JPH09176922A - Activated carbon fiber manufacturing method - Google Patents
Activated carbon fiber manufacturing methodInfo
- Publication number
- JPH09176922A JPH09176922A JP35158895A JP35158895A JPH09176922A JP H09176922 A JPH09176922 A JP H09176922A JP 35158895 A JP35158895 A JP 35158895A JP 35158895 A JP35158895 A JP 35158895A JP H09176922 A JPH09176922 A JP H09176922A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- carbon fiber
- polyvinyl butyral
- antibacterial agent
- novolac resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 229920003986 novolac Polymers 0.000 claims abstract description 39
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims abstract description 38
- 239000003242 anti bacterial agent Substances 0.000 claims abstract description 30
- 239000000835 fiber Substances 0.000 claims abstract description 29
- 238000002074 melt spinning Methods 0.000 claims abstract description 7
- 229940100890 silver compound Drugs 0.000 claims description 3
- 150000003379 silver compounds Chemical group 0.000 claims description 3
- 238000010000 carbonizing Methods 0.000 claims 1
- 239000011148 porous material Substances 0.000 abstract description 28
- 230000000844 anti-bacterial effect Effects 0.000 abstract description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 23
- 229920000049 Carbon (fiber) Polymers 0.000 abstract description 20
- 230000004913 activation Effects 0.000 abstract description 12
- 238000003763 carbonization Methods 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 5
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000004917 carbon fiber Substances 0.000 description 12
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910001961 silver nitrate Inorganic materials 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000003966 growth inhibitor Substances 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- -1 that is Chemical compound 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- CBECDWUDYQOTSW-UHFFFAOYSA-N 2-ethylbut-3-enal Chemical compound CCC(C=C)C=O CBECDWUDYQOTSW-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 230000006208 butylation Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- JTHNLKXLWOXOQK-UHFFFAOYSA-N n-propyl vinyl ketone Natural products CCCC(=O)C=C JTHNLKXLWOXOQK-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 1
- 229940071536 silver acetate Drugs 0.000 description 1
- CHACQUSVOVNARW-LNKPDPKZSA-M silver;(z)-4-oxopent-2-en-2-olate Chemical compound [Ag+].C\C([O-])=C\C(C)=O CHACQUSVOVNARW-LNKPDPKZSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Agricultural Chemicals And Associated Chemicals (AREA)
- Artificial Filaments (AREA)
- Inorganic Fibers (AREA)
Abstract
(57)【要約】
【目的】本発明は、細孔径20Åを越える細孔、いわゆ
るメソポアーを多く含み、且つ耐久性に優れた抗菌性を
有し、しかも少量の抗菌剤含有で抗菌性を発揮する、幅
広い用途に使用可能な新規な活性炭繊維を、賦活収率良
く且つ極めて容易に製造する方法を提供する。
【構成】本発明の活性炭繊維の製造方法は、未硬化ノボ
ラック樹脂100重量部に対し抗菌剤を含有させたポリ
ビニルブチラールを10〜120重量部加え、溶融紡糸
後硬化させて得た硬化ノボラック樹脂繊維を炭化賦活す
ることを特徴とするものである。この製造方法により、
前記目的を達成することができる。(57) [Abstract] [Purpose] The present invention contains many pores having a pore size of more than 20 Å, so-called mesopores, has excellent antibacterial properties, and exhibits antibacterial properties by containing a small amount of antibacterial agent. And a method for producing a new activated carbon fiber that can be used in a wide range of applications with a high activation yield and extremely easily. The method for producing activated carbon fibers according to the present invention is a cured novolac resin fiber obtained by adding 10 to 120 parts by weight of polyvinyl butyral containing an antibacterial agent to 100 parts by weight of an uncured novolac resin, melt spinning and curing the mixture. Is activated by carbonization. With this manufacturing method,
The above object can be achieved.
Description
【産業上の利用分野】本発明は繊維状の活性炭、すなわ
ち活性炭繊維に関し、更に詳しくは例えば家庭用、業務
用の空気清浄器や浄水器、一般用マスクや防毒マスク、
医療用吸着材、衛生材料にまで幅広く有用な硬化ノボラ
ック樹脂繊維を前駆体とする、細孔径20Åを越えるい
わゆるメソポアーを多く含む新規な抗菌性活性炭繊維の
製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fibrous activated carbon, that is, activated carbon fibers, and more specifically, for example, household and commercial air purifiers and water purifiers, general-purpose masks and gas masks,
The present invention relates to a method for producing a novel antibacterial activated carbon fiber containing a large amount of so-called mesopores having a pore size of more than 20Å, which is prepared from a cured novolac resin fiber that is widely used as a medical adsorbent and a sanitary material.
【従来の技術】活性炭繊維にはセルロース系繊維を前駆
体とするもの、ポリアクリルニトリル系繊維を前駆体と
するもの、ピッチ系繊維を前駆体とするもの、硬化ノボ
ラック樹脂繊維を前駆体とするものなどがあるが、いづ
れも細孔径20Åを越える、いわゆるメソポアーを多く
含み、且つ抗菌性を有する活性炭繊維を得るのは困難で
あった。抗菌性が必要であると同時に、比較的大きな分
子を吸着する必要のある用途には、従来のミクロポアー
(細孔径20Å以下)のみ発達した活性炭繊維は不適当
であり、メソポアーを多く含んでいて、且つ抗菌性を有
する活性炭繊維が強く望まれていた。2. Description of the Related Art Activated carbon fibers having a cellulosic fiber as a precursor, a polyacrylonitrile fiber as a precursor, a pitch fiber as a precursor, and a cured novolac resin fiber as a precursor. However, it is difficult to obtain an activated carbon fiber which contains a large amount of so-called mesopores, each having a pore size exceeding 20 Å, and which has antibacterial properties. For applications that require antibacterial properties and at the same time need to adsorb relatively large molecules, conventional activated carbon fibers developed only with micropores (pore diameter 20 Å or less) are unsuitable and contain a lot of mesopores. In addition, activated carbon fibers having antibacterial properties have been strongly desired.
【発明が解決しようとする課題】本発明は従来の実情に
鑑みてなされたものであり、その目的とするところは細
孔径20Åを越える細孔、いわゆるメソポアーを多く含
み、且つ耐久性に優れた抗菌性を有し、しかも少量の抗
菌剤含有で抗菌性を発揮する、幅広い用途に使用可能な
新規な活性炭繊維を、賦活収率良く且つ極めて容易に製
造する方法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the conventional circumstances, and an object of the present invention is to include many pores having a pore diameter of more than 20Å, so-called mesopores, and to have excellent durability. It is an object of the present invention to provide a method for producing a new activated carbon fiber which has antibacterial properties and exhibits antibacterial properties with a small amount of antibacterial agent and which can be used in a wide variety of applications with good activation yield and extremely easily.
【課題を解決するための手段】本発明に係る製造方法よ
れば、未硬化ノボラック樹脂100重量部に対し、抗菌
剤を含有させたポリビニルブチラールを10〜120重
量部加え、溶融紡糸後硬化させて得た硬化ノボラック樹
脂繊維を炭化賦活することにより細孔径20Åを越える
メソポアーを多く含み、抗菌性を有する、幅広い用途に
使用可能な活性炭繊維を、賦活収率良く製造することが
できる。ポリビニルブチラールの量を適宜増減すること
により全細孔中に占める20Åを越える細孔径を有する
細孔の割合を増減させることも可能である。また、未硬
化ノボラック樹脂を溶融紡糸する工程の前において、単
に抗菌剤を含有させたポリビニルブチラールを加えるだ
けで良く、製造工程の煩雑さがなく極めて容易に抗菌性
活性炭繊維が製造できる。本発明によりメソポアーを多
く含む抗菌性活性炭繊維が賦活収率良く製造できる理由
は明らかではないが、ポリビニルブチラールと未硬化ノ
ボラック樹脂との相溶性が極めて良好であり、微細で均
一な相互分散が可能であることによると考えられる。即
ち、ポリビニルブチラールは炭化工程において揮散部分
が多く、残留炭素が少ないことが判明しており、対照的
に硬化ノボラック樹脂繊維は残留炭素が非常に多いこと
が判明している。従って、微細で均一に相互分散してい
るポリビニルブチラール含有硬化ノボラック樹脂繊維を
炭化したものはポリビニルブチラールの揮散に由来する
微細孔が均一に生成したものとなっていると推定または
推認できる。よって、その後の賦活工程において賦活ガ
スである水蒸気が繊維内部に拡散し易いため、内部での
酸化反応による細孔径の増大化が進行しやすいことに加
え、その細孔径の増大化が、繊維の表面部分での酸化反
応による繊維の細化よりも早く進みやすいことによると
考えられる。更にまた、ポリビニルブチラールの揮散に
由来する微細孔に抗菌剤が集中的に存在することが可能
なため、少量の抗菌剤でも抗菌性が極めて有効に発揮さ
れるものと考えられる。以下に本発明を詳細に説明す
る。本発明に用いられる未硬化ノボラック樹脂とは例え
ばフェノールの他にアルキルフェノール類や他の置換フ
ェノール類、多価フェノール類とホルムアルデヒド、パ
ラホルムアルデヒド等のアルデヒド類を原料とし、一般
に知られている常法により酸性触媒下において反応せし
めて得られるものである。また、本発明に用いられる抗
菌剤は例えば硝酸銀、酢酸銀、銀アセチルアセトナート
のような銀化合物が使用できる。また、本発明に用いら
れるポリビニルブチラールは、ポリビニルアルコールと
ブチルアルデヒドを酸性触媒下で反応して得られるポリ
マーでブチラール樹脂ともよばれ、工業製品は酢酸ビニ
ール、ビニルアルコール、ビニルブチラールの共重合体
であり、各種の重合度、ブチル化度のものが使用でき
る。ポリビニルブチラールに抗菌剤を含有させるには、
たとえば抗菌剤として銀化合物である硝酸銀を使用する
場合は、ポリビニルブチラールと硝酸銀の所定量をメタ
ノールなどの溶剤に均一に溶解させた後、メタノールを
蒸発等により揮散させる方法がある。加熱して溶融状態
にしたポリビニルブチラールに直接抗菌剤を加え、溶融
混合することもできる。未硬化ノボラック樹脂に抗菌剤
を含有させたポリビニルブチラールを加える方法として
は、例えば未硬化ノボラック樹脂の製造工程において反
応終了時点、即ち、樹脂温度が高く、まだ溶融状態であ
る時点で抗菌剤を含有させたポリビニルブチラールを混
合することができる。また、未硬化ノボラック樹脂と抗
菌剤を含有させたポリビニルブチラールを加熱し、溶融
混合させることもできる。本発明における未硬化ノボラ
ック樹脂100重量部に加えられる、抗菌剤を含有させ
たポリビニルブチラールの量は10〜120重量部であ
る。10重量部未満だとその効果が小さく、メソポアー
の多い活性炭繊維が得られにくく、120重量部を越え
ると溶融紡糸後の硬化反応が進みにくく、抗菌剤を含有
させたポリビニルブチラール入りの硬化ノボラック樹脂
繊維が得られにくくなるので好ましくない。ポリビニル
ブチラールに含有させる抗菌剤の量は、ポリビニルブチ
ラール100重量部に対し、10重量部以下である。1
0重量部を越えて含有させても抗菌性の発揮が特段に上
昇するものではなく、又得られる活性炭繊維からの抗菌
剤の脱落量が増加し、好ましくない。次に、抗菌剤を含
有させたポリビニルブチラール入りの未硬化ノボラック
樹脂は溶融紡糸される。溶融紡糸の方法は特に限定され
るものではなく、例えば口金より吐出した溶融樹脂をロ
ールにより引き取る公知の、いわゆる狭義の溶融紡糸
法、溶融樹脂をディスクに導き遠心紡糸する方法、口金
より吐出した溶融樹脂を加熱空気流の牽引力によって紡
糸する、いわゆるメルトブローン法などがあげられる。
紡糸された抗菌剤を含有させたポリビニルブチラール入
りの未硬化ノボラック樹脂繊維は、例えば塩酸とホルム
アルデヒドを主成分とする硬化水溶液に浸漬され、徐々
に昇温して90℃以上の温度で数時間保持されることに
より、硬化ノボラック樹脂繊維となる。次に、得られた
硬化ノボラック樹脂繊維を炭化賦活するには、例えば不
活性ガス中700℃以上で炭化処理して炭素繊維とした
後水蒸気、二酸化炭素、空気あるいはこれらが混合した
酸化性ガスを導入して賦活する公知の方法に従って行え
ば良く、その方法は特に限定されるものではない。ま
た、炭化と同時に賦活しても一向にさしつかえない。以
上のようにして細孔径20Åを越える細孔、いわゆるメ
ソポアーを多く含み、且つ耐久性に優れた抗菌性を有
し、幅広い用途に使用可能な抗菌性活性炭繊維を、賦活
収率良く且つ極めて容易に製造することができる。According to the manufacturing method of the present invention, 10 to 120 parts by weight of polyvinyl butyral containing an antibacterial agent is added to 100 parts by weight of uncured novolak resin, and the mixture is melt-spun and cured. By activated carbonization of the obtained cured novolac resin fiber, activated carbon fiber containing a large amount of mesopores having a pore size of more than 20 Å and having antibacterial properties and usable for a wide range of applications can be produced with good activation yield. By appropriately increasing or decreasing the amount of polyvinyl butyral, it is possible to increase or decrease the proportion of pores having a pore size of more than 20Å in all the pores. In addition, before the step of melt spinning the uncured novolac resin, it is sufficient to simply add polyvinyl butyral containing an antibacterial agent, and the antibacterial activated carbon fiber can be manufactured very easily without the complexity of the manufacturing process. The reason why the antibacterial activated carbon fiber containing a large amount of mesopores can be produced with a high activation yield by the present invention is not clear, but the compatibility of polyvinyl butyral and uncured novolac resin is extremely good, and fine and uniform mutual dispersion is possible. It is believed that That is, it has been found that polyvinyl butyral has a large amount of volatilized portions and a small amount of residual carbon in the carbonization step, and in contrast, cured novolac resin fibers have an extremely large amount of residual carbon. Therefore, it can be presumed or inferred that the carbonized polyvinyl butyral-containing cured novolac resin fibers that are finely and uniformly dispersed in each other are those in which fine pores derived from volatilization of polyvinyl butyral are uniformly generated. Therefore, in the subsequent activation step, water vapor, which is an activating gas, easily diffuses inside the fiber, so that the increase in the pore size due to the oxidation reaction inside the fiber easily progresses, and the increase in the pore size is It is thought that this is because the fiber tends to advance faster than the fiber is thinned due to the oxidation reaction on the surface portion. Furthermore, since the antibacterial agent can be concentratedly present in the fine pores derived from the evaporation of polyvinyl butyral, it is considered that even a small amount of the antibacterial agent exhibits the antibacterial property extremely effectively. Hereinafter, the present invention will be described in detail. The uncured novolak resin used in the present invention is, for example, alkylphenols or other substituted phenols in addition to phenol, polyhydric phenols and formaldehyde, and aldehydes such as paraformaldehyde as raw materials, and are generally known by a conventional method. It is obtained by reacting under an acidic catalyst. As the antibacterial agent used in the present invention, a silver compound such as silver nitrate, silver acetate, or silver acetylacetonate can be used. Further, polyvinyl butyral used in the present invention is a polymer obtained by reacting polyvinyl alcohol and butyraldehyde under an acidic catalyst, also called butyral resin, and industrial products are copolymers of vinyl acetate, vinyl alcohol, and vinyl butyral. , Those having various degrees of polymerization and butylation can be used. To add an antibacterial agent to polyvinyl butyral,
For example, when silver nitrate, which is a silver compound, is used as the antibacterial agent, there is a method in which a predetermined amount of polyvinyl butyral and silver nitrate are uniformly dissolved in a solvent such as methanol, and then methanol is volatilized by evaporation or the like. It is also possible to directly add an antibacterial agent to polyvinyl butyral which has been heated to a molten state and melt-mixed it. As a method of adding polyvinyl butyral containing an antibacterial agent to the uncured novolac resin, for example, the antibacterial agent is added when the reaction is finished in the manufacturing process of the uncured novolac resin, that is, when the resin temperature is high and still in a molten state. The allowed polyvinyl butyral can be mixed. Further, polyvinyl butyral containing an uncured novolac resin and an antibacterial agent may be heated and melt-mixed. The amount of polyvinyl butyral containing an antibacterial agent added to 100 parts by weight of the uncured novolac resin in the present invention is 10 to 120 parts by weight. If the amount is less than 10 parts by weight, the effect is small and it is difficult to obtain activated carbon fibers having a large amount of mesopores. If the amount is more than 120 parts by weight, the curing reaction after melt spinning is difficult to proceed, and a cured novolak resin containing polyvinyl butyral containing an antibacterial agent. It is not preferable because it becomes difficult to obtain fibers. The amount of the antibacterial agent contained in polyvinyl butyral is 10 parts by weight or less based on 100 parts by weight of polyvinyl butyral. 1
Even if it is contained in an amount of more than 0 parts by weight, the antibacterial property is not particularly enhanced, and the amount of the antibacterial agent dropped from the resulting activated carbon fiber is increased, which is not preferable. Next, the uncured novolac resin containing polyvinyl butyral containing an antibacterial agent is melt-spun. The method of melt spinning is not particularly limited, for example, a known so-called melt spinning method in which a molten resin discharged from a spinneret is drawn by a roll, a method of centrifuge spinning the molten resin into a disk, and a melt discharged from the spinneret. A so-called melt blown method in which a resin is spun by a pulling force of a heated air flow can be used.
The uncured novolak resin fiber containing polyvinyl butyral containing the spun antibacterial agent is dipped in a cured aqueous solution containing, for example, hydrochloric acid and formaldehyde as main components, gradually heated and kept at a temperature of 90 ° C. or higher for several hours. As a result, a cured novolac resin fiber is obtained. Next, in order to activate carbonization of the obtained cured novolac resin fiber, for example, carbonization is performed in an inert gas at 700 ° C. or higher to form carbon fiber, and then steam, carbon dioxide, air or an oxidizing gas in which these are mixed is used. It may be carried out according to a known method of introducing and activating it, and the method is not particularly limited. In addition, it can be used in any direction even if activated simultaneously with carbonization. As described above, an antibacterial activated carbon fiber containing a large number of pores having a pore diameter of more than 20 Å, so-called mesopores, and having excellent antibacterial properties, which can be used for a wide range of purposes, has a high activation yield and is extremely easy. Can be manufactured.
【実施例】以下に本発明の具体的な実施態様を実施例に
示す。 [実施例1]フェノール1.2kg、50%ホルマリン
0.6kg、蓚酸3.5gを3リットルのフラスコに仕
込み、還流温度で4時間反応させた後、さらに加熱下で
真空脱水濃縮を行い軟化点110℃の未硬化ノボラック
樹脂1kgを得た。一方、ポリビニルブチラール300
(和光純薬工業株式会社製)200g、硝酸銀2gをメ
タノール200gに溶解し、均一混合した後、ロータリ
ーエバポレーター、続いて減圧加熱乾燥機でメタノール
を除去し、抗菌剤含有ポリビニルブチラールを得た。前
記未硬化ノボラック樹脂200gと前記抗菌剤含有ポリ
ビニルブチラール200gとを加熱溶融させ、混合攪拌
して抗菌剤含有ポリビニルブチラール入りの未硬化ノボ
ラック樹脂を得た。この未硬化ノボラック樹脂を孔数2
0、孔径0.2mmφの紡糸口金を用いて520m/m
inの速度で溶融紡糸を行い、抗菌剤含有ポリビニルブ
チラール入りの未硬化ノボラック樹脂繊維を得た。この
ノボラック樹脂繊維をホルムアルデヒドと塩酸を主成分
とした硬化水溶液中に浸漬し、0.5℃/minの速度
で95℃まで昇温後、8時間保持して硬化ノボラック樹
脂繊維を得た。この繊維をカーボンクロスに包み、窒素
気流中、5℃/minの速度で900℃まで昇温し、9
00℃で30分保持し炭素繊維を得た。この炭素繊維を
窒素をキャリアとした水蒸気により、1時間賦活して活
性炭繊維を得た。得られた活性炭繊維の前記炭素繊維を
ベースにした賦活収率は30%と高く、全細孔容積中に
占める細孔径20Åを越えるメソポアーの割合は82%
と多かった。又、得られた活性炭繊維は水道水の流水中
に20日間浸漬した後も耐久性を保持し、抗菌性は活性
であった。 [実施例2]フェノール1.2kg、50%ホルマリン
0.6kg、蓚酸3.5gを3リットルのフラスコに仕
込み、還流温度で4時間反応させた。その後、加熱下で
反応物内部温度が200℃に上昇するまで真空脱水濃縮
を行った後、フラスコ内に抗菌剤含有ポリビニルブチラ
ール110gを加え、溶融混合攪拌して抗菌剤含有ポリ
ビニルブチラール入りの未硬化ノボラック樹脂を得た。
なお、抗菌剤含有ポリビニルブチラールは実施例1で示
したと同じ方法により得た。また、ポリビニルブチラー
ルを混合する前のフラスコ内の未硬化ノボラック樹脂重
量は1kgであった。得られた混合後の樹脂を孔数2
0、孔径0.2mmφの口金から吐出量0.4g/mi
n・Holeで吐出させ、110℃の加熱空気流を30
Nリットル/min・Holeの流量で幅0.3mmの
スリットより流し、いわゆるメルトブローン法により紡
糸した。該ポリビニルブチラール含有未硬化ノボラック
樹脂繊維をホルムアルデヒドと塩酸を主成分とした硬化
水溶液中に浸漬し、0.5℃/min の速度で95℃
まで昇温後、8時間保持してポリビニルブチラール含有
硬化ノボラック樹脂繊維を得た。この繊維をカーボンク
ロスに包み、窒素気流中、5℃/minの速度で900
℃まで昇温し、900℃で30分保持し炭素繊維を得
た。この炭素繊維を窒素をキャリアとした水蒸気によ
り、1時間賦活して活性炭繊維を得た。得られた活性炭
繊維の前記炭素繊維をベースにした賦活収率は33%と
高く、全細孔容積中に占める細孔径20Åを越えるメソ
ポアー容積の割合は26%と多かった。また、得られた
活性炭繊維は水道水の流水中に20日間浸漬した後も耐
久性を保持し、抗菌性は活性であった。 [比較例1]実施例1と同じ方法により得られた未硬化
ノボラック樹脂200gを加熱溶融させ、これに硝酸銀
2gを加えて混合攪拌し、ポリビニルブチラールを加え
ない未硬化ノボラック樹脂を得た。この未硬化ノボラッ
ク樹脂を孔数20、孔径0.2mmφの紡糸口金を用い
て520m/min の速度で溶融紡糸を行い、未硬化
ノボラック樹脂繊維を得た。このノボラック樹脂繊維を
ホルムアルデヒドと塩酸を主成分とした硬化水溶液中に
浸漬し、0.5℃/minの速度で95℃まで昇温後、
8時間保持して硬化ノボラック樹脂繊維を得た。この繊
維をカーボンクロスに包み、窒素気流中、5℃/min
の速度で900℃まで昇温し、900℃で30分保持し
炭素繊維を得た。この炭素繊維を窒素をキャリアとした
水蒸気により、1時間賦活して活性炭繊維を得た。この
活性炭繊維の炭素繊維をベースにした賦活収率は25%
と低く、全細孔容積中に占める細孔径20Åを越えるメ
ソポアー容積の割合は5%と少ないものであった。ま
た、得られた活性炭繊維は水道水の流水中に20日間浸
漬した後は抗菌性が不活性となった。前記実施例1、2
及び比較例1で得られた結果を下記表1にまとめた。賦
活収率は炭化後の炭素繊維をベースにした収率であり、
メソポアー容積(%)とは全細孔容積中に占める20Å
を越えるメソポアー容積の割合である。なお、メソポア
ー容積(%)はBELSORP36(日本ベル株式会社
製)による窒素吸着データを元にしたMP法によるミク
ロポアー容積、D−H法によるメソポアー容積から算出
した。また、抗菌性試験に供した試料は、各実施例1、
2及び比較例1で得られた活性炭繊維2gを2リットル
/分の流量の水道水中に20日間浸漬した後のものを用
いた。この条件で処理した後も抗菌性が活性であれば優
れた抗菌性を有していると判断できる。抗菌性試験はJ
IS L−1902による繊維製品の抗菌試験に準じて
実施した。即ち、大腸菌又は黄色ぶどう状球菌を含む寒
天培地に、前記条件で処理した活性炭繊維を乗せ、37
℃で24時間培養した後、活性炭繊維の周囲に生成する
発育阻止体(ハロー)の有無で抗菌性が活性であるか不
活性であるかを評価した。発育阻止体(ハロー)を有し
ていれば活性、有していなければ不活性とした。表1か
ら明らかなように、本実施例の製造法により得られた活
性炭繊維は、従来の製造法の比較例1により得られた活
性炭繊維と比較して、炭素繊維をベースにした賦活収率
がはるかに高く、全細孔容積中に占める細孔径20Åを
越えるメソポアー容積の割合も多いものであり、耐久性
の優れた抗菌性を有するものである。EXAMPLES Specific embodiments of the present invention will be shown below by way of examples. [Example 1] 1.2 kg of phenol, 0.6 kg of 50% formalin and 3.5 g of oxalic acid were placed in a 3 liter flask, reacted at reflux temperature for 4 hours, and then vacuum dehydration concentration was performed under heating to soften the softening point. 1 kg of uncured novolak resin at 110 ° C. was obtained. On the other hand, polyvinyl butyral 300
200 g (manufactured by Wako Pure Chemical Industries, Ltd.) and 2 g of silver nitrate were dissolved in 200 g of methanol and homogeneously mixed, and then methanol was removed by a rotary evaporator and then a reduced pressure heating dryer to obtain polyvinyl butyral containing an antibacterial agent. 200 g of the uncured novolak resin and 200 g of the antibacterial agent-containing polyvinyl butyral were heated and melted, and mixed and stirred to obtain an uncured novolak resin containing the antibacterial agent-containing polyvinyl butyral. This uncured novolac resin has 2 holes
0, using a spinneret with a hole diameter of 0.2 mmφ, 520 m / m
Melt spinning was performed at a speed of in to obtain an uncured novolac resin fiber containing an antibacterial agent-containing polyvinyl butyral. The novolac resin fiber was dipped in a curing aqueous solution containing formaldehyde and hydrochloric acid as main components, heated to 95 ° C. at a rate of 0.5 ° C./min, and held for 8 hours to obtain a cured novolac resin fiber. This fiber was wrapped in carbon cloth and heated to 900 ° C at a rate of 5 ° C / min in a nitrogen stream,
It hold | maintained at 00 degreeC for 30 minutes, and obtained carbon fiber. This carbon fiber was activated with steam using nitrogen as a carrier for 1 hour to obtain an activated carbon fiber. The activation yield of the obtained activated carbon fiber based on the carbon fiber is as high as 30%, and the proportion of mesopores having a pore size of more than 20Å in the total pore volume is 82%.
And many. Further, the obtained activated carbon fiber retained its durability even after being immersed in running tap water for 20 days, and the antibacterial property was active. [Example 2] 1.2 kg of phenol, 0.6 kg of 50% formalin and 3.5 g of oxalic acid were placed in a 3 liter flask and reacted at a reflux temperature for 4 hours. After that, vacuum dehydration concentration was performed under heating until the internal temperature of the reaction product rises to 200 ° C., 110 g of antibacterial agent-containing polyvinyl butyral was added to the flask, and the mixture was stirred by melting and mixing, and uncured with antibacterial agent-containing polyvinyl butyral. A novolac resin was obtained.
The antibacterial agent-containing polyvinyl butyral was obtained by the same method as shown in Example 1. The weight of the uncured novolac resin in the flask before mixing with polyvinyl butyral was 1 kg. The number of holes in the obtained mixed resin is 2
0, discharge amount 0.4g / mi from a die with a hole diameter of 0.2mmφ
Discharge with n ・ Hole, and heat air flow of 110 ℃ at 30
It was made to flow through a slit having a width of 0.3 mm at a flow rate of N liter / min.Hole and spun by a so-called melt blown method. The polyvinyl butyral-containing uncured novolac resin fiber is immersed in a curing aqueous solution containing formaldehyde and hydrochloric acid as main components, and the temperature is 95 ° C. at a rate of 0.5 ° C./min.
After the temperature was raised to, the mixture was kept for 8 hours to obtain a cured polyvinyl butyral-containing novolak resin fiber. Wrap this fiber in a carbon cloth and keep it in a nitrogen stream at a rate of 5 ° C / min for 900
The temperature was raised to ℃ and kept at 900 ℃ for 30 minutes to obtain carbon fiber. This carbon fiber was activated with steam using nitrogen as a carrier for 1 hour to obtain an activated carbon fiber. The activation yield of the obtained activated carbon fiber based on the carbon fiber was as high as 33%, and the ratio of the volume of mesopores having a pore diameter of more than 20Å in the total pore volume was 26%. The obtained activated carbon fiber retained its durability even after being immersed in running tap water for 20 days, and the antibacterial property was active. Comparative Example 1 200 g of the uncured novolac resin obtained by the same method as in Example 1 was heated and melted, 2 g of silver nitrate was added thereto, and the mixture was stirred to obtain an uncured novolac resin containing no polyvinyl butyral. This uncured novolac resin was melt-spun at a speed of 520 m / min using a spinneret having 20 holes and a hole diameter of 0.2 mmφ to obtain an uncured novolac resin fiber. This novolac resin fiber is dipped in a curing aqueous solution containing formaldehyde and hydrochloric acid as main components, heated to 95 ° C. at a rate of 0.5 ° C./min, and then
After holding for 8 hours, a cured novolak resin fiber was obtained. Wrap this fiber in carbon cloth and in a nitrogen stream at 5 ° C / min
The temperature was raised to 900 ° C. at a rate of, and held at 900 ° C. for 30 minutes to obtain carbon fibers. This carbon fiber was activated with steam using nitrogen as a carrier for 1 hour to obtain an activated carbon fiber. The activation yield of this activated carbon fiber based on carbon fiber is 25%.
The ratio of the volume of mesopores having a pore diameter of more than 20Å in the total pore volume was as small as 5%. Further, the obtained activated carbon fiber became inactive in antibacterial property after being immersed in running tap water for 20 days. Examples 1 and 2
The results obtained in Comparative Example 1 are summarized in Table 1 below. The activation yield is the yield based on carbon fiber after carbonization,
Mesopore volume (%) is 20Å in the total pore volume
It is the ratio of the volume of mesopores that exceeds. The mesopore volume (%) was calculated from the micropore volume by the MP method and the mesopore volume by the DH method based on the nitrogen adsorption data by BELSORP36 (manufactured by Bell Japan Ltd.). In addition, the samples used for the antibacterial test are those obtained in Example 1,
2 and 2 g of the activated carbon fibers obtained in Comparative Example 1 were used after being dipped in tap water having a flow rate of 2 l / min for 20 days. If the antibacterial property is active even after the treatment under these conditions, it can be judged that the antibacterial property is excellent. Antibacterial test is J
It carried out according to the antibacterial test of the textile according to IS L-1902. That is, an activated carbon fiber treated under the above conditions was placed on an agar medium containing Escherichia coli or Staphylococcus aureus.
After culturing at 24 ° C. for 24 hours, whether the antibacterial activity is active or inactive was evaluated depending on the presence or absence of a growth inhibitor (halo) formed around the activated carbon fiber. If it had a growth inhibitor (halo), it was made active, and if it did not have it, it was made inactive. As is clear from Table 1, the activated carbon fiber obtained by the production method of the present example has an activation yield based on carbon fiber as compared with the activated carbon fiber obtained by Comparative Example 1 of the conventional production method. Is much higher, and the ratio of the volume of mesopores having a pore diameter of more than 20 Å in the total pore volume is large, and it has excellent durability and antibacterial properties.
【表1】 [Table 1]
【発明の効果】以上詳述した本発明によれば、細孔径2
0Åを越える細孔、いわゆるメソポアーを多く含み、且
つ耐久性に優れた抗菌性を有し、幅広い用途に使用可能
な活性炭繊維を、賦活収率良く且つ極めて容易に製造す
る方法を提供することができる。According to the present invention described in detail above, the pore diameter is 2
(EN) Provided is a method for producing activated carbon fibers which have a large number of pores exceeding 0 Å, so-called mesopores, and which have excellent durability and antibacterial properties and which can be used in a wide range of applications with a high activation yield and extremely easily. it can.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 花上 邦夫 群馬県高崎市宿大類町700番地 群栄化学 工業株式会社内 (72)発明者 飯塚 登志 群馬県高崎市宿大類町700番地 群栄化学 工業株式会社内 (72)発明者 吉田 覚 群馬県高崎市宿大類町700番地 群栄化学 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Kunio Hanakami, 700 Sukudaiji-cho, Takasaki-shi, Gunma Gunei Chemical Industry Co., Ltd. In-house (72) Inventor Satoru Yoshida 700 No. 700, Yadodai-cho, Takasaki-shi, Gunma Gunei Chemical Industry Co., Ltd.
Claims (3)
抗菌剤を含有させたポリビニルブチラールを10〜12
0重量部加え、溶融紡糸後硬化させて得た硬化ノボラッ
ク樹脂繊維を炭化賦活することを特徴とする活性炭繊維
の製造方法。1. 10 to 12 polyvinyl butyral containing an antibacterial agent per 100 parts by weight of an uncured novolac resin.
A method for producing an activated carbon fiber, which comprises adding 0 part by weight and carbonizing a cured novolac resin fiber obtained by melt spinning and curing.
記抗菌剤の量が、前記ポリビニルブチラール100重量
部に対し、10重量部以下であることを特徴とする請求
項1記載の活性炭繊維の製造方法。2. The method for producing activated carbon fiber according to claim 1, wherein the amount of the antibacterial agent contained in the polyvinyl butyral is 10 parts by weight or less with respect to 100 parts by weight of the polyvinyl butyral.
する請求項1又は2記載の活性炭繊維の製造方法。3. The method for producing activated carbon fiber according to claim 1, wherein the antibacterial agent is a silver compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35158895A JPH09176922A (en) | 1995-12-26 | 1995-12-26 | Activated carbon fiber manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35158895A JPH09176922A (en) | 1995-12-26 | 1995-12-26 | Activated carbon fiber manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09176922A true JPH09176922A (en) | 1997-07-08 |
Family
ID=18418291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35158895A Pending JPH09176922A (en) | 1995-12-26 | 1995-12-26 | Activated carbon fiber manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09176922A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2828114A1 (en) * | 2001-07-31 | 2003-02-07 | Ahlstrom Res And Competence Ct | Permeable fibrous material, e.g. useful as a mulching paper, wallhanging paper, dustbag paper, acoustic panel, wiping paper, filter medium or food packaging, includes a germicide adsorbed on activated carbon fibers |
EP1646438A1 (en) * | 2003-07-18 | 2006-04-19 | Koslow Technologies Corporation | Carbon or activated carbon nanofibers |
-
1995
- 1995-12-26 JP JP35158895A patent/JPH09176922A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2828114A1 (en) * | 2001-07-31 | 2003-02-07 | Ahlstrom Res And Competence Ct | Permeable fibrous material, e.g. useful as a mulching paper, wallhanging paper, dustbag paper, acoustic panel, wiping paper, filter medium or food packaging, includes a germicide adsorbed on activated carbon fibers |
WO2003012198A1 (en) * | 2001-07-31 | 2003-02-13 | Ahlstrom Research And Services | Material based on organic and/or inorganic fibres having germicidal properties and uses thereof |
EP1646438A1 (en) * | 2003-07-18 | 2006-04-19 | Koslow Technologies Corporation | Carbon or activated carbon nanofibers |
EP1646438A4 (en) * | 2003-07-18 | 2008-10-08 | Kx Technologies Llc | Carbon or activated carbon nanofibers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6517906B1 (en) | Activated organic coatings on a fiber substrate | |
CA1159810A (en) | Process for the production of fibrous activated carbon | |
CN110359120B (en) | Preparation method of melamine modified urea-formaldehyde fiber | |
KR20050014033A (en) | Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers | |
CN110359118B (en) | Preparation method of phenol modified urea-formaldehyde fiber | |
JPH09176922A (en) | Activated carbon fiber manufacturing method | |
JP3412970B2 (en) | Method for producing activated carbon fiber | |
JPH06316811A (en) | Method for producing chelate fiber | |
JP2001073230A (en) | Phenol-based composite fiber, phenol-based hollow carbon fiber, and production method thereof | |
CN108930095B (en) | Preparation method of high-ortho thermosetting phenolic aldehyde group hollow nano gradient activated carbon fiber membrane | |
JP4153529B2 (en) | Carbon fiber and method for producing activated carbon fiber | |
US5217701A (en) | Process for producing carbon materials | |
JP3336159B2 (en) | Method for producing porous phenolic resin fiber | |
JPS5851527B2 (en) | Method for producing activated carbon fiber or activated carbon fiber structure | |
JPH11240707A (en) | Activated carbon | |
JPH0627373B2 (en) | Activated carbon fiber manufacturing method | |
CA1324469C (en) | Process for producing carbon materials | |
JP2867043B2 (en) | Carbon fiber-based porous hollow fiber membrane and method for producing the same | |
JPH11240708A (en) | Fibrous activated carbon | |
JPS62149917A (en) | Method for manufacturing activated carbon fiber | |
JP2001288238A (en) | Cured phenol resin and active carbon prepared therefrom | |
JP2005105452A (en) | Composite fiber, phenol resin ultrafine fiber, phenol resin ultrafine carbon fiber, phenol resin ultrafine activated carbon fiber, and production method thereof | |
JPH05302217A (en) | Production of pitch for matrix | |
KR100423095B1 (en) | Method for preparing activated carbon-supported fibers using the inorganic fiber materials | |
JP2000157863A (en) | Activated carbon for air cleaning and production thereof |