便に測定する手法であるが、この従来の技術は入射ビー
ムを光ファイバーで導き、反射光は顕微鏡または1本の
光ファイバーを用い、それを機械的に移動させて反射光
の強度分布を測定しており、この技術は対象物の等価散
乱係数と吸収係数を測定できるが、非等方散乱パラメー
タは測定できない。
However, these conventional techniques irradiate a scatterer with a light beam, measure the intensity distribution of the scattered reflected light, and easily determine the equivalent scattering coefficient μ s ′ and the absorption coefficient μ a. This conventional technique measures the intensity distribution of reflected light by guiding the incident beam with an optical fiber and using a microscope or a single optical fiber to mechanically move the reflected light, This technique can measure the equivalent scattering coefficient and absorption coefficient of an object, but cannot measure anisotropic scattering parameters.

【0004】この発明は上記の如き事情に鑑みてなされ
たものであって、非等方散乱パラメータを簡便に測定す
ることができ、併せてその他の光学特性も簡便に測定す
ることができる光散乱物体の光学特性測定法および装置
を提供することを目的とするものである。
[0004] The present invention has been made in view of the above circumstances, and is a light scattering device capable of simply measuring anisotropic scattering parameters and also easily measuring other optical characteristics. It is an object of the present invention to provide a method and an apparatus for measuring the optical properties of an object.

【0005】[0005]

【課題を解決するための手段】この目的に対応してこの
発明の光散乱物体の光学特性測定法は、細いビーム光を
対象物上の入射点に入射し、その入射点の近傍の範囲に
おける散乱反射光の強度分布を測定し、理論計算による
強度分布と一致または近似する強度分布の光学的特性値
を求めて推定値とすることを特徴としている。
To solve this problem, the optical characteristic measuring method for a light-scattering object according to the present invention is designed so that a thin beam of light is made incident on an incident point on an object and a range in the vicinity of the incident point. It is characterized in that the intensity distribution of the scattered reflected light is measured, and the optical characteristic value of the intensity distribution that matches or approximates to the theoretical distribution is obtained and used as an estimated value.

【0006】またこの発明の光散乱物体の光学特性測定
装置は、対象物の表面に接触可能な光出射部を有する光
出射素子と前記対象物の表面に接触可能な受光部を有す
る複数の受光素子とを前記光出射部と前記受光部とを密
に隣り合わせて配置し、前記受光素子を光強度分布検出
装置に接続してなることを特徴としている。
The optical characteristic measuring device for a light-scattering object according to the present invention further comprises a light emitting element having a light emitting portion capable of contacting the surface of the object and a plurality of light receiving portions having a light receiving portion capable of contacting the surface of the object. The light emitting portion and the light receiving portion are closely arranged adjacent to each other, and the light receiving element is connected to a light intensity distribution detecting device.

【0007】[0007]

【発明の実施の形態】以下、この発明の詳細を一実施の
形態を示す図面について説明する。まずこの発明の光散
乱物体の光学特性測定法を実施する場合に使用する測定
装置について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings showing an embodiment. First, a measuring apparatus used when the method for measuring the optical characteristics of a light scattering object according to the present invention will be described.

【0008】図1において、1は光学特性測定装置であ
る。光学特性測定装置1は光入出射素子2、光源装置
3,および光強度分布検出装置4とを有する。光入出射
素子2は図2および図3に示すように対象物5の表面に
接触可能な光出射部6を先端に備えた光出射素子7と、
対象物5の表面に接触可能な受光部8を先端に備えた複
数の受光素子11とをそれぞれの光出射部6と受光部8
とを無反射領域9で囲まれた領域に密に隣り合わせて結
束して構成したものである。光出射素子7の基端は光源
装置3に接続しており、また受光素子11の基端は光強
度分布検出装置4に接続している。光強度分布検出装置
4は光検出器12、データ取得装置13を有する。この
実施例では光出射素子7と受光素子11とはいずれも光
ファイバーで構成しており、光ファイバーのコアの直径
が約0.1mmとすると、光出射部6と受光部8とを一
直線上に密に隣り合わせに約50本配置したときの直線
の長さは約5mmである。光入出射素子2の光出射部
6、受光部8はこの他、図4に示すようにマトリックス
状にCCD素子やフォトダイオード14を配置したCC
Dカメラの受光面をもって受光部8を構成し、その中央
や端部に光ファイバー等からなる光出射部6を配置した
ものでもよく、さらに図5に示すように、直線状にCC
D素子やフォトダイオード14を配置して受光部8を構
成し、その中央や端部に光ファイバー等からなる光出射
部6を配置したものでもよい。データ取得装置13はコ
ンピュータで構成する。
In FIG. 1, reference numeral 1 denotes an optical characteristic measuring device. The optical characteristic measuring device 1 includes a light input / output element 2, a light source device 3, and a light intensity distribution detecting device 4. As shown in FIGS. 2 and 3, the light input / output element 2 includes a light output element 7 having a light output unit 6 at the tip end capable of contacting the surface of the object 5,
A plurality of light-receiving elements 11 each having a light-receiving section 8 at the front end capable of contacting the surface of the object 5 are provided with a light-emitting section 6 and a light-receiving section 8 respectively.
Are tightly bound together in a region surrounded by the non-reflection region 9. The base end of the light emitting element 7 is connected to the light source device 3, and the base end of the light receiving element 11 is connected to the light intensity distribution detecting device 4. The light intensity distribution detection device 4 has a light detector 12 and a data acquisition device 13. In this embodiment, each of the light emitting element 7 and the light receiving element 11 is constituted by an optical fiber. If the diameter of the core of the optical fiber is about 0.1 mm, the light emitting section 6 and the light receiving section 8 are densely arranged in a straight line. The length of a straight line when about 50 pieces are arranged next to each other is about 5 mm. The light emitting portion 6 and the light receiving portion 8 of the light input / output device 2 are, in addition, a CC in which CCD elements and photodiodes 14 are arranged in a matrix as shown in FIG.
The light receiving section 8 may be configured with the light receiving surface of the D camera, and the light emitting section 6 made of an optical fiber or the like may be arranged at the center or end of the light receiving section 8. Further, as shown in FIG.
The light receiving section 8 may be configured by arranging a D element or a photodiode 14 and the light emitting section 6 made of an optical fiber or the like may be arranged at the center or at the end. The data acquisition device 13 is composed of a computer.

【0009】この発明における光散乱物体の光学特性測
定法は以上のように構成された光学特性測定装置を使用
して次のように行われる。
The method for measuring the optical characteristics of a light-scattering object according to the present invention is carried out as follows using the optical characteristic measuring apparatus constructed as described above.

【0010】まず、光入出射素子2の光出射部6と受光
部8を対象物5の表面に押し当て、この状態で光学特性
測定装置1の光源装置3を起動し、細いビーム光例えば
直径0.1mm以下のビーム光を光入出射素子2の光出
射部6を通して対象物5上の入射点Pに入射する。この
入射光は対象物5内で散乱して一部分が対象物5の表面
から散乱反射光として出射する。この散乱反射光の強度
分布は対象物の散乱特性 (散乱係数μs 、等価散乱係
数μs ’、散乱の位相関数(角度分布)p(θ)、異方
性散乱パラメータg)に依存する。対象物5からの反射
光を入射点Pの近傍、例えば入射点Pから5mm程度の
範囲において0.1mm程度の空間分解能を持つ受光部
8で受光し、その光を受光素子11で導いて光検出器1
2で検出し、その信号をデータ取得装置13に送って光
の強度分布を求める。一方、データ取得装置13には図
6のカーブA(g=0.6)、カーブB(g=0.
7)、C(g=0.8)のように多数の散乱特性につい
て理論計算による強度分布を求めて蓄積してある.測定
した散乱反射光の強度分布がいずれかの理論計算による
強度分布と一致または近似する時、該当する理論計算に
よる強度分布の散乱特性値をもって対象物5の散乱特性
値と推定する。図6に示す例の場合は、測定した散乱反
射光の強度分布Dは理論計算による強度分布Aに近似し
ているので、対象物5の異方性散乱パラメータgは0.
6、等価散乱係数μs ’は1.0mm-1であると推定す
る。対象物5からの散乱反射光を入射点から遠い範囲、
例えば入射点Pから5mm以上の範囲での散乱反射光強
度分布を使用すれば従来の手法により吸収係数μa も決
定することができる。
First, the light emitting part 6 and the light receiving part 8 of the light input / output element 2 are pressed against the surface of the object 5, and in this state, the light source device 3 of the optical characteristic measuring device 1 is started, and the thin beam light, for example, the diameter is reduced. A light beam of 0.1 mm or less is incident on an incident point P on the object 5 through the light emitting section 6 of the light input / output element 2. The incident light is scattered in the object 5 and a part of the light is emitted from the surface of the object 5 as scattered reflected light. The intensity distribution of the scattered reflected light depends on the scattering characteristics (scattering coefficient μ s , equivalent scattering coefficient μ s ′), scattering phase function (angle distribution) p (θ), and anisotropic scattering parameter g. The light reflected from the object 5 is received by the light receiving unit 8 having a spatial resolution of about 0.1 mm in the vicinity of the incident point P, for example, in a range of about 5 mm from the incident point P, and the light is guided by the light receiving element 11. Detector 1
2 and sends the signal to the data acquisition device 13 to determine the light intensity distribution. On the other hand, the data acquisition device 13 has a curve A (g = 0.6) and a curve B (g = 0.
7), a large number of scattering characteristics, such as C (g = 0.8), are calculated by intensity calculation by theoretical calculation and accumulated. When the measured intensity distribution of the scattered reflected light coincides with or approximates to the intensity distribution obtained by any theoretical calculation, the scattering characteristic value of the intensity distribution obtained by the corresponding theoretical calculation is estimated as the scattering characteristic value of the object 5. In the case of the example shown in FIG. 6, the measured intensity distribution D of the scattered reflected light is close to the intensity distribution A obtained by theoretical calculation.
6. It is estimated that the equivalent scattering coefficient μ s ′ is 1.0 mm −1 . Scattered and reflected light from the object 5 in a range far from the incident point,
For example, if a scattered / reflected light intensity distribution in a range of 5 mm or more from the incident point P is used, the absorption coefficient μ a can also be determined by a conventional method.

【0011】[0011]

【実施例】粒径d=0.65μmのラテックス粒子浮遊
液を対象物とし、直径0.5mmの光ファイバーを25
本、すべての先端が一直線上に整列するように結束して
幅12.5mmの光出射素子を形成し、その内の1本を
光出射素子とし、残りを受光素子として測定を行なっ
た。結果を図7に示す。等価散乱係数μs ’、異方性散
乱パラメータgが測定値と理論値とでよく一致している
こととが分かる。
EXAMPLE A suspension of latex particles having a particle size of d = 0.65 μm was used as an object, and an optical fiber having a diameter of 0.5 mm was connected to 25
A light emitting element having a width of 12.5 mm was formed by binding the books so that all the tips are aligned in a straight line, and one of the light emitting elements was used as a light emitting element, and the rest was measured as a light receiving element. FIG. 7 shows the results. It can be seen that the equivalent scattering coefficient μ s ′ and the anisotropic scattering parameter g match well between the measured value and the theoretical value.

【0012】[0012]

【発明の効果】この発明では、多数(数十本)の光ファ
イバーを一列に並べ、一端は測定対象に接し、多端の一
部は光源に、残りは光検出器に導入する。光源に接続さ
れるファイバーは一列に並べられたファイバーの最も端
のファイバー1本とし、残りのファイバーを検出器に接
続する。検出器は対象物に照射され、内部で散乱して表
面に戻った散乱反射光の分布を測定する。その散乱反射
光の強度分布を調べることにより、対象物の光散乱特性
のうち異方性散乱パラメータと等価散乱係数μs’を求
める。これにより本発明では多数本のファイバーを一列
に並べ、その内の端の1本に光を入射し、他のファイバ
ーで散乱反射光を検出器に導く。これにより、ファイバ
ーの太さ(0.02mmから0.50mm)で空間的に
分解でき、また、一度に強度分布を測定できる。このよ
うにこの発明ではファイバー等を一列に並べ、その内の
端の1本に光を入射させ、他のファイバーで検出するた
め空間分解能が良く、また、ファイバーを移動させるこ
となく散乱反射光の強度分布を測定できる。ただし前述
したように散乱反射光の測定は必ずしもファイバーで導
く必要はなく、一列(1次元的)に配列したCCDやフ
ォトダイオード等の光センサーを用いても良い。ただ
し、入射点の極く近傍から散乱反射光を測定しなければ
ならない。あるいは、2次元的に配列されたCCD等の
光センサーの中央部に小さな穴を開け、そこから入射光
を対象物に照射したり、配列されたCCDセンサーの内
の1個を半導体レーザ、発光ダイオードのような発光体
としてもよい。
According to the present invention, a large number (several tens) of optical fibers are arranged in a line, one end is in contact with the object to be measured, a part of the multi-end is introduced into a light source, and the rest is introduced into a photodetector. The fiber connected to the light source is one of the endmost fibers in the line, and the remaining fibers are connected to the detector. The detector measures the distribution of the scattered reflected light that irradiates the object, scatters inside, and returns to the surface. By examining the intensity distribution of the scattered reflected light, an anisotropic scattering parameter and an equivalent scattering coefficient μ s ′ among light scattering characteristics of the object are obtained. Thus, in the present invention, a number of fibers are arranged in a line, light is incident on one of the ends, and scattered and reflected light is guided to the detector by the other fibers. Thus, the fiber can be spatially resolved by the thickness of the fiber (0.02 mm to 0.50 mm), and the intensity distribution can be measured at one time. As described above, according to the present invention, fibers and the like are arranged in a line, light is incident on one of the ends thereof, and detection is performed by another fiber, so that the spatial resolution is good. The intensity distribution can be measured. However, as described above, the measurement of the scattered reflected light does not necessarily need to be guided by a fiber, and an optical sensor such as a CCD or a photodiode arranged in a line (one-dimensionally) may be used. However, the scattered reflected light must be measured from very close to the incident point. Alternatively, a small hole is made in the center of an optical sensor such as a two-dimensionally arranged CCD to irradiate the object with incident light, or one of the arranged CCD sensors is irradiated with a semiconductor laser or a light emitting device. It may be a light emitter such as a diode.

【0013】以上の説明から明らかなように、この発明
によれば非等方散乱パラメータを簡便に測定することが
でき、併せてその他の光学特性も簡便に測定することが
できる光散乱物体の光学特性測定法および装置を得るこ
とができる。
As is apparent from the above description, according to the present invention, the anisotropic scattering parameter can be easily measured, and at the same time, other optical characteristics can be easily measured. Characteristic measurement methods and equipment can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】光散乱物体の光学特性測定装置の構成説明図FIG. 1 is a configuration explanatory view of an optical characteristic measuring device of a light scattering object.

【図2】ファイバー束の先端部の端面図説明図FIG. 2 is an explanatory view of an end view of a distal end portion of a fiber bundle.

【図3】ファイバー束の先端部の側面説明図FIG. 3 is an explanatory side view of the tip of the fiber bundle.

【図4】2次元CCD光センサーを用いた光入出射素子
の構成説明図
FIG. 4 is a structural explanatory view of a light input / output element using a two-dimensional CCD light sensor.

【図5】1次元CCD光センサーを用いた光入出射素子
の構成説明図
FIG. 5 is a structural explanatory view of a light input / output element using a one-dimensional CCD light sensor.

【図6】非等方散乱パラメータと等価散乱係数の測定原
理を示すグラフ
FIG. 6 is a graph showing the measurement principle of the anisotropic scattering parameter and the equivalent scattering coefficient.

【図7】反射光強度分布の理論値と実測値および非等方
散乱パラメータと等価散乱係数μs ’の測定値と理論値
の比較を示すグラフ
FIG. 7 is a graph showing a comparison between a theoretical value and a measured value of a reflected light intensity distribution and a measured value and a theoretical value of an anisotropic scattering parameter and an equivalent scattering coefficient μ s ′.

【符号の説明】[Explanation of symbols]

1 光学特性測定装置 2 光入出射素子 3 光源装置 4 光強度分布検出装置 5 対象物 6 光出射部 7 光出射素子 8 受光部 9 無反射領域 11 受光素子 12 光検出器 13 データ取得装置 14 CCD素子やフォトダイオード等の光検出素子 REFERENCE SIGNS LIST 1 optical characteristic measuring device 2 light input / output element 3 light source device 4 light intensity distribution detecting device 5 object 6 light emitting unit 7 light emitting element 8 light receiving unit 9 non-reflection area 11 light receiving element 12 light detector 13 data acquisition device 14 CCD Photodetectors such as elements and photodiodes

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 細いビーム光を対象物上の入射点に入射
し、その入射点の近傍の範囲における散乱反射光の強度
分布を測定し、理論計算による強度分布と一致または近
似する強度分布の光学的特性値を求めて推定値とするこ
とを特徴とする光散乱物体の光学特性測定法。
1. A narrow beam of light is made incident on an incident point on an object, the intensity distribution of scattered reflected light in a range in the vicinity of the incident point is measured, and the intensity distribution of the intensity distribution that agrees with or approximates to the theoretical intensity distribution is measured. A method for measuring optical characteristics of a light-scattering object, characterized in that an optical characteristic value is obtained and used as an estimated value.
【請求項2】 前記ビーム光の径は0.1mm程度であ
り、前記範囲は入射点から5mm以上の範囲であること
を特徴とする請求項1記載の光散乱物体の光学特性測定
法。
2. The method for measuring optical characteristics of a light-scattering object according to claim 1, wherein the beam light has a diameter of about 0.1 mm, and the range is 5 mm or more from the incident point.
【請求項3】 対象物の表面に接触可能な光出射部を有
する光出射素子と前記対象物の表面に接触可能な受光部
を有する複数の受光素子とを前記光出射部と前記受光部
とを密に隣り合わせて配置し、前記受光素子を光強度分
布検出装置に接続してなることを特徴とする光散乱物体
の光学特性測定装置。
3. A light emitting element having a light emitting portion capable of contacting the surface of an object and a plurality of light receiving elements having a light receiving portion capable of contacting the surface of the object, the light emitting portion and the light receiving portion. Are closely arranged, and the light receiving elements are connected to a light intensity distribution detecting device. An optical characteristic measuring device for a light scattering object.
【請求項4】 前記光出射素子および受光素子は光ファ
イバーであることを特徴とする請求項3記載の光散乱物
体の光学特性測定装置。
4. The apparatus according to claim 3, wherein the light emitting element and the light receiving element are optical fibers.
【請求項5】 受光素子は光センサーであることを特徴
とする請求項3記載の光散乱物体の光学特性測定装置。
5. The apparatus according to claim 3, wherein the light receiving element is an optical sensor.
JP7354330A 1995-12-27 1995-12-27 Method and apparatus for measuring optical properties of light scattering objects Expired - Lifetime JP2832338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7354330A JP2832338B2 (en) 1995-12-27 1995-12-27 Method and apparatus for measuring optical properties of light scattering objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7354330A JP2832338B2 (en) 1995-12-27 1995-12-27 Method and apparatus for measuring optical properties of light scattering objects

Publications (2)

Publication Number Publication Date
JPH09178660A true JPH09178660A (en) 1997-07-11
JP2832338B2 JP2832338B2 (en) 1998-12-09

Family

ID=18436826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7354330A Expired - Lifetime JP2832338B2 (en) 1995-12-27 1995-12-27 Method and apparatus for measuring optical properties of light scattering objects

Country Status (1)

Country Link
JP (1) JP2832338B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040849A (en) * 2011-08-15 2013-02-28 Kobe Univ Method for calculating effective scattering coefficient of three-dimensional light scattering medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174449A (en) * 1984-09-20 1986-04-16 Mitsubishi Rayon Co Ltd Sensor device
JPS6365005U (en) * 1986-10-17 1988-04-28
JPH02276947A (en) * 1989-04-18 1990-11-13 Nireco Corp Probe and support device for light diffuse reflectance measurement
JPH0355773A (en) * 1989-07-22 1991-03-11 Rinnai Corp Terminal base for electrical equipment casing
JPH03259730A (en) * 1990-03-09 1991-11-19 Iiosu:Kk Optical fiber sensor
JPH0749307A (en) * 1993-06-02 1995-02-21 Hamamatsu Photonics Kk Method and apparatus for measuring scattering absorbent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174449A (en) * 1984-09-20 1986-04-16 Mitsubishi Rayon Co Ltd Sensor device
JPS6365005U (en) * 1986-10-17 1988-04-28
JPH02276947A (en) * 1989-04-18 1990-11-13 Nireco Corp Probe and support device for light diffuse reflectance measurement
JPH0355773A (en) * 1989-07-22 1991-03-11 Rinnai Corp Terminal base for electrical equipment casing
JPH03259730A (en) * 1990-03-09 1991-11-19 Iiosu:Kk Optical fiber sensor
JPH0749307A (en) * 1993-06-02 1995-02-21 Hamamatsu Photonics Kk Method and apparatus for measuring scattering absorbent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040849A (en) * 2011-08-15 2013-02-28 Kobe Univ Method for calculating effective scattering coefficient of three-dimensional light scattering medium

Also Published As

Publication number Publication date
JP2832338B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
US6678541B1 (en) Optical fiber probe and methods for measuring optical properties
JP5078099B2 (en) Optical fiber device for detecting light scattering to differentiate blood cells and the like
JP4038179B2 (en) Method and apparatus for the determination of light transport parameters and analytes in biological matrices
US5032024A (en) Optical examination apparatus
US7239385B2 (en) Method and apparatus for monitoring output signal instability in a light source
JPH09206283A (en) Device for measuring light reflection
WO1999037994A1 (en) Multiple diameter fiber optic device and process of using the same
US20240003741A1 (en) A raman probe and apparatus and method for non-invasive in vivo measurement of analyte presence or concentration
US8208982B2 (en) Evanescent catheter system
EP3054281B1 (en) Device for measuring an optical signal backscattered by a sample
CN101371130B (en) optical analyzer
EP0074976A1 (en) Application of optical fibre probes
US9931072B2 (en) Method for characterizing a sample by measurement of a backscattered optical signal
US6894779B2 (en) Apparatus for detecting back-scatter in a laser-based blood analysis system
JP2832338B2 (en) Method and apparatus for measuring optical properties of light scattering objects
JP4470939B2 (en) Biospectrum measurement device
JPH09292333A (en) Surface plasmon sensor
US6721049B1 (en) Device for efficient light collection from a sample
CN108982365B (en) Optical field traveling wave cavity enhanced surface plasma resonance sensing device
JP2002131229A (en) Measuring apparatus for diffused/reflected light for spectrophotometer
CN108606779A (en) A kind of sweep parameters measuring instrument of high speed frequency-sweeping laser source
JPH04106709U (en) Film thickness gauge for vacuum equipment
JP2007047017A (en) Multicore optical fiber probe

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term