[go: up one dir, main page]

JPH09174684A - Heat-shrinkable polyester film - Google Patents

Heat-shrinkable polyester film

Info

Publication number
JPH09174684A
JPH09174684A JP33500395A JP33500395A JPH09174684A JP H09174684 A JPH09174684 A JP H09174684A JP 33500395 A JP33500395 A JP 33500395A JP 33500395 A JP33500395 A JP 33500395A JP H09174684 A JPH09174684 A JP H09174684A
Authority
JP
Japan
Prior art keywords
film
heat
shrinkage
mol
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33500395A
Other languages
Japanese (ja)
Other versions
JP3802598B2 (en
Inventor
Katsufumi Kumano
勝文 熊野
Tadashi Tahoda
多保田  規
Koji Yamada
浩二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP33500395A priority Critical patent/JP3802598B2/en
Publication of JPH09174684A publication Critical patent/JPH09174684A/en
Priority to JP31374298A priority patent/JPH11221855A/en
Application granted granted Critical
Publication of JP3802598B2 publication Critical patent/JP3802598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Wrappers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the occurrence of the shrinkage irregularity in a hot-air type shrink tunnel by specifying the shrinkage factor at the time of heat and the maximum shrinkage velocity of a heat-shrinkable polyester film in one direction. SOLUTION: The polyester heat-shrinkable film has the shrinkage factor at 80 deg.C in one direction of 8 to 24% or preferably 8 to 35%, and the maximum shrinkage velocity at 100 deg.C of 0.5 to 24%/sec and at 140 deg.C of 10 to 40%/sec. The polyester resin used for the film is preferably resin composition which contains aromatic dicarboxylic acid or its ester forming derivative and polyvalent alcohol component as main ingredients and has glass transition temperature of relatively high value. To obtain the shrinkage factor of relatively low temperature of the polyester resin, it is preferable to contain polyoxytetramethylene glycol having a molecular weight of 300 to 3000 of a range of 1 to 10mol%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は被覆用あるいは結束
等の包装材料分野において特に好適な熱収縮特性を発揮
し、収縮ムラの発生がない熱収縮性ポリエステル系フィ
ルム(シートを含む。)に関するものである。
TECHNICAL FIELD The present invention relates to a heat-shrinkable polyester film (including a sheet) which exhibits particularly suitable heat-shrinkability in the field of packaging materials such as coating and binding, and does not cause uneven shrinkage. Is.

【0002】[0002]

【従来の技術】熱収縮性プラスチックフィルムを素材と
して形成されるチューブ状体は、例えば容器、瓶(プラ
スチックボトルを含む)、缶棒状物(パイプ、棒、木
材、各種棒状体)等(以下容器類と略す)の被覆用或は
結束用として、特にこれらのキャップ、肩部、胴部等の
一部又は全面を被覆し、標示、保護、結束、商品価値向
上等を目的として用いられる他、箱、板、瓶、棒、ノー
ト等のような集積包装或はスキンパックのように被覆状
物密着させて包装する分野等において広く使用されてお
り、収縮性及び収縮応力を利用した用途展開が期待され
る。従来上記用途にはポリ塩化ビニル、ポリスチレン、
ポリエチレン、塩酸ゴム等の熱収縮性フィルムを用い、
これをチューブ状体にしてから前記容器類にかぶせた
り、集積包装して熱収縮させていた。しかしこれらのフ
ィルムは耐熱性が乏しく、ボイル処理やレトルト処理を
すると溶融又は破裂してフィルム状体を維持することが
できない欠点がある。更に印刷の必要な用途ではインク
の転移不良による印刷ピンホール(フィルム内の添加材
やポリマーのゲル状物によるフィッシュアイに基づく微
小凹凸)の発生が見られたり、仮にうまく印刷できたと
してもその後にフィルムが収縮(常温収縮)を起こして
印刷ピッチに寸法変化をきたすという問題もあった。
2. Description of the Related Art Tubular bodies formed of heat-shrinkable plastic films are, for example, containers, bottles (including plastic bottles), can rods (pipes, rods, wood, various rods), etc. Abbreviated as a category) or for bundling, particularly covering or partially covering these caps, shoulders, torso, etc., and used for the purpose of marking, protection, bundling, improvement of commercial value, etc. It is widely used in fields such as boxes, plates, bottles, rods, notebooks, etc., such as integrated packaging, or skin packs, which are closely adhered to a covered material, and can be used for applications that utilize shrinkage and shrinkage stress. Be expected. Conventionally, polyvinyl chloride, polystyrene,
Using a heat-shrinkable film such as polyethylene or hydrochloric acid rubber,
This was made into a tubular body and then covered with the above-mentioned containers, or heat-shrinked by integrated packaging. However, these films have poor heat resistance and have a drawback that they cannot be maintained in a film form by melting or bursting when subjected to boil treatment or retort treatment. Furthermore, in applications that require printing, printing pinholes (fine irregularities due to fish eyes due to additives in the film and gel of polymer) may occur due to poor ink transfer, or even if printing is successful, There is also a problem that the film shrinks (shrinkage at room temperature) to cause a dimensional change in the printing pitch.

【0003】一方、ポリエステル系の収縮フィルムは上
記した欠点を大巾に改良した特性を有しており最近大い
に注目されている。しかしながらポリエステル系の熱収
縮性フィルムは上記したポリ塩化ビニル、ポリスチレ
ン、ポリエチレン或は塩酸ゴム等の熱収縮性フィルムく
らべ収縮仕上がり性において満足できるものではなかっ
た。例えば PETボトルや、ガラス瓶等の容器にラベル等
として被覆収縮する際に、収縮ムラが発生しやすく、内
部からの空気の逃げがスムーズに進行せずシール部に気
泡をかみこむ等の問題が発生する。このような収縮ムラ
が発生すると印刷の濃度ムラにつながり製品の美観を著
しく低下させるので解決する必要がある。この収縮ムラ
を改善する方策として公開特許公報の特開平5-261816、
特開平5-305664、特開平6-877 、特開平6-8322、等にあ
るように60℃の温水での収縮特性を改善したもの等があ
る。
On the other hand, a polyester-based shrink film has characteristics that greatly improve the above-mentioned drawbacks, and has recently received a great deal of attention. However, the polyester-based heat-shrinkable film is not satisfactory in shrinkage finish as compared with the above-described heat-shrinkable films such as polyvinyl chloride, polystyrene, polyethylene, and hydrochloric acid rubber. For example, when a container such as a PET bottle or a glass bottle is covered and contracted as a label or the like, uneven contraction is likely to occur, air escape from the inside does not proceed smoothly, and problems such as inclusion of air bubbles in the seal part occur. To do. If such shrinkage unevenness occurs, it leads to density unevenness in printing, and the aesthetic appearance of the product is remarkably deteriorated. As a measure for improving this shrinkage unevenness, Japanese Patent Laid-Open No. 5-261816,
As disclosed in JP-A-5-305664, JP-A-6-877, JP-A-6-8322, etc., there are those having improved shrinkage characteristics in hot water at 60 ° C.

【0004】[0004]

【発明が解決しようとする課題】しかし、これだけでは
比較的低温での収縮性は満足されるものの、最も一般的
な熱風型の収縮トンネルでの収縮ムラの発生を抑制する
のは不十分であり、上記したポリ塩化ビニル、ポリスチ
レン、ポリエチレン或は塩酸ゴム等の熱収縮性フィルム
くらべ収縮仕上がり性において満足できるものではなか
った。
However, while this alone satisfies the shrinkability at a relatively low temperature, it is insufficient to suppress the occurrence of shrinkage unevenness in the most common hot-air type shrink tunnel. In comparison with the heat-shrinkable films such as polyvinyl chloride, polystyrene, polyethylene, and rubber chloride, the shrink finish is not satisfactory.

【0005】[0005]

【課題を解決するための手段】本発明者は、前記従来技
術の実情にかんがみ、ポリエステル系の熱収縮性フィル
ムの熱収縮挙動について鋭意検討した結果、本発明に到
達したものである。すなわち、本発明のポリエステル系
の熱収縮性フィルムは1方向の80℃における収縮率が8
%以上40%以下、好ましくは8%以上38%以下、最も好
ましくは8%以上35%以下であることが必要である。1
方向の80℃における収縮率が8%以下では、さらに昇温
した時、急激な収縮が発生し、収縮ムラが発生する。も
しくはさらに昇温した時、十分な収縮が得られず、仕上
がり不良となる。一方、少なくとも1方向の80℃におけ
る収縮率が40%以上では急激な収縮のため収縮ムラが発
生する。
The present inventors have arrived at the present invention as a result of earnestly examining the heat shrinkage behavior of a polyester heat-shrinkable film in view of the above-mentioned prior art. That is, the polyester heat-shrinkable film of the present invention has a shrinkage rate of 80 ° C. in one direction of 8%.
% Or more and 40% or less, preferably 8% or more and 38% or less, and most preferably 8% or more and 35% or less. 1
If the shrinkage ratio at 80 ° C. in the direction is 8% or less, when the temperature is further increased, rapid shrinkage occurs and shrinkage unevenness occurs. Alternatively, when the temperature is further raised, sufficient shrinkage cannot be obtained, resulting in poor finish. On the other hand, when the shrinkage ratio at 80 ° C. in at least one direction is 40% or more, rapid shrinkage causes uneven shrinkage.

【0006】また本発明においてはさらに、最大収縮速
度が 100℃で 0.5%/秒以上24%/秒以下、 140℃で10
%/秒以上40%/秒以下、好ましくは 100℃で 0.5%/
秒以上22%/秒以下、 140℃で15%/秒以上40%/秒以
下、最も好ましくは 100℃で0.5%/秒以上20%/秒以
下、 140℃で20%/秒以上40%/秒以下である。この最
大収縮速度が 100℃で24%/秒以上では速い収縮のため
収縮ムラが発生し易い。140℃での最大収縮速度が40%
/秒以上でも、急な収縮のため収縮ムラが発生し易い。
一方、 100℃で 0.5%/秒以下では十分な収縮が得られ
ず、仕上がり不良となり易い。 140℃で10%/秒以下で
も十分な収縮が得られず、仕上がり不良となり易い。本
発明の熱収縮性ポリエステル系フィルムに使用するポリ
エステル樹脂は、ジカルボン酸成分として、芳香族ジカ
ルボン酸またはそのエステル形成誘導体と、多価アルコ
ール成分を主成分とするものである。
Further, in the present invention, the maximum shrinkage rate is 100% at 0.5% / sec or more and 24% / sec or less, and 140 ° C at 10% or less.
% / Sec or more and 40% / sec or less, preferably 0.5% / at 100 ° C
Second to 22% / sec, 140 ° C 15% / sec to 40% / sec, most preferably 100 ° C 0.5% / sec to 20% / sec, 140 ° C 20% / sec to 40% / sec It is less than a second. When this maximum shrinkage rate is 100% or more and 24% / sec or more, rapid shrinkage tends to cause shrinkage unevenness. 40% maximum contraction rate at 140 ° C
Even at a speed of more than 1 second, uneven shrinkage is likely to occur due to sudden shrinkage.
On the other hand, if it is 0.5% / sec or less at 100 ° C, sufficient shrinkage cannot be obtained, and the finished product tends to be defective. Even at 10% / sec or less at 140 ° C, sufficient shrinkage cannot be obtained, and the finished product tends to be defective. The polyester resin used in the heat-shrinkable polyester film of the present invention contains an aromatic dicarboxylic acid or its ester-forming derivative as a dicarboxylic acid component and a polyhydric alcohol component as main components.

【0007】芳香族ジカルボン酸として、例えば、テレ
フタル酸、イソフタル酸、ナフタレン- 1.4- もしくは
−2,6−ジカルボン酸、等が上げられる。またこれら
のエステル誘導体としてはジアルキルエステル、ジアリ
ールエステル等の誘導体が挙げられる。また本発明の効
果を損なわない範囲において脂肪族ジカルボン酸を含有
させることができる。本発明で使用できる脂肪族ジカル
ボン酸としては、グルタル酸、アジピン酸、セバシン
酸、ダイマー酸、アゼライン酸、シュウ酸、コハク酸等
が挙げられる。
Examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, naphthalene-1.4- or -2,6-dicarboxylic acid. Examples of these ester derivatives include derivatives such as dialkyl esters and diaryl esters. Further, an aliphatic dicarboxylic acid can be contained within the range that does not impair the effects of the present invention. Examples of the aliphatic dicarboxylic acid that can be used in the present invention include glutaric acid, adipic acid, sebacic acid, dimer acid, azelaic acid, oxalic acid and succinic acid.

【0008】本発明の熱収縮性ポリエステル系フィルム
に使用するポリエステル樹脂の多価アルコール成分とし
ては、プロピレングリコール、トリエチレングリコー
ル、ブチレングリコール、ジエチレングリコール、ネオ
ペンチルグリコール、シクロヘキサンジメタノール、ビ
スフェノール化合物またはその誘導体のエチレンオキサ
イド付加物、トリメチロールプロパン、グリセリン、ペ
ンタエリスリトール、ポリオキシテトラメチレングリコ
ール、ポリエチレングリコール等が挙げられる。また、
多価アルコールではないが、イプシロンカプロラクトン
も同様に使用可能である。
The polyhydric alcohol component of the polyester resin used in the heat-shrinkable polyester film of the present invention includes propylene glycol, triethylene glycol, butylene glycol, diethylene glycol, neopentyl glycol, cyclohexanedimethanol, bisphenol compound or its derivative. Ethylene oxide adduct, trimethylolpropane, glycerin, pentaerythritol, polyoxytetramethylene glycol, polyethylene glycol and the like. Also,
Although not a polyhydric alcohol, epsilon caprolactone can be used as well.

【0009】本発明の熱収縮性ポリエステル系フィルム
に使用するポリエステル樹脂組成に限定はないが、熱収
縮性ポリエステル系フィルムのガラス転移温度が比較的
高くなる樹脂組成が好ましい。例えば芳香族ジカルボン
酸としてはナフタレン- 1.4- もしくは−2,6−ジカ
ルボン酸またこれらのエステル誘導体を、ポリエステル
樹脂の全ジカルボン酸成分中に10モル%以上90モル%以
下、テレフタル酸又はイソフタル酸を10モル%以上90モ
ル%以下の範囲のものが挙げられる。
The polyester resin composition used in the heat-shrinkable polyester film of the present invention is not limited, but a resin composition which gives a relatively high glass transition temperature of the heat-shrinkable polyester film is preferred. For example, as the aromatic dicarboxylic acid, naphthalene-1.4- or -2,6-dicarboxylic acid or an ester derivative thereof is used in an amount of 10 mol% to 90 mol% in the total dicarboxylic acid component of the polyester resin, terephthalic acid or isophthalic acid. An acid in the range of 10 mol% to 90 mol% is included.

【0010】また、本発明のポリエステル樹脂は、比較
的低温での収縮性を確保するために、例えば、分子量30
0 から3000のポリオキシテトラメチレングリコールを1
モル%以上10モル%以下の範囲で含有させることが好ま
しい。1モル%未満では比較定低温での収縮性を確保で
きず、10モル%以上では低温での収縮性が大きくなり、
保存状態で自然収縮し、実用に耐えない。また本発明の
効果を高め、収縮量をコントロールする目的で例えばネ
オペンチルグリコール等の脂肪族ジカルボン酸を5モル
%以上50モル%以下の範囲で含有させることが好まし
い。
The polyester resin of the present invention has, for example, a molecular weight of 30 in order to ensure the shrinkability at a relatively low temperature.
1 to 0 to 3000 polyoxytetramethylene glycol
It is preferable to contain it in the range of not less than mol% and not more than 10 mol%. If it is less than 1 mol%, the shrinkage at a comparatively low temperature cannot be secured, and if it is more than 10 mol%, the shrinkage at a low temperature becomes large.
It naturally shrinks when stored and cannot be put to practical use. For the purpose of enhancing the effect of the present invention and controlling the amount of shrinkage, it is preferable to contain an aliphatic dicarboxylic acid such as neopentyl glycol in the range of 5 mol% or more and 50 mol% or less.

【0011】該ポリエステルは、単独でもよいし、2種
以上を混合して用いてもよい。2種以上を併用する場合
は、ポリエチレンテレフタレートと共重合ポリエステル
の組み合わせでも、共重合ポリエステル同士の組み合わ
せでもかまわない。また、ポリブチレンテレフタレー
ト、ポリシクロヘキシレンジメチルテレフタレートなど
のホモポリエステルとの組み合わせであってもよい。2
種以上のポリエステルを併用することは、多様な特性を
有したフィルムを製造することができるのでより好まし
い。
The polyester may be used alone or in combination of two or more kinds. When two or more kinds are used in combination, it may be a combination of polyethylene terephthalate and a copolyester or a combination of copolyesters. Further, it may be a combination with a homopolyester such as polybutylene terephthalate or polycyclohexylene dimethyl terephthalate. 2
The combined use of two or more polyesters is more preferable because a film having various properties can be produced.

【0012】該ポリエステルは、常法により、溶融重合
させることによって製造できるが、これに限定されるも
のではなくその他の重合方法、または溶融混練によって
得られるポリエステルであってもよい。また、必要に応
じて、2酸化チタン、シリカ、カオリン、炭酸カルシウ
ム等の滑剤を添加してもよく、更に帯電防止剤、劣化防
止剤、紫外線防止剤や着色剤として染料等を添加するこ
とも出来る。なおフィルム基材としての好ましい固有粘
度は0.50以上1.30dl/g以下である。かかる重
合体を用いて押出法やカレンダー法等任意の方法で得た
フィルムは最終的に一方向に2.5倍から7.0倍、好
ましくは3.0倍から6.0倍に延伸し、該方向と直角
方向に1.0倍から2.0倍以下、好ましくは1.1倍
から1.8倍延伸される。しかしながら2.0倍を超え
て延伸すると、主収縮方向と直角方向の熱収縮も大きく
なりすぎ、仕上がりが波打ち状となる。この波打ちを抑
えるには、熱収縮率を15%以下、好ましくは9%以
下、更に好ましくは7%以下とすることが推奨される。
延伸方法については特定の制限はなく、ロール延伸、長
間隙延伸、テンター延伸等の延伸方法が適用され、又形
状面においてもフラット状、チューブ状の何れかは問わ
ない。又、延伸は逐次2軸延伸が有効であり、その順序
どちらが先でもよい。延伸におけるヒートセットは目的
に応じ実施されるが、夏期高温下の寸法変化を防止する
為には30から150℃の加熱ゾーンを約1秒から30
秒間通すことが推奨される。また、かかる処理の前後ど
ちらか一方または両方で最高70%までの伸張をかけて
もよい。特に主方向に伸張し、非収縮方向(主収縮方向
に対し直角方向)には緩和させるのが良く、該直角方向
への伸張は行わないほうがよい。
The polyester can be produced by melt polymerization by a conventional method, but is not limited to this and may be a polyester obtained by another polymerization method or melt kneading. If necessary, a lubricant such as titanium dioxide, silica, kaolin or calcium carbonate may be added, and an antistatic agent, an anti-degradation agent, an anti-ultraviolet agent or a dye as a colorant may be added. I can. The intrinsic viscosity of the film base material is preferably 0.50 or more and 1.30 dl / g or less. A film obtained by any method such as an extrusion method or a calender method using such a polymer is finally stretched in one direction from 2.5 times to 7.0 times, preferably from 3.0 times to 6.0 times. The film is stretched 1.0 to 2.0 times or less, preferably 1.1 to 1.8 times in the direction perpendicular to the direction. However, when it is stretched over 2.0 times, the thermal shrinkage in the direction perpendicular to the main shrinkage direction becomes too large, and the finished product becomes wavy. In order to suppress this waviness, it is recommended that the heat shrinkage rate be 15% or less, preferably 9% or less, and more preferably 7% or less.
The stretching method is not particularly limited, and stretching methods such as roll stretching, long gap stretching, and tenter stretching are applied, and the shape may be flat or tubular. In addition, sequential biaxial stretching is effective for stretching, and either order may be first. The heat setting in the stretching is carried out according to the purpose, but in order to prevent the dimensional change under high temperature in summer, a heating zone of 30 to 150 ° C. for about 1 second to 30
It is recommended to pass for 2 seconds. Further, before or after such processing, or both may be expanded up to 70%. In particular, it is preferable to extend in the main direction and relax in the non-contraction direction (direction perpendicular to the main contraction direction), and it is better not to extend in the perpendicular direction.

【0013】本発明の好適特性を発揮させるためには、
上記延伸倍率だけではなく、重合体組成物が有する平均
ガラス転移温度(Tg)付近の温度でかつ、数段階(好
ましくは3段階以上)に温度を分けて延伸することが有
効な手段として挙げられる。特に主方向延伸(主収縮方
向)における上記処理温度は、予熱はTg+0℃から +5
0℃以下、延伸はTg-20℃から+30℃の範囲内の温度
でで徐々に温度が上がるよう、温度差を設けて延伸する
ことが重要である。また、延伸の途中で、一端、延伸を
止め、緩和工程を設け、しかる後に、2段目の延伸工程
を行い、総合の延伸倍率が所定倍率となるよう延伸する
ことも合わせて重要である。
In order to exert the preferable characteristics of the present invention,
In addition to the above stretching ratio, it is effective to stretch at a temperature near the average glass transition temperature (Tg) of the polymer composition and in several stages (preferably at least 3 stages). . Especially in the above treatment temperature in the main-direction stretching (main shrinkage direction), preheating is from Tg + 0 ° C to +5.
It is important that the stretching is carried out at a temperature difference of 0 ° C. or less so that the temperature gradually rises at a temperature within the range of Tg−20 ° C. to + 30 ° C. In addition, it is also important to stop the stretching once during the stretching, provide a relaxation step, and then perform the second stretching step so that the total stretching ratio becomes a predetermined stretching ratio.

【0014】更に延伸後、伸張あるいは緊張状態に保っ
てフィルムにストレスをかけながら冷却するかあるいは
更に引き続いて冷却することにより、前後処理特性はよ
り良好かつ安定したものとなる。又、このように多段階
の温度に分けて延伸することにより、収縮速度が適切な
範囲になるため熱収縮トンネルの温度ムラに対しても収
縮速度差が少ない状態が実現され、収縮ムラの発生しに
くいフィルムが得られる。
After stretching, the film is cooled while applying tension to the film while keeping the film in a stretched or tensioned state, or by further cooling it, so that the pre- and post-treatment properties become better and more stable. In addition, since the shrinkage rate is in an appropriate range by stretching at multiple stages of temperature in this way, a state in which the difference in shrinkage rate is small with respect to the temperature unevenness of the heat shrinking tunnel is realized, and uneven shrinkage occurs. A film that is difficult to obtain is obtained.

【0015】以下本発明フィルムを用途面から説明す
る。包装用途、特に食品、飲料の包装においては、ボイ
ル処理やレトルト処理が行われている。現存する熱収縮
性フィルムではこれらの処理に十分耐えうるものはな
い。本発明のフィルムはボイル処理やレトルト処理によ
る加熱殺菌に耐えうることができ、しかも元々のフィル
ムの外観、更には熱収縮性による仕上がり性も良好であ
り、またポリ塩化ビニル系やポリスチレン系熱収縮フィ
ルムよりも高い熱収縮応力を有し、結束性も優れてい
る。以下更に具体的に述べる。 (a)耐衝撃性 収縮フィルムの役割の一つは被包装物の破壊や荷くずれ
等を防止する点にあるが、そのためには高い耐衝撃性を
有し且つ主方向に大きい収縮率を得ることが必要であ
る。その点本発明のフィルムは高い収縮率と高い耐衝撃
性を有するので美しい包装が得られ、しかも被包装物の
保護という面で優れた耐久性を示す。この傾向は落体テ
ストによって証明される。 (b)耐熱性 従来の汎用フィルムはいずれも高温ボイル処理やレトル
ト処理には耐えうることが出来ず殺菌処理は不適当なフ
ィルムであり、処理中に破壊し、機能が失われるが、本
発明のフィルムはボイル処理やレトルト処理が出来る熱
収縮フィルムとして優れた有用性を示す。
The film of the present invention will be described below from the viewpoint of use. Boiling and retorting are performed in packaging applications, especially in packaging of foods and beverages. No existing heat-shrinkable film can withstand these treatments sufficiently. The film of the present invention can withstand heat sterilization by boil treatment or retort treatment, and also the appearance of the original film, and further the finishability by heat shrinkability is also good, and also polyvinyl chloride or polystyrene heat shrink It has a higher heat shrinkage stress than the film, and is also excellent in cohesion. The details will be described below. (A) Impact resistance One of the roles of the shrink film is to prevent the packaged items from being broken or collapsed. For that purpose, it has high impact resistance and a large shrinkage in the main direction. It is necessary. In that respect, the film of the present invention has a high shrinkage ratio and a high impact resistance, so that a beautiful packaging can be obtained, and further, excellent durability is exhibited in terms of protection of an article to be packaged. This tendency is proved by the drop test. (B) Heat resistance All of the conventional general-purpose films cannot withstand high temperature boil treatment or retort treatment and are inappropriate for sterilization treatment, and they are destroyed during the treatment and lose their functions. The film of (1) shows excellent usefulness as a heat shrinkable film that can be boiled or retorted.

【0016】(c)印刷性 ハーフトーン印刷によりピンホールの発生やインクとの
接着性等に関し従来フィルムは固有の欠点を有するが該
ポリエステルフィルムは耐薬品性を有する点と共重合体
にすることにより接着性が向上することから印刷性は改
善された。 (d)産業廃棄物の問題 近年プラスッチックボトルの利用が急速に広まってい
る。このようなボトルの回収を考えた場合は同物質で形
成されることが好ましく、本発明フィルムをポリエステ
ル系ボトルの包装に適用することはこの点有利である。 (e)収縮ムラ 本発明フィルムは高い収縮率と高い収縮応力を有し、ま
た最大収縮加速度が適切なことから収縮ムラの発生はし
ない。
(C) Printability The conventional film has inherent drawbacks with respect to the generation of pinholes and the adhesion to ink by halftone printing, but the polyester film has a chemical resistance and is a copolymer. As a result, the printability was improved because the adhesiveness was improved. (D) Problems of industrial waste In recent years, the use of plastic bottles has been rapidly spreading. When considering the recovery of such a bottle, it is preferable to form the same material, and it is advantageous to apply the film of the present invention to the packaging of a polyester bottle. (E) Shrinkage unevenness The film of the present invention has a high shrinkage ratio and a high shrinkage stress, and since the maximum shrinkage acceleration is appropriate, shrinkage unevenness does not occur.

【0017】(実施例)以下本発明を実施例で示すこと
により詳細に説明するが、本発明はその要旨を越えない
限りこれからの例に何ら制約されない。本発明で用いた
測定法を以下に示す。 (1)最大収縮速度 先ずヤマト科学(株)社製DF-42 型ドライオーブンを、
風量目盛り0(ファン回転数約460rpm)、エアダンパー
閉の状態に設定し、測定温度に設定し、昇温する。次
に、試料サイズを主たる収縮方向5cm、その直交方向4
cmに切り出し、4.7gの微小荷重をかけた状態でつり下げ
る。さらに、所定の温度に昇温したドライオーブン中に
時間0秒で投入し、外部から観察可能なように改造した
窓越しにビデオカメラで収縮の時間変化を記録し、1秒
毎の定量を行った。これによって得られた時間に対する
収縮率の変化のうち最大のものを最大収縮速度とした。
(Examples) The present invention will be described in detail below by showing Examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. The measuring method used in the present invention is shown below. (1) Maximum shrinkage speed First, a DF-42 type dry oven manufactured by Yamato Scientific Co., Ltd.
Set the air flow rate scale to 0 (fan speed: about 460 rpm), set the air damper closed, set the measurement temperature, and raise the temperature. Next, the sample size is the main shrinkage direction 5 cm, and the orthogonal direction 4
Cut out to cm and hang it with a small load of 4.7 g. Furthermore, the sample was placed in a dry oven heated to a predetermined temperature for 0 seconds, and the time change of contraction was recorded with a video camera through a window modified to allow external observation, and quantification was performed every second. It was The maximum change in the shrinkage rates with respect to the time thus obtained was defined as the maximum shrinkage rate.

【0018】(2)収縮率 (株)鵬製作所社製熱風循環式恒温器FX-1型ドライオー
ブンを、測定温度に設定し、昇温する。次に、試料サイ
ズを主たる収縮方向10cm、その直交方向10cmの正方形に
切り出し、治具につり下げる。さらに、所定の温度に昇
温したオーブン中に時間0秒で投入し、10秒後に取りだ
し、室温で冷却固定する。冷却固定後に収縮率を測定す
る方法で定量化を行った。
(2) Shrinkage rate A hot air circulation type thermostat FX-1 type dry oven manufactured by Peng Seisakusho Co., Ltd. is set to the measurement temperature and the temperature is raised. Next, the sample size is cut out into a square with the main shrinking direction of 10 cm and the orthogonal direction of 10 cm, and it is hung on a jig. Further, it is placed in an oven heated to a predetermined temperature for 0 second in time, taken out after 10 seconds, and cooled and fixed at room temperature. Quantification was performed by a method of measuring the shrinkage ratio after cooling and fixing.

【0019】(3)収縮仕上がり性 ガラス瓶(300ml)に印刷を施した熱収縮フィルム
を装着し150℃の熱風(風速10m/秒)の熱収縮ト
ンネルを通し、仕上がり性を目視にて判定した。なお、
仕上がり性のランクについては5段階評価をし、 5:仕上がり性最良 4:仕上がり性良 3:収縮ムラ少し有り(2ヶ所以内) 2:収縮ムラ有り(3〜6ケ所) 1:収縮ムラ多い(6ケ所以上) として、4以上を合格レベルとした。
(3) Shrinkage Finishing Property A printed heat shrinking film was attached to a glass bottle (300 ml) and passed through a heat shrinking tunnel of 150 ° C. hot air (air velocity of 10 m / sec) to visually judge the finishing property. In addition,
The rank of finishability was evaluated on a scale of 5: 5: Best finishability 4: Good finishability 3: Some shrinkage unevenness (within 2 places) 2: Shrinkage unevenness (3 to 6 places) 1: Many shrinkage unevenness ( 6 or more), and 4 or more were defined as the passing level.

【0020】実施例1 ステンレス製オートクレーブを使用し、二塩基酸成分と
してジメチルテレフタレート30モル%と、ジメチルナフ
タレート70モル%、グリコール成分としてエチレングリ
コール80モル%、と、ネオペンチルグリコール20モル%
の組成で、グリコールがメチルエステルの2倍モルにな
るように仕込み、エステル交換触媒として酢酸亜鉛を0.
05モル(酸成分に対して)を用いて、エステル交換反応
を行った。その後、ポリテトラメチレングリコール(分
子量650)2モル%(酸成分に対して)、触媒とし
て、三酸化アンチモン0.025モル(酸成分に対し
て)、及び添加剤として0.05モル(酸成分に対して)
を、重縮合した。これにより、テレフタル酸成分30モル
%と、2,6ナフタレンジカルボン酸成分70モル%、エ
チレングリコール成分74モル%、と、ネオペンチルグリ
コール成分21モル%と、ポリテトラメチレングリコール
(分子量650)成分5モル%から成るポリエステルを
得た。この共重合体は固有粘度0.70dl/gであっ
た。このポリエステルを280℃で溶融押出し、厚さ1
80μmの未延伸フィルムを得た。該フィルムを縦方向
に10500 %/分の延伸速度、 115℃、で1.1倍延伸
し、次いで予熱120℃、3秒、次いで横方向に第1段
延伸を6300%/分の延伸速度、 100℃で 1.5倍、続い
て、 100℃で3秒間定長把持し、引き続き 105℃、 110
℃の2ゾーンに分けて合計4.1倍まで延伸した。次い
で 110℃で熱処理を 5.5秒行い厚さ40μmの熱収縮フ
ィルムを得た。得られたフィルムの物性値を表1に示
す。
Example 1 Using a stainless steel autoclave, 30 mol% of dimethyl terephthalate and 70 mol% of dimethyl naphthalate as dibasic acid components, 80 mol% of ethylene glycol as glycol component, and 20 mol% of neopentyl glycol.
In the above composition, glycol was added so that it would be twice the molar amount of methyl ester, and zinc acetate was added as a transesterification catalyst to 0.1 mol.
The transesterification reaction was carried out using 05 mol (based on the acid component). Then, 2 mol% of polytetramethylene glycol (molecular weight 650) (based on the acid component), antimony trioxide 0.025 mol (based on the acid component) as a catalyst, and 0.05 mol (based on the acid component) as an additive. hand)
Was polycondensed. As a result, 30 mol% of terephthalic acid component, 70 mol% of 2,6 naphthalenedicarboxylic acid component, 74 mol% of ethylene glycol component, 21 mol% of neopentyl glycol component, and 5 mol of polytetramethylene glycol (molecular weight 650) component A polyester consisting of mol% was obtained. This copolymer had an intrinsic viscosity of 0.70 dl / g. This polyester is melt extruded at 280 ° C. to a thickness of 1
An unstretched film of 80 μm was obtained. The film was stretched 1.1 times in the machine direction at a stretching rate of 10500% / min at 115 ° C, then preheated at 120 ° C for 3 seconds and then stretched in the transverse direction at a first stage of 6300% / min for 6 seconds. 1.5 times at 100 ℃, then hold at 100 ℃ for 3 seconds for a fixed length, then 105 ℃, 110
The film was divided into two zones at 0 ° C. and stretched to a total of 4.1 times. Then, heat treatment was performed at 110 ° C. for 5.5 seconds to obtain a heat shrinkable film having a thickness of 40 μm. The physical properties of the obtained film are shown in Table 1.

【0021】実施例2 実施例1の重合方法により、テレフタル酸成分70モル%
と、2,6ナフタレンジカルボン酸成分30モル%、エチ
レングリコール成分29モル%、と、ネオペンチルグリコ
ール成分67モル%と、ポリテトラメチレングリコール
(分子量650)成分4モル% から成るポリエステル
を得た。この共重合体は固有粘度0.71dl/gであ
った。このポリエステルを290℃で溶融押出し、厚さ
180μmの未延伸フィルムを得た。該フィルムを縦方
向に 11000%/分の延伸速度、95℃、で1.1倍延伸
し、次いで予熱95℃、3秒、次いで横方向に第1段延伸
を7100%/分の延伸速度、80℃で 1.5倍、続いて、80℃
で3秒間定長把持し、引き続き85℃、95℃の2ゾーンに
分けて合計4.1倍まで延伸した。次いで80℃で熱処理
を 5.5秒行い厚さ40μmの熱収縮フィルムを得た。得
られたフィルムの物性値を表1に示す。
Example 2 According to the polymerization method of Example 1, 70 mol% of terephthalic acid component
A polyester comprising 30 mol% of 2,6 naphthalenedicarboxylic acid component, 29 mol% of ethylene glycol component, 67 mol% of neopentyl glycol component and 4 mol% of polytetramethylene glycol (molecular weight 650) component was obtained. This copolymer had an intrinsic viscosity of 0.71 dl / g. This polyester was melt extruded at 290 ° C. to obtain an unstretched film having a thickness of 180 μm. The film was stretched 1.1 times in the machine direction at a stretching rate of 11000% / min at 95 ° C., then preheated at 95 ° C. for 3 seconds, then stretched in the transverse direction at a first stage of 7100% / min, 1.5 times at 80 ℃, then 80 ℃
The sample was held at a constant length for 3 seconds, and subsequently stretched to a total of 4.1 times in two zones of 85 ° C and 95 ° C. Then, heat treatment was carried out at 80 ° C. for 5.5 seconds to obtain a heat shrinkable film having a thickness of 40 μm. The physical properties of the obtained film are shown in Table 1.

【0022】比較例1 実施例1の重合方法により、テレフタル酸成分80モル%
と、2,6ナフタレンジカルボン酸成分20モル%、エチ
レングリコール成分94モル%、と、ネオペンチルグリコ
ール成分4モル%と、ポリテトラメチレングリコール
(分子量650)成分2モル% から成るポリエステル
を得た。この共重合体は固有粘度0.70dl/gであ
った。このポリエステルを 280℃で溶融押出し、厚さ1
80μmの未延伸フィルムを得た。該フィルムを縦方向
に 10500%/分の延伸速度、85℃、で1.1倍延伸し、
次いで予熱95℃、3秒、次いで横方向に第1段延伸を71
00%/分の延伸速度、85℃で 1.5倍、続いて、85℃で3
秒間定長把持し、引き続き95℃、 100℃の2ゾーンに分
けて合計4.1倍まで延伸した。次いで 100℃で熱処理
を 5.5秒行い厚さ40μmの熱収縮フィルムを得た。得
られたフィルムの物性値を表1に示す。
Comparative Example 1 By the polymerization method of Example 1, 80 mol% of terephthalic acid component
A polyester comprising 20 mol% of 2,6 naphthalenedicarboxylic acid component, 94 mol% of ethylene glycol component, 4 mol% of neopentyl glycol component and 2 mol% of polytetramethylene glycol (molecular weight 650) component was obtained. This copolymer had an intrinsic viscosity of 0.70 dl / g. This polyester is melt extruded at 280 ° C to a thickness of 1
An unstretched film of 80 μm was obtained. The film was stretched 1.1 times in the machine direction at 85 ° C. at a stretching speed of 10500% / min,
Preheat at 95 ℃ for 3 seconds, then draw the first stage in the transverse direction 71
Stretching rate at 00% / min, 1.5 times at 85 ° C, then 3 at 85 ° C
The sample was held for a fixed length of time for two seconds, and subsequently stretched to a total of 4.1 times in two zones of 95 ° C and 100 ° C. Then, heat treatment was performed at 100 ° C. for 5.5 seconds to obtain a heat shrinkable film having a thickness of 40 μm. The physical properties of the obtained film are shown in Table 1.

【0023】比較例2 実施例1の重合方法により、テレフタル酸成分90モル%
と、2,6ナフタレンジカルボン酸成分10モル%、エチ
レングリコール成分80モル%、と、ネオペンチルグリコ
ール成分19モル%と、ポリテトラメチレングリコール
(分子量650)成分1モル%から成るポリエステルを
得た。この共重合体は固有粘度0.69dl/gであっ
た。このポリエステルを 295℃で溶融押出し、厚さ18
0μmの未延伸フィルムを得た。該フィルムを縦方向に
11000%/分の延伸速度、 130℃、で1.1倍延伸し、
次いで予熱 125℃、3秒、次いで横方向に7200%/分の
延伸速度、 120℃で4.1倍まで延伸した。次いで 140
℃で熱処理を 5.5秒行い厚さ40μmの熱収縮フィルム
を得た。得られたフィルムの物性値を表1に示す。
Comparative Example 2 By the polymerization method of Example 1, 90 mol% of terephthalic acid component
A polyester comprising 10 mol% of 2,6 naphthalenedicarboxylic acid component, 80 mol% of ethylene glycol component, 19 mol% of neopentyl glycol component and 1 mol% of polytetramethylene glycol (molecular weight 650) component was obtained. This copolymer had an intrinsic viscosity of 0.69 dl / g. This polyester is melt extruded at 295 ° C to a thickness of 18
An unstretched film of 0 μm was obtained. The film vertically
Stretching 1.1 times at 11000% / min, 130 ° C,
Then, preheating was carried out at 125 ° C. for 3 seconds and then in the transverse direction at a drawing speed of 7200% / min, and at 120 ° C., the film was drawn up to 4.1 times. Then 140
Heat treatment was performed at ℃ for 5.5 seconds to obtain a heat shrinkable film having a thickness of 40 μm. The physical properties of the obtained film are shown in Table 1.

【0024】比較例3 実施例1の重合方法により、テレフタル酸成分95モル%
と、2,6ナフタレンジカルボン酸成分5モル%、エチ
レングリコール成分64モル%と、ネオペンチルグリコー
ル成分35モル%と、ポリテトラメチレングリコール(分
子量650)成分1モル%から成るポリエステルを得
た。この共重合体は固有粘度0.71dl/gであった。
このポリエステルを 275℃で溶融押出し、厚さ180μ
mの未延伸フィルムを得た。該フィルムを縦方向に 110
00%/分の延伸速度、90℃、で1.1倍延伸し、次いで
予熱 120℃、3秒、次いで横方向に6800%/分の延伸速
度、90℃で4.0倍まで延伸した。次いで75℃で熱処理
を 5.5秒行い厚さ40μmの熱収縮フィルムを得た。得
られたフィルムの物性値を表1に示す。
Comparative Example 3 According to the polymerization method of Example 1, 95 mol% of terephthalic acid component
A polyester comprising 5 mol% of 2,6 naphthalenedicarboxylic acid component, 64 mol% of ethylene glycol component, 35 mol% of neopentyl glycol component and 1 mol% of polytetramethylene glycol (molecular weight 650) component was obtained. This copolymer had an intrinsic viscosity of 0.71 dl / g.
This polyester is melt extruded at 275 ℃ and the thickness is 180μ.
An unstretched film of m was obtained. The film is lengthwise 110
It was stretched 1.1 times at a stretching rate of 00% / min at 90 ° C., then preheated at 120 ° C. for 3 seconds, and then stretched in the transverse direction at a stretching rate of 6800% / min at 90 ° C. to 4.0 times. Then, heat treatment was performed at 75 ° C. for 5.5 seconds to obtain a heat shrinkable film having a thickness of 40 μm. The physical properties of the obtained film are shown in Table 1.

【0025】比較例4 実施例1の重合方法により、テレフタル酸成分 100モル
%と、エチレングリコール成分98モル%と、ポリテトラ
メチレングリコール(分子量650)成分2モル%から
成るポリエステルを得た。この共重合体は固有粘度0.
70dl/gであった。このポリエステルを 285℃で溶融
押出し、厚さ180μmの未延伸フィルムを得た。該フ
ィルムを縦方向に9000%/分の延伸速度、90℃、で1.
05倍延伸し、次いで予熱 110℃、3秒、次いで横方向に
6300%/分の延伸速度、85℃で4.0倍まで延伸した。
次いで75℃で熱処理を 5.5秒行い厚さ40μmの熱収縮
フィルムを得た。得られたフィルムの物性値を表1に示
す。
Comparative Example 4 By the polymerization method of Example 1, a polyester comprising 100 mol% of a terephthalic acid component, 98 mol% of an ethylene glycol component and 2 mol% of a polytetramethylene glycol (molecular weight 650) component was obtained. This copolymer has an intrinsic viscosity of 0.
It was 70 dl / g. This polyester was melt extruded at 285 ° C. to obtain an unstretched film having a thickness of 180 μm. The film was stretched in the machine direction in the machine direction at 9000% / min at 90 ° C. for 1.
Stretched 05 times, then preheated at 110 ℃ for 3 seconds, then transversely
It was stretched to 4.0 times at 85 ° C. at a stretching rate of 6300% / min.
Then, heat treatment was performed at 75 ° C. for 5.5 seconds to obtain a heat shrinkable film having a thickness of 40 μm. The physical properties of the obtained film are shown in Table 1.

【0026】比較例5 実施例1の重合方法により、テレフタル酸成分5モル%
と、2,6ナフタレンジカルボン酸成分95モル%、エチ
レングリコール成分75モル%、と、ネオペンチルグリコ
ール成分25モル%から成るポリエステルを得た。この共
重合体は固有粘度0.71dl/gであった。このポリエ
ステルを 290℃で溶融押出し、厚さ180μmの未延伸
フィルムを得た。該フィルムを縦方向に 11000%/分の
延伸速度、 120℃、で1.1倍延伸し、次いで予熱 140
℃、3秒、次いで横方向に第1段延伸を6800%/分の延
伸速度、 120℃で 1.5倍、続いて、 120℃で3秒間定長
把持し、引き続き 125℃、130 ℃の2ゾーンに分けて合
計4.1倍まで延伸した。次いで 100℃で熱処理を5.5
秒行い厚さ40μmの熱収縮フィルムを得た。得られた
フィルムの物性値を表1に示す。
Comparative Example 5 By the polymerization method of Example 1, 5 mol% of terephthalic acid component
A polyester comprising 95 mol% of 2,6 naphthalenedicarboxylic acid component, 75 mol% of ethylene glycol component, and 25 mol% of neopentyl glycol component was obtained. This copolymer had an intrinsic viscosity of 0.71 dl / g. This polyester was melt extruded at 290 ° C. to obtain an unstretched film having a thickness of 180 μm. The film is stretched 1.1 times in the machine direction at a stretching rate of 11000% / min at 120 ° C. and then preheated at 140 ° C.
C., 3 seconds, then 1st stage stretching in the transverse direction at 6800% / min, 1.5 times at 120.degree. C., followed by a fixed length grip at 120.degree. C. for 3 seconds, followed by two zones of 125.degree. C. and 130.degree. And stretched to a total of 4.1 times. Then heat treatment at 100 ℃ for 5.5
Second, a heat shrinkable film having a thickness of 40 μm was obtained. The physical properties of the obtained film are shown in Table 1.

【0027】比較例6 実施例1の重合方法により、テレフタル酸成分90モル%
と、2,6ナフタレンジカルボン酸成分10モル%、エチ
レングリコール成分70モル%と、ネオペンチルグリコー
ル成分20モル%から成るポリエステルを得た。この共重
合体は固有粘度0.72dl/gであった。このポリエス
テルを 290℃で溶融押出し、厚さ180μmの未延伸フ
ィルムを得た。該フィルムを縦方向に 10000%/分の延
伸速度、 100℃、で1.1倍延伸し、次いで予熱 125
℃、3秒、次いで横方向に第1段延伸を7100%/分の延
伸速度、 100℃で 1.5倍、続いて、 100℃で3秒間定長
把持し、引き続き 105℃、110 ℃の2ゾーンに分けて合
計4.1 倍まで延伸した。次いで 105℃で熱処理を5.5
秒行い厚さ40μmの熱収縮フィルムを得た。得られた
フィルムの物性値を表1に示す。
Comparative Example 6 By the polymerization method of Example 1, 90 mol% of terephthalic acid component
A polyester comprising 10 mol% of 2,6 naphthalenedicarboxylic acid component, 70 mol% of ethylene glycol component and 20 mol% of neopentyl glycol component was obtained. This copolymer had an intrinsic viscosity of 0.72 dl / g. This polyester was melt extruded at 290 ° C. to obtain an unstretched film having a thickness of 180 μm. The film was stretched 1.1 times in the machine direction at a stretching rate of 10000% / min at 100 ° C. and then preheated
C., 3 seconds, then the first stage drawing in the transverse direction at a drawing speed of 7100% / min, 1.5 times at 100.degree. C., then at 100.degree. C. for 3 seconds with constant length grip, and subsequently at 105.degree. C. and 110.degree. C. in 2 zones. And stretched to a total of 4.1 times. Then heat treatment at 105 ℃ for 5.5
Second, a heat shrinkable film having a thickness of 40 μm was obtained. The physical properties of the obtained film are shown in Table 1.

【0028】比較例7 実施例1の重合方法により、テレフタル酸成分82モル%
と、イソフタル酸成分18モル%、エチレングリコール成
分95モル%、と、ポリテトラメチレングリコール(分子
量1000)成分5モル%から成るポリエステルを得た。こ
の共重合体は固有粘度0.70dl/gであった。このポ
リエステルを 270℃で溶融押出し、厚さ180μmの未
延伸フィルムを得た。該フィルムを予熱85℃、3秒、次
いで横方向延伸を7100%/分の延伸速度、65℃で4.0
倍まで延伸した。次いで60℃で熱処理を 5.5秒行い厚さ
40μmの熱収縮フィルムを得た。得られたフィルムの
物性値を表1に示す表1より明らかになるように本発明
のフィルムは目的とする仕上がり性が良好なことが分か
った。
Comparative Example 7 By the polymerization method of Example 1, 82 mol% of terephthalic acid component
A polyester comprising 18 mol% of isophthalic acid component, 95 mol% of ethylene glycol component, and 5 mol% of polytetramethylene glycol (molecular weight 1000) component was obtained. This copolymer had an intrinsic viscosity of 0.70 dl / g. This polyester was melt extruded at 270 ° C. to obtain an unstretched film having a thickness of 180 μm. The film is preheated at 85 ° C. for 3 seconds, then transversely stretched at 7100% / min stretch rate of 4.0 at 65 ° C.
Stretched to double. Then, heat treatment was performed at 60 ° C. for 5.5 seconds to obtain a heat shrinkable film having a thickness of 40 μm. As is clear from Table 1 showing the physical properties of the obtained film, it was found that the film of the present invention had a desired finish.

【0029】[0029]

【発明の効果】被覆用あるいは結束等の包装材料分野に
おいて特に好適な熱収縮特性を発揮し、仕上がり性が良
好な熱収縮性ポリエステル系フィルムが提供される。
EFFECTS OF THE INVENTION A heat-shrinkable polyester film exhibiting particularly suitable heat-shrinkability in the field of packaging materials such as coating or binding and having good finish is provided.

【0030】[0030]

【表1】 [Table 1]

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年2月5日[Submission date] February 5, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Correction target item name] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0030】[0030]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 7:00 C08L 67:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location B29L 7:00 C08L 67:00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】熱収縮ポリエステル系フィルムにおいて該
フィルムの1方向の80℃における収縮率が8%以上40%
以下であり、かつ1方向の最大収縮速度が 100℃で 0.5
%/秒以上24%/秒以下、 140℃で10%/秒以上40%/
秒以下であることを特徴とする熱収縮ポリエステル系フ
ィルム。
1. A heat-shrinkable polyester film having a shrinkage ratio of 8% or more and 40% at 80 ° C. in one direction.
And the maximum shrinkage rate in one direction is 0.5 at 100 ° C
% / Sec or more and 24% / sec or less, 10% / sec or more 40% / at 140 ° C
A heat-shrinkable polyester film characterized by being less than a second.
【請求項2】請求項1記載の熱収縮性ポリエステル系フ
ィルムが、ナフタレンジカルボン酸残基を含有すること
を特徴とする熱収縮性ポリエステルフィルム。
2. A heat-shrinkable polyester film according to claim 1, which contains a naphthalene dicarboxylic acid residue.
【請求項3】請求項1記載のフィルムが オリオキシテ
トラメチレングルコール残基を含有することを特徴とす
る熱収縮性ポリエステルフィルム。
3. A heat-shrinkable polyester film, wherein the film according to claim 1 contains an orioxytetramethylene glycol residue.
JP33500395A 1995-12-22 1995-12-22 Heat-shrinkable polyester film Expired - Lifetime JP3802598B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33500395A JP3802598B2 (en) 1995-12-22 1995-12-22 Heat-shrinkable polyester film
JP31374298A JPH11221855A (en) 1995-12-22 1998-11-04 Heat-shrinkable polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33500395A JP3802598B2 (en) 1995-12-22 1995-12-22 Heat-shrinkable polyester film

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP31374298A Division JPH11221855A (en) 1995-12-22 1998-11-04 Heat-shrinkable polyester film
JP2002144672A Division JP3852369B2 (en) 2002-05-20 2002-05-20 Heat-shrinkable polyester tube

Publications (2)

Publication Number Publication Date
JPH09174684A true JPH09174684A (en) 1997-07-08
JP3802598B2 JP3802598B2 (en) 2006-07-26

Family

ID=18283656

Family Applications (2)

Application Number Title Priority Date Filing Date
JP33500395A Expired - Lifetime JP3802598B2 (en) 1995-12-22 1995-12-22 Heat-shrinkable polyester film
JP31374298A Withdrawn JPH11221855A (en) 1995-12-22 1998-11-04 Heat-shrinkable polyester film

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP31374298A Withdrawn JPH11221855A (en) 1995-12-22 1998-11-04 Heat-shrinkable polyester film

Country Status (1)

Country Link
JP (2) JP3802598B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031579A1 (en) 2007-09-07 2009-03-12 Teijin Dupont Films Japan Limited Thermally shrinkable polyester film
US20110172386A1 (en) * 2007-11-19 2011-07-14 Kolon Industries, Inc. Thermo-shrinkable polyester film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502091B2 (en) * 2000-01-28 2010-07-14 東洋紡績株式会社 Heat-shrinkable polyester film
JP6481300B2 (en) * 2013-10-11 2019-03-13 東洋紡株式会社 Polyester resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031579A1 (en) 2007-09-07 2009-03-12 Teijin Dupont Films Japan Limited Thermally shrinkable polyester film
JP2009184340A (en) * 2007-09-07 2009-08-20 Teijin Dupont Films Japan Ltd Heat-shrinkable polyester film
US20110172386A1 (en) * 2007-11-19 2011-07-14 Kolon Industries, Inc. Thermo-shrinkable polyester film
US9187637B2 (en) * 2007-11-19 2015-11-17 Kolon Industries, Inc. Thermo-shrinkable polyester film

Also Published As

Publication number Publication date
JPH11221855A (en) 1999-08-17
JP3802598B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP2007521364A (en) Propanediol polyester resin and shrink film
JP3336722B2 (en) Heat shrinkable polyester film
JP2943178B2 (en) Heat-shrinkable polyester film
JP3379189B2 (en) Heat-shrinkable polyester film
JP2629370B2 (en) Heat shrinkable polyester film
JPH0651353B2 (en) Heat-shrinkable polyester tube
JP3006001B2 (en) Heat-shrinkable polyester film
JP3939470B2 (en) Heat-shrinkable polyester film
JP2932596B2 (en) Heat shrinkable polyester film
JP3050123B2 (en) Heat-shrinkable polyester film
JPH0827260A (en) Heat-shrinkable polyester film
JP3896604B2 (en) Heat-shrinkable polyester film
JPH09174684A (en) Heat-shrinkable polyester film
JP3114353B2 (en) Heat-shrinkable polyester film
JPH11315152A (en) Heat-shrinkable polyester film
JPH07205284A (en) Heat shrinkable polyester film
JPH0618903B2 (en) Heat-shrinkable polyester film
JP2517995B2 (en) Heat-shrinkable polyester film
JPH0825477A (en) Heat-shrinkable polyester film
JP3852369B2 (en) Heat-shrinkable polyester tube
JP3351473B2 (en) Heat-shrinkable polyester film
JPH08323859A (en) Heat-shrinkable polyester film and production thereof
JPH0615732A (en) Heat-shrinkable polyester film
JPH04268338A (en) Heat-shrinkable polyester film
JPH11240965A (en) Heat-shrinkable polyester-based film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

EXPY Cancellation because of completion of term