[go: up one dir, main page]

JPH09172068A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH09172068A
JPH09172068A JP32852195A JP32852195A JPH09172068A JP H09172068 A JPH09172068 A JP H09172068A JP 32852195 A JP32852195 A JP 32852195A JP 32852195 A JP32852195 A JP 32852195A JP H09172068 A JPH09172068 A JP H09172068A
Authority
JP
Japan
Prior art keywords
film
wiring
insulating film
wirings
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32852195A
Other languages
Japanese (ja)
Other versions
JP2763023B2 (en
Inventor
Masanobu Yoshiie
昌伸 善家
Kenji Okamura
健司 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7328521A priority Critical patent/JP2763023B2/en
Publication of JPH09172068A publication Critical patent/JPH09172068A/en
Application granted granted Critical
Publication of JP2763023B2 publication Critical patent/JP2763023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce inter-writing parasitic capacitance by a method wherein an organic resinous film is formed on a face of a first insulation film coated selectively with wiring, an organic film is thinned to expose the wiring face, after a sparse second insulation film is deposited on the entire face, a dense third insulation film is deposited, a space is provided between wirings with respect to each other. SOLUTION: After transistors, etc., are formed on a substrate, a silicon oxide film 1 is formed, and after a contact hole is formed, an Al film wiring 2 of a first layer is formed. After a resist film 3 of an organic resinous film is formed, the resist film 3 is etched until the Al wiring 2 is exposed. Continuously, an organic SOG film 4 is formed, so-called ashing is performed by O2 plasma process, and the infer-wiring resist film 3 is removed to form a space 5. A dense silicon oxide system insulation film 6 low in a coefficient of contraction is formed. Carbon in the organic SOG film 4 is removed by the O2 plasma process to make a sparse film, and O2 plasma is invaded therethrough to perform ashing to the resist film 3, so that a space 5 can be formed and inter- wiring parasitic capacitance can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、特に同一層次の配線間に空間を有する半導
体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having a space between wirings in the same layer.

【0002】[0002]

【従来の技術】近年半導体装置において、高性能化のた
め多層配線化及び微細化が進んでいる。最小加工寸法
0.3μmレベル以下の半導体装置にとって配線の寄生
容量の増大は高速化にとって重大な問題である。同一層
次の配線間容量は微細化に伴って増大するという重大な
問題が起きてくる。
2. Description of the Related Art In recent years, in semiconductor devices, multilayer wiring and miniaturization have been advanced for higher performance. For a semiconductor device having a minimum processing dimension of 0.3 μm or less, an increase in parasitic capacitance of wiring is a serious problem for speeding up. There is a serious problem that the capacitance between wirings in the same layer increases with miniaturization.

【0003】そこで、従来は配線相互間の寄生容量を低
減させるために、例えば、特開昭63−313896号
公報や特開平7−45701号公報に記載されている様
な配線間に空間のある半導体装置が提案されている。
In order to reduce the parasitic capacitance between the wirings, there is a space between the wirings as disclosed in, for example, JP-A-63-313896 and JP-A-7-45701. Semiconductor devices have been proposed.

【0004】まず、図5及び図6を参照して、特開昭6
3−313896号公報に記載された、従来の配線間に
空間のある半導体装置の製造方法(従来技術1)につい
て説明する。
First, with reference to FIG. 5 and FIG.
A conventional method for manufacturing a semiconductor device having a space between wirings (prior art 1) described in Japanese Patent Application Laid-Open No. 3-313896 will be described.

【0005】まず、シリコン基板16に層間絶縁膜のシ
リコン酸化膜を形成し、通常のリソグラフィ技術及びエ
ッチング技術を用いて、所定の位置に第1層配線支持部
材17をパターンする(図5(a)参照)。次に第1層
間絶縁膜18として、感光性ポリイミド有機物絶縁膜を
塗布しプリベークした後、配線層間の第1層スルーホー
ル19部分及び第1層配線支持部材17の上部を現像除
去した後ポストベークする(図5(b)参照)。そし
て、第1層層間絶縁膜18上の全面に無電解銅メッキで
銅の薄膜を形成した後、フォトレジストをマスクとして
電解銅メッキにより第1層配線20を形成する(図5
(c)参照)。第1層配線支持部材17を形成する工程
と同様に、第1層配線20の上の所定の位置及び形状で
無機物絶縁材料からなる第2層配線支持部材21を形成
する(図5(d)参照)。図5(b)と同様にして、第
1層配線20の上に第2層層間絶縁膜22を形成し、第
2層スルーホール23と第2層配線支持部材21の上部
をエッチング除去する(図5(e)参照)。そして、第
2層層間絶縁膜22上に第2層配線24を形成する(図
5(f)参照)。これらの工程を繰り返し第3層配線2
7から第4層配線30を形成する(図6(g)参照)。
最後に各層間絶縁層18,22,26,29をプラズマ
エッチング法あるいはヒドラジン等のエッチング液を用
いたケミカルエッチング法により除去し、エアギャップ
31を利用したエアギャップ配線を形成する(図6
(h)参照)。
First, a silicon oxide film as an interlayer insulating film is formed on a silicon substrate 16, and a first-layer wiring support member 17 is patterned at a predetermined position using a usual lithography technique and etching technique (FIG. 5A). )reference). Next, as a first interlayer insulating film 18, a photosensitive polyimide organic insulating film is applied and prebaked, and then the first layer through hole 19 between wiring layers and the upper portion of the first layer wiring support member 17 are developed and removed, and then postbaked. (See FIG. 5B). Then, after forming a copper thin film on the entire surface of the first layer interlayer insulating film 18 by electroless copper plating, a first layer wiring 20 is formed by electrolytic copper plating using a photoresist as a mask (FIG. 5).
(C)). Similarly to the step of forming the first layer wiring support member 17, the second layer wiring support member 21 made of an inorganic insulating material is formed at a predetermined position and shape on the first layer wiring 20 (FIG. 5D). reference). 5B, a second-layer interlayer insulating film 22 is formed on the first-layer wiring 20, and the second-layer through-holes 23 and the upper part of the second-layer wiring supporting member 21 are removed by etching. FIG. 5E). Then, a second layer wiring 24 is formed on the second layer interlayer insulating film 22 (see FIG. 5F). By repeating these steps, the third layer wiring 2
7 to a fourth layer wiring 30 are formed (see FIG. 6G).
Finally, the interlayer insulating layers 18, 22, 26, and 29 are removed by a plasma etching method or a chemical etching method using an etchant such as hydrazine to form an air gap wiring using the air gap 31 (FIG. 6).
(H)).

【0006】次に、図7を参照して、特開平7−457
01号公報に記載された、従来の配線間に空間のある半
導体装置の製造方法(従来技術2)について説明する。
Next, referring to FIG. 7, Japanese Patent Laid-Open No. 7-457.
A conventional method for manufacturing a semiconductor device having a space between wirings (Prior Art 2) described in Japanese Patent Application Publication No. 01-001,001 will be described.

【0007】まず、シリコン基板(図示せず)に層間絶
縁膜の酸化シリコン膜1を形成し、通常のリソグラフィ
技術及びエッチング技術を用いて、コンタクト孔(図示
せず)を形成する。そして、図7(a)に示す様にスパ
ッタリング技術を用いて第1層目のAl配線2を形成す
る。
First, a silicon oxide film 1 as an interlayer insulating film is formed on a silicon substrate (not shown), and a contact hole (not shown) is formed by using a usual lithography technique and etching technique. Then, as shown in FIG. 7A, a first-layer Al wiring 2 is formed by using a sputtering technique.

【0008】次に、例えば回転塗布装置を用いて、半導
体基板を冷却しながら、例えば氷膜32の様な固体膜を
形成する(図7(b)参照)。次に、化学的機械研磨
(CMP)法で第1層目のAl配線2が露出するまで、
固体膜を研磨する(図7(c)参照)。次に、冷却プラ
ズマCVD法を用いて低温で膜収縮率の大きな疎な酸化
シリコン膜34を形成する。
Next, a solid film such as an ice film 32 is formed while cooling the semiconductor substrate using, for example, a spin coating apparatus (see FIG. 7B). Next, until the Al wiring 2 of the first layer is exposed by the chemical mechanical polishing (CMP) method.
The solid film is polished (see FIG. 7C). Next, a sparse silicon oxide film 34 having a large film shrinkage at a low temperature is formed by using a cooling plasma CVD method.

【0009】その後、100〜300℃に加熱し配線間
の固体膜を、疎な酸化シリコン系絶縁膜34を通して、
蒸発させる(図7(d)参照)。
Thereafter, the solid film between the wirings is heated to 100 to 300 ° C. and passed through a sparse silicon oxide insulating film 34.
Evaporate (see FIG. 7D).

【0010】そして、通常のプラズマCVD法を用い
て、疎な酸化シリコン絶縁膜34より熱処理による膜収
縮の少ない密な酸化シリコン系絶縁膜6を形成する。次
にスパッタリング法でAl膜を形成し、通常のフォトリ
ソグラフィー技術及びプラズマエッチング技術を用い
て、第2層のAl膜配線7を形成する(図7(e)参
照)。
Then, using a normal plasma CVD method, a dense silicon oxide insulating film 6 with less film shrinkage due to heat treatment is formed from the sparse silicon oxide insulating film 34. Next, an Al film is formed by a sputtering method, and a second-layer Al film wiring 7 is formed by using a normal photolithography technique and a plasma etching technique (see FIG. 7E).

【0011】以上の様にして、配線間に空間5を形成す
ることができる。
As described above, the space 5 can be formed between the wirings.

【0012】[0012]

【発明が解決しようとする課題】この従来の半導体装置
の製造方法では以下の問題点がある。
The conventional method for manufacturing a semiconductor device has the following problems.

【0013】まず、特開昭63−313896号公報に
記載されている従来技術1の場合、配線間は空気からな
り配線間の容量は低減できるが、配線と一部の配線支持
材しかないので機械的強度は弱く、後の工程で配線が倒
れ、配線の断線やパーティクルの発生等の問題が生じ
る。また、図6(h)に示す様に層間膜をエッチング液
を用いたケミカルエッチング法やドライエッチング法で
除去しているのでエアギャップ形成後、その後のパッシ
ベーション膜を形成するまでに、水や大気にさらされる
ので配線下層の酸化シリコン系絶縁膜の層間膜が水分を
吸収し、配線の信頼性が劣化する等の問題が発生する。
また、図5及び図6で示す様に、絶縁物の配線支持材を
用いるため、工程数が増え、かつ複雑になるという問題
点もある。
First, in the case of the prior art 1 described in Japanese Patent Application Laid-Open No. 63-313896, although the space between the wirings is made of air and the capacity between the wirings can be reduced, there is only the wiring and a part of the wiring support material. The mechanical strength is weak, and the wires fall down in a later process, causing problems such as disconnection of the wires and generation of particles. Further, as shown in FIG. 6 (h), since the interlayer film is removed by a chemical etching method using an etching solution or a dry etching method, after forming the air gap, water or air is formed until the subsequent passivation film is formed. , The interlayer film of the silicon oxide-based insulating film below the wiring absorbs moisture, causing problems such as deterioration of the reliability of the wiring.
Further, as shown in FIGS. 5 and 6, there is also a problem that the number of steps increases and the process becomes complicated because an insulating wiring support is used.

【0014】また、特開平7−45701号公報に記載
されている従来技術2の場合、第1の配線層と第2の配
線層との間には、疎な絶縁膜と密な絶縁膜があるので、
機械的強度もあり、また空間形成後に配線層が直接大気
にさらされることが配線の信頼性を劣化させることも無
い。しかし、冷却プラズマCVD法を用いる等低温プロ
セスを行う必要があり、装置が複雑になったり、成膜速
度の低下による処理能力が小さい、ウェハーの取り扱い
が難しい等の問題があり、その結果生産性が悪いという
欠点がある。
In the case of the prior art 2 described in JP-A-7-45701, a sparse insulating film and a dense insulating film are provided between the first wiring layer and the second wiring layer. Because there is
It also has mechanical strength, and the exposure of the wiring layer directly to the air after forming the space does not degrade the reliability of the wiring. However, it is necessary to perform a low-temperature process such as using a cooled plasma CVD method, and there are problems that the apparatus becomes complicated, the processing capacity is small due to the decrease in the film formation rate, and the handling of the wafer is difficult, resulting in productivity. Has the drawback of being bad.

【0015】[0015]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板の所定の第1の絶縁膜の表面を選
択的に被覆して同一層次の複数の配線を形成する工程
と、前記配線で選択的に被覆された第1の絶縁膜表面に
有機樹脂膜を形成する工程と、前記有機樹脂膜を薄くし
て前記配線の表面を露出させる工程と、疎な第2の絶縁
膜を全面に堆積する工程と、前記有機樹脂膜を除去する
工程と、密な第3の絶縁膜を堆積する工程とにより前記
配線相互に空間をも設けるものである。
A method of manufacturing a semiconductor device according to the present invention comprises a step of selectively covering the surface of a predetermined first insulating film of a semiconductor substrate to form a plurality of wirings in the same layer. Forming an organic resin film on the surface of the first insulating film selectively covered with the wiring, exposing the surface of the wiring by thinning the organic resin film, and sparse second insulating film A space is also provided between the wirings by a step of depositing the entire surface, a step of removing the organic resin film, and a step of depositing a dense third insulating film.

【0016】また、本発明の半導体装置の製造方法は、
半導体基板の所定の第1の絶縁膜の表面を選択的に被覆
して同一層次の複数の配線を形成する工程と、前記配線
の表面及び側面を少なくとも覆う保護膜を形成する工程
と、前記保護膜で選択的に被覆された第1の絶縁膜表面
に有機樹脂膜を形成する工程と、前記有機樹脂膜を薄く
して前記配線の表面を露出させる工程と、疎な第2の絶
縁膜を全面に堆積する工程と、前記有機樹脂膜を除去す
る工程と、密な第3の絶縁膜を堆積する工程とにより前
記配線相互に空間をも設けるものである。
The semiconductor device manufacturing method of the present invention is
A step of selectively covering a surface of a predetermined first insulating film of a semiconductor substrate to form a plurality of wirings in the same layer; a step of forming a protective film that covers at least a surface and a side surface of the wiring; Forming an organic resin film on the surface of the first insulating film selectively covered with a film, exposing the surface of the wiring by thinning the organic resin film, and forming a sparse second insulating film. A space is also provided between the wirings by the step of depositing on the entire surface, the step of removing the organic resin film, and the step of depositing the dense third insulating film.

【0017】前記第2の絶縁膜としては、有機SOG膜
が適する。
An organic SOG film is suitable as the second insulating film.

【0018】また、前記有機樹脂膜を除去する工程から
前記第3の絶縁膜を堆積する工程までを同一の製造装置
内で行うようにすると良い。
Further, it is preferable to perform the steps from the step of removing the organic resin film to the step of depositing the third insulating film in the same manufacturing apparatus.

【0019】[0019]

【発明の実施の形態】次に本発明について図面を参照し
て説明する。図1(a)〜(e)は本発明の第1の実施
形態について製造工程に沿って説明するための工程順断
面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. 1A to 1E are step-by-step cross-sectional views for describing a first embodiment of the present invention along manufacturing steps.

【0020】まず、図1(a)に示す様に、通常の方法
を用いることで、シリコン基板(図示せず)に半導体装
置に構成するのに必要な諸部分例えば、トランジスタ等
を形成後、CVD法等を用いて酸化シリコン膜1(第1
の絶縁膜)を200〜800nm程度形成する。次に通
常のフォトリソグラフィ技術等を用いて、コンタクト孔
(図示せず)を形成する。そして、スパッタリング技術
を用いて、第1層目のAl膜配線2を形成する。
First, as shown in FIG. 1A, by using a normal method, after forming various parts necessary for forming a semiconductor device, such as a transistor, on a silicon substrate (not shown), The silicon oxide film 1 (first
Of about 200 to 800 nm. Next, a contact hole (not shown) is formed using a normal photolithography technique or the like. Then, the first layer Al film wiring 2 is formed by using the sputtering technique.

【0021】次に、例えば回転塗布装置を用いて、図1
(b)に示す様に、有機樹脂膜、例えばポジ型レジスト
によく用いられるノボラック系樹脂のレジスト膜3を約
0.5〜2μm程度形成する。有機樹脂膜としては、ネ
ガ型レジストで用いられるイソプレンゴム系のレジスト
を用いても良いし、他の有機系の樹脂膜でも良い。そし
て、通常の平行平板型のRIE装置を用いて、CF4
2 又はCl2 +O2のガス系で、Al配線2が露出す
るまでレジスト膜3をエッチバックする(図1(c)参
照)。
Next, for example, using a spin coating apparatus, FIG.
As shown in (b), an organic resin film, for example, a resist film 3 of a novolak resin often used for a positive resist is formed in a thickness of about 0.5 to 2 μm. As the organic resin film, an isoprene rubber-based resist used for a negative resist may be used, or another organic resin film may be used. Then, using a normal parallel plate type RIE apparatus, the resist film 3 is etched back with a gas system of CF 4 and O 2 or Cl 2 + O 2 until the Al wiring 2 is exposed (see FIG. 1C). ).

【0022】引き続いて、回転塗布装置を用いて、通常
の有機SOG膜(第2の絶縁膜)4を200〜500n
m成膜する。この後、必要に応じて通常の有機SOG膜
形成と同様に加熱して溶剤を蒸発させる。有機SOG膜
は、従来よく用いられているもので良い。
Subsequently, a normal organic SOG film (second insulating film) 4 is formed to a thickness of 200 to 500 n using a spin coating apparatus.
m to form a film. Thereafter, if necessary, the solvent is evaporated by heating in the same manner as in the ordinary formation of an organic SOG film. The organic SOG film may be a commonly used organic SOG film.

【0023】そして、図1(d)に示す様にO2 プラズ
マ処理で、いわゆるアッシングを行って、配線間のノボ
ラック系樹脂のレジスト膜3を除去する。この時O2
ラズマ処理を行うことで、有機SOG膜4中の炭素が除
去され疎な膜に変化して、その結果O2 プラズマが有機
SOG膜4中を通過してレジスト膜3を除去できるので
ある。
Then, as shown in FIG. 1D, so-called ashing is performed by O 2 plasma processing to remove the novolak resin resist film 3 between the wirings. At this time, by performing the O 2 plasma treatment, carbon in the organic SOG film 4 is removed and the film is changed to a sparse film. As a result, the O 2 plasma passes through the organic SOG film 4 and the resist film 3 can be removed. It is.

【0024】そして、例えば膜収縮率の少ない密な酸化
シリコン系絶縁膜6(第3の絶縁膜)を、図1(e)に
示す様に、200〜1000nm成膜する。成膜方法と
して、シランと亜酸化窒素又はテトラエトキシシランと
酸素を用いたプラズマCVD法がある。この様に形成さ
れる酸化シリコン系絶縁膜6は、900℃の窒素雰囲気
中の処理で膜厚の収縮率が3%以下の膜質を示す密な膜
である。次に、スパッタリング法を用いてAl膜を0.
3〜1μm成膜し、通常のフォトリソグラフィ技術及び
ドライエッチング技術を用いて、第2層のAl膜配線7
を形成する。
Then, for example, a dense silicon oxide-based insulating film 6 (third insulating film) having a small film shrinkage is formed to a thickness of 200 to 1000 nm as shown in FIG. As a film formation method, there is a plasma CVD method using silane and nitrous oxide or tetraethoxysilane and oxygen. The silicon oxide-based insulating film 6 formed in this manner is a dense film having a film quality with a shrinkage ratio of 3% or less when treated in a nitrogen atmosphere at 900 ° C. Next, the Al film was formed to a thickness of 0.
A 3 to 1 μm film is formed, and the second layer Al film wiring 7 is formed by using a normal photolithography technique and a dry etching technique.
To form

【0025】以上説明した様に、本発明は、O2 プラズ
マ処理を行うことで有機SOG膜4中の炭素を抜いて疎
な膜として、その疎な有機SOG膜4を通してO2 プラ
ズマが侵入しレジスト膜3をアッシングして、配線間に
空間5を形成するものである。空間には固体が無いので
比誘電率は約1であり、酸化シリコン系膜の約4に比較
して、約1/4に低減される。
As described above, according to the present invention, the O 2 plasma treatment removes carbon from the organic SOG film 4 to form a sparse film, and the O 2 plasma penetrates through the sparse organic SOG film 4. The resist film 3 is ashed to form a space 5 between the wirings. Since there is no solid in the space, the relative dielectric constant is about 1, which is reduced to about 1/4 compared to about 4 of the silicon oxide based film.

【0026】また、本発明は従来技術1の様に絶縁膜の
配線支持材を用いないため、配線支持材を形成する工程
が不要になる等、工程数を少なくできるという効果もあ
る。さらに、従来技術2の様に低温工程を用いる必要も
なく、量産性が良いという効果がある。
Further, since the present invention does not use the wiring supporting material of the insulating film unlike the prior art 1, there is also an effect that the number of steps can be reduced such that the step of forming the wiring supporting material becomes unnecessary. Further, there is no need to use a low-temperature process unlike the prior art 2, and there is an effect that mass productivity is good.

【0027】この様に、本発明は多層配線化を行っても
配線間寄生容量の低減が可能であり、かつ機械的強度も
充分にあり、従来より微細配線および多層配線に対応で
きる。
As described above, the present invention can reduce the parasitic capacitance between wirings even if the wiring is multilayered, has sufficient mechanical strength, and can cope with fine wirings and multilayer wirings as compared with the prior art.

【0028】次に、第2の実施形態について説明する。
図2は、本発明の第2の実施形態を示す半導体装置の断
面図である。本実施形態は、Al膜配線2及び7の周囲
をそれぞれ窒化アルミニウム9a,9bで囲んだ構造で
ある。窒化アルミニウム膜(保護膜)でAl膜配線を囲
むことで、大電流をAl膜配線に流す場合のエレクトロ
マイグレーション等の耐性を上げ、配線の信頼性を第1
の実施形態より一層向上させたものである。
Next, a second embodiment will be described.
FIG. 2 is a sectional view of a semiconductor device according to a second embodiment of the present invention. This embodiment has a structure in which the aluminum film wirings 2 and 7 are surrounded by aluminum nitrides 9a and 9b, respectively. By surrounding the Al film wiring with an aluminum nitride film (protective film), the resistance to electromigration and the like when a large current flows through the Al film wiring is increased, and the reliability of the wiring is increased by the first factor.
It is a further improvement over the embodiment of FIG.

【0029】本実施形態で、第1層目及び第2層目のA
l膜配線2,7を形成後に、窒素またはアンモニアのプ
ラズマ処理(いわゆるプラズマ窒化)でAl膜配線2,
7の表面を窒化し、窒化アルミニウム膜9a,9bを1
〜50nm形成するほかは、第1の実施形態と同様であ
る。プラズマ処理条件は、例えば、13.56MHzで
350〜450℃である。また、ランプアニーラー等を
用いて、窒素又はアンモニア雰囲気中で、300〜45
0℃に加熱することで、窒化アルミニウムを形成しても
良い。また、保護膜としては、前述の窒化アルミニウム
膜の代わりに、酸素雰囲気中で加熱することで、酸化ア
ルミニウム膜を形成しても良い。
In this embodiment, the first layer and the second layer A
After forming the l-film wirings 2 and 7, the Al film wirings 2 and 7 are subjected to plasma treatment of nitrogen or ammonia (so-called plasma nitriding).
7 is nitrided, and the aluminum nitride films 9a and 9b are
It is the same as the first embodiment except that it is formed to a thickness of 50 nm. The plasma processing conditions are, for example, 350-450 ° C. at 13.56 MHz. Further, using a lamp anneal or the like, in a nitrogen or ammonia atmosphere, 300 to 45
By heating to 0 ° C., aluminum nitride may be formed. Further, as the protective film, an aluminum oxide film may be formed by heating in an oxygen atmosphere instead of the above-described aluminum nitride film.

【0030】次に、第3の実施形態について説明する。
図3は、本発明の第3の実施形態を示す半導体装置の断
面図である。本実施形態は、Al膜配線2及び7の周囲
をそれぞれ酸化シリコン系絶縁膜10a及び10b(保
護膜)で囲んだ構造である。シランと亜酸化窒素あるい
はテトラエトキシシランと酸素を用いてプラズマCVD
法で、酸化シリコン系絶縁膜10a,10bをそれぞれ
50〜200nm形成することにより、Al膜配線の信
頼性向上に効果があるが、Al膜配線間の間隔が小さく
なると、第3の実施形態では配線間の空間5が酸化シリ
コン系絶縁膜で埋まるので、配線間の寄生容量低下の効
果は減少している。半導体装置によって、第2又は第3
の実施形態を用いるかを自由に決めれば良い。
Next, a third embodiment will be described.
FIG. 3 is a sectional view of a semiconductor device according to a third embodiment of the present invention. This embodiment has a structure in which the periphery of the Al film wirings 2 and 7 is surrounded by silicon oxide based insulating films 10a and 10b (protective films), respectively. Plasma CVD using silane and nitrous oxide or tetraethoxysilane and oxygen
By forming the silicon oxide-based insulating films 10a and 10b by 50 to 200 nm each by the method, the reliability of the Al film wiring is improved. Since the space 5 between the wirings is filled with the silicon oxide insulating film, the effect of reducing the parasitic capacitance between the wirings is reduced. Depending on the semiconductor device, the second or third
It may be freely determined whether to use the embodiment.

【0031】なお、Al膜配線の周辺を囲む保護膜の種
類を、第1層目は窒化アルミニウム膜、第2層目は酸化
シリコン系絶縁膜と、各層ごとに変化させても良い。
The type of protective film surrounding the periphery of the Al film wiring may be changed for each layer, such as an aluminum nitride film for the first layer and a silicon oxide-based insulating film for the second layer.

【0032】次に本発明を実施するための半導体製造装
置を図面を参照して説明する。図4は本発明を実施する
ために用いられる半導体製造装置の模式図である。この
半導体製造装置は、例えば、第1の実施形態において、
2 プラズマ処理する工程から密な絶縁膜を形成する工
程までを同一装置内で行える様にしたものである。
Next, a semiconductor manufacturing apparatus for carrying out the present invention will be described with reference to the drawings. FIG. 4 is a schematic view of a semiconductor manufacturing apparatus used to carry out the present invention. This semiconductor manufacturing apparatus is, for example, according to the first embodiment,
The process from the O 2 plasma process to the process of forming a dense insulating film can be performed in the same apparatus.

【0033】本装置は、ウェハーの出し入れ用インター
ロック室11、O2 プラズマ処理室13、密な絶縁膜形
成用CVD室14、搬送ロボットのある移載室12、及
びバルブ15−1〜15−4から構成されている。
This apparatus comprises an interlock chamber 11 for loading and unloading wafers, an O 2 plasma processing chamber 13, a CVD chamber 14 for forming a dense insulating film, a transfer chamber 12 having a transfer robot, and valves 15-1 to 15-. 4.

【0034】本装置を用いて本発明を実施する方法を以
下に説明する。まず、第2の絶縁膜である有機SOG膜
を形成後、ウェハーをインターロック室11に入れ、移
載室12を経由して、O2 プラズマ処理室13に入れ
る。第1の実施形態で説明した様に、O2 プラズマ処理
を行って有機樹脂膜のレジスト膜3を有機SOG膜4を
通して除去する。次に、ウェハーを移載室12を経由し
てCVD室14に搬送し、第3の絶縁膜の密な酸化シリ
コン系絶縁膜6を形成する。
A method for practicing the present invention using the present apparatus will be described below. First, after forming an organic SOG film as a second insulating film, the wafer is put into the interlock chamber 11, and then into the O 2 plasma processing chamber 13 via the transfer chamber 12. As described in the first embodiment, the resist film 3 of the organic resin film is removed through the organic SOG film 4 by performing O 2 plasma processing. Next, the wafer is transferred to the CVD chamber 14 via the transfer chamber 12, and the dense silicon oxide insulating film 6 of the third insulating film is formed.

【0035】以上の様に、同一製造装置内で一連の工程
を行うことで、O2 プラズマ処理でレジスト除去後、大
気や水分等が第1層目のAl膜配線2表面に吸着するの
を防止でき、再現性良く、信頼性の良い半導体装置が実
現できる。
As described above, by performing a series of steps in the same manufacturing apparatus, after the resist is removed by the O 2 plasma treatment, it is possible to prevent the air, moisture, and the like from adsorbing to the surface of the first Al film wiring 2. Thus, a highly reliable semiconductor device with good reproducibility can be realized.

【0036】以上の様に、本発明の実施形態を説明した
が、配線材料として、Al以外に、Al−Cu−Si、
Al−CuのAl系の合金はいうまでもないが、W,M
o,Cu等の金属又は、シリサイド等の材料を用いて
も、本発明の効果は変わらない。また、例えばTiとT
iNとAlからなる様な複数の配線材料から構成されて
いる配線の場合でも本発明の効果は変わらない。
As described above, the embodiment of the present invention has been described. As the wiring material, in addition to Al, Al-Cu-Si,
Needless to say, Al-Cu-based Al-based alloys,
Even if a metal such as o or Cu or a material such as silicide is used, the effect of the present invention does not change. Also, for example, Ti and T
The effect of the present invention does not change even in the case of a wiring composed of a plurality of wiring materials such as iN and Al.

【0037】また、実施形態では密な絶縁膜として酸化
シリコン系絶縁膜で説明したが、例えば、窒化シリコン
膜、酸化窒化シリコン膜等の他の絶縁膜を用いても良
い。
In the embodiment, a silicon oxide-based insulating film has been described as a dense insulating film, but another insulating film such as a silicon nitride film or a silicon oxynitride film may be used.

【0038】なお、本発明の実施形態では、2層配線構
造で説明したが、1層構造、2層以上の構造に本発明を
用いても良い。
Although the embodiment of the present invention has been described with the two-layer wiring structure, the present invention may be applied to a one-layer structure or a structure having two or more layers.

【0039】さらに、本発明による多層配線の機械的強
度を上げるために、同一層次の配線間にダミーの配線を
設けるのも自由である。
Further, in order to increase the mechanical strength of the multilayer wiring according to the present invention, a dummy wiring may be freely provided between wirings in the same layer.

【0040】[0040]

【発明の効果】以上説明した様に本発明は、同一層次の
配線間に空間を形成することにより、多層配線にして
も、従来みられた機械的強度の弱さによる配線の倒れが
発生するという問題点も解決できるという効果がある。
また、従来みられた様に絶縁物の配線支持部材を形成す
る必要もなく、工程数を少なくできるという効果もあ
る。また、従来のように、エアギャップ形成後、大気や
水分にさらされることもなく、配線の断絶等の問題もな
くなり、多層配線の信頼性も向上るするという効果もあ
る。
As described above, according to the present invention, by forming a space between wirings in the same layer next to each other, even in the case of multi-layered wiring, wiring collapse occurs due to weak mechanical strength conventionally observed. This has the effect that the problem can be solved.
In addition, there is no need to form an insulating wiring support member as in the related art, and the number of steps can be reduced. Further, unlike the conventional case, after the air gap is formed, the air gap is not exposed to the air or moisture, the problem such as disconnection of the wiring is eliminated, and the reliability of the multilayer wiring is also improved.

【0041】さらに、有機樹脂膜及び有機SOG膜を用
いることで、従来みられた様に0℃以下の低温に保つと
いう様なプロセスマージンが少なく、かつ半導体装置の
製造装置価格が高いという問題点も解決できるという効
果がある。
Further, the use of the organic resin film and the organic SOG film has a problem that the process margin for keeping the temperature at 0 ° C. or lower as in the prior art is small, and the price of the semiconductor device manufacturing equipment is high. Is also effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を説明するため(a)
〜(e)に分図して示す工程断面図である。
FIG. 1A is a diagram for explaining a first embodiment of the present invention.
It is process sectional drawing divided and shown to (e).

【図2】本発明の第2の実施形態を説明するための半導
体装置の断面図である。
FIG. 2 is a cross-sectional view of a semiconductor device for describing a second embodiment of the present invention.

【図3】本発明の第3の実施形態を説明するための半導
体装置の断面図である。
FIG. 3 is a cross-sectional view of a semiconductor device for describing a third embodiment of the present invention.

【図4】本発明の第4の実施形態を説明するための半導
体装置の製造装置の模式図である。
FIG. 4 is a schematic diagram of an apparatus for manufacturing a semiconductor device for explaining a fourth embodiment of the present invention.

【図5】従来技術1を説明するため(a)〜(f)に分
図して示す工程断面図である。
FIGS. 5A to 5F are cross-sectional process views illustrating the related art 1 in (a) to (f).

【図6】従来技術1を説明するため(g)〜(h)に分
図して示す工程断面図である。
FIGS. 6A to 6H are cross-sectional process views separately illustrating FIGS.

【図7】従来技術2を説明するため(a)〜(e)に分
図して示す工程断面図である。
FIGS. 7A to 7E are cross-sectional process views illustrating the related art 2 in (a) to (e).

【符号の説明】[Explanation of symbols]

1 酸化シリコン膜 2 Al膜配線 3 レジスト膜 4 有機SOG膜 4a 有機SOG膜 4b 有機SOG膜 5 空間 6 密な酸化シリコン系膜 7 Al膜配線 8 パッシベーション膜 9a 窒化アルミニウム 9b 窒化アルミニウム 10a 酸化シリコン系絶縁膜 10b 酸化シリコン系絶縁膜 11 インターロック室 12 移載室 13 O2 プラズマ処理室 14 CVD室 16 シリコン基板 17 第1層配線支持部材 18 第1層層間絶縁膜 19 第1層スルーホール 20 第1層配線 21 第2層配線支持部材 22 第2層層間絶縁膜 23 第2層スルーホール 24 第2層配線 25 第3層配線支持部材 26 第3層層間絶縁膜 27 第3層配線 28 第4層配線支持部材 29 第4層層間絶縁膜 30 第4層配線 31 エアギャップ 32 氷膜 33 水蒸気 34 疎な酸化シリコン系膜DESCRIPTION OF SYMBOLS 1 Silicon oxide film 2 Al film wiring 3 Resist film 4 Organic SOG film 4a Organic SOG film 4b Organic SOG film 5 Space 6 Dense silicon oxide film 7 Al film wiring 8 Passivation film 9a Aluminum nitride 9b Aluminum nitride 10a Silicon oxide insulating film 10b of silicon oxide-based insulating film 11 interlock chamber 12 transfer chamber 13 O 2 plasma treatment chamber 14 CVD chamber 16 a silicon substrate 17 first layer wiring support member 18 the first layer the first layer interlayer insulating film 19 through hole 20 first Layer wiring 21 Second layer wiring supporting member 22 Second layer interlayer insulating film 23 Second layer through hole 24 Second layer wiring 25 Third layer wiring supporting member 26 Third layer insulating film 27 Third layer wiring 28 Fourth layer Wiring support member 29 Fourth layer interlayer insulating film 30 Fourth layer wiring 31 Air gap 32 Ice film 33 Water vapor 34 Sparse silicon oxide film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/90 P ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 21/90 P

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の所定の第1の絶縁膜の表面
を選択的に被覆して同一層次の複数の配線を形成する工
程と、前記配線で選択的に被覆された第1の絶縁膜表面
に有機樹脂膜を形成する工程と、前記有機樹脂膜を薄く
して前記配線の表面を露出させる工程と、疎な第2の絶
縁膜を全面に堆積する工程と、前記有機樹脂膜を除去す
る工程と、密な第3の絶縁膜を堆積する工程とにより前
記配線相互に空間をも設けることを特徴とする半導体装
置の製造方法。
1. A step of selectively covering a surface of a predetermined first insulating film of a semiconductor substrate to form a plurality of wirings in the same layer, and a first insulating film selectively covered with the wirings. Forming an organic resin film on the surface, thinning the organic resin film to expose the surface of the wiring, depositing a sparse second insulating film on the entire surface, and removing the organic resin film And a step of depositing a dense third insulating film, a space is also provided between the wirings.
【請求項2】 半導体基板の所定の第1の絶縁膜の表面
を選択的に被覆して同一層次の複数の配線を形成する工
程と、前記配線の表面及び側面を少なくとも覆う保護膜
を形成する工程と、前記保護膜で選択的に被覆された第
1の絶縁膜表面に有機樹脂膜を形成する工程と、前記有
機樹脂膜を薄くして前記配線の表面を露出させる工程
と、疎な第2の絶縁膜を全面に堆積する工程と、前記有
機樹脂膜を除去する工程と、密な第3の絶縁膜を堆積す
る工程とにより前記配線相互に空間をも設けることを特
徴とする半導体装置の製造方法。
2. A step of selectively covering the surface of a predetermined first insulating film of a semiconductor substrate to form a plurality of wirings in the same layer, and a protective film which covers at least the surface and the side surface of the wiring. A step of forming an organic resin film on the surface of the first insulating film selectively covered with the protective film; a step of thinning the organic resin film to expose the surface of the wiring; The semiconductor device is characterized in that a space is also provided between the wirings by the step of depositing the second insulating film on the entire surface, the step of removing the organic resin film, and the step of depositing the dense third insulating film. Manufacturing method.
【請求項3】 前記第2の絶縁膜が有機SOG膜である
ことを特徴とする請求項1又は請求項2記載の半導体装
置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the second insulating film is an organic SOG film.
【請求項4】 前記有機樹脂膜を除去する工程から前記
第3の絶縁膜を堆積する工程までを同一の製造装置内で
行うことを特徴とする請求項1乃至請求項3のいずれか
一に記載の半導体装置の製造方法。
4. The process of removing the organic resin film to the process of depositing the third insulating film are performed in the same manufacturing apparatus, according to any one of claims 1 to 3. A method for manufacturing a semiconductor device as described above.
JP7328521A 1995-12-18 1995-12-18 Method for manufacturing semiconductor device Expired - Fee Related JP2763023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7328521A JP2763023B2 (en) 1995-12-18 1995-12-18 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7328521A JP2763023B2 (en) 1995-12-18 1995-12-18 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH09172068A true JPH09172068A (en) 1997-06-30
JP2763023B2 JP2763023B2 (en) 1998-06-11

Family

ID=18211218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7328521A Expired - Fee Related JP2763023B2 (en) 1995-12-18 1995-12-18 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2763023B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114364A (en) * 1998-10-05 2000-04-21 St Microelectronics Metal element isolation method
WO2000042652A1 (en) * 1999-01-12 2000-07-20 Tokyo Electron Limited Semiconductor device and its production method
WO2000060652A1 (en) * 1999-03-30 2000-10-12 Citizen Watch Co., Ltd. Method for fabricating thin-film substrate and thin-film substrate fabricated by the method
US6300667B1 (en) 1997-11-14 2001-10-09 Nippon Steel Corporation Semiconductor structure with air gaps formed between metal leads
US6333255B1 (en) 1997-08-21 2001-12-25 Matsushita Electronics Corporation Method for making semiconductor device containing low carbon film for interconnect structures
EP1209739A2 (en) * 2000-11-27 2002-05-29 Chartered Semiconductor Manufacturing, Inc. Method for fabricating intermetal dielectric structures including air-gaps between metal leads
KR100406587B1 (en) * 1996-11-27 2004-06-10 주식회사 하이닉스반도체 Method for fabricating semiconductor device
US6790761B2 (en) 2002-03-07 2004-09-14 Oki Electric Industry Co., Ltd. Method of fabricating a semiconductor device
JP2005534168A (en) * 2002-06-20 2005-11-10 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Layer arrangement and method for producing layer arrangement
JP2011238833A (en) * 2010-05-12 2011-11-24 Elpida Memory Inc Semiconductor device and method of manufacturing the same
JP2015133355A (en) * 2014-01-09 2015-07-23 東京エレクトロン株式会社 Manufacturing method of semiconductor device
KR20170013939A (en) 2014-05-29 2017-02-07 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. Void forming composition, semiconductor device provided with voids formed using composition, and method for manufacturing semiconductor device using composition
KR20170040271A (en) 2014-07-31 2017-04-12 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. Sacrificial film composition, method for preparing same, semiconductor device having voids formed using said composition, and method for manufacturing semiconductor device using said composition
JP2022168264A (en) * 2018-11-15 2022-11-04 日機装株式会社 Semiconductor light emitting device and manufacturing method thereof
KR20240164954A (en) 2022-03-24 2024-11-21 닛산 가가쿠 가부시키가이샤 Composition for joint formation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086500A (en) 2004-08-18 2006-03-30 Toshiba Corp Method for manufacturing semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461003A (en) * 1994-05-27 1995-10-24 Texas Instruments Incorporated Multilevel interconnect structure with air gaps formed between metal leads

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461003A (en) * 1994-05-27 1995-10-24 Texas Instruments Incorporated Multilevel interconnect structure with air gaps formed between metal leads

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406587B1 (en) * 1996-11-27 2004-06-10 주식회사 하이닉스반도체 Method for fabricating semiconductor device
US6333255B1 (en) 1997-08-21 2001-12-25 Matsushita Electronics Corporation Method for making semiconductor device containing low carbon film for interconnect structures
US6534868B2 (en) 1997-08-21 2003-03-18 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US6300667B1 (en) 1997-11-14 2001-10-09 Nippon Steel Corporation Semiconductor structure with air gaps formed between metal leads
US6479366B2 (en) 1997-11-14 2002-11-12 Nippon Steel Corporation Method of manufacturing a semiconductor device with air gaps formed between metal leads
JP2000114364A (en) * 1998-10-05 2000-04-21 St Microelectronics Metal element isolation method
JP4677068B2 (en) * 1998-10-05 2011-04-27 エスティマイクロエレクトロニクス エスエー Isolation method between conductive metal elements
WO2000042652A1 (en) * 1999-01-12 2000-07-20 Tokyo Electron Limited Semiconductor device and its production method
JP4787412B2 (en) * 1999-03-30 2011-10-05 シチズンホールディングス株式会社 Method for forming thin film substrate and thin film substrate formed by the method
WO2000060652A1 (en) * 1999-03-30 2000-10-12 Citizen Watch Co., Ltd. Method for fabricating thin-film substrate and thin-film substrate fabricated by the method
US6713235B1 (en) 1999-03-30 2004-03-30 Citizen Watch Co., Ltd. Method for fabricating thin-film substrate and thin-film substrate fabricated by the method
EP1209739A3 (en) * 2000-11-27 2004-02-11 Chartered Semiconductor Manufacturing, Inc. Method for fabricating intermetal dielectric structures including air-gaps between metal leads
KR100752940B1 (en) * 2000-11-27 2007-08-30 챠터드 세미컨덕터 매뉴팩춰링 리미티드 Method for fabricating an air gap metallization scheme that reduces inter-metal capacitance of interconnect structures
EP1209739A2 (en) * 2000-11-27 2002-05-29 Chartered Semiconductor Manufacturing, Inc. Method for fabricating intermetal dielectric structures including air-gaps between metal leads
US6790761B2 (en) 2002-03-07 2004-09-14 Oki Electric Industry Co., Ltd. Method of fabricating a semiconductor device
JP2005534168A (en) * 2002-06-20 2005-11-10 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Layer arrangement and method for producing layer arrangement
JP2011238833A (en) * 2010-05-12 2011-11-24 Elpida Memory Inc Semiconductor device and method of manufacturing the same
JP2015133355A (en) * 2014-01-09 2015-07-23 東京エレクトロン株式会社 Manufacturing method of semiconductor device
KR20170013939A (en) 2014-05-29 2017-02-07 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. Void forming composition, semiconductor device provided with voids formed using composition, and method for manufacturing semiconductor device using composition
US10435555B2 (en) 2014-05-29 2019-10-08 Az Electronic Materials (Luxembourg) S.A.R.L Void forming composition, semiconductor device provided with voids formed using composition, and method for manufacturing semiconductor device using composition
KR20170040271A (en) 2014-07-31 2017-04-12 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. Sacrificial film composition, method for preparing same, semiconductor device having voids formed using said composition, and method for manufacturing semiconductor device using said composition
JP2022168264A (en) * 2018-11-15 2022-11-04 日機装株式会社 Semiconductor light emitting device and manufacturing method thereof
KR20240164954A (en) 2022-03-24 2024-11-21 닛산 가가쿠 가부시키가이샤 Composition for joint formation

Also Published As

Publication number Publication date
JP2763023B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
US6586323B1 (en) Method for dual-layer polyimide processing on bumping technology
JP2763023B2 (en) Method for manufacturing semiconductor device
JP3501280B2 (en) Manufacturing method of semiconductor device
JP4557479B2 (en) Photoresist removal process using forming gas plasma
US6420261B2 (en) Semiconductor device manufacturing method
JP2845176B2 (en) Semiconductor device
JP2518435B2 (en) Multilayer wiring formation method
US5807787A (en) Method for reducing surface leakage current on semiconductor intergrated circuits during polyimide passivation
JP2000040741A (en) Metal wiring forming method through dual damascene process using photosensitive polymer
JP2002009150A (en) Semiconductor device, its manufacturing method and manufacturing equipment
US7163887B2 (en) Method for fabricating a semiconductor device
JP2555940B2 (en) Semiconductor device and manufacturing method thereof
JP3279276B2 (en) Method for manufacturing semiconductor device
US6803327B1 (en) Cost effective polymide process to solve passivation extrusion or damage and SOG delminates
JPH10163198A (en) Semiconductor device and its manufacture
JP2004023030A (en) Method of manufacturing semiconductor device
US20240234481A1 (en) Semiconductor device with inductive component and method of forming
JP3166912B2 (en) Method for manufacturing semiconductor device
JP2002184858A (en) Method for fabricating semiconductor element
JPH0758706B2 (en) Method for manufacturing semiconductor device
JP2663662B2 (en) Method for manufacturing semiconductor device
JP2950059B2 (en) Method for manufacturing semiconductor device
JPH06342790A (en) Manufacture of semiconductor device
JPH06349828A (en) Manufacture of integrated circuit device
KR100216730B1 (en) Semiconductor metal film etching process

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980225

LAPS Cancellation because of no payment of annual fees