JPH0917425A - Paste pole plate for alkaline battery and its manufacture - Google Patents
Paste pole plate for alkaline battery and its manufactureInfo
- Publication number
- JPH0917425A JPH0917425A JP7182046A JP18204695A JPH0917425A JP H0917425 A JPH0917425 A JP H0917425A JP 7182046 A JP7182046 A JP 7182046A JP 18204695 A JP18204695 A JP 18204695A JP H0917425 A JPH0917425 A JP H0917425A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- plate portion
- surface area
- current collector
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 89
- 239000011149 active material Substances 0.000 claims abstract description 40
- 230000006835 compression Effects 0.000 claims description 111
- 238000007906 compression Methods 0.000 claims description 111
- 239000000758 substrate Substances 0.000 claims description 37
- 238000003825 pressing Methods 0.000 claims description 8
- 238000011049 filling Methods 0.000 claims description 7
- 238000003466 welding Methods 0.000 claims description 4
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- 238000003860 storage Methods 0.000 abstract description 3
- 238000007599 discharging Methods 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 31
- 230000002093 peripheral effect Effects 0.000 description 19
- 229910052759 nickel Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 230000005611 electricity Effects 0.000 description 6
- 239000006260 foam Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000000605 extraction Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- LBFUKZWYPLNNJC-UHFFFAOYSA-N cobalt(ii,iii) oxide Chemical compound [Co]=O.O=[Co]O[Co]=O LBFUKZWYPLNNJC-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 230000003763 resistance to breakage Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Connection Of Batteries Or Terminals (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ニッケルカドミウム電
池、ニッケル鉄電池、ニッケル亜鉛電池、ニッケル水素
電池などのアルカリ電池用ペースト式極板並びにその製
造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paste type electrode plate for an alkaline battery such as a nickel-cadmium battery, a nickel-iron battery, a nickel-zinc battery and a nickel-hydrogen battery, and a method for producing the same.
【0002】[0002]
【従来の技術】従来のアルカリ電池用極板としては、長
寿命で、急速充放電特性の優れた焼結式が主として採用
されて来た。しかし最近では、電池の高容量化が要求さ
れ、これに対応するべく活物質の高密度充填が可能なペ
ースト式が主流となりつゝある。ペースト式極板として
は、ネット、多孔シート等の二次元多孔基板に、活物
質、結着剤、導電剤等より成るペースト活物質を塗布し
たものと、発泡メタル、フェルトメタル等の三次元多孔
基板に、該ペースト活物質を充填したものとがある。こ
の三次元多孔基板にペースト活物質を充填する方式は二
次元多孔基板にペースト活物質を塗布する方式に比べ活
物質の結着性に優れ、極板の導電性も良く、二次元多孔
基板には活物質ペーストが塗布し難いNi極等に採用さ
れている。而して、該ペースト式極板に、集電板を取付
けるに当たり、該ペースト式極板は、その集電板取付用
面域板部の機械的強度と導電性を向上するため、該部を
加圧して集電板取付用面域圧縮板部とし、これに集電板
を溶接し取り付けているものは公知である。その1例を
添付図面の図12及び図13に示す。図面で、Aはアル
カリ電池用ペースト式極板を示し、該極板Aは、多孔度
95〜98%のスポンジ状金属多孔基板を用い、その三
次元的に連結する無数の微孔内にペースト活物質を充填
し且つ適度に厚み調製された極板主体板部a1とその隅
角部に所定の方形の面域の集電板取付用面域板部を加圧
して集電板取付用面域圧縮板部a2に形成したもので、
その集電板取付用面域圧縮板部a2に、ニッケル板など
の矩形状集電板bの基部を重ねスポット溶接して取付け
たものである。かくして、該集電板bは、機械的強度と
導電性の向上した該集電板取付用面域圧縮板部a2を介
して該極板主体板部a2からの電気の取出しを良好に行
うようにしたものである。また、この改良型として、特
開昭53−25839号公報には、図示のペースト式極
板Aの該集電板取付用面域圧縮板部a2の強度を改善す
るため、その面域圧縮板部a2に導電性粉末若しくは導
電性多孔体またはその双方或いは導電線を補強材として
配置して加圧し、該集電板取付用面域圧縮板部a2の厚
さを厚くすることにより、該圧縮板部a2の機械的強度
を高め、その補強材に該集電板bを溶接したペースト式
極板の改良型が提案されている。2. Description of the Related Art As a conventional electrode plate for an alkaline battery, a sintering type having a long life and excellent rapid charge / discharge characteristics has been mainly adopted. However, in recent years, there has been a demand for higher capacity batteries, and in order to meet this demand, the paste type, which enables high-density filling of active materials, is becoming the mainstream. As a paste type electrode plate, a two-dimensional porous substrate such as a net or a porous sheet coated with a paste active material composed of an active material, a binder, a conductive agent, etc., and a three-dimensional porous material such as foam metal or felt metal. There is a substrate filled with the paste active material. This method of filling the three-dimensional porous substrate with the paste active material is superior to the method of coating the two-dimensional porous substrate with the paste active material in terms of the binding property of the active material and the good conductivity of the electrode plate. Is used for the Ni electrode or the like to which the active material paste is difficult to apply. When attaching the current collector to the paste-type electrode plate, the paste-type electrode plate is used to improve the mechanical strength and conductivity of the area plate portion for attaching the current collector plate. It is publicly known that pressure is applied to form a surface area compression plate portion for attaching a current collector plate, and a current collector plate is welded to and attached to this. An example thereof is shown in FIGS. 12 and 13 of the accompanying drawings. In the drawings, A represents a paste type electrode plate for an alkaline battery, and the electrode plate A uses a sponge-like metal porous substrate having a porosity of 95 to 98%, and pastes in the innumerable micropores that are three-dimensionally connected. An electrode plate main plate part a1 which is filled with an active material and whose thickness is adjusted appropriately, and a current collecting plate mounting surface of a predetermined rectangular surface area for pressing a current collecting plate mounting area plate part at its corners. It is formed on the area compression plate part a2,
The base portion of a rectangular current collector plate b such as a nickel plate is overlapped and spot-welded on the current collector plate mounting area compression plate portion a2. Thus, the current collecting plate b is configured to favorably extract electricity from the electrode plate main plate part a2 via the current collecting plate mounting surface area compression plate part a2 having improved mechanical strength and conductivity. It is the one. As an improved version of this, in JP-A-53-25839, in order to improve the strength of the surface area compression plate portion a2 for attaching the current collector plate of the illustrated paste type electrode plate A, the area area compression plate is improved. A conductive powder, a conductive porous body, or both, or a conductive wire is arranged as a reinforcing member in the portion a2, and pressure is applied to increase the thickness of the current collector plate mounting surface area compression plate portion a2. An improved type of paste type electrode plate is proposed in which the mechanical strength of the plate portion a2 is increased and the current collector plate b is welded to its reinforcing material.
【0003】[0003]
【発明が解決しようとする課題】然し乍ら、上記図示の
従来のペースト式極板A及び上記の改良型は、いずれも
該集電板取付用面域圧縮板部と活物質の充填された多孔
度の大きい極板主体板部a1との境界部cの強度が不充
分で、該境界部cで破断を生じ易い欠点があることが確
認された。However, both the conventional paste type electrode plate A and the improved type shown in the above figures have a porosity in which the surface area compression plate portion for mounting the current collector plate and the active material are filled. It was confirmed that the strength of the boundary portion c with the electrode plate main plate portion a1 having a large value is insufficient and there is a defect that breakage easily occurs at the boundary portion c.
【0004】[0004]
【課題を解決するための手段】本発明は、上記従来の形
式のペースト式極板の欠点を解消し、機械的強度の増大
と共に極板主体板部と集電板との間の伝導性の向上と、
更には放電性能の向上をもたらすアルカリ電池用ペース
ト式極板を提供するもので、ペースト活物質が充填され
た極板主体板部と集電板取付用面域圧縮板部とから成る
極板の該集電板取付用面域圧縮板部の少なくとも片面
に、補強板を、その内面域板部を該集電板取付用面域圧
縮板部に重合圧着せしめると共に、その辺縁域板部を該
集電板取付用面域圧縮板部と該極板主体板部との境界を
越えた該極板主体板部の一部に重合圧着せしめ、該補強
板の該内面域板部または該集電板取付用面域圧縮板部に
集電板の基部を溶接したことを特徴とする。また、本発
明は、上記の諸特性を備えた本発明の極板の製造法を提
供するもので、(a)三次元的に連続する無数の微孔を
有する極板用多孔基板の所定の集電板取付用面域板部の
少なくとも片面に、その面域より大きい面域を有し且つ
三次元的に連続する無数の微孔を有する補強用多孔板を
重合すること、(b)該極板用多孔基板の該集電板取付
用面域板部とこれと重合する該補強用多孔板の内面域板
部とを、加圧して、集電板取付用面域圧縮板部と、これ
に圧着された内面域圧縮板部とに形成すること、(c)
該補強用多孔板の辺縁域板部を加圧して該主体板部の一
部に圧着された辺縁域圧縮板部に形成すること、(d)
該主体板部にペースト活物質を充填すること、(e)活
物質を充填された該主体多孔基板部を加圧し活物質を保
持された極板主体板部を形成すること、(f)該補強板
の内域面圧縮板部または該集電板取付用面域圧縮板部
に、集電板の基部を溶接することから成ることを特徴と
する。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the past type electrode plate, increases the mechanical strength, and improves the conductivity between the electrode plate main plate portion and the current collector plate. Improvement and
Furthermore, the present invention provides a paste-type electrode plate for an alkaline battery, which brings about an improvement in discharge performance, which comprises an electrode plate main plate portion filled with a paste active material and a current-collecting plate mounting area compression plate portion. A reinforcing plate is attached to at least one surface of the surface area compression plate portion for attaching the current collector plate, and the inner surface area plate portion is polymerized and pressure-bonded to the surface area compression plate portion for attaching the current collector plate. A portion of the electrode plate main plate portion beyond the boundary between the current plate mounting surface compression plate portion and the electrode plate main plate portion is polymerized and pressure-bonded, and the inner surface region plate portion of the reinforcing plate or the collector plate The present invention is characterized in that the base portion of the current collector plate is welded to the surface compression plate portion for mounting the current plate. Further, the present invention provides a method for manufacturing the electrode plate of the present invention having the above-mentioned various characteristics, wherein (a) a predetermined porous substrate for an electrode plate having innumerable three-dimensionally continuous micropores is provided. Polymerizing a reinforcing porous plate having a surface area larger than the surface area and having innumerable three-dimensionally continuous micropores on at least one surface of the surface plate for mounting the current collector plate, (b) The current collecting plate mounting surface area plate portion of the electrode plate porous substrate and the inner surface area plate portion of the reinforcing porous plate which is superposed with the current collecting plate mounting pressure plate, and the current collector plate mounting surface area compression plate portion, Forming on the inner surface area compression plate portion crimped thereto, (c)
Pressurizing the marginal area plate portion of the reinforcing porous plate to form the marginal area compression plate portion crimped to a part of the main plate portion, (d)
Filling the main plate portion with a paste active material, (e) pressing the main porous substrate portion filled with the active material to form an electrode plate main plate portion holding the active material, (f) It is characterized in that the inner surface compression plate portion of the reinforcing plate or the surface compression plate portion for attaching the current collection plate is welded to the base portion of the current collection plate.
【0005】[0005]
【作用】該補強板は、該極板の該集電板取付用圧縮板部
自体の強度を増大するばかりでなく、その辺縁域圧縮板
部が該集電板取付用圧縮板部を越えてその外周の極板主
体板部に圧着しているので、これら境界部の破断強度が
増大した安定堅牢な極板が得られると同時に、その辺縁
域圧縮板部を介しての極板主体板部から集電板への導電
性能を向上すると共に放電性能の増大をもたらす。The reinforcing plate not only increases the strength of the current collector plate-attaching compression plate portion itself of the electrode plate, but its peripheral region compression plate portion exceeds the current collector plate attaching compression plate portion. Since it is pressure-bonded to the main plate of the electrode plate on the outer periphery of the electrode plate, a stable and robust electrode plate with increased rupture strength at these boundaries can be obtained, and at the same time, the electrode plate main body via the peripheral region compression plate part The electrical conductivity from the plate portion to the current collector is improved and the discharge performance is increased.
【0006】この場合、該補強板の該周縁域板部を、該
極板主体板部の一部に喰込み圧着せしめると共に、その
外周の該極板主体板部と同一平面またはこれより低い位
置とし、その該内面域板部を該極板主体板部より低位に
位置せしめてその外側に凹面空間を形成し、その凹面空
間に該集電板の基部を収容し溶接するときは、該補強板
及び該集電板の基部の外面は、該極板面から突出しない
ので、これにセパレータを重合した場合、セパレータの
損傷とこれに重合する異極性板との短絡を防止でき、良
好な極板群を組み立てることができる電池の生産効率が
向上する。In this case, the peripheral area plate portion of the reinforcing plate is bited into and crimped to a part of the electrode plate main plate portion, and the outer periphery thereof is flush with the electrode plate main plate portion or a position lower than the same. When the inner surface area plate portion is positioned lower than the electrode plate main plate portion to form a concave space on the outer side thereof, and when the base portion of the current collector plate is housed in the concave space and welded, the reinforcement is applied. The outer surface of the plate and the base portion of the current collector plate does not protrude from the electrode plate surface, and therefore, when a separator is polymerized on this, damage to the separator and a short circuit with a heteropolar plate superposed on the separator can be prevented, and a good electrode is obtained. The production efficiency of a battery capable of assembling the plate group is improved.
【0007】また、該補強板として、三次元多孔基板と
同じものを使用して、その補強板から成る補強板の該周
縁域圧縮板部の密度を、該内面域圧縮板部の密度より小
さく該極板主体板部の密度より大きく形成することによ
り、該補強板の該極板主体板部との接続強度が大きく且
つ該極板主体板部から該集電板取付用面域圧縮部への電
気の取出し性能を増大した通路として役立つ。Also, the same one as a three-dimensional porous substrate is used as the reinforcing plate, and the density of the peripheral region compression plate portion of the reinforcing plate composed of the reinforcing plate is smaller than that of the inner surface region compression plate portion. By forming the electrode plate main plate portion to have a density higher than that of the electrode plate main plate portion, the strength of connection between the reinforcing plate and the electrode plate main plate portion is large, and the electrode plate main plate portion to the current collector plate mounting area compression portion is formed. Serves as a passageway with increased electricity extraction performance.
【0008】本発明の上記極板の製造法によれば、
(a)極板用三次元多孔基板の集電板取付用面域板部の
少なくとも片面に、その面域より大きい面域を有する三
次元補強用多孔板を、極板用多孔基板の集電板取付用面
域板部にその内域板部で重合すること、(b)該極板用
多孔基板の該集電板取付用面域圧縮板部とこれと重合す
る補強用多孔板の内域板部とを加圧して、集電板取付用
面域圧縮板部と、これに圧着された内面域圧縮板部を形
成することにより、機械的強度の向上した集電板取付用
圧縮板部が得られ、(c)該補強用多孔板の該辺縁域板
部を加圧して極板主体板部の一部に圧着された辺縁域圧
縮板部に形成すること、(d)該主体板部にペースト活
物質を充填すること、(e)該主体板部を加圧し活物質
を保持された極板主体板部を形成すること、(f)該補
強板の内域面圧縮板部に集電板の基部を溶接することに
より、該補強板の該辺縁域圧縮板部を介しての該極板主
体板部への電気的並びに機械的接続をもたらし、該極板
主体板部からの該集電板への電気の取出しが向上したペ
ースト式極板が得られるが、また、集電板取付用面域圧
縮板部に該集電板の基部を溶接しても、差し支えなく良
好な電気的並びに機械的接続が得られる。According to the method of manufacturing the above-mentioned electrode plate of the present invention,
(A) Surface area for attaching collector plate of the three-dimensional porous substrate for polar plate A three-dimensional reinforcing porous plate having a larger surface area on at least one surface of the plate portion is used for collecting current on the porous substrate for polar plate. Superposition on the plate mounting surface area plate portion at the inner area plate portion, and (b) in the current collecting plate mounting surface area compression plate portion of the porous plate for the electrode plate and the reinforcing porous plate overlapping with the compression plate portion. A compression plate for mounting a current collector plate having improved mechanical strength by pressurizing the area plate part to form a surface area compression plate part for mounting the current collector plate and an inner surface area compression plate part crimped thereto. And (c) pressurizing the marginal area plate portion of the reinforcing porous plate to form a marginal area compression plate portion that is crimped to a part of the electrode plate main plate portion, (d) Filling the main plate portion with a paste active material, (e) pressing the main plate portion to form an electrode main plate holding the active material, (f) compressing the inner surface of the reinforcing plate By welding the base portion of the current collector plate to the portion, the electrical and mechanical connection of the reinforcing plate to the electrode plate main plate portion through the peripheral region compression plate portion is provided, and the electrode plate main plate Although a paste type electrode plate with improved extraction of electricity from the current collector to the current collector can be obtained, it is also possible to weld the base of the current collector to the current collector mounting surface area compression plate. Good electrical and mechanical connections are obtained.
【0009】この場合、該極板用多孔基板の所定の集電
板取付用面域板部を、少なくとも片側から加圧して該極
板用多孔基板の少なくとも一方の外面より低位に位置し
てその外側に凹面空間が形成された集電板取付用面域圧
縮板部に形成し、該補強用多孔板の内面域板部を加圧し
て該凹面空間に収容され、且つ該集電板取付用面域圧縮
板部に圧着された内面域圧縮板部に形成し、その辺縁域
板部を加圧して該極板主体板部の一部に喰込み圧着さ
れ、その外周の該極板主体板部と同一平面またはこれよ
り低位の辺縁域圧縮板部に形成し、該集電板の基部を該
凹面空間に収容した該補強板に溶接することにより、極
板から、補強板及び集電板の突出しない平坦な極板をも
たらし、セパレータの破損、異極性極板との短絡のない
極板群が得られる。In this case, a predetermined current collector plate mounting area plate portion of the porous substrate for polar plate is pressed from at least one side and is positioned lower than at least one outer surface of the porous substrate for polar plate. It is formed on a surface compression plate part for mounting a current collector plate having a concave space on the outside, and the inner surface area plate part of the reinforcing porous plate is pressed to be accommodated in the concave space and for mounting the current collector plate. It is formed on the inner surface area compression plate portion that is crimped to the surface area compression plate portion, and the marginal area plate portion is pressed to bite into the part of the electrode plate main plate portion and press-bonded, and the electrode plate main body on the outer periphery thereof is formed. The plate is formed on the same plane as the plate part or on a lower peripheral edge compression plate part, and the base part of the current collector plate is welded to the reinforcing plate housed in the concave space so that the reinforcing plate and the collector plate are separated from the electrode plate. A flat electrode plate in which the electrode plate does not protrude can be obtained, and a plate group without damage to the separator and short circuit with the electrode plate of different polarity can be obtained.
【0010】[0010]
【実施例】次に、本発明の実施例を添付図面に基づいて
説明する。図1及び図2において、1は、本発明実施の
1例のアルカリ電池用ペースト式極板を示す。該極板1
は、例えば、ニッケルなどの金属製発泡多孔基板内に三
次元的に連続する無数の微孔内に、ペースト活物質、例
えば、水酸化ニッケルなどの正極活物質粉に、好ましく
は、コバルト酸化物などの添加材とCMCなどの増粘剤
の水溶液で混練して成るペースト活物質を充填され、且
つ加圧により厚さ調製されて該活物質を保持した極板主
体板部1aとその多孔基板の例えばその隅角部を所定の
方形の面域を該活物質を充填することなく加圧した高密
度の集電板取付用面域圧縮板部1bとから成り、その集
電板取付用面域圧縮板部1bの外面に補強板2を圧着し
て該集電板取付用面域圧縮板部1bの機械的強度を増大
し、その補強板2の外面に、ニッケル板などの矩形状集
電板3の基部3aをスポット溶接したものである。以上
の基本構成は、従来の極板と変わりがない。Next, an embodiment of the present invention will be described with reference to the accompanying drawings. 1 and 2, reference numeral 1 denotes a paste type electrode plate for an alkaline battery according to an embodiment of the present invention. The electrode plate 1
Is a paste active material, for example, a positive electrode active material powder such as nickel hydroxide, in a myriad of three-dimensionally continuous micropores in a metal foam porous substrate such as nickel, preferably cobalt oxide. Electrode plate main plate 1a and its porous substrate, which are filled with a paste active material prepared by kneading with an additive material such as CMC and an aqueous solution of a thickener such as CMC, and whose thickness is adjusted by pressurization to hold the active material. For example, a high-density current collector plate mounting surface area compression plate portion 1b whose corners are pressed into a predetermined square surface area without being filled with the active material. The reinforcing plate 2 is pressure-bonded to the outer surface of the region compression plate portion 1b to increase the mechanical strength of the current collecting plate mounting surface region compression plate portion 1b, and the outer surface of the reinforcing plate 2 has a rectangular shape such as a nickel plate. The base 3a of the electric plate 3 is spot-welded. The above basic structure is the same as that of the conventional electrode plate.
【0011】即ち、本発明によれば、該補強板2とし
て、例えば、該集電板取付用面域圧縮板部1bの面域よ
り大きい面域を有する所望厚みのニッケル板その他の方
形の三次元多孔金属板を用い、その内域板部2aをその
集電板取付用面域圧縮板部1bに重合圧着し、その二辺
から成る辺縁域板部2bを、該集電板取付用面域圧縮板
部1bと該極板主体板部1aとの境界1cを越えた該圧
縮板部1bの外周の二辺に沿った該極板主体板部の一部
に重合圧着せしめ、該補強板2の該内面域板部2aに該
集電板3の基部3aを溶接して本発明のペースト式極板
を構成する。かくして、該補強板2は、該極板1に、強
度の比較的弱い該境界部1cを跨いで、その極板主体板
部1aとその集電板取付用面域圧縮板部1bとに強固に
結着しているので、該境界部1cの破断強度が増大し、
安定堅牢な極板1をもたらすと同時に、その辺縁域板部
2bは該極板主体板部1aに強固に機械的且つ電気的に
接続しているので、これを介しての導電性が増大し、該
極板主体板部1aからの該集電板3への電気の取り出し
を容易に且つ増大し、急放電性能などの電池性能を向上
することができるなどの効果をもたらす。That is, according to the present invention, as the reinforcing plate 2, for example, a nickel plate having a desired thickness having a surface area larger than the surface area of the surface plate compression plate portion 1b for mounting the current collector plate or other rectangular cubic. Using an original porous metal plate, its inner area plate portion 2a is superposed and pressure bonded to the current collector plate mounting surface area compression plate portion 1b, and the margin area plate portion 2b consisting of two sides thereof is used for mounting the current collector plate. The area of the electrode plate main plate portion 1b and the electrode plate main plate portion 1a are cross-bonded to a part of the electrode plate main plate portion along the two sides of the outer periphery of the compression plate portion 1b beyond the boundary 1c, and the reinforcement is performed. The base portion 3a of the current collector plate 3 is welded to the inner surface area plate portion 2a of the plate 2 to form the paste type electrode plate of the present invention. Thus, the reinforcing plate 2 is firmly attached to the electrode plate 1 by straddling the boundary portion 1c having a relatively low strength, to the electrode plate main plate portion 1a and the collector plate mounting surface area compression plate portion 1b. Since it is bound to, the breaking strength of the boundary portion 1c increases,
At the same time as providing the electrode plate 1 which is stable and robust, the edge area plate portion 2b is firmly mechanically and electrically connected to the electrode plate main plate portion 1a, so that the conductivity through this increases. However, it is possible to easily and increase the extraction of electricity from the electrode plate main plate portion 1a to the current collector plate 3, and to improve the battery performance such as rapid discharge performance.
【0012】この場合、図示の該補強板2は、該極板用
多孔基板と同じ材質で且つ同じ多孔度を有する発泡メタ
ルを原料とし、好ましくは、一般に、該極板用多孔基板
と同厚の補強用三次元多孔板を使用し、その補強用多孔
基板を、該隅角部に縦横の辺縁に二辺縁を整合させた状
態で重合し、該集電板取付用面域圧縮板部1bに重合す
る内域面板部2aを大きく加圧して内域面圧縮板部2a
に形成し、その辺縁域板部2bは、その内域面板部2a
を加圧する圧力よりも小さい加圧力で圧縮して該極板用
多孔基板の主体板部の一部に喰込み圧着された辺縁域圧
縮板部2bに形成することが好ましい。これにより、該
補強板2と該極板1の該集電板取付用圧縮板部1b及び
その外周の該極板主体板部1aの一部との互いに対向す
る重合圧着面は、互いに喰込み、その相互の結着が強固
に得られる。一方、該補強板2の該辺縁域圧縮板部2b
の密度は、充填活物質の良好な保持のため極板主体板部
1aの密度より小さいため、該辺縁域圧縮板部2bとそ
の外周の極板主体板部1aとの境界部の破断強度は大き
く且つ相互の喰込み結着性が良く且つ良好な導電性をも
たらす。In this case, the reinforcing plate 2 shown in the figure is made of a foam metal having the same material and the same porosity as the porous substrate for polar plates, and preferably has the same thickness as the porous substrate for polar plates in general. The reinforcing three-dimensional porous plate is used, and the reinforcing porous substrate is polymerized in a state in which the two vertical edges are aligned with the vertical and horizontal edges of the corner portion, and the surface area compression plate for mounting the current collector plate. The inner surface compression plate portion 2a is largely pressed by pressurizing the inner surface compression plate portion 2a overlapping the portion 1b.
The edge area plate portion 2b is formed in the inner area face plate portion 2a.
It is preferable to form the edge area compression plate portion 2b by compressing with a pressure smaller than the pressure for applying pressure to the peripheral area compression plate portion 2b that is pressed into a part of the main plate portion of the porous substrate for an electrode plate and pressure-bonded. As a result, the superposed pressure-bonding surfaces of the reinforcing plate 2, the compression plate portion 1b for attaching the current collector plate of the electrode plate 1 and a part of the electrode plate main plate portion 1a on the outer periphery of the reinforcing plate 2 are embedded in each other. , The mutual bond is firmly obtained. On the other hand, the peripheral area compression plate portion 2b of the reinforcing plate 2
Since the density of is smaller than the density of the electrode plate main plate portion 1a for good retention of the filled active material, the rupture strength of the boundary portion between the peripheral region compression plate portion 2b and the electrode plate main plate portion 1a on the outer periphery thereof. Are large and have good mutual binding properties and good conductivity.
【0013】図2示のように、該集電板取付用圧縮板部
1bの少なくとも片面は、該極板主体板部1aの少なく
とも片面より低位に位置させてその外側に凹面空間4を
形成し、該補強板2の該内面域板部2aを、該凹面空間
4内に収容した状態で該集電板取付用圧縮板部1bに圧
着され、該内面域板部2a上の該凹面空間4内に集電板
3の基部3aを収容した状態で該内面域板部2aに溶接
し、更に該補強板2の該辺縁域板部2bの外面をその外
周の該極板主体板部1aの外面と同一面またはこれより
低い位置に位置せしめるように該極板主体板部1aの一
部に喰込み圧着せしめるように構成するときは、該極板
1にセパレータを介して負極板を積層して極板群を組み
立てる場合は、該極板1の平坦面にセパレータを添着す
ることができ、該補強板2の該辺縁板部2bや該集電板
3の基部3aが、該極板主体板部1a面よりも外方へ突
出することによりセパレータの破損更には、負極板との
短絡が防止される。As shown in FIG. 2, at least one surface of the current collector mounting compression plate portion 1b is positioned lower than at least one surface of the electrode plate main plate portion 1a, and a concave space 4 is formed outside thereof. , The inner surface area plate portion 2a of the reinforcing plate 2 is crimped to the current collector plate mounting compression plate portion 1b in a state of being housed in the concave surface space 4, and the concave surface space 4 on the inner surface area plate portion 2a. The base portion 3a of the current collector plate 3 is housed inside and welded to the inner surface area plate portion 2a, and the outer surface of the marginal area plate portion 2b of the reinforcing plate 2 is further surrounded by the outer electrode plate main plate portion 1a. Of the electrode plate main plate portion 1a so as to be positioned on the same surface as or lower than the outer surface of the negative electrode plate, the negative electrode plate is laminated on the electrode plate 1 via a separator. In the case of assembling the electrode plate group by applying a separator to the flat surface of the electrode plate 1, The edge plate portion 2b of the strong plate 2 and the base portion 3a of the current collector plate 3 project outward beyond the surface of the electrode plate main plate portion 1a, so that the separator is damaged and a short circuit with the negative electrode plate occurs. To be prevented.
【0014】次に、本発明の上記のペースト式極板の製
造法の1例を図3〜図7に基づいて説明する。図3及び
図4示のように、先ず、多孔度95〜98%を有する極
板用の長矩形で肉厚の所定の厚さを有するニッケル発泡
メタルから成る矩形状の極板用三次元多孔基板1′の所
定個所、例えばその一隅角部を仮想線で示す所定の面域
の方形の集電板取付用面域板部1′bの上面に、その所
定の四角形の面域Sより所定の面域の大きい相似の四角
形の面域を有する補強用多孔板2′を、その二辺縁をそ
の下面の隅角部の二辺縁に整合させた状態で載置し、そ
の内面域板部2′aを該集電板取付用面域板部1′bの
面域Sと重合すると共に、その2辺から成る辺縁域板部
2′bを、該集電板取付用面域Sの二辺の外周に沿い、
該主体板部1′aの一部にかゝり重合する状態に載置す
る。該補強用多孔板2′としては、極板用多孔基板1′
と同じ材質、多孔度、厚さを有するものを使用した。Next, one example of the method for manufacturing the above-mentioned paste type electrode plate of the present invention will be described with reference to FIGS. As shown in FIG. 3 and FIG. 4, first, a rectangular three-dimensional porous plate for polar plates made of nickel foam metal having a predetermined thickness of a long rectangular shape for polar plates having a porosity of 95 to 98%. A predetermined portion of the board 1 ′, for example, a rectangular surface area of a predetermined area whose one corner portion is indicated by an imaginary line is attached to the upper surface of the rectangular current collector plate mounting area plate portion 1 ′ from the predetermined square surface area S. The reinforcing porous plate 2'having a similar rectangular surface area with a large surface area is placed with its two edges aligned with the two edges of the corners of its lower surface, and its inner surface plate The portion 2'a is overlapped with the surface area S of the current collector plate mounting surface area plate portion 1'b, and the margin area plate portion 2'b consisting of two sides thereof is formed into the current collector plate mounting surface area. Along the perimeter of the two sides of S,
The main plate portion 1'a is placed so as to be superposed on a part of the main plate portion 1'a. As the reinforcing porous plate 2 ', a porous substrate for polar plate 1'
The same material, porosity, and thickness were used.
【0015】次に、その補強用多孔板2′の該内域面板
部2′aを上方から大きな加圧力で、例えば1ton/
cm2 の加圧力で重合する該極板用多孔基板1′の該集
電板取付用面域板部1′bと該補強用多孔板2′の該内
域面板部2′aとを一挙に加圧して、図5示の如き片側
に偏位した機械的強度の増大した集電板取付用面域圧縮
板部1b(多孔度36%)とその上面に圧着された該補
強板2の内面域圧縮板部2a(多孔度36%)とを形成
した。この場合、上記の加圧圧縮加工により、該集電板
取付用面域圧縮板1bは、該極板用多孔基板1′の主体
板部1′aの上面より下方に位置して、その上側に凹面
空間4が形成され、該補強用多孔板2′の内面域圧縮板
部2aが該凹面空間4内に収容され且つ該圧縮板1bに
重合圧着したものが得られる。Then, the inner surface plate 2'a of the reinforcing porous plate 2'is pressed from above with a large pressure, for example, 1 ton /
The current collecting plate mounting surface area plate portion 1'b of the electrode porous plate 1'and the inner surface surface plate portion 2'a of the reinforcing porous plate 2'that are polymerized by a pressure of cm 2 Of the current collector plate 1b (porosity 36%) with increased mechanical strength deviated to one side as shown in FIG. 5 and the reinforcing plate 2 crimped on the upper surface thereof. The inner surface area compression plate portion 2a (porosity 36%) was formed. In this case, the surface compression plate 1b for mounting the current collector plate is located below the upper surface of the main plate portion 1'a of the porous substrate 1'for electrode plate by the pressure compression processing described above, and the upper side thereof. A concave space 4 is formed in the inner surface area compression plate portion 2a of the reinforcing porous plate 2'and the compression plate 1b is superposed and pressure-bonded.
【0016】次に、図6示のように、該極板用多孔基板
1′の該主体板部1′aをローラープレス機で加圧して
その厚み調製を行うと同時に、該補強板2′の該辺縁域
板部2′bを加圧して、所定の厚みに調製された該主体
板部1′aに喰込ませ且つその外面が該主体板部1′a
と同一平面となるように圧着された辺縁域圧縮板部2b
に形成する。(図6参照)。Next, as shown in FIG. 6, the main plate portion 1'a of the electrode plate porous substrate 1'is pressed by a roller press to adjust its thickness, and at the same time, the reinforcing plate 2 '. Of the peripheral area plate portion 2'b of the base plate portion 1'a is pressed into the main plate portion 1'a prepared to have a predetermined thickness, and the outer surface of the main plate portion 1'a has an outer surface.
Edge region compression plate portion 2b crimped so as to be flush with
Formed. (See FIG. 6).
【0017】次に、このようにして得られた厚み調製さ
れた極板用多孔基板1′の該主体板部1′aに、ペース
ト活物質充填機を通して該活物質を充填し、次に、加
熱、乾燥後、ロールプレス機により更に厚み調製して所
定の厚みの極板主体板部1aに形成された。かくして、
この工程で、該極板主体板部1aに内部に正極活物質を
微孔内に密着保持され、且つ高密度に充填された極板1
が得られる。(図7参照)。該ペースト活物質として
は、例えば、水酸化ニッケル粉末を主体とし、これに導
電材として少量のニッケル粉、コバルトなどの金属粉、
CMCなどの増粘剤の少量と水とを混合し、混練して調
製したものを使用する。Next, the active material is filled in the main plate portion 1'a of the porous substrate for electrode plate 1'thickness thus obtained, which has been adjusted, through a paste active material filling machine, and then, After heating and drying, the thickness was further adjusted by a roll pressing machine to form the electrode plate main plate portion 1a having a predetermined thickness. Thus,
In this step, the electrode plate 1 in which the positive electrode active material is closely held in the micropores inside the electrode plate main plate portion 1a and which is filled with high density
Is obtained. (See FIG. 7). As the paste active material, for example, nickel hydroxide powder is mainly used, and a small amount of nickel powder as a conductive material, metal powder such as cobalt,
A mixture prepared by mixing a small amount of a thickener such as CMC and water and kneading is used.
【0018】次に、このように得られた図7示の極板1
に、その補強板2の該内面域圧縮板部2aにニッケル板
などの所定の厚さ、形状の例えば、矩形状の集電板3の
基板3aをスポット溶接して、図1及び図2示の本発明
のアルカリ蓄電池用ペースト式極板が得られる。Next, the electrode plate 1 shown in FIG. 7 thus obtained
1 and 2, the inner surface area compression plate portion 2a of the reinforcing plate 2 is spot-welded to a substrate 3a of a rectangular current collector plate 3 having a predetermined thickness and shape such as a nickel plate. The paste type electrode plate for alkaline storage batteries of the present invention can be obtained.
【0019】かくして、該補強板2は、その内面域圧縮
板部2aで該極板1の該集電板取付用面域圧縮板部1b
の機械的強度を増大せしめるばかりでなく、その辺縁域
圧縮板部2bは該極板主体板部1aに喰込み圧着され、
強固に接続されているので、前記したように、該極板主
体板部1aと該集電板取付用圧縮板部1bとの境界部1
cの破断強度を増大せしめると同時に、これを介して、
該極板主体板部1aと該集電板3との間の導電性を増大
し、該集電板3への電気の取出しを容易にし、急放電な
どの放電性能を向上せしめることができる。Thus, the reinforcing plate 2 has the inner surface area compression plate portion 2a, and the current area plate mounting surface area compression plate portion 1b of the electrode plate 1.
Not only increasing the mechanical strength of the plate, but also compressing the marginal area compression plate portion 2b into the electrode plate main plate portion 1a.
Since they are firmly connected, as described above, the boundary portion 1 between the electrode plate main plate portion 1a and the current collector plate mounting compression plate portion 1b.
At the same time as increasing the breaking strength of c,
It is possible to increase conductivity between the electrode plate main plate portion 1a and the current collector plate 3, facilitate extraction of electricity to the current collector plate 3, and improve discharge performance such as rapid discharge.
【0020】図8は、本発明のペースト式極板1の他の
実施例を示す。該極板1の両面に補強板2を重合圧着し
て具備したものである。即ち、該極板1は、その集電板
取付用面域圧縮板部1bを、その極板主体板部1aの厚
さの中央に位置するように、即ち、その極板主体板部1
aの両外面より低位に位置させ、その両外側に凹面空間
4,4が形成されるようにし、その両面に夫々、補強板
2の内面域圧縮板部2aに該凹面空間4内に収容されて
重合圧着せしめると共に、その辺縁域圧縮板部2bをそ
の内面域圧縮板部2aの外周の該極板主体板部1aの一
部に同一平面に喰込み重合圧着せしめて構成した。かく
して、該極板1は、その両面に該補強板2,2を上記の
ように具備するので、該極板主体板部1aと該集電板取
付用圧縮板部1bとの境界部1cの耐破断強度は更に増
大した極板1となる。而して、その補強板2,2のいず
れか一方を選択して、これに集電板3の基部3aを該凹
面空間4内に収容した状態で重合してスポット溶接した
ものである。FIG. 8 shows another embodiment of the paste type electrode plate 1 of the present invention. A reinforcing plate 2 is provided on both surfaces of the electrode plate 1 by polymerization and pressure bonding. That is, in the electrode plate 1, the surface plate compression plate portion 1b for mounting the current collector plate is located at the center of the thickness of the electrode plate main plate portion 1a, that is, the electrode plate main plate portion 1a.
It is positioned lower than both outer surfaces of a so that concave spaces 4 and 4 are formed on both outer sides thereof, and both surfaces thereof are accommodated in the inner space compression plate portion 2a of the reinforcing plate 2 in the concave space 4. In addition, the peripheral area compression plate portion 2b is formed so as to be flush with the inner surface area compression plate portion 2a on a part of the electrode plate main plate portion 1a on the same plane. Thus, since the electrode plate 1 is provided with the reinforcing plates 2 and 2 on both sides thereof as described above, the boundary portion 1c between the electrode plate main plate portion 1a and the current collector plate mounting compression plate portion 1b is formed. The electrode plate 1 has further increased resistance to breakage. Then, either one of the reinforcing plates 2 and 2 is selected, and the base portion 3a of the collector plate 3 is superposed on the reinforcing plate 2 and 2 in the concave space 4 and spot welded.
【0021】図9及び図10は、上記の変形例の極板の
製造法を示し、図9に示すように、極板用三次元多孔基
板1′の集電板取付用面域板部1′bの上下面に、これ
より面域が大きい同材質、同厚の補強用多孔板2′を重
合し、1ton/cm2 の加圧力でその両側から加圧し
て、その両外面に凹面空間4,4が成形されるように、
極板用多孔基板1′の主体板部の厚さの略中央に位置し
て集電板取付用面域圧縮板部1bを形成すると同時に、
その両面に重合圧着されて該補強用多孔板の内域面圧縮
板部2a,2aを形成し、その後、該主体板部の厚さを
調製するべく加圧すると同時に、該補強用多孔板2′の
辺縁域板部を0.5ton/cm2 程度で加圧して該主
体板部の一部に喰込み圧着された辺縁域圧縮板部2bに
形成し、次でペースト活物質を充填した後加熱乾燥し、
次で一対の加圧ロールを通して充填活物質を良好に保持
されて所定の厚みの図10示の極板主体板部1aを備え
た極板1を製造することができる。次で、この極板1の
両面に重合圧着している補強板2,2のいずれか一方の
該内域面圧縮板部2aに集電板3の基部3aを溶接する
ことにより、図8示の集電板3付きの極板1が得られ
る。FIG. 9 and FIG. 10 show a method of manufacturing the electrode plate of the above modification, and as shown in FIG. 9, the surface area plate portion 1 for attaching the current collector plate of the three-dimensional porous substrate 1'for electrode plate. A reinforcing porous plate 2'having a larger surface area and having the same material and the same thickness is superposed on the upper and lower surfaces of ′ b, and pressure is applied from both sides with a pressure of 1 ton / cm 2 to form concave spaces on both outer surfaces. As 4 and 4 are molded,
At the same time as forming the surface area compression plate portion 1b for mounting the current collector plate at a position substantially in the center of the thickness of the main plate portion of the electrode plate porous substrate 1 ',
The inner surface compression plates 2a, 2a of the reinforcing porous plate are polymerized and pressure-bonded on both sides thereof, and thereafter, pressure is applied to adjust the thickness of the main plate, and at the same time, the reinforcing porous plate 2 is pressed. The peripheral area plate portion of ‘′ is pressed at about 0.5 ton / cm 2 to form the peripheral area compression plate portion 2b which is pressed into a part of the main plate portion and press-bonded, and then the paste active material is filled. After heating and drying,
Next, it is possible to manufacture the electrode plate 1 having the electrode plate main plate portion 1a shown in FIG. Next, by welding the base portion 3a of the current collector plate 3 to the inner surface compression plate portion 2a of either one of the reinforcing plates 2 and 2 superposed and pressure-bonded on both sides of the electrode plate 1, as shown in FIG. The electrode plate 1 with the current collector plate 3 is obtained.
【0022】かくして得られた極板1も又、先の実施例
の極板1と同様に、該集電板取付用面域圧縮板部1b及
び該内域面圧縮板部2bの密度は最大であり、その該辺
縁域の密度は、該内域面板部2b等の密度より小さく、
該極板主体板部1aの密度より大きく構成される。The electrode plate 1 thus obtained also has the maximum density of the surface area compression plate portion 1b for mounting the current collector plate and the inner area surface compression plate portion 2b as in the case of the electrode plate 1 of the previous embodiment. And the density of the marginal area is smaller than the density of the inner area face plate portion 2b,
It is configured to have a density higher than that of the electrode plate main plate portion 1a.
【0023】次に、本発明の更に具体的な実施例を従来
例と比較し説明する。 実施例1 縦150mm、横75mm、厚み1.6mm、気孔率9
6%の発泡ニッケルの極板用多孔基板の一隅角部の上面
に、縦13mm、横23mm、厚み1.6mm、気孔率
96%の発泡ニッケルの補強用多孔板を、該極板用多孔
基板の該隅角部の縦10mm、横20mmの面域を有す
る集電板取付用面域板部の上面に該補強板の該縦10m
m、横20mmの同じ面域を有する内面域板部が重合す
るように載置し、これらの重合板部を1ton/cm2
の加圧力で加圧して、該集電板取付用面域板部を0.2
mmの圧縮板部に形成すると共に、該補強板の該内面域
板部を0.2mmの圧縮板部に圧縮形成すると同時に、
その両圧縮板部の対向面を互いに圧着して喰み合って強
固に結着した積層板部を形成すると共に、その積層板の
上面は、該極板用多孔基板の主体板部の上面より低位に
位置してその上方に凹面空間を形成した。次に、この極
板用多孔基板の主体板部を加圧して1.40mmの厚み
に調製すると同時に、該補強用多孔板の辺縁域板部を、
加圧して該集電板取付用面域圧縮板部の外周の該極板用
主体板部の一部にこれと同一平面となるまで喰込み圧着
された辺縁域圧縮板部に形成した。次に、この該主体板
部に水酸化ニッケル粉体を主体とし、これに金属ニッケ
ル粉、コバルト酸化物粉の混合物をCMCと水と共に混
練したペースト活物質を充填した後、加熱乾燥し、次
で、ロールプレス機で0.7mmに厚みを調製すると共
に充填活物質を強固に保持せしめた。次に、該補強板の
該内面域圧縮板部に、縦50mm、横20mm、厚み
0.2mmのニッケル板から成る集電板の基部を該凹面
空間内に収容した状態で、スポット溶接して図1及び図
2に示す本発明のペースト式ニッケル極板を得た。 実施例2 実施例1で使用したと同じ寸法、気孔率、材質の極板用
多孔基板の隅角部の上下面に、実施例1で使用したと同
じ寸法、気孔率、材質の補強用多孔板を重合して、実施
例1と同様に、該極板用多孔基板の該隅角部の縦10m
m、横20mmの面域を有する集電板取付用面域板部
と、これに重合する該補強板の該縦10mm、横20m
mの同じ面域を有する内面域板部とを、1ton/cm
2 の加圧力で加圧して、該集電板取付用面域板部を0.
2mmの圧縮板部に、その両面に該補強板の該内面域板
部を夫々0.2mmの圧縮板部に形成すると共に、これ
ら三層の重合圧縮板部が夫々の対向面間で圧着されて互
いに喰み合って強固に結着した積層板部を形成し、この
場合、同時に、該積層板部の上下面は、該極板用多孔基
板の主体板部の上下面より低位に位置してその両外側に
凹面空間を形成した。次に、この極板用多孔基板の主体
板部を加圧して1.40mmの厚みに調製すると同時
に、その上下面の該補強用多孔板の辺縁域板部を夫々加
圧して、該集電板取付用面域圧縮板部の外周の該主体板
部の一部にこれと同一平面となるまで喰込み圧着された
辺縁域圧縮板部を形成した。次に、両側に該補強板を備
えた該極板用多孔基板の主体板部に、実施例1と同様
に、同じペースト活物質を充填し、加熱乾燥後、ロール
プレス機で0.7mmに厚みを調製すると共に、充填活
物質を強固に保持した極板主体板部に形成した。次に、
実施例1と同様に、その一方の補強板の該内面域圧縮板
部に、実施例1と同じ集電板の基部を、該凹面空間内に
収容した状態で、スポット溶接して図8に示す本発明の
ペースト式ニッケル極板を得た。 従来例 実施例1で使用したと同じ寸法、気孔率、材質の極板用
多孔基板の一隅角部に所定の面域の即ち、縦10mm、
横20mmの面域を有する集電板取付用面域板部を1t
on/cm2 の加圧力で加圧して厚さ0.2mmの集電
板取付用面域圧縮板部に形成した。次に、この極板用多
孔基板の主体板部に、実施例1と同じペースト活物質を
充填し、加熱乾燥後、ロールプレス機で0.7mmに厚
みに調製すると共に充填活物質を強固に保持した極板主
体板部に形成した。次に、該集電板取付用面域圧縮板部
に、その外側に形成した凹面空間内に実施例1と同じ集
電板の基部を収容した状態で、スポット溶接して従来の
ペースト式ニッケル極板を得た。Next, a more specific embodiment of the present invention will be described in comparison with a conventional example. Example 1 Length 150 mm, Width 75 mm, Thickness 1.6 mm, Porosity 9
On the upper surface of one corner of 6% nickel foam porous substrate for polar plate, a nickel porous foam reinforcing plate having 13 mm length, 23 mm width, 1.6 mm thickness, and 96% porosity was prepared. 10 mm in the vertical direction of the reinforcing plate on the upper surface of the area plate part for attaching a current collector having a surface area of 10 mm in length and 20 mm in width of the corner portion of
The inner surface area plate parts having the same surface area of m and 20 mm in width are placed so as to overlap with each other, and these overlapped plate parts are placed at 1 ton / cm 2
Pressurize the surface plate for mounting the current collector plate with 0.2
mm compression plate portion, and at the same time when the inner surface area plate portion of the reinforcing plate is compression formed to a 0.2 mm compression plate portion,
The opposing surfaces of the compression plate portions are pressed against each other to form a laminated plate portion that is firmly bonded to each other, and the upper surface of the laminated plate is higher than the upper surface of the main plate portion of the porous plate for polar plates. It was located at a low position and formed a concave space above it. Next, the main plate portion of the porous substrate for polar plate was pressed to prepare a thickness of 1.40 mm, and at the same time, the peripheral edge plate portion of the reinforcing porous plate was
A peripheral region compression plate portion was formed by pressing and press-fitting a part of the main plate portion for the electrode plate on the outer periphery of the surface area compression plate portion for attaching the current collector plate to the same plane. Next, the main plate portion is mainly composed of nickel hydroxide powder, and a paste active material prepared by kneading a mixture of metallic nickel powder and cobalt oxide powder together with CMC and water is filled in, and then dried by heating. Then, the thickness was adjusted to 0.7 mm with a roll press and the filled active material was firmly held. Next, spot welding is performed on the inner surface area compression plate portion of the reinforcing plate while the base portion of the current collecting plate made of a nickel plate having a length of 50 mm, a width of 20 mm and a thickness of 0.2 mm is accommodated in the concave space. The paste type nickel electrode plate of the present invention shown in FIGS. 1 and 2 was obtained. Example 2 The same size, porosity, and material as used in Example 1 are used for the electrode porous plate. The plates were polymerized, and as in Example 1, the corners of the porous substrate for polar plates were 10 m long.
m, a surface plate for mounting a collector plate having a surface area of 20 mm, and the reinforcing plate superposed on the plate portion of 10 mm in length and 20 m in width
The inner surface area plate portion having the same surface area of m is 1 ton / cm.
Pressurizing with a pressing force of 2, the surface area plate portion for mounting the current collector plate to 0.
The inner surface area plate portion of the reinforcing plate is formed on both sides of the compression plate portion of 2 mm to form the compression plate portion of 0.2 mm, and the three-layer superposed compression plate portions are pressure-bonded between the opposing surfaces. To form a laminated plate portion that is tightly bound to each other, and at the same time, the upper and lower surfaces of the laminated plate portion are positioned lower than the upper and lower surfaces of the main plate portion of the porous substrate for polar plates. A concave space was formed on both outer sides of the lever. Next, the main plate portion of the porous plate for an electrode plate is pressed to prepare a thickness of 1.40 mm, and at the same time, the peripheral edge plate portions of the reinforcing porous plate on the upper and lower surfaces thereof are respectively pressed to collect the gas. A marginal area compression plate portion was formed on a part of the main plate portion on the outer periphery of the surface area compression plate portion for mounting the electric plate, which was bite and crimped to be flush with the main plate portion. Next, in the same manner as in Example 1, the same paste active material was filled in the main plate portion of the porous substrate for polar plates provided with the reinforcing plates on both sides, heated and dried, and then 0.7 mm by a roll press machine. The thickness was adjusted and formed on the main plate of the electrode plate that firmly held the filled active material. next,
Similar to the first embodiment, the inner surface area compression plate portion of the one reinforcing plate was spot-welded with the base portion of the same current collector plate as in the first embodiment accommodated in the concave space, and the result is shown in FIG. The paste type nickel electrode plate of the present invention shown below was obtained. Conventional Example The same size, porosity, and material as those used in Example 1 are set in a corner area of a porous substrate for a polar plate having a predetermined surface area, that is, a length of 10 mm,
1t of surface plate for current collector mounting with a surface area of 20mm
The pressure was applied at a pressure of on / cm 2 to form a 0.2 mm-thick current collector plate-attaching area compression plate portion. Next, the main plate portion of this porous substrate for polar plates was filled with the same paste active material as in Example 1, heated and dried, and then adjusted to a thickness of 0.7 mm by a roll press machine, and the filled active material was solidified. It was formed on the main plate portion of the held electrode plate. Next, the current-collecting plate mounting surface area compression plate portion was spot-welded with the base portion of the same current-collecting plate as that of Example 1 accommodated in the concave space formed on the outside thereof to perform conventional paste-type nickel. I got a plate.
【0024】上記の実施例1及び2及び従来例の夫々の
極板につき、引張強度試験と抗折強度試験をそれぞれJ
IS B 7771及びJIS Z 2248に準拠し
て行い、夫々の極板の該極板主体板部と該集電板取付用
面域圧縮板部との境界部での破断の有無を調べた。その
結果、引張力10.7Kg及び折曲げ荷重127gで従
来例の極板は破断した。実施例1及び2の極板は破断せ
ず、該補強板による該境界部の機械的強度の向上が確認
された。因みに、実施例1の極板は、より大きい引張力
13.6Kg及びより大きい折曲げ荷重440gでも、
該境界部での破断は生せず、該補強板の該周縁域板部と
その外周の該極板主体板部との境界部で破断した。ま
た、実施例2の極板は、その極板の集電板取付用板部及
びその近傍に亘りその両面に上記の補強板を具備するの
で、更に実施例1で生じた該境界部での破断も防止さ
れ、更に大きい引張力16.8Kg及び折曲げ荷重56
0gで、該極板主体板部、即ち、活物質充填部での破断
を生じた。A tensile strength test and a bending strength test were performed on the respective electrode plates of Examples 1 and 2 and the conventional example described above.
It was conducted in accordance with IS B 7771 and JIS Z 2248, and the presence or absence of breakage at the boundary between the electrode plate main plate portion and the current collector plate mounting area compression plate portion of each electrode plate was examined. As a result, the electrode plate of the conventional example was broken at a tensile force of 10.7 kg and a bending load of 127 g. The electrode plates of Examples 1 and 2 did not break, and it was confirmed that the reinforcing plate improved the mechanical strength of the boundary portion. By the way, the electrode plate of Example 1 has a larger tensile force of 13.6 kg and a larger bending load of 440 g,
No rupture occurred at the boundary portion, and rupture occurred at the boundary portion between the peripheral area plate portion of the reinforcing plate and the electrode plate main plate portion on the outer periphery thereof. Further, since the electrode plate of Example 2 is provided with the above-mentioned reinforcing plates on both sides of the plate portion for attaching the current collector plate of the electrode plate and the vicinity thereof, the electrode plate of Example 1 is further provided with the above-mentioned boundary portion. Breaking is also prevented, and even greater tensile force 16.8 kg and bending load 56
At 0 g, breakage occurred in the electrode plate main plate portion, that is, the active material filled portion.
【0025】更に、実施例1及び2及び従来例の夫々の
極板に常法によりセパレータを介し負極として水素吸蔵
合金極板を積層し、100AH級ニッケル水素電池を作
製し、各放電率における放電性能試験を行った。その試
験結果を図11に示す通りである。同図から明らかなよ
うに、本発明の補強板の具備により、実施例1及び2の
極板を用いた場合は、従来例の極板を用いた場合に比
し、電池容量の増大、特に各放電率における放電特性、
特に急放電特性の増大をもたらすことが認められた。こ
れは、該補強板がその辺縁域板部で該極板主体板部に強
固に接続されているので、該極板から集電板への導電性
が増大するためと思われる。Further, a hydrogen-absorbing alloy electrode plate as a negative electrode was laminated on each electrode plate of Examples 1 and 2 and the conventional example as a negative electrode by a conventional method to prepare a 100 AH class nickel-hydrogen battery, and discharge was performed at each discharge rate. A performance test was conducted. The test results are shown in FIG. As is clear from the figure, by using the reinforcing plate of the present invention, when the electrode plates of Examples 1 and 2 were used, the battery capacity was increased, especially when the electrode plates of the conventional example were used. Discharge characteristics at each discharge rate,
In particular, it has been found that the rapid discharge characteristics are increased. It is considered that this is because the reinforcing plate is strongly connected to the electrode plate main plate portion at the peripheral area plate portion, so that the conductivity from the electrode plate to the current collector plate is increased.
【0026】また、実施例1及び2及び従来例の夫々の
極板の製造の活物質充填工程から電池組立までの加工、
運搬を経た電池製造の歩留りは、従来例では95%であ
ったが、実施例1及び2では100%であり、電池の製
造ロスがなくなった。また、従来例の極板では、電池の
製造において、一割程度は著しく急放電性能の悪い電池
が発生したが、実施例1及び2を使用した電池では、発
生しなかった。Further, processing from the active material filling step of manufacturing the electrode plates of Examples 1 and 2 and the conventional example to the battery assembly,
The yield of battery production after transportation was 95% in the conventional example, but was 100% in Examples 1 and 2, and the production loss of the battery was eliminated. Further, in the electrode plate of the conventional example, about 10% of the batteries produced had remarkably poor rapid discharge performance in the production of the batteries, but the batteries using Examples 1 and 2 did not.
【0027】尚、本発明で使用する極板用三次元多孔基
板及び補強用多孔板として発泡メタルに代え、ニッケル
などの金属繊維から成るフェルトメタルを使用しても良
い。また、極板としては、正極板ばかりでなく、水素吸
蔵合金などの負極活物質ペーストを充填する負極板にも
適用できる。また、補強板として、加圧により折り曲げ
可能な肉薄のニッケル板などの無孔の金属板を使用し得
る。また、補強板としては、多孔板に代え、肉薄強靭な
而も折り曲げ可能な無孔金属板を加圧により、極板の該
導電板取付用面域圧縮板に重合圧着しても同様の効果を
もたらす。また、上記実施例2では、補強板を両面に配
したが、いずれか一方のみに配し、該補強板がない凹面
空間に集電板を収容し、該圧縮板部に直接溶接するよう
にしても良い。As the three-dimensional porous substrate for polar plate and the reinforcing porous plate used in the present invention, felt metal made of metal fiber such as nickel may be used instead of foam metal. Further, the electrode plate can be applied not only to the positive electrode plate but also to a negative electrode plate filled with a negative electrode active material paste such as a hydrogen storage alloy. Further, as the reinforcing plate, a non-perforated metal plate such as a thin nickel plate that can be bent by pressure can be used. Further, as the reinforcing plate, instead of the perforated plate, a thin and tough non-porous metal plate which can be folded is pressed to superpose the conductive plate mounting area compression plate of the polar plate, and the same effect is obtained. Bring In the second embodiment, the reinforcing plates are arranged on both sides. However, the reinforcing plates are arranged on only one side, the current collecting plate is housed in the concave space without the reinforcing plate, and directly welded to the compression plate portion. May be.
【0028】[0028]
【発明の効果】このように本発明によるときは、活物質
を充填した極板主体板部と集電板取付用面域圧縮板部と
から成るペースト式極板において、補強板を、該集電板
取付用面域板部ばかりでなく、その周辺の極板主体板部
の一部に重合圧着せしめたので、該極板主体板部と該集
電板取付用面域板部との間の境界部の破断強度が著しく
増大することができる。また、該集電板を該補強板に溶
接した場合は、該極板主体板部から集電板への電気の取
り出しを容易にし、導電性を増大し、また電池に組み込
み、従来に比しその放電特性特に急放電特性を向上し電
池性能の向上をもたらすなどの効果を有する。また、上
記のように重合圧着した補強板を、該極板の該集電板取
付用面域圧縮板部の両面に設けるときは、更に上記の境
界部での機械的強度を増大することができる。上記の本
発明の極板の製造に当たり、補強板として、所定の集電
板取付用面域圧縮板部の面域よりも大きい面域を有する
三次元多孔板を使用し、該面域に重合する該補強板の内
面域板部を加圧して該集電板取付用面域圧縮板部に圧着
すると共に、その辺縁域板部を加圧して極板用多孔基板
の主体板部に圧縮結着することにより上記の優れた諸特
性を有する極板が製造できる。また、該補強板の辺縁域
板部及び集電板を極板主体板部と同一平面またはそれよ
り低い位置に存せしめるとときは、これと積層するセパ
レータの破損及び異極板との短絡を防止でき、円滑良好
に電池を組み立てることができる。As described above, according to the present invention, in the paste type electrode plate comprising the electrode plate main plate portion filled with the active material and the current collector plate mounting area compression plate portion, the reinforcing plate is Not only the area plate part for mounting the current plate, but also a part of the electrode plate main plate part in the periphery thereof is polymerized and pressure-bonded, so that between the electrode plate main plate part and the current plate mounting surface plate part. The rupture strength at the boundary portion of can be significantly increased. When the current collector plate is welded to the reinforcing plate, it facilitates the extraction of electricity from the main plate of the electrode plate to the current collector plate, increases the conductivity, and incorporates the battery into the battery. The discharge characteristics, especially the rapid discharge characteristics, are improved and the battery performance is improved. Further, when the reinforcing plates pressure-bonded by polymerization as described above are provided on both surfaces of the current-collecting plate mounting surface area compression plate portion of the electrode plate, it is possible to further increase the mechanical strength at the boundary portion. it can. In the production of the above-mentioned electrode plate of the present invention, as a reinforcing plate, a three-dimensional perforated plate having a surface area larger than the surface area of a predetermined current collector plate mounting surface area compression plate portion is used, and the surface area is polymerized. The inner surface area plate portion of the reinforcing plate is pressed and pressure-bonded to the surface area compression plate portion for mounting the current collector plate, and the peripheral area plate portion is pressed to compress the main plate portion of the porous plate for polar plate. By binding, the electrode plate having the above various excellent properties can be manufactured. Further, when the marginal area plate portion and the current collector plate of the reinforcing plate are placed on the same plane as or lower than the electrode plate main plate portion, damage to the separator laminated with this and short circuit with the different electrode plate The battery can be assembled smoothly and satisfactorily.
【図1】本発明実施の1例の極板平面図である。FIG. 1 is a plan view of an electrode plate according to an embodiment of the present invention.
【図2】図1のII−II線裁断の一部を裁除した断面
図である。FIG. 2 is a cross-sectional view in which a part of the line II-II of FIG. 1 is cut.
【図3】図1示の本発明の極板の製造法の実施の1例の
製造工程の第1段階を説明する平面図である。FIG. 3 is a plan view illustrating a first stage of a manufacturing process of an example of carrying out the manufacturing method of the electrode plate of the present invention shown in FIG.
【図4】図3のIV−IV線截断面図である。4 is a sectional view taken along the line IV-IV in FIG.
【図5乃至図7】その後の夫々の製造段階を説明する要
部の拡大断面図である。FIG. 5 to FIG. 7 are enlarged cross-sectional views of main parts for explaining respective subsequent manufacturing steps.
【図8】本発明の他の実施例の極板の一部を裁除した截
断面図である。FIG. 8 is a cross-sectional view in which a part of an electrode plate according to another embodiment of the present invention is cut away.
【図9】図8示の本発明の極板の製造法の他の実施例の
製造工程の第1段階を説明する截断面図である。9 is a cross-sectional view for explaining the first step of the manufacturing process of another embodiment of the method of manufacturing the electrode plate of the present invention shown in FIG.
【図10】最終段階の極板の要部の拡大断面図である。FIG. 10 is an enlarged cross-sectional view of a main part of the electrode plate at the final stage.
【図11】本発明の極板と従来の極板の放電特性の比較
グラフである。FIG. 11 is a comparative graph of the discharge characteristics of the electrode plate of the present invention and the conventional electrode plate.
【図12】従来の極板の平面図である。FIG. 12 is a plan view of a conventional electrode plate.
【図13】図12のXIII−XIII線截断面図であ
る。13 is a sectional view taken along the line XIII-XIII in FIG.
1 極板 1′ 極板用多
孔基板 1a 極板主体板部 1′a 極板用
多孔基板の主体板部 1b 集電板取付用面域圧縮板部 1′b 集電板
取付用面域板部 2 補強板 2′ 補強用多
孔板 2a 内面域板、内面域圧縮板 2′a 補強用
内面域多孔板 2b 辺縁域板部、辺縁域圧縮板部 2′b 補強用
辺縁域板部 2c 境界部 3 集電板 3a 集電板の基部 4 凹面空間1 electrode plate 1'porous substrate for electrode plate 1a electrode plate main plate portion 1'a electrode plate porous plate main plate portion 1b current collector plate mounting area compression plate section 1'b current plate mounting surface plate Part 2 Reinforcing plate 2'Reinforcing porous plate 2a Inner surface area plate, inner surface compression plate 2'a Reinforcing inner surface porous plate 2b Edge area plate section, edge area compression plate section 2'b Reinforcing edge area plate Part 2c Boundary 3 Current collector 3a Base of current collector 4 Concave space
フロントページの続き (72)発明者 脇屋 吉衛 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社応用技術研究所内 (72)発明者 永野 貢 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社応用技術研究所内 (72)発明者 佐藤 文夫 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社応用技術研究所内 (72)発明者 小山 健 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社応用技術研究所内Front page continuation (72) Inventor Yoshie Wakiya 72-1 Nakayama, Aoba-ku, Sendai City, Miyagi Prefecture Tohoku Electric Power Co., Inc. Applied Technology Laboratory (72) Inventor Mitsugu Nagano 7-2, Nakayama, Aoba-ku, Sendai City, Miyagi Prefecture No. 1 Tohoku Electric Power Co., Inc. Applied Technology Research Laboratory (72) Inventor Fumio Sato 7-2-1, Nakayama, Aoba-ku, Sendai City, Miyagi Prefecture Tohoku Electric Power Co., Inc. Applied Technology Research Laboratory (72) Ken Koyama Aoba, Sendai City, Miyagi Prefecture 7-2-1, Nakayama, Tokyo Inside Tohoku Electric Power Co., Inc.
Claims (2)
部と集電板取付用面域圧縮板部とから成る極板の該集電
板取付用面域圧縮板部の少なくとも片面に、補強板を、
その内面域板部を該集電板取付用面域圧縮板部に重合圧
着せしめると共に、その辺縁域板部を該集電板取付用面
域圧縮板部と該極板主体板部との境界を越えた該極板主
体板部の一部に重合圧着せしめ、該補強板の該内面域板
部または該集電板取付用面域圧縮板部に集電板の基部を
溶接したことを特徴とするアルカリ電池用ペースト式極
板。1. An electrode plate comprising an electrode plate main plate portion filled with a paste active material and a collector plate mounting surface area compression plate portion, and at least one surface of the collector plate mounting surface area compression plate portion, Reinforcing plate,
The inner surface area plate portion is polymerized and pressure-bonded to the current collector plate mounting surface area compression plate portion, and the marginal area plate portion is composed of the current collector plate mounting surface area compression plate portion and the electrode plate main plate portion. A part of the main plate of the electrode plate that crosses the boundary is superposed and pressure-bonded, and the base of the current collector is welded to the inner surface plate of the reinforcing plate or the surface compression plate for mounting the current collector. Characteristic paste type electrode plate for alkaline batteries.
有する極板用多孔基板の所定の集電板取付用面域板部の
少なくとも片面に、その面域より大きい面域を有し且つ
三次元的に連続する無数の微孔を有する補強用多孔板を
重合すること、(b)該極板用多孔基板の該集電板取付
用面域板部とこれと重合する該補強用多孔板の内面域板
部とを、加圧して、集電板取付用面域圧縮板部と、これ
に圧着された内面域圧縮板部とに形成すること、(c)
該補強用多孔板の辺縁域板部を加圧して該主体板部の一
部に圧着された辺縁域圧縮板部に形成すること、(d)
該主体板部にペースト活物質を充填すること、(e)活
物質を充填された該主体多孔基板部を加圧し活物質を保
持された極板主体板部を形成すること、(f)該補強板
の内域面圧縮板部または該集電板取付用面域圧縮板部
に、集電板の基部を溶接することから成ることを特徴と
するアルカリ電池用ペースト式極板の製造法。2. A surface area larger than the surface area is provided on at least one surface of a predetermined current collector plate mounting surface area plate portion of a porous substrate for polar plate having innumerable three-dimensionally continuous micropores. Polymerizing a reinforcing porous plate having innumerable three-dimensionally continuous micropores, and (b) polymerizing the current collecting plate mounting area plate part of the porous plate for the electrode plate with the same. Pressurizing the inner surface area plate portion of the reinforcing porous plate into a current collector plate mounting surface area compression plate portion and an inner surface area compression plate portion crimped thereto (c)
Pressurizing the marginal area plate portion of the reinforcing porous plate to form the marginal area compression plate portion crimped to a part of the main plate portion, (d)
Filling the main plate portion with a paste active material, (e) pressing the main porous substrate portion filled with the active material to form an electrode plate main plate portion holding the active material, (f) A method for producing a paste type electrode plate for an alkaline battery, which comprises welding the base of the current collector to the inner surface compression plate of the reinforcing plate or the surface compression plate for mounting the current collector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7182046A JPH0917425A (en) | 1995-06-26 | 1995-06-26 | Paste pole plate for alkaline battery and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7182046A JPH0917425A (en) | 1995-06-26 | 1995-06-26 | Paste pole plate for alkaline battery and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0917425A true JPH0917425A (en) | 1997-01-17 |
Family
ID=16111404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7182046A Pending JPH0917425A (en) | 1995-06-26 | 1995-06-26 | Paste pole plate for alkaline battery and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0917425A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999008333A1 (en) * | 1997-08-08 | 1999-02-18 | Duracell Inc. | Reinforced coiled electrode assemblies and methods of producing same |
JP2008218202A (en) * | 2007-03-05 | 2008-09-18 | Sony Corp | Electrode and battery |
-
1995
- 1995-06-26 JP JP7182046A patent/JPH0917425A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999008333A1 (en) * | 1997-08-08 | 1999-02-18 | Duracell Inc. | Reinforced coiled electrode assemblies and methods of producing same |
US6298530B1 (en) * | 1997-08-08 | 2001-10-09 | Duracell Inc. | Reinforced coiled electrode assemblies and methods of producing same |
JP2008218202A (en) * | 2007-03-05 | 2008-09-18 | Sony Corp | Electrode and battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2933368B2 (en) | Method for producing electrode with porous support for electrochemical cell and electrode obtained by said method | |
CN1204636C (en) | Battery electrode and manufacture method thereof | |
JP2007537573A (en) | Embedded electrode structure that balances energy, power and cost in alkaline batteries | |
JP2020181668A (en) | All-solid battery and manufacturing method thereof | |
JP4429569B2 (en) | Nickel metal hydride storage battery | |
JPH10125348A (en) | Battery | |
JP4016214B2 (en) | Battery electrode manufacturing method | |
JPH0917425A (en) | Paste pole plate for alkaline battery and its manufacture | |
JP3649909B2 (en) | battery | |
JP3424482B2 (en) | Alkaline storage battery | |
JPH04123757A (en) | Preparation of nickel electrode | |
JP2001250579A (en) | Hermetically closed alkaline storage batteries in the form of button cells | |
JPH07335209A (en) | Coated electrode for battery, and its manufacture | |
JP4349042B2 (en) | Alkaline storage battery | |
US20030068554A1 (en) | Alkaline storage battery and process for producing the same | |
JP2004234909A (en) | Electrode for electrochemical element and battery using the same | |
JPH11144739A (en) | Manufacture of paste type plate for alkaline storage batery | |
JPH0513064A (en) | Manufacture of electrode plate for alkaline storage battery | |
JPH11233107A (en) | Alkaline storage battery using nonsintred type electrode, and its manufacture | |
JP3412437B2 (en) | Alkaline storage battery | |
JPS635176Y2 (en) | ||
WO2008085001A1 (en) | Negative plate for nickel/metal hydride secondary battery and fabrication method thereof | |
JPH11162447A (en) | Cylindrical battery with spiral electrode body and its manufacture | |
JPH0713176Y2 (en) | Electrode plate for alkaline batteries | |
JP2822443B2 (en) | Electrode group for storage battery |