[go: up one dir, main page]

JPH09178147A - Operation method of refuse burning equipment - Google Patents

Operation method of refuse burning equipment

Info

Publication number
JPH09178147A
JPH09178147A JP34328395A JP34328395A JPH09178147A JP H09178147 A JPH09178147 A JP H09178147A JP 34328395 A JP34328395 A JP 34328395A JP 34328395 A JP34328395 A JP 34328395A JP H09178147 A JPH09178147 A JP H09178147A
Authority
JP
Japan
Prior art keywords
refuse
waste
amount
heat
bucket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34328395A
Other languages
Japanese (ja)
Other versions
JP3510030B2 (en
Inventor
Junichi Saito
順一 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP34328395A priority Critical patent/JP3510030B2/en
Publication of JPH09178147A publication Critical patent/JPH09178147A/en
Application granted granted Critical
Publication of JP3510030B2 publication Critical patent/JP3510030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operation method of refuse burning equipment capable of stably supplying a proper amount of refuse into a burning furnace in response to the required amount of heat produced in the burning furnace. SOLUTION: In refuse burning equipment for supplying refuse into a burning furnace using a refuse supply crane, a pressure detector 3a and a backet opening detector 3b are arranged on a backet 3 provided on the refuse supply crane. A stress ratio of refuse is estimated on the basis of the amount of a change in an indicated value on the pressure detector when the opening of the backet holding the refuse is narrowed. The produced heat amount of the refuse is estimated from a correlation equation between the preestimated produced heat amount of the refuse to control the supplied heat amount of the refuse. The foregoing correlation equation is corrected by reversely estimating the produced heat amount of the refuse during combustion from the flow rates and temperatures of air, an auxiliary fuel, and cooling water applied to the refuse burning furnace, and the temperature and the dissipated heat amount of combustion exhaust gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ごみ焼却設備の運
転方法に係り、特に、季節変動や収集地域によって焼却
時の発熱量の変動が大きい都市ごみを焼却する都市ごみ
焼却設備における発熱量の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a refuse incinerator, and more particularly, to a method for operating a refuse incinerator that incinerates an incinerator that has a large variation in calorific value at the time of incineration due to seasonal variations and collection areas. Regarding control method.

【0002】[0002]

【従来の技術】焼却炉の排熱を用いて発電を行う発電シ
ステムが付設されたごみ焼却設備においては、安定な発
電電力を得るため、発電要求に対応した熱量を発生する
ことが求められる。焼却炉の発熱量は、焼却炉に投入さ
れるごみの量(ごみ供給量)と質(ごみ発熱量)とによ
って変動するので、焼却炉の発熱量とごみ供給量及びご
み発熱量との関係を正確に把握することは、発電要求に
対応した熱量を発生させ、安定な発電電力を得るために
重要である。
2. Description of the Related Art In a refuse incineration facility provided with a power generation system for generating power using waste heat of an incinerator, it is required to generate a heat amount corresponding to a power generation request in order to obtain stable power generation. The calorific value of the incinerator fluctuates depending on the amount (waste supply amount) and quality (waste calorific value) of the waste that is put into the incinerator, so the relationship between the calorific value of the incinerator and the waste supply amount and the waste calorific value Accurately grasping is important for generating a heat quantity corresponding to the power generation request and obtaining stable power generation.

【0003】ところで、各所より収集された都市ごみ
は、収集地域や収集時刻それに天候や季節等によってご
み発熱量が大きく変動する。また、収集された都市ごみ
は、ごみ焼却設備に備えられたごみピットに溜められ、
ごみクレーンのバケットで搬送されて焼却炉内に投入さ
れるが、ごみピットに溜められたごみの発熱量がごみピ
ット内の貯溜場所によって不均一であると、仮に焼却炉
に対するごみ供給量を高精度に制御したとしても、焼却
炉の発熱量を安定に制御することができない。かかる事
情に鑑みて、従来においては、ごみピットの容積を十分
大きくし、ごみクレーンによってピット内のごみを適宜
撹拌してその均質化を図り、ごみ発熱量の変動を軽減す
る方法が採られている。しかし、日中、ごみ収集車が頻
繁にごみを搬入しているような状況下では、ごみピット
内のごみを十分に撹拌することは事実上困難であり、こ
の方法によってはごみ発熱量を均一化すること、ひいて
は焼却炉の発熱量を安定に制御することが困難である。
By the way, the amount of heat generated from municipal waste collected from various places varies greatly depending on the collection area, collection time, weather, season and the like. In addition, the collected municipal waste is stored in the garbage pit provided in the garbage incinerator,
The waste is transported by the bucket of the garbage crane and put into the incinerator, but if the heat generation amount of the waste accumulated in the waste pit is uneven due to the storage location in the waste pit, the waste supply amount to the incinerator will be high. Even if controlled accurately, the heat value of the incinerator cannot be controlled stably. In view of such circumstances, conventionally, a method has been adopted in which the volume of the waste pit is made sufficiently large and the waste in the pit is appropriately stirred by a waste crane to homogenize the waste and reduce fluctuations in the heat value of the waste. There is. However, it is practically difficult to sufficiently agitate the waste in the waste pit under the circumstances where the waste trucks frequently carry in the waste during the day. Therefore, it is difficult to control the heat generation amount of the incinerator in a stable manner.

【0004】一方、ごみ発熱量を工業分析によって求め
る方法としては、厚生省環境衛生局水道環境部環境整備
課編集の「ごみ焼却施設各種試験マニュアル」に記載さ
れているが、当該マニュアルに記載の方法は、乾燥ごみ
の発熱量を燃焼計で計測するものであるため、焼却炉の
運転中に実時間で計測することは困難である。したがっ
て、ごみ発熱量を実時間で計測可能な方法の開発が求め
られるが、実際のごみ焼却設備においては、焼却炉への
ごみ供給量の実時間計測も難しいため、運転中に焼却炉
の炉内温度(火炉温度)が上昇又は下降したとき、これ
がごみ発熱量の変動に起因するものなのか、ごみ供給量
の増減に起因するものなのかを把握することが困難であ
る。
On the other hand, as a method of obtaining the heat value of waste by industrial analysis, it is described in "Various Waste Incineration Facility Test Manual" edited by Environment Improvement Division, Water Environment Department, Environmental Sanitation Bureau, Ministry of Health and Welfare. Since the calorific value of dry waste is measured by a combustion meter, it is difficult to measure it in real time during operation of the incinerator. Therefore, it is necessary to develop a method that can measure the heat value of waste in real time.However, in an actual waste incinerator, it is difficult to measure the amount of waste supplied to the incinerator in real time. When the internal temperature (furnace temperature) rises or falls, it is difficult to understand whether this is due to the fluctuation of the heat value of waste or the increase or decrease of the waste supply amount.

【0005】かかる問題を解決するため、従来より、ご
み発熱量をごみ供給クレーンのバケットと関連させて求
めようとする提案がなされている。特開平1−1146
10号公報には、バケットによるごみのつかみ重量とバ
ケットの容積とから見掛け比重を求め、予め求められた
見掛け比重と低位発熱量との相関関係から発熱量を推定
する方法が記載されており、また、特開平5−2153
18号公報には、ごみクレーンバケットの挟持角から推
定されるごみの体積とバケットによってつかみ取られた
ごみの重量からごみの比重を算出する方法が記載されて
いる。
In order to solve such a problem, conventionally, a proposal has been made to obtain the heat value of waste in association with the bucket of a waste supply crane. Japanese Patent Laid-Open No. 1-1146
No. 10 publication describes a method of obtaining an apparent specific gravity from the weight of the garbage held by the bucket and the volume of the bucket, and estimating the heat generation amount from the correlation between the apparent specific gravity and the lower heating value obtained in advance, In addition, JP-A-5-2153
Japanese Unexamined Patent Publication No. 18 discloses a method of calculating the specific gravity of dust from the volume of dust estimated from the holding angle of the dust crane bucket and the weight of dust caught by the bucket.

【0006】[0006]

【発明が解決しようとする課題】然るに、前者の方法
は、バケットの容積を一定としてごみの見掛け比重を求
めているので、ごみの見掛け比重を正確に求めることが
できない。即ち、ごみ供給クレーンのバケットは、常に
一定体積のごみをつかみ取るわけではなく、ごみバケッ
トの容積よりも少ない量をつかむこともあるし、バケッ
トからはみ出した状態でごみをつかむこともあるので、
バケットの容積を一定としてごみの見掛け比重を求める
と、その算出値が不正確なものになる。また、後者の方
法は、バケットの挟持角度を検出してごみの体積を推定
するので、バケットの容積を一定としてごみの見掛け比
重を求める場合よりもごみの見掛け比重を正確に算出す
ることができるが、この場合にも、バケットの挟持角と
バケットによってつかみ取られたごみの量とは正確に対
応しないので、ごみの見掛け比重の算出値が不正確なも
のになる。
However, since the former method obtains the apparent specific gravity of dust with the bucket volume kept constant, the apparent specific gravity of dust cannot be obtained accurately. That is, the bucket of the garbage supply crane does not always grab a fixed volume of garbage, and may grab a smaller amount than the volume of the garbage bucket, or it may grab the garbage while it is protruding from the bucket.
When the apparent specific gravity of dust is calculated with the bucket volume kept constant, the calculated value becomes inaccurate. Further, the latter method detects the gripping angle of the bucket and estimates the volume of dust, so that the apparent specific gravity of dust can be calculated more accurately than when the apparent specific gravity of dust is determined with the bucket volume kept constant. However, also in this case, since the gripping angle of the bucket and the amount of dust caught by the bucket do not correspond exactly, the calculated value of the apparent specific gravity of dust becomes inaccurate.

【0007】さらに、ごみの比重と発熱量がある条件の
もとで一定の相関関係にあったとしても、その相関関係
は、ごみの収集地域や収集時刻それに季節や天候などの
条件によって変動するので、これらの条件を加味した適
切な補正を加えなければ、算出されたごみ発熱量を用い
て適切なごみ焼却設備の運用をすることができない。
Furthermore, even if there is a certain correlation between the specific gravity of the refuse and the amount of heat generation under certain conditions, the correlation changes depending on the collection area of the refuse, the collection time, the season, the weather and other conditions. Therefore, it is not possible to operate the appropriate waste incineration facility using the calculated waste heat generation value unless appropriate corrections that take these conditions into consideration are added.

【0008】本発明は、かかる従来技術の不都合を解消
するためになされたものであって、その課題とするとこ
ろは、要求される焼却炉発熱量に応じて、適正量のごみ
を安定に焼却炉内に供給可能なごみ焼却設備の運転方法
を提供することにある。
The present invention has been made in order to eliminate the disadvantages of the prior art, and its object is to incinerate a proper amount of refuse in a stable manner according to the required calorific value of the incinerator. It is to provide a method of operating a refuse incineration facility that can be supplied into a furnace.

【0009】[0009]

【課題を解決するための手段】本発明は、前記の課題を
解決するため、第1に、ごみ供給クレーンを用いて焼却
炉内にごみを供給するごみ焼却設備において、ごみ供給
クレーンのバケット内面に圧力検出装置を設置し、ごみ
をつかんだときのバケット開度に対する前記圧力検出装
置の指示値の変化量と予め求めておいたごみ発熱量との
相関式からごみ発熱量を推定し、ごみ供給熱量を制御す
るという構成にした。
[Means for Solving the Problems] In order to solve the above-mentioned problems, firstly, in a refuse incinerator for supplying refuse into an incinerator by using a refuse supply crane, an inner surface of a bucket of the refuse supply crane. Install a pressure detection device in the, and estimate the waste heat generation amount from the correlation equation between the amount of change in the indicated value of the pressure detection device with respect to the bucket opening when catching dust and the waste heat generation amount obtained in advance. The configuration is such that the amount of heat supplied is controlled.

【0010】また、第2に、前記した第1の手段におい
て、前記ごみ焼却炉に加えられる空気、補助燃料、冷却
水の流量と温度並びに燃焼排ガスの温度、放散熱量など
から燃焼中のごみの発熱量を逆算し、これを補正値とし
て前記圧力検出装置の指示値の変化量と発熱量の相関式
に補正を加えながらごみ発熱量を推定し、ごみ供給熱量
を制御するという構成にした。
Secondly, in the above-mentioned first means, the amount of dust during combustion is determined from the flow rate and temperature of air, auxiliary fuel and cooling water added to the refuse incinerator, the temperature of combustion exhaust gas, the amount of heat released, etc. The heat generation amount is back-calculated, the correction value is used as a correction value, and the waste heat generation amount is estimated while the correlation expression between the change amount of the pressure detection device and the heat generation amount is corrected to control the waste heat supply amount.

【0011】ごみ供給クレーンのバケットに、その内面
に作用する圧力を検出する圧力検出器とバケット開度の
検出器とを設置し、ごみをつかんだバケットの開度が大
きいときの前記圧力検出器の出力値と、その状態からバ
ケット開度を狭め、ごみを圧縮したときの前記圧力検出
器の出力値との差又は比をとれば、当該バケットにつか
まれたごみの応力比の大小を求めることができる。ごみ
の応力比とごみ発熱量とは密接な関係があり、かつこれ
らの関係は予め実験室的に求めておくことができるの
で、ごみ焼却設備の運転中に前記圧力検出器及びバケッ
ト開度検出器の出力信号よりごみの応力比を求めれば、
予め実験室的に求められたごみ応力比とごみ発熱量との
相関式から、当該バケットでつかまれて焼却炉に投入さ
れたごみの発熱量を正確に推定することができる。よっ
て、入熱が一定になるようにごみ供給量を適切に制御し
たり、あるいは後続する廃熱ボイラなどの排熱回収装置
の要求する熱量に見合うようにごみ供給量を適切に制御
することができる。
The bucket of the refuse supply crane is provided with a pressure detector for detecting the pressure acting on the inner surface of the bucket and a detector for opening the bucket, and the above-mentioned pressure detector when the bucket for catching dust has a large opening. If the difference or ratio between the output value of the pressure detector and the output value of the pressure detector when the dust is compressed by narrowing the opening degree of the bucket from that state, the magnitude of the stress ratio of the dust caught in the bucket can be obtained. You can Since there is a close relationship between the stress ratio of waste and the heat value of waste, and these relationships can be obtained in advance in a laboratory, the pressure detector and bucket opening detection during operation of the waste incineration facility can be detected. If the stress ratio of dust is calculated from the output signal of the container,
It is possible to accurately estimate the calorific value of the waste that is grabbed by the bucket and put into the incinerator, from the correlation expression between the waste stress ratio and the waste heat value that is obtained in advance in the laboratory. Therefore, it is possible to appropriately control the waste supply amount so that the heat input is constant, or to appropriately control the waste supply amount to match the heat amount required by the exhaust heat recovery device such as the subsequent waste heat boiler. it can.

【0012】なお、燃焼中のごみの発熱量は、ごみの応
力比の大小によってのみ変動するものではなく、ごみ焼
却炉に加えられる燃焼用空気の流量や温度、補助燃料
量、冷却水の流量や温度などによっても変動する。そこ
で、ごみ焼却炉の熱収支を演算することによってごみ焼
却炉における実際のごみ発熱量を逆算し、この逆算され
たごみ発熱量にて前記ごみ応力比とごみ発熱量との相関
式を適宜補正することにより、より正確なごみ供給量を
求めることができる。
Note that the heat generation amount of waste during combustion does not change only depending on the magnitude of the stress ratio of the waste, but the flow rate and temperature of combustion air added to the waste incinerator, the amount of auxiliary fuel, and the flow rate of cooling water. It also varies depending on temperature and temperature. Therefore, by calculating the heat balance of the waste incinerator, the actual heat generation amount of waste in the waste incinerator is back-calculated, and the correlation expression between the waste stress ratio and the waste heat generation amount is appropriately corrected with this back-calculated waste heat generation amount. By doing so, a more accurate waste supply amount can be obtained.

【0013】[0013]

【発明の実施の形態】まず、本発明に係る運転方法が実
行されるごみ焼却設備の一例を、図1に基づいて説明す
る。図1において、1はごみAが貯溜されるごみピッ
ト、2はごみAの供給クレーン、3は当該クレーン2に
備えられたバケット、4は給じん装置、5はごみ焼却
炉、6はごみ焼却炉5の排熱を有効利用するための排熱
回収ボイラ等の排熱回収装置、7はごみ焼却炉5に供給
される燃焼用空気を予熱する空気予熱器、8は排ガス中
のダスト及び有害物質を除去する除塵装置を示してい
る。
BEST MODE FOR CARRYING OUT THE INVENTION First, an example of a refuse incineration facility in which an operating method according to the present invention is executed will be described with reference to FIG. In FIG. 1, 1 is a waste pit for storing waste A, 2 is a crane for supplying waste A, 3 is a bucket provided for the crane 2, 4 is a dust supply device, 5 is a waste incinerator, and 6 is waste incineration. An exhaust heat recovery device such as an exhaust heat recovery boiler for effectively utilizing the exhaust heat of the furnace 5, 7 is an air preheater for preheating combustion air supplied to the refuse incinerator 5, and 8 is dust and harmful in exhaust gas. 1 shows a dust remover for removing substances.

【0014】前記給じん装置4は、ごみを受け入れるホ
ッパ11と、ホッパ11に受け入れられたごみをごみ焼
却炉5に圧送するスクリューフィーダ12と、スクリュ
ーフィーダ12を回転駆動するモータ13と、ホッパ1
1に受け入れられたごみの重量を計重する給じん装置計
重機14とから構成されており、ホッパ11内には、下
側ごみレベル計15及び上側ごみレベル計16が設定さ
れている。
The dust supply device 4 includes a hopper 11 for receiving dust, a screw feeder 12 for pumping the dust received by the hopper 11 to the refuse incinerator 5, a motor 13 for rotating the screw feeder 12, and a hopper 1.
1 and a dust-feeder weighing machine 14 that weighs the weight of the refuse received, and a lower dust level meter 15 and an upper dust level meter 16 are set in the hopper 11.

【0015】バケット3には、その内面に作用する圧力
を検出する圧力検出器3aと、バケット3の開度を検出
するバケット開度検出器3bとが設置される。圧力検出
器3aとしては表面にストレインゲージが貼付された金
属板等を用いることができ、バケット開度検出器3bと
しては、バケット3の適当な部分に取り付けられたポテ
ンショメータ等を用いることができる。
The bucket 3 is provided with a pressure detector 3a for detecting the pressure acting on the inner surface of the bucket 3 and a bucket opening detector 3b for detecting the opening of the bucket 3. As the pressure detector 3a, a metal plate or the like having a strain gauge attached to the surface can be used, and as the bucket opening detector 3b, a potentiometer or the like attached to an appropriate portion of the bucket 3 can be used.

【0016】ごみ焼却炉5には、補助燃料配管21と冷
却水配管31と燃焼用空気配管41とが接続されてお
り、各配管21,31,41には、その内部を流れる流
体の温度計22,32,42と流量計23,33,43
とが設定されている。また、当該ごみ焼却炉5の出口煙
道には、燃焼排ガスの温度計52が設定されている。
An auxiliary fuel pipe 21, a cooling water pipe 31, and a combustion air pipe 41 are connected to the refuse incinerator 5, and each of the pipes 21, 31, 41 has a thermometer for the fluid flowing therein. 22, 32, 42 and flow meters 23, 33, 43
Is set. Further, a flue gas thermometer 52 is set at the outlet flue of the refuse incinerator 5.

【0017】以下、前記のように構成されたごみ焼却設
備の一般的な運転方法について説明する。
Hereinafter, a general operation method of the refuse incineration facility configured as described above will be described.

【0018】各家庭や事業所からごみ収集車によって回
収されたごみは、ごみピット1に貯蔵される。そして、
ごみピット1に貯蔵されたごみは、供給クレーン2に付
設されたバケット3によってごみピット1から取り出さ
れ、ホッパ11内に順次供給される。
The garbage collected by the garbage truck from each home or office is stored in the garbage pit 1. And
The waste stored in the waste pit 1 is taken out from the waste pit 1 by the bucket 3 attached to the supply crane 2 and sequentially supplied into the hopper 11.

【0019】ホッパ11内に供給されたごみの堆積量
は、上下のごみレベル計15,16及び給じん装置計重
機14にて常時計測されており、ホッパ11内のごみ堆
積量が予め定められた規定値以下になったとき、ごみ供
給クレーン2を作動して、ごみピット1からホッパ11
へのごみの供給が行われる。なお、ホッパ11へのごみ
供給は、ごみレベル計15,16及び給じん装置計重機
14の出力信号に応じて自動的に行われるほか、クレー
ン運転員が目視でホッパ11内のごみ堆積量を判断する
ことによっても行われる。ホッパ11内に供給されたご
みは、当該ホッパ11の底面に設置されたスクリューフ
ィーダ12によって定量が焼却炉5に供給される。
The amount of dust accumulated in the hopper 11 is constantly measured by the upper and lower dust level meters 15 and 16 and the dust collector weighing machine 14, and the amount of dust accumulated in the hopper 11 is predetermined. When the value falls below the specified value, the garbage supply crane 2 is operated to move from the garbage pit 1 to the hopper 11.
Waste is supplied to It should be noted that the dust supply to the hopper 11 is automatically performed according to the output signals of the dust level meters 15 and 16 and the dust-feeder weighing machine 14, and the crane operator can visually check the dust accumulation amount in the hopper 11. It is also done by judgment. A certain amount of the waste supplied into the hopper 11 is supplied to the incinerator 5 by the screw feeder 12 installed on the bottom surface of the hopper 11.

【0020】焼却炉5は、流動層炉を例にとって説明す
ると、珪砂等の砂を流動媒体とし、これを650〜75
0℃程度の高温に保ち、流動層下部から空気予熱器7で
加温された燃焼用空気を供給し、燃焼と流動化を行わせ
る。給じん装置4から供給されたごみは、流動層内で高
温の流動媒体と撹拌混合され、速やかに乾燥、燃焼す
る。燃焼排ガス53は、燃焼排熱回収装置6、空気予熱
器7、除塵装置8を経て系外へ排出される。
The incinerator 5 will be described by taking a fluidized bed furnace as an example. Sand such as silica sand is used as a fluid medium, which is 650-75.
The temperature of the fluidized bed is maintained at a high temperature of about 0 ° C., and the combustion air heated by the air preheater 7 is supplied from the lower portion of the fluidized bed to perform combustion and fluidization. The dust supplied from the dust feeder 4 is agitated and mixed with the high temperature fluid medium in the fluidized bed, and is quickly dried and burned. The combustion exhaust gas 53 is discharged to the outside of the system through the combustion exhaust heat recovery device 6, the air preheater 7, and the dust removing device 8.

【0021】次に、図2及び図3に基づいて、本発明の
特徴部分であるクレーンバケット3に設けられた圧力検
出器3aとバケット開度検出器3bの出力信号とからご
み発熱量を推定する方法と、火炉廻りの熱収支からごみ
発熱量を補正する方法とについて説明する。
Next, based on FIGS. 2 and 3, the amount of heat generated by the dust is estimated from the output signals of the pressure detector 3a and the bucket opening detector 3b provided on the crane bucket 3, which is a feature of the present invention. A method of doing this and a method of correcting the heat value of waste from the heat balance around the furnace will be described.

【0022】〈ごみ発熱量の推定方法〉ごみ供給クレー
ン1は、図2(a)に示すようにバケット3を全開した
状態でごみピット1内に貯蔵されたごみAにバケット3
を突き刺し、次いで、バケット3を全開状態より閉じる
方向に付勢しつつごみAをすくい取る。ごみAをすくい
上げた段階では、バケット3は必ずしも全閉状態になら
ず、全開と全閉の中間状態になるのがむしろ普通であ
る。次いで、バケット3を閉じてバケット3を上昇さ
せ、ホッパ11の上方でバケット3を開いてごみを排出
する。
<Method of Estimating Heat Generation Value of Waste> The waste supply crane 1 has the bucket 3 in the waste A stored in the waste pit 1 with the bucket 3 fully opened as shown in FIG. 2 (a).
And then squeezes the dust A while urging the bucket 3 from the fully opened state in the closing direction. When the dust A is scooped up, the bucket 3 is not necessarily in the fully closed state, but rather in an intermediate state between fully opened and fully closed. Next, the bucket 3 is closed to raise the bucket 3, and the bucket 3 is opened above the hopper 11 to discharge the dust.

【0023】そこで、図2(b)に示すように、バケッ
ト3の開度が全開と全閉の中間の適当な開き角度αとな
る時点で、圧力検出器3aによりバケット3の内面に作
用する与圧P1 を計測し、次に図2(c)に示すよう
に、バケット3の開度が開き角度αと全閉の中間の適当
な開き角度βとなる時点で、同じく圧力検出器3aによ
りバケット3の内面に作用する与圧P2 を計測する。
Therefore, as shown in FIG. 2B, the pressure detector 3a acts on the inner surface of the bucket 3 when the opening of the bucket 3 reaches an appropriate opening angle α between the fully open and fully closed positions. The pressurization P 1 is measured, and then, as shown in FIG. 2C, at the time when the opening of the bucket 3 becomes an appropriate opening angle β between the opening angle α and the full closing, the pressure detector 3 a is also set. Thus, the pressure P 2 acting on the inner surface of the bucket 3 is measured.

【0024】K=P2/P1 ……(1) 上記の第1式で与えられるKは、ごみを圧縮したときの
応力比であり、ごみの圧縮しやすさを表す変化量として
捉えることができる。圧縮しやすいごみは応力比Kが小
さく、圧縮しにくいごみは応力比Kが大きくなる。例え
ば水は非圧縮であるので、水分の高いごみは応力比Kが
大きくなり、紙やプラスチックなどの可燃物はごみとし
て排出された状態では圧縮性が高いので、応力比Kが小
さくなる。なお、与圧P1 の計測時におけるバケット3
の開き角度αを全開角よりも小さく取るのは、ごみAを
バケット3の定格容量より少なくつかんでも適当な与圧
が得られるようにするためであり、与圧P2 の計測時に
おけるバケット3の開き角度βを全閉角より大きく取る
のは、圧縮性の小さいごみではバケット3が完全に閉じ
ない場合があるからである。
K = P 2 / P 1 (1) K given by the above-mentioned first equation is a stress ratio when the dust is compressed, and should be regarded as a variation representing the ease of compressing the dust. You can Waste that is easy to compress has a low stress ratio K, and waste that is difficult to compress has a high stress ratio K. For example, since water is incompressible, the stress ratio K becomes large for dust having a high water content, and combustible substances such as paper and plastic have high compressibility when discharged as dust, so the stress ratio K becomes small. The bucket 3 at the time of measuring the pressurization P 1
The reason why the opening angle α of the bucket 3 is smaller than the full opening angle is that the dust A is smaller than the rated capacity of the bucket 3 so that an appropriate pressurization can be obtained, and the bucket 3 when the pressurization P 2 is measured. The opening angle β of is larger than the full closing angle, because the bucket 3 may not be completely closed with dust having a small compressibility.

【0025】一方、ごみの応力比Kとごみ発熱量との関
係は、実験室的な方法で予め求めることができる。図3
に、ごみの応力比Kとごみ発熱量との関係を表すチャー
トの一例を示す。従って、ごみ焼却設備の運転時におい
て、バケット3の内面に作用する与圧P1 ,P2 とバケ
ット3の開き角度α,βとから第1式で与えられる応力
比Kを計算すれば、図3のチャートからごみ発熱量を推
定することができ、この推定発熱量にごみの投入量を乗
算すれば、総入熱量を求めることができる。そして、こ
のようにして求められた総入熱量が排熱回収装置6の要
求熱量に合致するように給じん装置4に備えられたスク
リュー駆動モータ13の回転数をPID補正することに
よって、常時適正な燃焼を維持できる。図3のチャート
は、以下に述べる方法で最適化できるので、初期状態に
おいて必ずしも正確である必要はない。
On the other hand, the relationship between the stress ratio K of the dust and the heat value of the dust can be obtained in advance by a laboratory method. FIG.
An example of a chart showing the relationship between the stress ratio K of waste and the heat value of waste is shown in FIG. Therefore, if the stress ratio K given by the first equation is calculated from the pressurization pressures P 1 and P 2 acting on the inner surface of the bucket 3 and the opening angles α and β of the bucket 3 during operation of the refuse incineration facility, The heat generation amount of waste can be estimated from the chart of No. 3, and the total heat input amount can be obtained by multiplying the estimated heat generation amount by the input amount of waste. Then, the rotation speed of the screw drive motor 13 provided in the dust supply device 4 is PID-corrected so that the total heat input amount obtained in this way matches the heat amount required of the exhaust heat recovery device 6, so that it is always correct. Can maintain good combustion. Since the chart of FIG. 3 can be optimized by the method described below, it does not necessarily have to be accurate in the initial state.

【0026】なお、前記実施例においては、応力比Kか
らごみ発熱量を推定する方法について説明したが、ごみ
焼却設備の実運転中に計量可能で、かつごみ発熱量と相
関関係が得られるものであれば、他の計測値を用いてご
み発熱量を推定することもできる。例えば、バケット開
度に対する圧力を連続的に計測し、この微分値、すなわ
ち線分の傾きを指標としてもよい。推定したごみ発熱量
によって、入熱が一定になるようにごみ供給量を適切に
制御したり、あるいは後続する排熱回収装置6の要求す
る熱量に見合うようにごみ供給量を適切に制御すること
ができる。
Although the method for estimating the heat value of waste from the stress ratio K has been described in the above-mentioned embodiment, it is possible to measure the heat value of waste during actual operation of the waste incinerator and to obtain a correlation with the heat value of waste. If so, it is possible to estimate the heat value of waste by using other measured values. For example, the pressure with respect to the bucket opening may be continuously measured, and the differential value, that is, the slope of the line segment may be used as an index. According to the estimated waste heat generation amount, the waste supply amount is appropriately controlled so that the heat input is constant, or the waste supply amount is appropriately controlled so as to meet the heat amount required by the exhaust heat recovery device 6 that follows. You can

【0027】〈ごみ発熱量の補正方法〉次に、図4に基
づいて、ごみ発熱量をごみ焼却炉5の熱物質収支から逆
算し、図3のチャートを実機に合わせて補正する方法に
ついて説明する。図4において、与圧P1 ,P2 から応
力比Kを求め、次いで、この応力比Kと図3のチャート
とからごみ発熱量を推定し、火炉内の発熱量を演算によ
り求めると共に、スクリュー駆動モータ13の回転数を
排熱回収装置6の要求熱量に合致するようにPID補正
するまでの手順については、上記〈ごみ発熱量の推定方
法〉の欄で説明したとおりであるので、ここでは重複を
避けるため、説明を省略する。
<Correction Method for Waste Heat Generation> Next, a method for correcting the waste heat generation amount from the heat and mass balance of the waste incinerator 5 based on FIG. 4 and correcting the chart in FIG. 3 according to the actual machine will be described. To do. In FIG. 4, the stress ratio K is calculated from the pressurization pressures P 1 and P 2 , and then the heat generation amount of dust is estimated from the stress ratio K and the chart of FIG. The procedure until PID correction so that the rotation speed of the drive motor 13 matches the required heat amount of the exhaust heat recovery device 6 is as described in the above section <Method of estimating waste heat generation amount>. The description is omitted to avoid duplication.

【0028】バケット3によってホッパ11内に搬送さ
れたごみは、給じん装置4に備えられたスクリューフィ
ーダ12によってごみ焼却炉5に圧送され、焼却され
る。ホッパ11内のごみ堆積量が下側ごみレベル計15
で設定されるレベル以下となったときに供給クレーン2
を駆動してのホッパ11に対するごみ供給が開始され、
ホッパ11内のごみ堆積量が上側ごみレベル計16で設
定されるレベル以上となったときにホッパ11に対する
ごみ供給が停止される場合、下側ごみレベル計15の設
定位置における給塵装置4の容積をW[m3 ]とし、ス
クリューフィーダ12の排出速度をV[m3 /h]とす
ると、給じん装置4内のごみは、第2式で示すようにt
[h]後に焼却されることになる。
The waste conveyed in the hopper 11 by the bucket 3 is pressure-fed to the waste incinerator 5 by the screw feeder 12 provided in the dust feeder 4 and incinerated. The amount of dust accumulated in the hopper 11 is the lower dust level meter 15
Supply crane 2 when the level falls below the level set in
Waste supply to the hopper 11 by driving the
When the dust supply to the hopper 11 is stopped when the amount of dust accumulated in the hopper 11 becomes equal to or higher than the level set by the upper dust level meter 16, the dust collector 4 at the setting position of the lower dust level meter 15 Assuming that the volume is W [m 3 ] and the discharge speed of the screw feeder 12 is V [m 3 / h], the dust in the dust feeder 4 is t as shown in the second equation.
It will be incinerated after [h].

【0029】t=W/V ……(2) そこで、t[h]後の焼却炉廻りの熱物質収支は以下の
ようになる。
T = W / V (2) Then, the heat and mass balance around the incinerator after t [h] is as follows.

【0030】まず、入熱に関しては、下記の第3式〜第
8式にて表される燃焼空気顕熱q1と、補助燃料顕熱q2
と、補助燃料発熱量q3 と、ごみ顕熱q4 と、冷却水
顕熱q5 と、ごみ発熱量qx とがある。
First, regarding the heat input, the sensible heat of combustion air q 1 and the sensible heat of auxiliary fuel q 2 expressed by the following formulas 3 to 8 are given.
, The auxiliary fuel calorific value q 3 , the waste sensible heat q 4 , the cooling water sensible heat q 5, and the waste calorific value q x .

【0031】q1=Wa×ita ……(3) q2=Wf×itf ……(4) q3=Wf×Hf ……(5) q4=Wx×itx ……(6) q5=Wm×itm ……(7) qx=Wx×Hx ……(8) ここで、Wa [kg/h]は重量ベースの時間当たりの
燃焼空気流量であり、流量計43及び温度計42にて体
積ベースの空気流量とその温度とを計測することによっ
て求めることができる。
Q 1 = W a × i ta (3) q 2 = W f × i tf (4) q 3 = W f × H f (5) q 4 = W x × i tx (6) q 5 = W m × i tm (7) q x = W x × H x (8) where W a [kg / h] is combustion air per hour on a weight basis. It is the flow rate, and can be obtained by measuring the volume-based air flow rate and its temperature with the flow meter 43 and the thermometer 42.

【0032】itaは空気温度tのときの保有熱で、保有
熱は温度tによって一意に定まるので、温度計42にて
空気温度を計測することによって求めることができる。
Ita is the retained heat at the air temperature t, and since the retained heat is uniquely determined by the temperature t, it can be obtained by measuring the air temperature with the thermometer 42.

【0033】Wf [kg/h]は補助燃料の重量ベース
の流量で、流量計23にて求められる容積ベースの流量
より換算できる。
W f [kg / h] is the weight-based flow rate of the auxiliary fuel, which can be converted from the volume-based flow rate obtained by the flow meter 23.

【0034】Hf は補助燃料の発熱量で、使用する燃料
によって一意に定まる。
H f is the calorific value of the auxiliary fuel and is uniquely determined by the fuel used.

【0035】Wm [kg/h]は火炉温度が上がり過ぎ
たときに注入される冷却水の重量ベースの流量で、流量
計33にて計測できる。また、itmは冷却水の保有熱で
あり、温度計32の計測結果より求めることができる。
W m [kg / h] is a weight-based flow rate of cooling water injected when the furnace temperature rises too much, and can be measured by the flow meter 33. Further, itm is the heat of the cooling water and can be obtained from the measurement result of the thermometer 32.

【0036】Wx [kg/h]はごみ供給量で、ごみク
レーンバケット3に計重機を設け、計測データの移動平
均を取ることによって求められる。
W x [kg / h] is a waste supply amount, which is obtained by providing a weighing machine in the waste crane bucket 3 and taking a moving average of measurement data.

【0037】Hx は、ここで求めようとしているごみ発
熱量である。
H x is the heat value of the waste to be obtained here.

【0038】一方、出熱に関しては、下記の第9式〜第
11式にて表される燃焼空気乾ガス保有熱Q1 と、燃焼
空気蒸気保有熱Q2 と、火炉放散熱などの未勘定損失Q
3 とがある。
On the other hand, regarding heat output, combustion air dry gas possession heat Q 1 , combustion air vapor possession heat Q 2, and furnace dissipated heat, which are represented by the following equations 9 to 11, are not accounted. Loss Q
There are three .

【0039】Q1=Wg×itg …… (9) Q2=Ww×itw ……(10) Q3=Qc ……(11) ここで、Wgは燃焼排ガス中の乾ガス重量で、下記の第
12式で表せる。
Q 1 = W g × i tg (9) Q 2 = W w × i tw (10) Q 3 = Q c (11) where W g is the dry gas in the combustion exhaust gas. It can be expressed by the following formula 12 in terms of gas weight.

【0040】 Wg=Wx×(1−m)+Wf+Wa ……(12) Wwは燃焼排ガス中の水分重量で、下記の第13式で表
せる。
W g = W x × (1-m) + W f + W a (12) W w is the weight of water in the combustion exhaust gas and can be expressed by the following thirteenth formula.

【0041】 Ww=Wx×m+Wm …………(13) itg,itwはそれぞれ燃焼排ガス温度がtのときの乾ガ
ス及び蒸気の保有熱であって、各保有熱は温度tによっ
て一意に定まるので、温度計52にて燃焼排ガス温度を
計測することによって求めることができる。
W w = W x × m + W m (13) Itg and itw are the heats of the dry gas and steam when the temperature of the combustion exhaust gas is t, and the heats of each are the temperature t. It can be determined by measuring the combustion exhaust gas temperature with the thermometer 52.

【0042】また、mはごみの水分で、実時間で計測す
ることは困難であるが、前述したように水分の多いごみ
は非圧縮性に近く応力比kは高く、可燃物を多く含む水
分の少ないごみは応力比Kは小さいので、応力比Kとの
相関{m=f(k)}で求めることができる。
Further, m is the water content of the waste, which is difficult to measure in real time, but as described above, the waste with a high water content is close to incompressibility and the stress ratio k is high, and the water content containing a large amount of combustible substances. Since the stress ratio K is small for less dust, it can be obtained from the correlation {m = f (k)} with the stress ratio K.

【0043】Qc は未勘定損失で、火炉壁面から放散す
る熱量などであるが、全入出熱に占める割合は少ないの
で、適当な定数として計算すればよい。
Q c is an uncounted loss, which is the amount of heat dissipated from the wall surface of the furnace, but since it accounts for a small proportion of the total heat input and output, it can be calculated as an appropriate constant.

【0044】前出の第3式〜第11式を入出熱が等しい
という性質で整理すると下記の第14式及び第15式が
求まり、これらの各式から第16式が求まる。
By rearranging the third to eleventh equations described above with the property that the heat input / output is equal, the following fourteenth equation and fifteenth equation are obtained, and the sixteenth equation is obtained from each of these equations.

【0045】 Q=q1+q2+q3+q4+q5+qx……(14) Q=Q1+Q2+Q3 ……(15) qx =Q−(q1+q2+q3+q4) =Wx×Hx ……(16) この第16式を解けば、ごみ発熱量Hx を求めることが
できる。このようにして求めたごみ発熱量Hx と対応す
る応力比Kによって図3の相関式を補正すればよい。
Q = q 1 + q 2 + q 3 + q 4 + q 5 + q x (14) Q = Q 1 + Q 2 + Q 3 (15) q x = Q- (q 1 + q 2 + q 3 + q 4 ) = W x × H x (16) By solving this 16th equation, the heat value H x of waste heat can be obtained. The correlation equation of FIG. 3 may be corrected by the heat generation amount H x of dust thus obtained and the stress ratio K corresponding thereto.

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
ごみ供給クレーンのバケットに圧力検出器とバケット開
度検出器とを設置し、バケット開度が大きいときの圧力
検出器の出力値と、バケット開度を狭めたときの圧力検
出器の出力値とから当該バケットにつかまれたごみの応
力比の大小を求め、予め求められたごみの応力比とごみ
発熱量との相関式からごみ発熱量を推定するようにした
ので、当該バケットでつかまれて焼却炉に投入されたご
みの発熱量を正確に推定できると共に、火炉温度の増減
がごみの供給量増減に基づくものなのか、ごみの発熱量
変動に基づくものなのかを容易に判断できる。よって、
入熱が一定になるようにごみ供給量を適切に制御した
り、あるいは後続する排熱回収装置の要求する熱量に見
合うようにごみ供給量を適切に制御することができる。
また、実際の焼却結果から熱物質収支によりごみの発熱
量を求め、応力比との関係式を補正するようにしたの
で、常に正確なごみ発熱量の推定が可能となる。
As described above, according to the present invention,
A pressure detector and a bucket opening detector are installed in the bucket of the garbage supply crane, and the output value of the pressure detector when the bucket opening is large and the output value of the pressure detector when the bucket opening is narrowed The size of the stress ratio of the waste caught in the bucket is calculated from the above, and the heat generation amount of the waste is estimated from the correlation equation between the stress ratio of the waste and the heat generation amount of the waste that is obtained in advance. It is possible to accurately estimate the calorific value of the waste thrown into the furnace and easily determine whether the increase or decrease in the furnace temperature is due to the increase or decrease in the supplied amount of the waste or the fluctuation in the calorific value of the waste. Therefore,
The waste supply amount can be appropriately controlled so that the heat input is constant, or the waste supply amount can be appropriately controlled so as to match the heat amount required by the subsequent exhaust heat recovery device.
Further, since the heat generation amount of waste is obtained from the actual incineration result by the heat and mass balance and the relational expression with the stress ratio is corrected, it is possible to always accurately estimate the heat generation amount of waste.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るごみ焼却設備の構成図である。FIG. 1 is a configuration diagram of a refuse incineration facility according to the present invention.

【図2】本発明に係るバケットの構成と当該バケットに
よるごみの応力比測定方法を示す側面図である。
FIG. 2 is a side view showing a configuration of a bucket according to the present invention and a dust stress ratio measuring method by the bucket.

【図3】ごみの応力比Kとごみ発熱量との関係を示すグ
ラフ図である。
FIG. 3 is a graph showing a relationship between a stress ratio K of waste and a heat value of waste.

【図4】本発明に係るごみ焼却設備の制御特性図であ
る。
FIG. 4 is a control characteristic diagram of the refuse incineration facility according to the present invention.

【符号の説明】[Explanation of symbols]

1 ごみピット 2 ごみ供給クレーン 3 クレーンバケット 3a 圧力検出器 3b バケット開度検出器 4 給じん装置 5 ごみ焼却炉 6 排熱回収装置 7 空気予熱器 8 除塵装置 11 ホッパ 12 スクリューフィーダ 13 スクリュー駆動モータ 14 給じん装置計重機 15 下側ごみレベル計 16 上側ごみレベル計 21 補助燃料配管 31 冷却水配管 41 燃焼用空気配管 22,32,42,52 温度計 23,33,43 流量計 1 Garbage Pit 2 Garbage Supply Crane 3 Crane Bucket 3a Pressure Detector 3b Bucket Opening Detector 4 Dust Incinerator 5 Waste Incinerator 6 Exhaust Heat Recovery Device 7 Air Preheater 8 Dust Removal Device 11 Hopper 12 Screw Feeder 13 Screw Drive Motor 14 Dust supply equipment Heavy equipment 15 Lower dust level meter 16 Upper dust level meter 21 Auxiliary fuel piping 31 Cooling water piping 41 Combustion air piping 22, 32, 42, 52 Thermometer 23, 33, 43 Flowmeter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F23G 5/00 108 F23G 5/00 108B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location F23G 5/00 108 F23G 5/00 108B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ごみ供給クレーンを用いて焼却炉内にご
みを供給するごみ焼却設備において、ごみ供給クレーン
のバケット内面に圧力検出装置を設置し、ごみをつかん
だときのバケット開度に対する前記圧力検出装置の指示
値の変化量と予め求めておいたごみ発熱量との相関式か
らごみ発熱量を推定し、ごみ供給熱量を制御することを
特徴とするごみ焼却設備の運転方法。
1. In a refuse incineration facility for supplying refuse into an incinerator using a refuse supply crane, a pressure detection device is installed on the inner surface of the bucket of the refuse supply crane, and the pressure relative to the opening degree of the bucket when the refuse is caught. A method for operating a refuse incineration facility, which comprises estimating a waste heat generation amount from a correlation equation between a change amount of a detection device indicated value and a waste heat generation amount obtained in advance, and controlling the waste heat supply amount.
【請求項2】 請求項1の記載において、前記ごみ焼却
炉に加えられる空気、補助燃料、冷却水の流量と温度並
びに燃焼排ガスの温度、放散熱量などから燃焼中のごみ
の発熱量を逆算し、これを補正値として前記圧力検出装
置の指示値の変化量と発熱量の相関式に補正を加えなが
らごみ発熱量を推定し、ごみ供給熱量を制御することを
特徴とするごみ焼却設備の運転方法。
2. The calorific value of the refuse during combustion is calculated back from the flow and temperature of the air, auxiliary fuel and cooling water added to the refuse incinerator, the temperature of the combustion exhaust gas, the amount of heat dissipated, etc. according to claim 1. The operation of the waste incineration facility is characterized in that the heat value of the waste is controlled by estimating the heat value of the waste while correcting the correlation of the change amount of the indicated value of the pressure detection device and the heat generation amount using this as a correction value. Method.
JP34328395A 1995-12-28 1995-12-28 Waste incineration equipment Expired - Fee Related JP3510030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34328395A JP3510030B2 (en) 1995-12-28 1995-12-28 Waste incineration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34328395A JP3510030B2 (en) 1995-12-28 1995-12-28 Waste incineration equipment

Publications (2)

Publication Number Publication Date
JPH09178147A true JPH09178147A (en) 1997-07-11
JP3510030B2 JP3510030B2 (en) 2004-03-22

Family

ID=18360324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34328395A Expired - Fee Related JP3510030B2 (en) 1995-12-28 1995-12-28 Waste incineration equipment

Country Status (1)

Country Link
JP (1) JP3510030B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358699B2 (en) 2004-07-15 2008-04-15 Mitsubishi Denki Kabushiki Kaisha Rotating electric machine with built-in control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358699B2 (en) 2004-07-15 2008-04-15 Mitsubishi Denki Kabushiki Kaisha Rotating electric machine with built-in control device

Also Published As

Publication number Publication date
JP3510030B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
US10920977B2 (en) System and method for diagnosing and controlling incineration facility and solid fuel boiler and managing life cycle of facility through heat exchange and design program and operation mode analysis of operator
Pellegrinetti et al. Nonlinear control oriented boiler modeling-a benchmark problem for controller design
BRPI0621236B1 (en) &#34;Process for determining the amount of fluid expended to operate a process control device and system for measuring the amount of a supply fluid spent controlling a process control system&#34;
CN103363529B (en) The regulating valve control device of pressurized flow furnace apparatus and control method
JP2017096517A (en) Waste material combustion method and combustion control device applying the same
Bujak Heat recovery from thermal treatment of medical waste
JP3822328B2 (en) Method for estimating the lower heating value of combustion waste in refuse incinerators
JP3510030B2 (en) Waste incineration equipment
JP4261797B2 (en) Gas flow meter
JPH1068514A (en) Combustion controlling method for refuse incinerating furnace
JP3836659B2 (en) Combustion equipment
JP4225698B2 (en) Combustion equipment
KR101179679B1 (en) Control device of inlet air flow rate for coke oven and control method thereof
JP2664909B2 (en) Operating method of refuse incineration equipment
KR100448533B1 (en) Control of Combustion and Steam Generation Using Friction Coefficient of the Combustion Air in a Stoker Type Incinerator
JP3819458B2 (en) Waste supply measuring device and combustion control method using the same
JP3491126B2 (en) Method and apparatus for estimating grate combustion air flow rate of refuse incinerator
JP2762054B2 (en) Combustion control method for fluidized bed incinerator
JP3556078B2 (en) Dust supply speed control method for refuse incinerator and refuse incinerator
KR100407701B1 (en) Method of measuring refuse quantity for combustion air control in stoker type refuse incinerator
JP2001033019A (en) Method for controlling combustion in refuse incinerator and refuse incinerator
JP3758507B2 (en) Flow rate calculation method and flow rate calculation device
JPH0226130B2 (en)
Wagner Combustion and precombustion control methods to minimize emissions from modular incinerators
JPH11248130A (en) High heat generation waste feed controller for incineration system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031216

A61 First payment of annual fees (during grant procedure)

Effective date: 20031224

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees