[go: up one dir, main page]

JPH09173837A - Catalyst for fluid catalytic reaction for synthesizing hydrocarbon having 2 or more carbon atoms from methane and method for synthesizing hydrocarbon by the catalyst - Google Patents

Catalyst for fluid catalytic reaction for synthesizing hydrocarbon having 2 or more carbon atoms from methane and method for synthesizing hydrocarbon by the catalyst

Info

Publication number
JPH09173837A
JPH09173837A JP7351149A JP35114995A JPH09173837A JP H09173837 A JPH09173837 A JP H09173837A JP 7351149 A JP7351149 A JP 7351149A JP 35114995 A JP35114995 A JP 35114995A JP H09173837 A JPH09173837 A JP H09173837A
Authority
JP
Japan
Prior art keywords
catalyst
component
methane
metal oxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7351149A
Other languages
Japanese (ja)
Other versions
JP3679180B2 (en
Inventor
Hideo Okado
秀夫 岡戸
Susumu Fujii
進 藤井
Koichi Ohama
孝一 大浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMO SOGO KENKYUSHO KK
Cosmo Research Institute
Japan Petroleum Exploration Co Ltd
SEKIYU SHIGEN KAIHATSU KK
Original Assignee
COSMO SOGO KENKYUSHO KK
Cosmo Research Institute
Japan Petroleum Exploration Co Ltd
SEKIYU SHIGEN KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMO SOGO KENKYUSHO KK, Cosmo Research Institute, Japan Petroleum Exploration Co Ltd, SEKIYU SHIGEN KAIHATSU KK filed Critical COSMO SOGO KENKYUSHO KK
Priority to JP35114995A priority Critical patent/JP3679180B2/en
Publication of JPH09173837A publication Critical patent/JPH09173837A/en
Application granted granted Critical
Publication of JP3679180B2 publication Critical patent/JP3679180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】 【課題】 メタンから炭素数2以上の炭化水素を合成す
るための流動接触反応用触媒として、活性面では高度の
メタン転化率を有し、かつ使用中は安定した流動状態が
維持できるようにする。 【解決手段】 アルカリ土類金属酸化物からなるA成
分、アルカリ金属酸化物からなるB成分、無機酸化物か
らなるC成分を原料とするスラリーを噴霧乾燥し、つい
で600℃以上の温度で焼成することにより、A,B,
C成分の複合酸化物が形成された粉末とする。
(57) 【Abstract】 PROBLEM TO BE SOLVED: A catalyst for a fluid catalytic reaction for synthesizing a hydrocarbon having 2 or more carbon atoms from methane, which has a high methane conversion rate in terms of activity and is in a stable fluid state during use. To be able to maintain. SOLUTION: A slurry containing a component A made of an alkaline earth metal oxide, a component B made of an alkali metal oxide, and a component C made of an inorganic oxide as raw materials is spray-dried and then fired at a temperature of 600 ° C. or higher. Therefore, A, B,
The powder is a composite oxide of C component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、メタンまたはメタ
ンを含む天然ガスを、酸素または含酸素ガスとともに反
応させ、エタン,エチレンを主とした炭素数2以上の炭
化水素を合成するための流動接触反応用触媒及びこれを
用いて炭素数2以上の炭化水素を合成する方法に関す
る。
TECHNICAL FIELD The present invention relates to fluidized contact for reacting methane or a natural gas containing methane with oxygen or an oxygen-containing gas to synthesize a hydrocarbon having 2 or more carbon atoms mainly containing ethane and ethylene. The present invention relates to a reaction catalyst and a method for synthesizing a hydrocarbon having 2 or more carbon atoms using the catalyst.

【0002】[0002]

【従来の技術】メタンは、天然ガスの主成分として世界
に豊富に存在する資源であるが、その反応性の低さのた
め、そのほとんどが燃料として消費されており、化学工
業原料としての利用法は限られている。しかしながら、
1982年に、ケラー氏とバージン氏が酸化還元型の金属酸
化物を触媒として、メタンを部分酸化すると、エタン,
エチレンが生成することをジャーナル・オブ・キャタリ
シス誌、73巻、9〜19ページに報告している。それ以
来、メタンの酸化カップリング反応と呼ばれるこの反応
に有用な触媒は数多く報告されている。これらを分類す
ると、その多くは、アルカリ金属とアルカリ土類金属お
よび例えばランタノイドなどの希土類金属、あるいはこ
れらを組合せた触媒が用いられている。
2. Description of the Related Art Methane is an abundant resource that exists abundantly in the world as a main component of natural gas, but due to its low reactivity, most of it is consumed as a fuel and used as a raw material for the chemical industry. The law is limited. However,
In 1982, when Keller and Virgin partially oxidized methane using a redox metal oxide as a catalyst, ethane,
The production of ethylene is reported in Journal of Catalysis, Vol. 73, pages 9-19. Since then, many catalysts useful for this reaction called oxidative coupling reaction of methane have been reported. When these are classified, most of them use an alkali metal and an alkaline earth metal and a rare earth metal such as a lanthanoid, or a catalyst in which these are combined.

【0003】特に、アルカリ土類金属を主成分とする触
媒が多数報告されている。例えば、特開昭62−267
243号公報には酸化カルシウムなどのアルカリ土類金
属酸化物にアルカリ金属を含浸後成型した触媒、特開平
2−225425号公報には酸化マグネシウムにアルカ
リ金属酸化物を含有した複合酸化物触媒、特開平4−2
95434号公報にはアルカリ土類金属酸化物,酸化リ
チウム,ランタノイド酸化物触媒などを用いて、エタ
ン,エチレンを製造する方法が開示されている。
In particular, many catalysts containing an alkaline earth metal as a main component have been reported. For example, JP-A-62-267
Japanese Laid-Open Patent Publication No. 243425 discloses a catalyst formed by impregnating an alkaline earth metal oxide such as calcium oxide with an alkali metal, and JP-A-2-225425 discloses a composite oxide catalyst containing an alkali metal oxide in magnesium oxide. Kaihei 4-2
Japanese Patent No. 95434 discloses a method for producing ethane and ethylene by using an alkaline earth metal oxide, lithium oxide, a lanthanoid oxide catalyst and the like.

【0004】[0004]

【発明が解決しようとする課題】これらの触媒は、いず
れも固定床で使用される。しかしながら、メタンの酸化
カップリング反応のような発熱の大きな反応を固定床で
行なう場合においては、触媒層の局部的な温度上昇によ
り、触媒成分が飛散するといった大きな欠点がある。ま
た、反応ガスの濃度については、低い酸素濃度での反応
を余儀なくされるため、エタン,エチレン等の炭素数2
以上の炭化水素の生成収量も少なくなる。
All of these catalysts are used in a fixed bed. However, when a reaction with large heat generation such as an oxidative coupling reaction of methane is carried out in a fixed bed, there is a big drawback that the catalyst component scatters due to a local temperature rise of the catalyst layer. Also, regarding the concentration of the reaction gas, it is necessary to carry out the reaction at a low oxygen concentration.
The production yield of the above hydrocarbons also decreases.

【0005】これらの欠点を解決する方法としては、触
媒層温度が均一にコントロールされ、高い酸素濃度での
反応が可能となる流動層反応が好適である。しかしなが
ら、メタンの酸化カップリング反応に好適な流動接触反
応用触媒は見当らない。流動床で使用される流動接触反
応用触媒は、活性,選択性などの触媒性能の外に、安定
した流動状態を維持するのに好適な嵩比重、平均粒子径
を有し、球状に近い形状で粒子強度に優れていることが
要求される。
As a method for solving these drawbacks, a fluidized bed reaction is preferable because the temperature of the catalyst bed is uniformly controlled and the reaction can be carried out at a high oxygen concentration. However, there is no suitable catalyst for fluid catalytic reaction for oxidative coupling reaction of methane. The catalyst for fluid catalytic reaction used in a fluidized bed has a bulk specific gravity and an average particle diameter suitable for maintaining a stable fluidized state, in addition to catalytic performance such as activity and selectivity, and a shape close to a sphere. Therefore, excellent particle strength is required.

【0006】本発明の目的は、流動層反応において、流
動触媒として好適な嵩比重,粒子径,比表面積,球形状
を有し、また、活性面では高いメタン転化率と選択率を
有するメタンから炭素数2以上の炭化水素を合成するた
めの流動接触反応用触媒及び該触媒による炭化水素の合
成方法を提供することにある。
The object of the present invention is to obtain a methane having a bulk specific gravity, a particle size, a specific surface area and a spherical shape suitable for a fluidized catalyst in a fluidized bed reaction, and having a high methane conversion rate and selectivity on the active surface. A catalyst for fluid catalytic reaction for synthesizing a hydrocarbon having 2 or more carbon atoms, and a method for synthesizing a hydrocarbon by the catalyst.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め本発明に係るメタンから炭素数2以上の炭化水素を合
成するための流動接触反応用触媒は、アルカリ土類金属
酸化物からなるA成分、アルカリ金属酸化物からなるB
成分、および結合剤をC成分として、 A成分の含有量が50〜94wt% B成分の含有量が1〜15wt% C成分の含有量が5〜45wt% の範囲にあることを特徴とするものである。
To achieve the above object, the catalyst for fluid catalytic reaction for synthesizing a hydrocarbon having 2 or more carbon atoms from methane according to the present invention is composed of an alkaline earth metal oxide A. Component B, consisting of an alkali metal oxide
Ingredients and binders as C components, A component content is 50-94 wt% B component content is 1-15 wt% C component content is in the range of 5-45 wt% Is.

【0008】本発明の触媒は粉末状であり、通常(a) 〜
(e)に示す物理性状を有するものである。 (a) 嵩比重 (g/ml) 0.4〜 1.2 ;メスシリンダ−を使用して測定。 (b)比表面積 (m2/g) 0 〜 20 ;BET法で測定。 (c)細孔容積 (ml/g) 0.0〜 0.2 ;N2吸着法で測定。 (d)耐摩耗性 (wt%/hr) 0.0〜 1.3 ;ACC法 (e)平均粒子径(μm) 30 〜 200、好ましくは 30〜 150 ;平均粒子径 は篩により測定。
The catalyst of the present invention is in the form of powder and is usually (a)-
It has the physical properties shown in (e). (a) Bulk specific gravity (g / ml) 0.4 to 1.2; measured using a graduated cylinder. (b) Specific surface area (m 2 / g) 0 to 20; measured by BET method. (c) Pore volume (ml / g) 0.0 to 0.2; measured by N 2 adsorption method. (d) Abrasion resistance (wt% / hr) 0.0 to 1.3; ACC method (e) Average particle diameter (μm) 30 to 200, preferably 30 to 150; Average particle diameter measured by a sieve.

【0009】本発明は、A、B、C三成分からなり、そ
の組成範囲は、 A成分の含有量が50〜94wt% B成分の含有量が1〜15wt% C成分の含有量が5〜45wt% の範囲にあることが必要であり、A成分の含有量が50%
未満では触媒の活性・選択性などが低下し、A成分の含
有量が94%を超えると流動触媒としての使用に耐える
性状を有することができない。
The present invention comprises three components, A, B and C, and the composition range thereof is as follows: A component content is 50 to 94 wt% B component content is 1 to 15 wt% C component content is 5 to It must be in the range of 45 wt% and the content of A component is 50%
When it is less than the above range, the activity and selectivity of the catalyst are deteriorated, and when the content of the A component exceeds 94%, the catalyst cannot have the property of being usable as a fluidized catalyst.

【0010】B成分は、C成分と共にA成分の粒間,細
孔に高分散した状態で存在することにより、バインダー
作用と活性性能向上作用を有する。B成分は、1%未満
ではその効果が出ず、また15%を超えると粒子表面に
融液が存在して部分的に偏在を起こし、粒子同士がケー
キングを起こすので好ましくない。B成分が1〜15%の
範囲内では、B成分が高分散した状態で存在するため、
活性性能に関して目的の効果を十分発揮することができ
る。
The component B, together with the component C, is present in a highly dispersed state between the grains of the component A and in the pores, so that it has a binder action and an activity improving action. If the content of the component B is less than 1%, its effect is not exerted, and if it exceeds 15%, a melt is present on the surface of the particles to cause partial uneven distribution, and the particles cause caking, which is not preferable. When the B component is in the range of 1 to 15%, the B component exists in a highly dispersed state,
The desired effect can be sufficiently exerted with respect to the activity performance.

【0011】C成分は5%未満では流動性と粒子強度が
悪くなり、45%を超えると活性成分が少なくなるた
め、所望の活性性能が得られない。A成分,B成分の範
囲内でC成分を5〜45%範囲で使用すると、流動性,
粒子強度に優れ、かつ十分な活性性能を発揮する。
If the content of the C component is less than 5%, the fluidity and the particle strength will be poor, and if it exceeds 45%, the active component will be small, so that the desired activity performance cannot be obtained. When the C component is used in the range of 5% to 45% within the range of the A component and the B component, fluidity,
It has excellent particle strength and exhibits sufficient activity.

【0012】また,本発明の触媒は,前記(a)〜(e)の物
理性状を有することが肝要である。 (a)嵩比重が0.4より少ないと、ガスの吹き抜けや触媒の
飛散が、1.2 を超えると、触媒が重すぎるために触媒層
が膨張せず、いずれも触媒の流動性が悪くなる。 (b)比表面積が20を超えると、過剰反応を起こすため
選択率が低下するので好ましくない。 (c)細孔容積が0.2 を超えると、接触時間が長くなり過
剰反応になるので好ましくない。 (d)耐摩耗性が1.3 を超えると、下流側(精製系)に対す
る触媒の飛散,混入が問題となる。また、サイクロンへ
の負荷の増大、触媒の微粒化が進行し好ましくない。 (e)平均粒子径が範囲外では大小いずれの場合において
も、流動触媒の流動性が悪化するので好ましくない。
Further, it is essential that the catalyst of the present invention has the above-mentioned physical properties (a) to (e). (a) If the bulk specific gravity is less than 0.4, gas blow-through and catalyst scattering will exceed 1.2. If the bulk specific gravity exceeds 1.2, the catalyst layer will not expand because the catalyst is too heavy, and the fluidity of the catalyst will deteriorate. (b) If the specific surface area exceeds 20, it is not preferable because an excessive reaction occurs and the selectivity decreases. (c) When the pore volume exceeds 0.2, the contact time becomes long and excessive reaction occurs, which is not preferable. (d) If the abrasion resistance exceeds 1.3, the scattering and mixing of the catalyst on the downstream side (refining system) becomes a problem. Further, the load on the cyclone is increased and the catalyst is atomized, which is not preferable. (e) If the average particle diameter is out of the range, the fluidity of the fluid catalyst is deteriorated regardless of whether the average particle diameter is large or small.

【0013】[0013]

【発明の実施の形態】本発明の触媒は、A成分、B成分
およびC成分の前駆体とを混合して得られるスラリ−を
噴霧乾燥し、平均粒子径が30〜200 μm 、好ましくは 3
0 〜150μmの球状粒子とし、600℃以上の温度、このま
しくは800〜1300℃の温度で焼成して調製することがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst of the present invention is obtained by spray-drying a slurry obtained by mixing precursors of A component, B component and C component, and has an average particle size of 30 to 200 μm, preferably 3 μm.
It can be prepared by making spherical particles of 0 to 150 μm and calcining at a temperature of 600 ° C. or higher, preferably 800 to 1300 ° C.

【0014】本発明の触媒の調製に際しては、A成分と
しては、CaO,MgOの他,Ca,Mgの有機塩や無機塩または水
酸化物を焼成して得たCaO, MgO等が使用できるが,特
に、特開平5−286871号公報に開示されている貝
または貝殻類を焼成して得たCaOが最も好ましい。A成
分として特に好ましい貝殻類は、焼成により、微細な細
孔構造が形成され、高性能発現に寄与していると考えら
れる。この細孔構造は、貝殻中のコンキオリンや殻皮
層,角柱層,真珠層の三層構造や微細な無数の細管等が
複雑に関与して、焼成によって形成されるものと思われ
る。
In the preparation of the catalyst of the present invention, as component A, CaO, MgO, CaO, MgO, etc. obtained by calcining an organic salt or inorganic salt of Ca, Mg or a hydroxide can be used. Particularly, CaO obtained by firing shellfish or shells disclosed in JP-A-5-286871 is most preferable. It is considered that the shells that are particularly preferable as the component A have a fine pore structure formed by firing and contribute to the development of high performance. It is considered that this pore structure is formed by firing due to the complex involvement of conchiolin in the shell, the shell layer, the prismatic layer, and the nacreous layer, and a myriad of fine tubules.

【0015】B成分の原料としては、Li,Na,K,Rb,Csの
水酸化物,硝酸塩,炭酸塩,硫酸塩等の試薬が使用可能
である。
As the raw material of the component B, reagents such as Li, Na, K, Rb and Cs hydroxides, nitrates, carbonates and sulfates can be used.

【0016】C成分の前駆体としては、ケイ酸液,コロ
イド状シリカ等の少なくとも一種のシリカ,シリカ−ア
ルミナコロイド,アルミナコロイドなどの無機酸化物が
ある。または、B,C成分を含有する水ガラス,カリ水
ガラス,リチウムシリケ−ト等が使用できる。
As the precursor of the C component, there are at least one kind of silica such as silicic acid solution and colloidal silica, and inorganic oxides such as silica-alumina colloid and alumina colloid. Alternatively, water glass containing components B and C, potash water glass, lithium silicate, or the like can be used.

【0017】三成分を組み合わせた本発明では、A成分
の粒子界面および/または溶出したA成分とB成分およ
びC成分が複合酸化物を形成し、強度に優れた触媒を得
ることができる。また、熱安定性にも優れるため、酸化
カップリング反応のような高温反応には最も好ましい。
これらの成分は、単独もしくは二成分では効果がなく、
三成分を含有することが必須の条件である。
In the present invention in which the three components are combined, the particle interface of the A component and / or the eluted A component and B component and C component form a complex oxide, and a catalyst having excellent strength can be obtained. Further, since it is also excellent in thermal stability, it is most preferable for a high temperature reaction such as an oxidative coupling reaction.
These ingredients are ineffective alone or in two components,
The inclusion of three components is an essential condition.

【0018】前述の本発明によって得られた触媒を、メ
タンと酸素の存在下で次に示す条件にて反応に用いる
と、主にエタン、エチレンを製造することができる。さ
らに、本発明の触媒は、エタン、エチレンを製造する場
合の他に、例えばプロパン、プロピレン、ブタン、ブテ
ン、ペンタン、ペンテン等の炭素数2以上であれば、い
ずれの炭化水素を製造する場合にも適用することができ
る。 〔反応条件〕 メタン/酸素モル比=1〜100、好ましくは2〜5
0、さらに好ましくは3〜10 混合ガスの空間速度(GHSV)=500〜100,0
00h -1、好ましくは2,000〜50,000h -1、さ
らに好ましくは3,000〜20,000h -1 反応温度=500〜1000℃,好ましくは600〜9
00℃、さらに好ましくは700〜850℃ 反応圧力=大気圧〜30気圧、好ましくは大気圧〜5気
When the above-mentioned catalyst obtained by the present invention is used for the reaction in the presence of methane and oxygen under the following conditions, ethane and ethylene can be mainly produced. Further, the catalyst of the present invention can be used for producing any hydrocarbon other than the case of producing ethane and ethylene, as long as it has 2 or more carbon atoms such as propane, propylene, butane, butene, pentane and pentene. Can also be applied. [Reaction conditions] Methane / oxygen molar ratio = 1 to 100, preferably 2 to 5
0, more preferably 3 to 10 mixed gas space velocity (GHSV) = 500 to 100,0
00h -1 , preferably 2,000 to 50,000h -1 , more preferably 3,000 to 20,000h -1 reaction temperature = 500 to 1000 ° C, preferably 600 to 9
00 ° C, more preferably 700 to 850 ° C Reaction pressure = atmospheric pressure to 30 atmospheric pressure, preferably atmospheric pressure to 5 atmospheric pressure

【0019】以下に本発明を実施例に基づき、更に具体
的に説明する。下記実施例は、特許請求の範囲に記載さ
れた発明に特定の説明を与えるものであるが、本発明は
実施例に記載された特定の詳細事項に限定されるもので
はない。
The present invention will be described in more detail below with reference to examples. The following examples give a specific explanation to the invention described in the claims, but the present invention is not limited to the specific details described in the examples.

【0020】〔実施例1〕900℃で10時間焼成後、乳ば
ちで粉砕したシジミ貝粗粉砕品(平均粒子径10μm;光
透過式粒度分布測定装置、堀場製作所(製)capa 700で
測定)500gをアルミナビーズを充填した湿式粉砕機に入
れ、純水2.5kgを加え、300回転で1時間粉砕処理を行な
った。CaOスラリーの濃度は15.9wt%でCaOの粒径は1.4
μmであった。上記CaO粉砕スラリー2.4kgを10リットル
のスチームジャケット付きタンクに入れ、よく攪拌しな
がらイオン交換樹脂を用いて脱Naを行なったケイ酸液
(SiO2濃度4.8wt%)215gと触媒化成工業(株)製の粒子
径が80nmのシリカゾル(SiO2濃度40.0wt%)26gを加え
た。さらに関東化学製一級硝酸リチウム(Li2O濃度35.7
wt%)58gを700gの純水で溶解した硝酸リチウム水溶液
を加えた。該スラリーを100℃で濃縮を行なった後、冷
却し、ホモジナイザーで分散処理を行ない、固形分濃度
14.3wt%からなる(CaO+SiO2+Li2O)スラリーを得た。
次いで噴霧乾燥を行なった後、焼成を行ない触媒Aを得
た。触媒Aの性状を表1,表2に示す。図1にX線回折
図を示す。CaO-Li2O-SiO2の複合酸化物が認められた。
[Example 1] Coarse crushed sea bream crushed product (average particle size 10 μm; light transmission type particle size distribution measurement device, capa 700 manufactured by Horiba Seisakusho) after firing at 900 ° C for 10 hours ) 500 g was put in a wet pulverizer filled with alumina beads, 2.5 kg of pure water was added, and pulverization treatment was performed at 300 rpm for 1 hour. The concentration of CaO slurry is 15.9 wt% and the particle size of CaO is 1.4.
μm. 2.4 kg of the above CaO crushed slurry was placed in a 10 liter steam jacketed tank, and 215 g of a silicic acid solution (SiO 2 concentration 4.8 wt%) that had been Na-depleted using an ion exchange resin while stirring well and Catalyst Kasei Kogyo Co., Ltd. 26 g of silica sol (SiO 2 concentration 40.0 wt%) having a particle size of 80 nm was added. Furthermore, Kanto Chemical's first-class lithium nitrate (Li 2 O concentration 35.7
wt%) 58 g was dissolved in 700 g of pure water, and a lithium nitrate aqueous solution was added. After concentrating the slurry at 100 ° C., it was cooled and dispersed with a homogenizer to obtain a solid content concentration.
A (CaO + SiO 2 + Li 2 O) slurry consisting of 14.3 wt% was obtained.
Then, after performing spray drying, calcination was performed to obtain a catalyst A. Properties of catalyst A are shown in Tables 1 and 2. An X-ray diffraction diagram is shown in FIG. A complex oxide of CaO-Li 2 O-SiO 2 was observed.

【0021】[0021]

【表1】 [Table 1]

【表2】 [Table 2]

【0022】〔比較例1〕実施例1で調製したCaO粉砕
スラリー(CaO濃度15.9wt%)10kgを20リットルのスチ
ームジャケット付きSUSタンクに入れ、濃縮した後、よ
く攪拌しながらケイ酸液(SiO2濃度4.8wt%)1.84kgと
粒子径が80nmのシリカゾル(SiO2濃度40.0wt%)0.22kg
を加えた。よく攪拌を行なった後、分散処理を行ない、
固形分濃度18.0wt%からなる(CaO+SiO2)スラリーを得
た。次いで噴霧乾燥を行なった後、高温で焼成を行ない
触媒Bを得た。表1,表2に触媒Bの性状を示す。触媒
の耐摩耗性は2.3wt%/hrと摩耗量が多く流動触媒とし
ての強度が不足していた。
Comparative Example 1 10 kg of the crushed CaO slurry (CaO concentration 15.9 wt%) prepared in Example 1 was placed in a 20-liter steam-jacketed SUS tank, concentrated, and then stirred well and the silicic acid solution (SiO 2) was added. 2 concentration 4.8wt%) 1.84kg and particle size 80nm silica sol (SiO 2 concentration 40.0wt%) 0.22kg
Was added. After stirring well, perform dispersion treatment,
A (CaO + SiO 2 ) slurry having a solid content concentration of 18.0 wt% was obtained. Then, after spray-drying, calcination was performed at a high temperature to obtain a catalyst B. Table 1 and Table 2 show the properties of the catalyst B. The wear resistance of the catalyst was 2.3 wt% / hr, and the wear amount was large and the strength as a fluid catalyst was insufficient.

【0023】〔実施例2〕関東化学(株)製の鹿特級炭
酸マグネシウム粉末を1000℃で2時間焼成し、乳ばちで
粗粉砕を行なった後、アルミナビーズを充填した湿式粉
砕機に粗粉砕品400gと純水2kgを加え、300回転で1時
間粉砕を行なった。MgO粉砕スラリーの粒径は1.2μmで
あった。MgO粉砕スラリー(MgO濃度16.0wt%)2.4kgを1
0リットルのスチームジャケット付きタンクに入れ、よ
く攪拌しながら100℃で加温して濃縮を行なった。濃縮
後のスラリー濃度は、23.0wt%であった。ケイ酸液(Si
O2濃度4.8wt%)220gとSI-80Pシリカゾル(SiO2濃度40.
0wt%)26.4gを加えた。さらに硝酸リチウム(Li2O濃度
35.7wt%)59gを700gの純水で溶解した硝酸リチウム水
溶液を加えた。次いで分散処理を行ない、固形分濃度1
5.9wt%からなる(MgO+SiO2+Li2O)スラリーを得た。次
いで噴霧乾燥を行なった後、焼成を行ない触媒Cを得
た。表1,表2に触媒Cの性状を示す。
Example 2 Deer special grade magnesium carbonate powder manufactured by Kanto Chemical Co., Inc. was calcined at 1000 ° C. for 2 hours, coarsely pulverized with a bee, and then coarsely pulverized with a wet pulverizer filled with alumina beads. 400 g of the crushed product and 2 kg of pure water were added and crushed at 300 rpm for 1 hour. The particle size of the MgO ground slurry was 1.2 μm. 2.4 kg of MgO crushed slurry (MgO concentration 16.0 wt%) 1
The mixture was placed in a tank with a steam jacket of 0 liter, and heated at 100 ° C. with good stirring to concentrate it. The slurry concentration after concentration was 23.0 wt%. Silicic acid liquid (Si
220 g of O 2 concentration of 4.8 wt% and SI-80P silica sol (SiO 2 concentration of 40.
0wt%) 26.4g was added. Furthermore, lithium nitrate (Li 2 O concentration
An aqueous lithium nitrate solution prepared by dissolving 59 g of 35.7 wt%) in 700 g of pure water was added. Next, dispersion treatment is performed to obtain a solid content of 1
A (MgO + SiO 2 + Li 2 O) slurry consisting of 5.9 wt% was obtained. Then, after performing spray drying, calcination was performed to obtain a catalyst C. Table 1 and Table 2 show the properties of the catalyst C.

【0024】〔実施例3〜5〕実施例1で調製したCaO
粉砕スラリーを用いて、実施例1に準ずる方法でシリカ
ゾルと硝酸リチウムの添加量を変更して(CaO+SiO2+Li2
O)スラリーを得た。噴霧乾燥を行ない、次いで焼成を
行ない、触媒D,E,Fを得た。表1,表2に触媒D,
E,Fの性状を示す。触媒中のSiO2量は、それぞれ5.0
、10.5、21.2wt%で、触媒中のLi2O量はそれぞれ1.0
、5.2 、11.1wt%であった。
[Examples 3 to 5] CaO prepared in Example 1
Using the crushed slurry, the addition amount of silica sol and lithium nitrate was changed by the method according to Example 1 (CaO + SiO 2 + Li 2
O) A slurry was obtained. Spray drying and then calcination were performed to obtain catalysts D, E and F. Catalyst D in Tables 1 and 2
The properties of E and F are shown. The amount of SiO 2 in the catalyst is 5.0 each
, 10.5, 21.2wt%, the amount of Li 2 O in the catalyst is 1.0 each
, 5.2, 11.1 wt%.

【0025】〔比較例2〕実施例1で調製したCaO粉砕
スラリーを用いて、実施例1に準ずる方法でシリカゾル
と硝酸リチウムの添加量を変更して(CaO+SiO2+Li2O)
スラリーを得た。噴霧乾燥を行ない、次いで焼成をし
て、触媒Gを得た。触媒中のSiO2量は30.0wt%で、触媒
中のLi2O量は16.0wt%であった。表1,表2に触媒Gの
性状を示す。触媒Gは焼成後容器から取り出したとこ
ろ、粒子が融着を起こし、完全に固化していた。
Comparative Example 2 Using the CaO ground slurry prepared in Example 1, the addition amounts of silica sol and lithium nitrate were changed by the method according to Example 1 (CaO + SiO 2 + Li 2 O).
A slurry was obtained. Spray drying was carried out, followed by calcination to obtain catalyst G. The amount of SiO 2 in the catalyst was 30.0 wt% and the amount of Li 2 O in the catalyst was 16.0 wt%. Table 1 and Table 2 show the properties of the catalyst G. When the catalyst G was taken out from the container after firing, the particles fused and were completely solidified.

【0026】〔実施例6〕実施例1で調製したCaO粉砕
スラリーを用いて、実施例1に準ずる方法で硝酸リチウ
ムの代りに水酸化ナトリウムを使用した以外は同様にし
て(CaO+SiO2+Na2O)スラリーを得た。噴霧乾燥を行な
った後、焼成を行ない触媒Hを得た。表1,表2に触媒
Hの性状を示す。
[Example 6] The CaO ground slurry prepared in Example 1 was used in the same manner as in Example 1 except that sodium hydroxide was used instead of lithium nitrate in the same manner as in Example 1 (CaO + SiO 2 + Na 2 O) slurry was obtained. After spray drying, calcination was performed to obtain a catalyst H. Table 1 and Table 2 show the properties of the catalyst H.

【0027】〔実施例7〕実施例1で調製したCaO粉砕
スラリー(Ca0濃度15.9wt%)2.05kgに洞海化学(株)製
のカリ水ガラス(SiO2濃度20.5wt%,K2O濃度9.0wt%)
122gを加え、純水400gで希釈し、固形分濃度14.0wt%に
調製した。スラリーのpHは13.9、粘度は1760cpであっ
た。次いで分散機で分散後、噴霧乾燥を行なった後、焼
成を行ない、触媒Iを得た。表1,表2に触媒Iの性状
を示す。
Example 7 2.05 kg of CaO ground slurry (Ca0 concentration 15.9 wt%) prepared in Example 1 was added to potassium water glass (SiO 2 concentration 20.5 wt%, K 2 O concentration) manufactured by Dokai Kagaku Co., Ltd. 9.0wt%)
122 g was added and diluted with 400 g of pure water to prepare a solid content concentration of 14.0 wt%. The pH of the slurry was 13.9 and the viscosity was 1760 cp. Then, after dispersing with a disperser, spray drying was performed, and then firing was performed to obtain a catalyst I. Table 1 and Table 2 show the properties of the catalyst I.

【0028】〔実施例8〕実施例1で調製したCaO粉砕
スラリー(CaO濃度15.9wt%)2.05kgに本荘ケミカル
(株)製のリチウムシリケート(SiO2濃度19.7wt%,Li
2O濃度2.42wt%)163gを加え、純水360gで希釈し、固形
分濃度14.0wt%に調製した。スラリーのpHは13.4、粘
度は1150cpであった。次いで分散機で分散後、噴霧乾燥
を行なった後、焼成を行ない、触媒Jを得た。表1,表
2に触媒Jの性状を示す。
Example 8 2.05 kg of the CaO ground slurry (CaO concentration 15.9 wt%) prepared in Example 1 was added to Honjo Chemical Co., Ltd. lithium silicate (SiO 2 concentration 19.7 wt%, Li
2 O concentration 2.42 wt%) 163 g was added and diluted with pure water 360 g to prepare a solid content concentration of 14.0 wt%. The pH of the slurry was 13.4 and the viscosity was 1150 cp. Then, after dispersing with a disperser, spray drying was performed, and then firing was performed to obtain a catalyst J. Table 1 and Table 2 show the properties of the catalyst J.

【0029】〔実施例9〕実施例1で調製したCaO粉砕
スラリーを用いて、実施例1に準ずる方法で硝酸リチウ
ムの代りに水酸化カリウムを使用した以外は同様にして
(CaO+SiO2+K2O)スラリーを得た。噴霧乾燥を行なった
後、焼成を行ない触媒Kを得た。表1,表2に触媒Kの
性状を示す。
Example 9 The CaO ground slurry prepared in Example 1 was used in the same manner as in Example 1 except that potassium hydroxide was used instead of lithium nitrate in the same manner as in Example 1 (CaO + SiO 2 + A K 2 O) slurry was obtained. After spray drying, calcination was performed to obtain catalyst K. Table 1 and Table 2 show the properties of the catalyst K.

【0030】〔実施例10〕実施例6において得られた
触媒Hおよび実施例9において得られた触媒Kについ
て、反応管内部に外径6mmのサヤ管を装着した流動層反
応器(内径22mm)を用いて、下記の条件下でメタン酸化
カップリング反応を行なった時の反応成績を表3に示
す。なお、反応温度は触媒層に挿入した熱電対により測
定した。生成物の分析はオンラインの自動ガスクロを用
いて行なった。なお表中の(C2+選択率)は炭素数2〜
5の炭化水素の合計の選択率を示している。
[Example 10] With respect to the catalyst H obtained in Example 6 and the catalyst K obtained in Example 9, a fluidized bed reactor (inner diameter 22 mm) equipped with a sheath tube having an outer diameter of 6 mm inside the reaction tube Table 3 shows the reaction results when a methane oxidative coupling reaction was carried out under the following conditions. The reaction temperature was measured by a thermocouple inserted in the catalyst layer. The analysis of the product was carried out using an online gas chromatograph. Note that (C 2 + selectivity) in the table has 2 to 2 carbon atoms.
5 shows the total selectivity of 5 hydrocarbons.

【0031】[0031]

【表3】 [Table 3]

【0032】〔反応条件〕 メタン/酸素モル比=2〜10 原料ガス供給速度 =20〜70NL/hr 反応温度 =750〜850℃ 反応圧力 =大気圧 触媒量 =20cc[Reaction conditions] Methane / oxygen molar ratio = 2 to 10 Raw material gas supply rate = 20 to 70 NL / hr Reaction temperature = 750 to 850 ° C. Reaction pressure = Atmospheric pressure Catalyst amount = 20 cc

【0033】[0033]

【発明の効果】本発明によれば、アルカリ土類金属酸化
物からなるA成分、アルカリ金属酸化物からなるB成分
および無機酸化物からなるC成分が複合酸化物を形成す
るので、強固な結合力で優れた物理性状を有する流動接
触反応用触媒を調製することができる。
EFFECTS OF THE INVENTION According to the present invention, the component A composed of an alkaline earth metal oxide, the component B composed of an alkali metal oxide, and the component C composed of an inorganic oxide form a composite oxide, so that a strong bond is formed. A catalyst for fluid catalytic reaction having excellent physical properties can be prepared by force.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の触媒AのX線回折図を示す図である。FIG. 1 is a diagram showing an X-ray diffraction pattern of catalyst A of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C10L 3/06 6958−4H C10L 3/00 A (72)発明者 藤井 進 北九州市若松区北湊町13−2 触媒化成工 業株式会社触媒研究所内 (72)発明者 大浜 孝一 北九州市若松区北湊町13−2 触媒化成工 業株式会社触媒研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C10L 3/06 6958-4H C10L 3/00 A (72) Inventor Susumu Fujii Kitaminato-cho, Wakamatsu-ku, Kitakyushu City 13-2 Catalytic Chemical Industry Co., Ltd., Catalytic Research Laboratory (72) Inventor Koichi Ohama 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu City Catalytic Chemical Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ土類金属酸化物からなるA成
分、アルカリ金属酸化物からなるB成分および結合剤を
C成分として、 A成分の含有量が50〜94wt%、 B成分の含有量が1〜15wt%、 C成分の含有量が5〜45wt%の範囲にあることを特徴と
するメタンから炭素数2以上の炭化水素を合成するため
の流動接触反応用触媒。
1. A component comprising an alkaline earth metal oxide, a B component comprising an alkali metal oxide and a binder as C components, the content of the A component is 50 to 94 wt%, and the content of the B component is 1. A catalyst for fluid catalytic reaction for synthesizing a hydrocarbon having 2 or more carbon atoms from methane, characterized in that the content of C component is in the range of 5 to 45 wt%.
【請求項2】 下記(a) 〜(e) の物理性状を有する請求
項1記載の粉末状流動接触反応用触媒。 (a) 嵩比重 (g/ml) 0.4〜 1.2 (メスシリンダ−による測定) (b) 比表面積 (m2/g) 0 〜 20 (BET法で測定) (c) 細孔容積 (ml/g) 0.0〜 0.2 (N2 吸着法で測定) (d) 耐摩耗性 (wt%/hr) 0.0〜 1.3 (ACC法による測定) (e) 平均粒子径(μm) 30〜200 (篩による測定)
2. The powdery catalyst for fluid catalytic reaction according to claim 1, which has the following physical properties (a) to (e). (a) Bulk specific gravity (g / ml) 0.4 to 1.2 (measured by graduated cylinder) (b) Specific surface area (m 2 / g) 0 to 20 (measured by BET method) (c) Pore volume (ml / g) ) 0.0 to 0.2 (measured by N 2 adsorption method) (d) abrasion resistance (wt% / hr) 0.0 to 1.3 (measured by ACC method) (e) average particle size (μm) 30 to 200 (measured by sieve)
【請求項3】 A成分がMg,Caから選ばれた少なくとも
一種のアルカリ土類金属酸化物とB成分がLi,Na,K,Rb,C
sから選ばれた少なくとも一種のアルカリ金属酸化物お
よびC成分がシリカ,シリカ−アルミナ,アルミナから
選ばれた少なくとも一種の結合剤からなることを特徴と
する請求項1,2又は3記載の流動接触反応用触媒。
3. The component A is at least one alkaline earth metal oxide selected from Mg and Ca, and the component B is Li, Na, K, Rb, C.
The fluidized contact according to claim 1, 2 or 3, wherein at least one alkali metal oxide selected from s and C component comprises at least one binder selected from silica, silica-alumina and alumina. Reaction catalyst.
【請求項4】 メタンを酸素の存在下で請求項1,2又
は3記載の触媒と流動層で接触させて、酸化カップリン
グ反応によって炭素数2以上の炭化水素を合成する方
法。
4. A method for synthesizing a hydrocarbon having 2 or more carbon atoms by contacting methane with a catalyst according to claim 1, 2 or 3 in a fluidized bed in the presence of oxygen to carry out an oxidative coupling reaction.
JP35114995A 1995-12-27 1995-12-27 Catalyst for fluid catalytic reaction for synthesizing hydrocarbons having 2 or more carbon atoms from methane, and method for synthesizing hydrocarbons using the catalyst Expired - Fee Related JP3679180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35114995A JP3679180B2 (en) 1995-12-27 1995-12-27 Catalyst for fluid catalytic reaction for synthesizing hydrocarbons having 2 or more carbon atoms from methane, and method for synthesizing hydrocarbons using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35114995A JP3679180B2 (en) 1995-12-27 1995-12-27 Catalyst for fluid catalytic reaction for synthesizing hydrocarbons having 2 or more carbon atoms from methane, and method for synthesizing hydrocarbons using the catalyst

Publications (2)

Publication Number Publication Date
JPH09173837A true JPH09173837A (en) 1997-07-08
JP3679180B2 JP3679180B2 (en) 2005-08-03

Family

ID=18415382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35114995A Expired - Fee Related JP3679180B2 (en) 1995-12-27 1995-12-27 Catalyst for fluid catalytic reaction for synthesizing hydrocarbons having 2 or more carbon atoms from methane, and method for synthesizing hydrocarbons using the catalyst

Country Status (1)

Country Link
JP (1) JP3679180B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020028821A (en) * 2018-08-20 2020-02-27 学校法人神奈川大学 Catalyst and process for producing hydrocarbon
JP2020037061A (en) * 2018-09-03 2020-03-12 高知県公立大学法人 Hydrocarbon conversion catalyst, manufacturing method therefor, and manufacturing method of hydrocarbon using hydrocarbon conversion catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020028821A (en) * 2018-08-20 2020-02-27 学校法人神奈川大学 Catalyst and process for producing hydrocarbon
JP2022153521A (en) * 2018-08-20 2022-10-12 学校法人神奈川大学 Catalyst and process for producing hydrocarbon
JP2020037061A (en) * 2018-09-03 2020-03-12 高知県公立大学法人 Hydrocarbon conversion catalyst, manufacturing method therefor, and manufacturing method of hydrocarbon using hydrocarbon conversion catalyst

Also Published As

Publication number Publication date
JP3679180B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
EP0225062B1 (en) Attrition resistant catalysts, catalyst precursors and catalyst supports
CN101898143B (en) Inferior heavy oil cracking and gasifying catalyst
US20090075814A1 (en) Promoted, attrition resistant, silica supported precipitated iron catalyst
CN102596397A (en) Improved heavy metals trapping co-catalyst for fcc processes
CN102822124A (en) Method for making a catalyst comprising a phosphorus modified zeolite to be used in a MTO process
US10702856B2 (en) Catalysts made with manganese tungsten oxide for the oxidative coupling of methane
CN107456976B (en) Iron-based catalyst for Fischer-Tropsch synthesis and preparation method thereof
EP0125515A2 (en) Microspherical catalysts
US2888501A (en) Process and catalyst for isomerizing hydrocarbons
TW201221213A (en) Attrition resistant supports for Fischer-Tropsch catalyst and process for making the same
US8901027B2 (en) Stable slurry bed fischer-tropsch catalyst with high surface area and activity
CN102319582A (en) A kind of preparation method of catalytic cracking catalyst
US5085705A (en) Alumina-silica-sulfates, method of preparation and compositions
JPH09173837A (en) Catalyst for fluid catalytic reaction for synthesizing hydrocarbon having 2 or more carbon atoms from methane and method for synthesizing hydrocarbon by the catalyst
CN104289226B (en) A kind of multifunctional solid catalyst
JP3564622B2 (en) Fluid catalytic catalyst for producing hydrocarbons having 2 or more carbon atoms from methane as raw material and method for producing hydrocarbons using the catalyst
CN101117592B (en) Cracking catalyst composition
CN113617356B (en) Cobalt-based catalyst and preparation method and application thereof
US2526907A (en) Coprecipitation of silica-alumina
RU2392296C2 (en) Application of chrome source in combination with precipitated catalyst in fischer-tropsch reaction
JPH08119621A (en) Production of fine spherical silica particles
US4407734A (en) Spray dried vanadia catalyst and method of preparing it
CN102892501B (en) Catalyst for the oxidation of so2 to so3
JPS596944A (en) Catalyst for treating heavy oil and preparation thereof
CN114643062B (en) Catalyst for preparing low-carbon olefin from synthesis gas and preparation method and application thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040416

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees