JPH09171282A - Charger - Google Patents
ChargerInfo
- Publication number
- JPH09171282A JPH09171282A JP33134795A JP33134795A JPH09171282A JP H09171282 A JPH09171282 A JP H09171282A JP 33134795 A JP33134795 A JP 33134795A JP 33134795 A JP33134795 A JP 33134795A JP H09171282 A JPH09171282 A JP H09171282A
- Authority
- JP
- Japan
- Prior art keywords
- charging
- charge
- photoconductor
- charged
- roller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、被帯電体を小空隙
を置いて非接触で帯電する装置に関する。この帯電装置
は例えば、感光体を帯電し帯電面に画像光を露光し露光
により形成された静電潜像を現像して記録媒体に転写す
る電子写真方式の複写機,プリンタにおいて、感光体の
帯電あるいは記録媒体への顕像の転写に用いられる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for charging a body to be charged in a non-contact manner with a small gap. This charging device is used, for example, in an electrophotographic copying machine or printer that charges a photoconductor, exposes a charged surface with image light, develops an electrostatic latent image formed by the exposure, and transfers the electrostatic latent image to a recording medium. Used for charging or transferring a visible image to a recording medium.
【0002】[0002]
【従来の技術】図5は電子写真プロセスを用いる画像形
成装置の概略図である。感光体ドラム1は導体1bの表
面に感光体1aを塗布することによって形成され、図5
中の矢印方向に回転する。画像形成装置では次のような
手順で、画像の形成を行う: 1.帯電ロ−ラ2(帯電装置)が感光体1aの表面を所
望の電位に帯電する; 2.露光装置EDが、感光体1aに画像光を投射して、
所望の画像に対応する静電潜像を、感光体1a上に形成
する; 3.現像器4が、静電潜像を、トナーによって現像し、
感光体1a上にトナー像(顕像)を形成する; 4.転写ロ−ラ5が、感光体1a上のトナー像を、不図
示の搬送手段によって搬送される紙などの転写紙6上に
転写する; 5.クリーニング装置7が、転写されず感光体1a上に
残ったトナーを清掃する; 6.転写ロ−ラ5によって、トナー像を転写された転写
紙6は、不図示の定着器へと搬送される。定着器は、ト
ナーを加熱および加圧して転写紙上に定着する;感光体
ドラム1は、図5中の矢印の方向に回転するため、上記
の1.から6.の手順を繰り返すことによって、転写紙
のそれぞれに所望の画像が形成されていく。2. Description of the Related Art FIG. 5 is a schematic view of an image forming apparatus using an electrophotographic process. The photoconductor drum 1 is formed by applying the photoconductor 1a onto the surface of the conductor 1b.
Rotate in the direction of the arrow inside. The image forming apparatus forms an image by the following procedure: 1. The charging roller 2 (charging device) charges the surface of the photoconductor 1a to a desired potential; The exposure device ED projects image light onto the photoconductor 1a,
2. An electrostatic latent image corresponding to a desired image is formed on the photoconductor 1a; The developing device 4 develops the electrostatic latent image with toner,
3. Toner image (visual image) is formed on the photoconductor 1a; 4. The transfer roller 5 transfers the toner image on the photoconductor 1a onto a transfer paper 6 such as paper conveyed by a conveying means (not shown); 5. The cleaning device 7 cleans the toner that has not been transferred and remains on the photoconductor 1a; The transfer paper 6 on which the toner image has been transferred by the transfer roller 5 is conveyed to a fixing device (not shown). The fixing device heats and pressurizes the toner to fix it on the transfer paper; since the photosensitive drum 1 rotates in the direction of the arrow in FIG. From 6. A desired image is formed on each of the transfer papers by repeating the above procedure.
【0003】図1には帯電装置として帯電ロ−ラ2が用
いられているが、感光体1aを帯電する手段として、従
来からスコロトロンなどのコロナ帯電装置が用いられて
きた。Although a charging roller 2 is used as a charging device in FIG. 1, a corona charging device such as a scorotron has been conventionally used as a means for charging the photosensitive member 1a.
【0004】しかし、コロナ帯電装置では、 1.発生するオゾンが多い, 2.小型化が難しい、などの問題がある。このため近年
では、コロナ帯電装置の他に、帯電ロ−ラ2など接触帯
電装置も画像形成装置の帯電装置として用いられるよう
になっている。接触帯電装置は、コロナ帯電装置に比べ
て、オゾンがほとんど発生しない、装置がコロナ帯電装
置に比べて小さいという利点をもつ。However, in the corona charging device: A lot of ozone is generated, 2. There are problems such as difficulty in miniaturization. Therefore, in recent years, in addition to the corona charging device, a contact charging device such as the charging roller 2 has been used as a charging device of the image forming apparatus. The contact charging device has an advantage over the corona charging device in that ozone is hardly generated and the device is smaller than the corona charging device.
【0005】接触帯電装置は、被帯電体である感光体
(以下、単に感光体と略す)に、帯電部材を接触させ、
この帯電部材に電圧を印加することによって感光体の帯
電を行う。図6は、従来の接触帯電装置の横断面を示
す。帯電ロ−ラ2はローラ形状で直径5〜20[m
m]、長さ約300[mm]であり、弾性がある抵抗層
2aを導体2bの上に形成してある。感光体ドラム1は
直径30〜80[mm]、長さ約300[mm]であ
り、感光体1aを導体1b上に形成してある。帯電ロ−
ラ2は回転する感光体ドラム1に対して接触し、従動回
転する。帯電ロ−ラ2の抵抗層2aは、抵抗率が107
〜109[Ωcm]の材料から構成される。帯電ロ−ラ
2には、帯電電源3によって電圧を印加し、感光体1a
の帯電を行う。印加電圧は、直流で−1〜−5[kV]
である。In the contact charging device, a charging member is brought into contact with a photosensitive member (hereinafter, simply referred to as a photosensitive member) which is a member to be charged,
The photoreceptor is charged by applying a voltage to the charging member. FIG. 6 shows a cross section of a conventional contact charging device. The charging roller 2 has a roller shape and a diameter of 5 to 20 [m.
m], a length of about 300 [mm], and an elastic resistance layer 2a is formed on the conductor 2b. The photoconductor drum 1 has a diameter of 30 to 80 [mm] and a length of about 300 [mm], and the photoconductor 1a is formed on the conductor 1b. Charging roller
The roller 2 contacts the rotating photosensitive drum 1 and is driven to rotate. The resistance layer 2a of the charging roller 2 has a resistivity of 10 7
It is composed of a material of 10 9 [Ωcm]. A voltage is applied to the charging roller 2 by the charging power source 3 to apply the voltage to the photoconductor 1a.
Is charged. Applied voltage is direct current -1 to -5 [kV]
It is.
【0006】特開平4−336556号公報には、帯電
ローラを帯電部材とし、感光体に帯電ローラを接触させ
る接触帯電装置が開示されている。帯電ローラの表面は
誘電体であり、帯電ローラの回転方向が感光体の回転方
向と同じ(帯電ローラと感光体との最近接部での移動す
る向きが逆)である。帯電ローラの表面が誘電体である
ため、感光体上にピンホールなどがあっても、対向する
帯電部材のピンホール周辺の表面に電荷がなくなること
はなく、これによる感光体上の未帯電部分が発生しな
い。さらに、帯電ローラを上記の方向に回転させること
により、感光体と誘電体のそれぞれが帯電されても、感
光体は順次帯電電位が低い誘電体と接触するようになる
ため、低い印加電圧で感光体を所望の電位に帯電するこ
とが可能になる。Japanese Unexamined Patent Publication (Kokai) No. 4-336556 discloses a contact charging device in which a charging roller is used as a charging member and the charging roller is brought into contact with a photosensitive member. The surface of the charging roller is a dielectric, and the rotation direction of the charging roller is the same as the rotation direction of the photoconductor (the moving direction at the closest portion between the charging roller and the photoconductor is opposite). Since the surface of the charging roller is a dielectric, even if there are pinholes on the photoconductor, there will be no charge on the surface around the pinhole of the opposing charging member, and the uncharged portion of the photoconductor due to this Does not occur. Further, by rotating the charging roller in the above-mentioned direction, even if the photoconductor and the dielectric are charged, the photoconductor comes into contact with the dielectric having a lower charging potential in sequence, so that the photoconductor is exposed at a low applied voltage. It allows the body to be charged to a desired potential.
【0007】特開平5−216326号公報には、帯電
ローラを帯電部材とし、感光体に帯電ローラを接触させ
る帯電装置が開示されている。帯電ローラの抵抗層が、
低抵抗部と高抵抗部とが分散混在した層となっている。
帯電ローラの抵抗層が低抵抗(107[Ωcm]以下)
の場合、感光体上のピンホールなどにより、帯電ローラ
の電位が低下し、帯電不良が発生してしまう。一方、抵
抗層が高抵抗(1011[Ωcm]以上)の場合は、帯電
ローラの表面電位が低くなり、帯電効率が低下してしま
う。このため、帯電ローラの抵抗層は、中抵抗(108
〜1010[Ωcm])であることが望ましいが、この領
域でも、感光体の表面電位が環境条件に左右されるとい
った問題があった。特開平5−216326号公報に開
示の帯電ロ−ラでは、抵抗層が、低抵抗部と高抵抗部と
が分散混在した層となっているので、帯電効率が低下せ
ず、環境条件にも左右されない帯電装置が可能になる。Japanese Unexamined Patent Publication (Kokai) No. 5-216326 discloses a charging device in which a charging roller is used as a charging member and the charging roller is brought into contact with a photosensitive member. The resistance layer of the charging roller is
It is a layer in which the low resistance portion and the high resistance portion are dispersed and mixed.
The resistance layer of the charging roller has low resistance (10 7 [Ωcm] or less)
In this case, the potential of the charging roller is lowered due to a pinhole or the like on the photoconductor, and charging failure occurs. On the other hand, when the resistance layer has a high resistance (10 11 [Ωcm] or more), the surface potential of the charging roller is low and the charging efficiency is low. Therefore, the resistance layer of the charging roller has a medium resistance (10 8
10 to 10 10 [Ωcm]) is desirable, but even in this region, there is a problem that the surface potential of the photoreceptor depends on environmental conditions. In the charging roller disclosed in Japanese Unexamined Patent Publication No. 5-216326, the resistance layer is a layer in which the low resistance part and the high resistance part are dispersed and mixed, so that the charging efficiency does not decrease and the environment condition is maintained. Enables a charging device that does not depend on it.
【0008】ところが、接触帯電装置にはつぎの二つの
問題点がある: 1.帯電ローラ跡, 2.帯電音, 3.感光体上のトナーなどが帯電部材に付着することに
よる帯電性能の低下, 4.帯電部材を構成している物質の感光体への付着, 5.感光体を長期停止したときに生じる、帯電部材の永
久変形。However, the contact charging device has the following two problems: Trace of charging roller, 2. Charging noise, 3. 3. Decrease in charging performance due to toner on the photoconductor adhering to the charging member. 4. Adhesion of substances constituting the charging member to the photoconductor, Permanent deformation of the charging member that occurs when the photoreceptor is stopped for a long time.
【0009】帯電ローラ跡は、帯電部材を構成している
物質が帯電部材から滲みだし、被帯電体の停止期間中に
被帯電体の表面に付着移行するために起こる。また帯電
音は、帯電部材に交流電圧を印加したときに被帯電体に
接触している帯電部材が振動するために起こる。The trace of the charging roller occurs because the substance forming the charging member oozes out from the charging member and adheres to and transfers to the surface of the charged body during the stop period of the charged body. Further, the charging sound occurs because the charging member in contact with the member to be charged vibrates when an AC voltage is applied to the charging member.
【0010】このような問題を解決する方法として、帯
電部材を非接触に感光体に近接させる近接帯電装置が考
案されている。近接帯電装置は、帯電装置を、感光体と
の最近接部での距離が0.005〜0.3[mm]にな
るように対向させ、帯電部材に電圧を印加することによ
り、感光体の帯電を行う帯電装置である。近接帯電装置
では、帯電装置と感光体とが接触していないために、接
触帯電装置で問題となる「帯電部材を構成している物質
の感光体への付着」、「感光体を長期停止したときに生
じる永久変形」は問題とはならない。また、「感光体上
のトナーなどが帯電部材に付着することによる帯電性能
の低下」に関しても、帯電部材に付着するトナーが少な
くなるため、近接帯電装置の方が優れている。As a method of solving such a problem, a proximity charging device has been devised in which a charging member is brought into contact with a photoconductor in a non-contact manner. In the proximity charging device, the charging device is opposed to the photosensitive member so that the distance at the closest portion to the photosensitive member is 0.005 to 0.3 [mm], and a voltage is applied to the charging member, whereby A charging device for charging. In the proximity charging device, since the charging device and the photoconductor are not in contact with each other, there is a problem in the contact charging device such as "adhesion of the substance forming the charging member to the photoconductor" and "the photoconductor is stopped for a long time". "Permanent deformation that sometimes occurs" is not a problem. In addition, regarding the “deterioration of charging performance due to toner or the like on the photoreceptor adhering to the charging member”, the proximity charging device is superior because the amount of toner adhering to the charging member is reduced.
【0011】図7は従来考えられていた近接帯電装置の
一例であり、その横断面を表している。帯電部材である
帯電ロ−ラ2は、ローラ形状で直径5〜20[mm]、
長さ約300[mm]であり、抵抗層2aを導体2bの
上に形成してある。感光体ドラム1は直径30〜80
[mm]、長さ約300[mm]であり、感光体1aを
導体1b上に形成してある。帯電ロ−ラ2は回転させて
もよいし、回転させなくてもよい。帯電ロ−ラ2は回転
する感光体ドラム1に対して、最近接部での距離(図7
中A/B間の距離)が0.005〜0.3[mm]にな
るような位置に配置される。帯電ロ−ラ2の抵抗層2a
は、抵抗率が107〜109[Ωcm]の材料から構成さ
れる。帯電ロ−ラ2には、帯電電源3によって電圧を印
加し、感光体1aの帯電を行う。印加電圧は、直流で−
1〜−5[kV]である。FIG. 7 shows an example of a proximity charging device which has been conventionally considered, and shows a cross section thereof. The charging roller 2, which is a charging member, has a roller shape and a diameter of 5 to 20 [mm],
The length is about 300 mm, and the resistance layer 2a is formed on the conductor 2b. The photosensitive drum 1 has a diameter of 30 to 80
[Mm] and length of about 300 [mm], and the photoconductor 1a is formed on the conductor 1b. The charging roller 2 may or may not be rotated. The charging roller 2 is located at the closest distance to the rotating photosensitive drum 1 (see FIG. 7).
The distance between the middle A / B) is 0.005 to 0.3 [mm]. Resistance layer 2a of charging roller 2
Is composed of a material having a resistivity of 10 7 to 10 9 [Ωcm]. A voltage is applied to the charging roller 2 by the charging power source 3 to charge the photoconductor 1a. The applied voltage is-
It is 1 to -5 [kV].
【0012】近接帯電装置では、帯電部材に電圧を印加
すると、感光体の表面電位は図4のように傾き1の直線
になる。Vthは帯電部材と感光体との間で放電が起こ
り、感光体の表面が帯電され始める電圧であり、帯電部
材と感光体との最近接部での両者の距離(図3中のA−
B間の距離)に依存する。Vthは、帯電部材と感光体
とが平行に対向する電極対であると仮定することによ
り、「Pashenの法則」にしたがって帯電部材と感
光体との最近接部での距離に依存する。In the proximity charging device, when a voltage is applied to the charging member, the surface potential of the photosensitive member becomes a straight line having an inclination of 1 as shown in FIG. Vth is a voltage at which discharge occurs between the charging member and the photoconductor and the surface of the photoconductor starts to be charged, and the distance between the charging member and the photoconductor at the closest portion (A- in FIG. 3).
(Distance between B). Vth depends on the distance at the closest point between the charging member and the photoconductor according to "Pashen's law" by assuming that the charging member and the photoconductor are parallel electrode pairs.
【0013】特開平6−148923号公報は、この種
の近接帯電装置を開示し、さらに実験事実として、帯電
部材と感光体との近接隙間は、5μm以上、300μm
以下であることを説明している。Japanese Unexamined Patent Publication (Kokai) No. 6-148923 discloses this type of proximity charging device, and as an experimental fact, the proximity gap between the charging member and the photoconductor is 5 μm or more and 300 μm.
The following is explained.
【0014】[0014]
【発明が解決しようとする課題】しかし、近接帯電装置
は、コロナ帯電装置および直接帯電装置にくらべと前述
の利点を持つにもかかわらず、つぎの2つの問題のた
め、実用化が難かしい面がある: 1.帯電部材と感光体との最近接部での距離の均一性確
保, 2.帯電部材と感光体との最近接部での距離が大きくな
ることによる帯電むら。なお、帯電むらが発生した場
合、画像形成時に、白地にトナーが付着するといった画
像不良が発生する。However, although the proximity charging device has the above-mentioned advantages over the corona charging device and the direct charging device, it is difficult to put into practical use due to the following two problems. There are: 1. Ensuring the uniformity of the distance at the closest point between the charging member and the photoconductor, Uneven charging due to a large distance between the charging member and the photoconductor at the closest position. When uneven charging occurs, image defects such as toner adhered to a white background occur during image formation.
【0015】「帯電部材と感光体との最近接部での距離
の均一性確保」については、近接帯電装置で感光体の帯
電を行う場合、画像を形成したときに帯電むらによる画
像不良が発生しないためには、帯電部材と感光体との最
近接部での距離のばらつき(帯電部材の長手方向でのば
らつき)を0.01[mm]程度に抑える必要がある。
このため、このような精度で機械的に帯電部材と感光体
を配置することには困難が伴う。As for "ensuring the uniformity of the distance at the closest portion between the charging member and the photosensitive member", when the photosensitive member is charged by the proximity charging device, an image defect due to uneven charging occurs when an image is formed. In order not to do so, it is necessary to suppress the variation in the distance (variation in the longitudinal direction of the charging member) at the closest portion between the charging member and the photoconductor to about 0.01 [mm].
Therefore, it is difficult to mechanically arrange the charging member and the photoconductor with such accuracy.
【0016】「帯電部材と感光体との最近接部での距離
が大きくなることによる帯電むら」については、帯電む
らとは感光体の帯電が均一になされない状態のことであ
り、感光体の表面電位が場所によって、高くなったり、
低くなったりしている状態のことである。帯電むらは、
帯電部材と感光体との最近接部での距離を均一にして
も、帯電部材と感光体との距離が大きくなると発生しや
すくなる。このため、近接帯電装置では、接触帯電装置
に比べて帯電むらが発生しやすい。帯電むらの発生は、
帯電部材の抵抗率に依存することが知られており、帯電
部材の抵抗率を、107〜109[Ωcm]とした場合、
帯電むらが発生しにくくなる。しかし、現在のところ、
帯電むら発生の詳しいメカニズムについては明らかにな
っていない。With respect to "uniform charging due to an increase in the distance between the charging member and the photosensitive member at the closest portion", uneven charging means a state in which the photosensitive member is not uniformly charged. The surface potential becomes higher depending on the location,
It is in a state of becoming low. Uneven charging
Even if the distance between the charging member and the photoconductor is closest to each other, it tends to occur when the distance between the charging member and the photoconductor becomes large. Therefore, in the proximity charging device, uneven charging is more likely to occur than in the contact charging device. The occurrence of uneven charging is
It is known to depend on the resistivity of the charging member, and when the resistivity of the charging member is set to 10 7 to 10 9 [Ωcm],
Uneven charging is less likely to occur. However, at the moment,
The detailed mechanism of uneven charging has not been clarified.
【0017】本発明は、近接帯電装置による被帯電面の
帯電むらを抑制することを目的とする。より具体的に
は、近接帯電装置の上述の2つの問題を同時に解決する
ことを目的とする。An object of the present invention is to suppress uneven charging on a surface to be charged by a proximity charging device. More specifically, it is an object to solve the above two problems of the proximity charging device at the same time.
【0018】[0018]
【課題を解決するための手段】本発明は、移動可能な被
帯電体の被帯電面に非接触に近接してこれを帯電する帯
電装置において、被帯電面に対向する導体と、該導体と
被帯電面の間にあって該導体に接っした高抵抗層を有
し、少くとも被帯電面に対向する面が移動する帯電部
材、および、該移動の方向に関して、被帯電面に対する
帯電部材の最近接部より上流に配置され帯電部材に対向
する電荷誘導部材、を備えることを特徴とする。DISCLOSURE OF THE INVENTION The present invention is a charging device for charging a movable object to be charged in close proximity to the surface to be charged, the conductor facing the surface to be charged, and the conductor. A charging member that has a high resistance layer between the charged surfaces and is in contact with the conductor, and at least a surface facing the charged surface moves, and a charging member for the charged surface with respect to the direction of the movement. A charge inducing member arranged upstream of the contact portion and facing the charging member.
【0019】[0019]
【0020】[0020]
【実施例】図1に本発明の第1実施例の横断面を示す。
第1実施例が従来の近接帯電装置と異なる点は、 ・帯電ロ−ラ2の抵抗層2aが高抵抗である点, ・帯電ロ−ラ2は、帯電処理時には回転駆動されて、感
光体1aと対向する帯電ロ−ラ2の表面(以下単に、帯
電作用面と略す)が移動する点, ・帯電作用面の移動する方向に関して、帯電ロ−ラ2が
感光体1aに最も近い最近接部(A/B)よりも上流側
の、帯電作用面に対向して、電荷誘導部材9を配置した
点、の3点である。1 shows a cross section of a first embodiment of the present invention.
The first embodiment differs from the conventional proximity charging device in that: the resistance layer 2a of the charging roller 2 has a high resistance; A point at which a surface of the charging roller 2 (hereinafter, simply referred to as a charging surface) facing 1a moves. The charging roller 2 is closest to the photoconductor 1a in the moving direction of the charging surface. The points are the point where the charge inducing member 9 is arranged on the upstream side of the section (A / B) so as to face the charging surface.
【0021】帯電ロ−ラ2(第1実施例の帯電部材)は
ローラ形状で、直径5〜20[mm]、長さ約300[mm]で
あり、導体2b上に、「高抵抗」の抵抗層2aが形成し
てある。その厚さは1〜5[mm]程度である。本明細
書上で、「高抵抗」とは、次のような内容である。すな
わち、従来技術の項で書いたように、従来の近接帯電装
置(図7)では、感光体1aの帯電を行ったときに、印
加電圧に対する表面電位の関係が、図8に示す直線にな
る。しかし、抵抗層2aの抵抗値を大きくしていくと、
印加電圧に対する表面電位の関係は、図2に実線で示す
ように傾きが、従来の抵抗層の場合(図8の実線=図2
の点線)よりも小さい直線になる。本発明では、印加電
圧に対する表面電位の関係が、傾きが、従来(図8の実
線=図2の点線)よりも小さい、図2上の矢印範囲AA
1となる場合を、抵抗層2aが高抵抗である、と定義す
る。逆に言うと、印加電圧に対する表面電位の関係が、
従来の抵抗層の場合(図8の実線=図2の点線)あるい
はそれより大きい場合は、抵抗層2aが中抵抗又は低抵
抗であると定義する。発明者らの実験によって、抵抗層
2aを抵抗率が均一の材料で構成した場合には、材料の
抵抗率が109以上が「高抵抗」で、109〜1012[Ω
cm]の範囲で、後述する帯電むら抑制効果が得られる
ことが分かった。The charging roller 2 (charging member of the first embodiment) is roller-shaped, has a diameter of 5 to 20 [mm] and a length of about 300 [mm], and has a "high resistance" on the conductor 2b. The resistance layer 2a is formed. Its thickness is about 1 to 5 [mm]. In the present specification, "high resistance" has the following contents. That is, as described in the section of the prior art, in the conventional proximity charging device (FIG. 7), when the photoconductor 1a is charged, the relationship between the applied voltage and the surface potential becomes a straight line shown in FIG. . However, when the resistance value of the resistance layer 2a is increased,
The relationship between the surface potential and the applied voltage has a slope as shown by the solid line in FIG. 2 in the case of the conventional resistance layer (solid line in FIG. 8 = FIG.
The dotted line is smaller than the straight line. In the present invention, the relationship between the surface potential and the applied voltage has a slope smaller than that of the conventional case (solid line in FIG. 8 = dotted line in FIG. 2), and arrow range AA in FIG.
The case of 1 is defined as the resistance layer 2a having a high resistance. Conversely, the relationship between the applied voltage and the surface potential is
In the case of the conventional resistance layer (solid line in FIG. 8 = dotted line in FIG. 2) or larger, it is defined that the resistance layer 2a has medium resistance or low resistance. According to the experiments conducted by the inventors, when the resistance layer 2a is made of a material having a uniform resistivity, a material having a resistivity of 10 9 or more is “high resistance” and 10 9 to 10 12 [Ω].
It was found that the effect of suppressing charging unevenness described later can be obtained in the range of [cm].
【0022】図1に示す第1実施例の抵抗層2aは、抵
抗率が均一の材料で構成してあり、材料の抵抗率は10
9〜1012[Ωcm]である。抵抗率が109〜10
12[Ωcm]である材料の作成方法としては、絶縁性の
樹脂やゴムなどに、カーボンなどの導電性の微粒子を混
合して、分散状態や配向状態を調整する方法がある。ま
た、導電性の樹脂やゴムなどに、絶縁性の微粒子を混合
する方法もある。「高抵抗」の抵抗層2aを有する帯電
部材は、第1実施例では帯電ロ−ラ2であるが、これを
ベルト状などにしてもよい。The resistance layer 2a of the first embodiment shown in FIG. 1 is made of a material having a uniform resistivity, and the resistivity of the material is 10%.
It is 9 to 10 12 [Ωcm]. Resistivity is 10 9 to 10
As a method of producing a material having a resistance of 12 [Ωcm], there is a method of mixing conductive particles such as carbon with an insulating resin or rubber to adjust the dispersion state or orientation state. There is also a method of mixing insulating particles with a conductive resin or rubber. The charging member having the "high resistance" resistance layer 2a is the charging roller 2 in the first embodiment, but it may be belt-shaped or the like.
【0023】図3に、帯電部材をベルト状とした第2実
施例を示す。この実施例の帯電ベルト2は、エンドレス
ベルト状の導体2b上に、「高抵抗」の抵抗層2aを形
成したものである。第1実施例および第2実施例では、
抵抗層2aは抵抗率が均一の材料によって構成している
が、第3実施例を示す図4のように、抵抗層2aを、複
数の層2a1,2a2,2a3で構成してもよい。FIG. 3 shows a second embodiment in which the charging member has a belt shape. In the charging belt 2 of this embodiment, a “high resistance” resistance layer 2a is formed on an endless belt-shaped conductor 2b. In the first and second embodiments,
Although the resistance layer 2a is composed of a material having a uniform resistivity, the resistance layer 2a may be composed of a plurality of layers 2a1, 2a2, 2a3 as shown in FIG. 4 showing the third embodiment.
【0024】いずれの実施例においても、帯電ロ−ラ又
は帯電ベルト2は、感光体1aを帯電するときには、不
図示の駆動源によって、図中の矢印の向きに回転駆動さ
れる。In any of the embodiments, the charging roller or the charging belt 2 is rotationally driven in the direction of the arrow in the figure by a driving source (not shown) when charging the photoconductor 1a.
【0025】つまり、帯電作用面が移動する。さらに、
帯電ロ−ラ又は帯電ベルト2と感光体1aとの最近接部
(A/B)での、帯電作用面の移動する速度と感光体表
面の移動する速度とが異なるように、帯電ロ−ラ又は帯
電ベルト2の回転駆動速度が設定されている。つまり、
最近接部(A/B)で、帯電作用面の移動する速度をV
A(ベクトル)、感光体表面の移動する速度をVBとした
ときに、 VA≠VB となるように、帯電ロ−ラ又は帯電ベルト2の回転駆動
速度が設定されている。帯電作用面の移動する速さの適
当な値は、抵抗層2aの抵抗率などによって違うが、2
00〜1000[mm/sec]である。帯電ロ−ラ又は帯電
ベルト2の回転方向は図示矢印とは逆向きでもよい。た
だし、その場合でも、電荷誘導部材9の位置は、帯電作
用面の移動する方向に関して、最近接部(A/B)より
も上流側に配置する。That is, the charging surface moves. further,
The charging roller or charging belt 2 and the photosensitive member 1a are arranged so that the moving speed of the charging surface and the moving speed of the photosensitive member surface at the closest position (A / B) between the photosensitive member 1a are different from each other. Alternatively, the rotational driving speed of the charging belt 2 is set. That is,
At the closest point (A / B), set the moving speed of the charging surface to V
The rotation driving speed of the charging roller or charging belt 2 is set so that V A ≠ V B , where A (vector) and the moving speed of the photosensitive member surface are V B. An appropriate value of the moving speed of the charging surface depends on the resistivity of the resistance layer 2a and the like.
It is 00 to 1000 [mm / sec]. The rotation direction of the charging roller or the charging belt 2 may be opposite to that shown by the arrow. However, even in that case, the position of the charge inducing member 9 is arranged upstream of the closest portion (A / B) with respect to the moving direction of the charging surface.
【0026】また、帯電ロ−ラ又は帯電ベルト2は、感
光体ドラム1に対して、最近接部(A/B)での距離が
0.005〜0.3[mm]になる位置に配置する。帯
電ロ−ラ又は帯電ベルト2の導体2bには、帯電電源3
によって帯電電圧を印加し、感光体1aの帯電を行う。
印加電圧は、直流で−1〜−5[kV]である。Further, the charging roller or the charging belt 2 is arranged at a position where the distance at the closest portion (A / B) to the photosensitive drum 1 is 0.005 to 0.3 [mm]. To do. The charging roller or the conductor 2b of the charging belt 2 has a charging power source 3
A charging voltage is applied to charge the photoconductor 1a.
The applied voltage is DC -1 to -5 [kV].
【0027】電荷誘導部材9は、帯電作用面上により大
きな誘導電荷を発生させることができるものであれば、
どのようなものであってもよい。第1〜3実施例の電荷
誘導部材9は、湾曲した導体9bの表面に、絶縁体の皮
膜9aを形成した構造で、導体9bを接地している。電
荷誘導部材9の設置位置は、帯電作用面の移動する方向
に関して、最近接部(A/B)よりも上流側で、帯電作
用面に対向する位置である。また、電荷誘導部材9は、
帯電部材(2)と感光体1aに対して非接触であるが、
帯電部材と感光体の一方または両方と接触していてもか
まわない。If the charge inducing member 9 can generate a larger inductive charge on the charging surface,
Anything may be used. The charge inducing member 9 of the first to third embodiments has a structure in which a film 9a of an insulator is formed on the surface of a curved conductor 9b, and the conductor 9b is grounded. The installation position of the charge inducing member 9 is a position facing the charging surface, upstream of the closest portion (A / B) in the moving direction of the charging surface. In addition, the charge induction member 9 is
Although not in contact with the charging member (2) and the photoreceptor 1a,
It may be in contact with one or both of the charging member and the photoconductor.
【0028】第1〜第3実施例(図1,図3,図4)で
は、電荷誘導部材9(の絶縁体の皮膜9a)の表面に、
帯電作用面(抵抗層2aの表面)より大きな誘導電荷が
発生する。一方、電荷誘導部材9を置かない場合、帯電
作用面と感光体1aとの距離が大きいところでは、帯電
作用面上に発生する誘導電荷は小さい。これは、帯電作
用面に対向する電極(1b)が遠くにある場合、帯電作
用面と対向電極(1b)との間の静電容量が小さくなる
ため、誘導電荷も小さくなるためである。ここで、「帯
電作用面と感光体1aとの距離」とは、帯電作用面上の
ある点から一番近くの感光体の表面までの距離のことを
意味する。これに対して、最近接部(A/B)での距離
は、「帯電部材(2)と感光体との最近接部での距離」
として区別する。In the first to third embodiments (FIGS. 1, 3 and 4), the surface of (the insulating film 9a of) the charge inducing member 9 is
Larger induced charges are generated than the charging surface (surface of the resistance layer 2a). On the other hand, when the charge inducing member 9 is not placed, the induced charge generated on the charging surface is small where the distance between the charging surface and the photoconductor 1a is large. This is because when the electrode (1b) facing the charging surface is far, the capacitance between the charging surface and the counter electrode (1b) is small, and thus the induced charge is also small. Here, the “distance between the charging surface and the photoconductor 1a” means the distance from a point on the charging surface to the surface of the nearest photoconductor. On the other hand, the distance at the closest portion (A / B) is “the distance at the closest portion between the charging member (2) and the photoconductor”.
To be distinguished.
【0029】図9は、「帯電作用面と感光体との距離」
を説明したものである。帯電作用面上の点Xでの帯電作
用面と感光体1aとの距離は、Xから最も近い、感光体
1aの表面Yまでの距離である。FIG. 9 shows "distance between charging surface and photoconductor".
Is explained. The distance between the charging surface and the photosensitive member 1a at the point X on the charging surface is the distance from X to the surface Y of the photosensitive member 1a that is the shortest.
【0030】ところで、電荷誘導部材9を図1,図3,
図4のような位置に配置した場合、帯電作用面と電荷誘
導部材9との間で、放電が起こり、電荷誘導部材9を構
成する絶縁体の皮膜9aの表面が帯電される。絶縁体皮
膜9aの表面が帯電されてしまうと、帯電作用面上に電
荷を誘導する効果が小さくなるが、この場合でも、帯電
ロ−ラ又は帯電ベルト2と電荷誘導部材9との間には、
放電開始電圧に相当する電圧が掛っている。ここでの放
電開始電圧は、帯電ロ−ラ又は帯電ベルト2と電荷誘導
部材9との間での放電開始電圧のことであり、帯電ロ−
ラ又は帯電ベルト2と電荷誘導部材9との最近接部(A
/B)での距離に依存する。By the way, the charge inducing member 9 is replaced by the charge inducing member 9 shown in FIGS.
When arranged in the position as shown in FIG. 4, a discharge occurs between the charging surface and the charge inducing member 9, and the surface of the insulating film 9a constituting the charge inducing member 9 is charged. If the surface of the insulator film 9a is charged, the effect of inducing charges on the charging surface is reduced, but even in this case, the charge roller or the charging belt 2 and the charge inducing member 9 may not be electrically charged. ,
A voltage corresponding to the discharge start voltage is applied. The discharge starting voltage here is a discharge starting voltage between the charging roller or charging belt 2 and the charge inducing member 9, and the charging starting voltage.
Or the closest portion of the charging belt 2 and the charge induction member 9 (A
/ B) depending on the distance.
【0031】放電開始電圧は、帯電ロ−ラ又は帯電ベル
ト2と電荷誘導部材9とが接触している場合に最も小さ
くなるが、それでも約500[V]である。したがっ
て、誘導電荷部材9が帯電されても、第1〜第3実施例
の帯電装置では、電荷誘導部材9を置かない場合に比べ
れば、帯電作用面上の誘導電荷が大きくなる。第1〜第
3実施例の帯電装置では、電荷誘導部材9によって発生
させた誘導電荷を、帯電作用面を移動させることによっ
て、帯電ロ−ラ又は帯電ベルト2と感光体1aとの最近
接部(A/B)へと運び、放電を起こさせている。誘導
電荷を帯電作用面上に発生させるためには、帯電作用面
の近くに導体を置く方法も考えられる。しかし、この場
合は、帯電ロ−ラ又は帯電ベルト2と電荷誘導部材であ
る導体との間で放電が起きたときに、帯電ロ−ラ又は帯
電ベルト2と電荷誘導部材との間で、際限なく電流が流
れるようになってしまう。このため、電荷誘導部材9を
導体9bのみにした場合、電荷誘導部材に余計な電流が
流れるため、帯電効率が悪くなる。絶縁体の皮膜2aが
ある場合には、絶縁体の表面電位が上がることによっ
て、帯電ロ−ラ又は帯電ベルト2と電荷誘導部材9との
間では、放電が起こらなくなる。このほか、第1〜第3
実施例の帯電装置で、電荷誘導部材9の導体9bに、適
当な電圧を印加することによっても、帯電ロ−ラ又は帯
電ベルト2と電荷誘導部材9との間で起こる放電を防止
することができる。この場合には、電荷誘導部材9を帯
電させる電流さえも、帯電ロ−ラ又は帯電ベルト2と電
荷誘導部材9との間に流れないため、さらに帯電効果が
良くなる。The discharge starting voltage becomes the smallest when the charging roller or charging belt 2 and the charge inducing member 9 are in contact with each other, but is still about 500 [V]. Therefore, even if the induction charge member 9 is charged, in the charging devices of the first to third embodiments, the induction charge on the charging surface becomes larger than in the case where the charge induction member 9 is not placed. In the charging devices of the first to third embodiments, the induction charge generated by the charge induction member 9 is moved on the charging action surface to move the charging roller or the charging belt 2 and the closest portion of the photoconductor 1a. (A / B) to discharge. In order to generate the induced charges on the charging surface, a method of placing a conductor near the charging surface can be considered. However, in this case, when discharge occurs between the charging roller or the charging belt 2 and the conductor which is the charge induction member, the discharge roller or the charging belt 2 and the charge induction member are not limited to each other. Instead, the current will begin to flow. For this reason, when the charge inducing member 9 is made of only the conductor 9b, an extra current flows through the charge inducing member, which deteriorates the charging efficiency. In the case where the insulator film 2a is present, the surface potential of the insulator rises, so that no discharge occurs between the charging roller or charging belt 2 and the charge induction member 9. In addition, the first to third
In the charging device of the embodiment, by applying an appropriate voltage to the conductor 9b of the charge inducing member 9, it is possible to prevent the discharge from occurring between the charge roller or the charging belt 2 and the charge inducing member 9. it can. In this case, even a current for charging the charge inducing member 9 does not flow between the charging roller or the charging belt 2 and the charge inducing member 9, so that the charging effect is further improved.
【0032】従来技術の項で書いたように、帯電むらを
防止するために、従来の近接帯電装置では帯電部材の抵
抗率を107〜109[Ωcm]の中抵抗領域に設定して
いた。しかし、帯電部材の抵抗率をこの範囲に設定した
場合、帯電部材と感光体との最近接部(A/B)での距
離のばらつき(帯電部材の長手方向でのばらつき)によ
って、感光体の表面電位が変化するといった問題があっ
た。具体的には、画像を形成したときに不良が発生しな
いためには、帯電部材と感光体との最近接部での距離の
ばらつきを0.01[mm]程度に抑える必要がある。
これは図8で、Vthが帯電部材と感光体との最近接部
での距離に依存することが原因である。Vthは、「Pa
shenの法則」によって、帯電部材と感光体との距離の変
化に対して約5000[V/mm]の割合で大きくな
る。このため、帯電部材と感光体との距離のばらつきを
0.01[mm]程度にすれば、帯電時の感光体の表面
電位のばらつきは50[V]程度になる。As described in the section of the prior art, in order to prevent uneven charging, in the conventional proximity charging device, the resistivity of the charging member was set in the medium resistance region of 10 7 to 10 9 [Ωcm]. . However, when the resistivity of the charging member is set in this range, the variation of the distance at the closest portion (A / B) between the charging member and the photoconductor (variation in the longitudinal direction of the charging member) causes There was a problem that the surface potential changed. Specifically, in order not to cause a defect when an image is formed, it is necessary to suppress the variation in the distance at the closest portion between the charging member and the photosensitive member to about 0.01 [mm].
This is because in FIG. 8, Vth depends on the distance at the closest point between the charging member and the photoconductor. Vth is “Pa
According to the "Shen's law", it becomes large at a rate of about 5000 [V / mm] with respect to the change in the distance between the charging member and the photoconductor. Therefore, if the variation in the distance between the charging member and the photoconductor is set to about 0.01 [mm], the variation in the surface potential of the photoconductor at the time of charging will be about 50 [V].
【0033】一方で、発明者らの実験によると、帯電部
材の抵抗率を109〜1012[Ωcm]の高抵抗領域に
設定した場合の、印加電圧に対する感光体の表面電位の
関係は、帯電部材の抵抗率を107〜109[Ωcm]の
中抵抗領域に設定した場合とは、異なる。帯電部材の抵
抗率を109〜1012[Ωcm]の高抵抗領域に設定し
た場合には、印加電圧に対する表面電位の関係が、傾き
が1の直線(図8の実線=図2の破線)にならず、傾き
が1よりも小さい直線(図2の実線)になる。また、こ
のとき、帯電が開始される電圧Vthは、帯電部材と感
光体との最近接部(A/B)での距離のみに依存し、帯
電部材の抵抗層2aの抵抗率には依存しない(Vthは
中抵抗でも高抵抗でもほぼ同じ値になる)。すなわち、
帯電部材の抵抗層2aの抵抗率を109〜1012[Ωc
m]の高抵抗領域に設定した場合、印加電圧に対する表
面電位の関係は図2の実線のようになる。したがって、
帯電部材の抵抗層2aの抵抗率を109〜1012[Ωc
m]の高抵抗領域に設定した場合、該抵抗率を107〜
109[Ωcm]の中抵抗領域に設定した場合にくらべ
て、帯電部材と感光体との最近接部(A/B)での距離
のばらつきによる、感光体の表面電位のばらつきを、小
さくすることができる。これは、帯電部材を高抵抗にす
ることによって、印加電圧に対する表面電位との関係
が、傾きが1よりも小さい直線になるためである。On the other hand, according to the experiments conducted by the inventors, when the resistivity of the charging member is set to a high resistance region of 10 9 to 10 12 [Ωcm], the relationship between the applied voltage and the surface potential of the photoconductor is as follows. This is different from the case where the resistivity of the charging member is set in the medium resistance region of 10 7 to 10 9 [Ωcm]. When the resistivity of the charging member is set to a high resistance region of 10 9 to 10 12 [Ωcm], the relationship between the surface potential and the applied voltage is a straight line with a slope of 1 (solid line in FIG. 8 = broken line in FIG. 2). However, the slope becomes a straight line with a slope smaller than 1 (solid line in FIG. 2). Further, at this time, the voltage Vth at which charging is started depends only on the distance at the closest portion (A / B) between the charging member and the photoconductor, and does not depend on the resistivity of the resistance layer 2a of the charging member. (Vth has almost the same value for medium resistance and high resistance). That is,
The resistivity of the resistance layer 2a of the charging member is 10 9 to 10 12 [Ωc
m] in the high resistance region, the relationship between the applied voltage and the surface potential is as shown by the solid line in FIG. Therefore,
The resistivity of the resistance layer 2a of the charging member is 10 9 to 10 12 [Ωc
m] in the high resistance region, the resistivity is 10 7 to
Compared with the case where the medium resistance region is set to 10 9 [Ωcm], the variation in the surface potential of the photoconductor due to the variation in the distance at the closest portion (A / B) between the charging member and the photoconductor is reduced. be able to. This is because when the charging member has a high resistance, the relationship between the applied voltage and the surface potential becomes a straight line having an inclination smaller than 1.
【0034】しかし、発明者らの実験によると、このよ
うに帯電部材の抵抗率を109〜1012[Ωcm]の高
抵抗領域に設定した場合には、帯電むらが発生する。す
なわち、帯電部材の抵抗を大きくし、印加電圧に対する
表面電位の関係が、傾きが1よりも小さくなった場合に
は、この帯電むらが発生しやすい。しかし、この帯電む
らは、帯電部材の抵抗率が107[Ωcm]以下の場合
に発生する帯電むらとは、形態が異なる。帯電部材の抵
抗率を109〜1012[Ωcm]の高抵抗領域に設定し
た場合に発生する、帯電むらのメカニズムについては明
らかになっていないが、つぎのような理由になると予想
している。However, according to the experiments conducted by the inventors, uneven charging occurs when the resistivity of the charging member is set in the high resistance region of 10 9 to 10 12 [Ωcm]. That is, when the resistance of the charging member is increased and the relationship between the surface potential and the applied voltage becomes smaller than 1, this uneven charging is likely to occur. However, this charging unevenness has a different form from the charging unevenness that occurs when the resistivity of the charging member is 10 7 [Ωcm] or less. The mechanism of uneven charging generated when the resistivity of the charging member is set to a high resistance region of 10 9 to 10 12 [Ωcm] has not been clarified, but it is expected to be as follows. .
【0035】帯電部材の抵抗率が109〜1012[Ωc
m]の高抵抗領域である場合には、帯電部材と感光体と
の間で1回放電が起こってしまうと、次の放電が起こり
にくいと考えられる。つまり、帯電部材と感光体との間
で放電が起こると、帯電部材表面上の放電が起こった場
所の電位が低下する。しかし、帯電部材の抵抗率が大き
いため、このように低下した電位が、帯電電源3から電
荷が供給され、放電前の電位に回復するまでの時間は長
くなる。したがって、帯電部材の抵抗率が107〜109
[Ωcm]の中抵抗領域である場合と同じ値の電圧を印
加しただけでは、帯電部材の表面に感光体の表面電位を
所望の値に帯電するために必要な電荷が供給されない。
(放電によって低下した帯電部材表面の電位が放電前の
値に回復するまでの時間が長くなり、その間に感光体が
移動して、帯電装置を通過してしまう。)このため、帯
電部材の抵抗率が109〜1012[Ωcm]の高抵抗領
域である場合には、印加電圧に対する表面電位の関係
は、傾きが1よりも小さい直線になる。感光体の表面を
所望の電位に帯電するために、印加電圧を大きくして、
帯電部材の表面の電位の回復を速くする方法が考られ
る。しかし、この場合は、印加電圧を大きくしたことに
より、1回の放電によって帯電部材から感光体に移動す
る電荷量が大きくなってしまい、帯電むらが発生する。
(印加電圧が大きいため、放電が帯電部材に表面全体か
ら均一に起こらず、局所的に集中して起こるようにな
る。) これに対して、帯電部材の抵抗率が107〜109[Ωc
m]のような中抵抗領域の場合には、放電によって低下
した帯電部材表面の電位が放電前の値に回復するまでの
時間は短く、その間に感光体の移動する距離はそれほど
大きくならない。このため、印加電圧をそれほど大きく
しなくても、帯電部材の表面に感光体の表面を所望の値
に帯電するために必要な電荷が供給される。つまり、1
回の放電によって帯電部材から感光体に移動する電荷量
が大きくならず、帯電むらが発生しない。The resistivity of the charging member is 10 9 to 10 12 [Ωc
In the high resistance region [m], it is considered that the next discharge is unlikely to occur once the discharge occurs between the charging member and the photoconductor. That is, when discharge occurs between the charging member and the photoconductor, the potential at the place where the discharge occurs on the surface of the charging member decreases. However, since the resistivity of the charging member is large, it takes a long time for the potential thus lowered to be restored to the potential before the electric charge is supplied from the charging power supply 3 and the discharge. Therefore, the resistivity of the charging member is 10 7 to 10 9
Just by applying the voltage of the same value as in the case of the medium resistance region of [Ωcm], the charge necessary for charging the surface potential of the photoconductor to the desired value cannot be supplied to the surface of the charging member.
(It takes a long time for the electric potential of the surface of the charging member, which has been lowered by the discharge, to recover to the value before the discharging, and the photosensitive member moves and passes through the charging device during that time.) Therefore, the resistance of the charging member In the case of a high resistance region having a rate of 10 9 to 10 12 [Ωcm], the relationship between the surface potential and the applied voltage is a straight line with a slope smaller than 1. In order to charge the surface of the photoconductor to the desired potential, increase the applied voltage,
A method of speeding up the recovery of the potential on the surface of the charging member can be considered. However, in this case, by increasing the applied voltage, the amount of charge transferred from the charging member to the photosensitive member by one discharge increases, and uneven charging occurs.
(Because the applied voltage is large, the discharge does not uniformly occur on the entire surface of the charging member, but is locally concentrated.) In contrast, the resistivity of the charging member is 10 7 to 10 9 [Ωc
In the case of a medium resistance region such as m], it takes a short time for the potential on the surface of the charging member, which has been lowered by the discharge, to recover to the value before the discharge, and the distance the photoreceptor moves during that time is not so large. Therefore, the electric charge necessary for charging the surface of the photosensitive member to a desired value is supplied to the surface of the charging member without increasing the applied voltage so much. That is, 1
The amount of charge transferred from the charging member to the photoconductor by the discharge once does not increase, and uneven charging does not occur.
【0036】第1〜第3実施例の帯電装置では、帯電部
材の抵抗率が109〜1012[Ωcm]の高抵抗領域で
あるが、帯電むらが発生しない。これは、帯電作用面が
移動し、さらに、帯電作用面の移動する方向に関して帯
電部材(2)と感光体(1a)との最近接部(A/B)
よりも上流側の、帯電作用面と対向する位置に、電荷誘
導部材9をしたからである。電荷誘導部材9により、そ
れがない場合にくらべて、より大きい誘導電荷が帯電作
用面に発生し、この帯電作用面が移動によって、最近接
部(A/B)へ移動する。したがって、帯電部材の抵抗
率が109〜1012[Ωcm]の高抵抗領域であるにも
かかわらず、印加電圧を大きくしなくても、帯電部材と
感光体との最近接部(A/B)での帯電作用面上に、感
光体を所望の電位に帯電させるために必要な電荷量を供
給することができる。In the charging devices of the first to third embodiments, although the charging member has a high resistance region of 10 9 to 10 12 [Ωcm], uneven charging does not occur. This is because the charging surface moves, and the closest portion (A / B) between the charging member (2) and the photoconductor (1a) in the moving direction of the charging surface.
This is because the charge inducing member 9 is provided at a position facing the charging surface on the upstream side. Due to the charge inducing member 9, a larger induced charge is generated on the charging surface as compared with the absence thereof, and this charging surface moves to move to the closest portion (A / B). Therefore, even though the resistivity of the charging member is in the high resistance region of 10 9 to 10 12 [Ωcm], the closest portion (A / B) between the charging member and the photosensitive member can be obtained without increasing the applied voltage. It is possible to supply the charge amount necessary for charging the photoconductor to a desired potential on the charging surface of (1).
【0037】したがって、第1〜第3実施例の帯電装置
では、帯電部材(2)の抵抗率が109〜1012[Ωc
m]の高抵抗領域の場合に問題となる帯電むらが発生し
ない。これは、第1〜第3実施例の帯電装置では、印加
電圧を大きくする必要がないので、1回の放電によって
移動する電荷量が大きくなることがないためである。さ
らに、第1〜第3実施例の帯電装置では、帯電部材
(2)と感光体1aとの最近接部(A/B)での、帯電
作用面と感光体表面との移動する速度が異なるようにし
てあるので、帯電部材と感光体との間で1回放電が起こ
っても、帯電作用面と感光体表面の移動する速度の違い
によって、感光体表面は順次帯電作用面の異なる場所と
対向する。したがって、放電によって帯電作用面上に電
位が低下した場所(電荷量が小さくなった場所)ができ
ても、帯電作用面の移動によって、順次帯電作用面上の
電位が高い場所(電荷量が大きい場所)が、感光体表面
と対向するようになる。つまり、単位面積当たりの感光
体表面を帯電するために使われる、帯電作用面の面積が
大きいのは、帯電作用面と感光体表面の移動する速度が
同じ場合よりも、帯電作用面と感光体表面の移動する速
さが異なる場合の方である。第1〜第3実施例の帯電装
置では、このように、最近接部(A/B)での、帯電作
用面と感光体表面の移動する速度が異なるため、さらに
印加電圧を小さくできる効果がある。したがって、帯電
部材の抵抗率が109〜1012[Ωcm]の高抵抗領域
の場合に問題となる、帯電むらも発生しにくくなる。Therefore, in the charging devices of the first to third embodiments, the charging member (2) has a resistivity of 10 9 to 10 12 [Ωc.
In the high resistance region of [m], uneven charging, which is a problem, does not occur. This is because, in the charging devices of the first to third embodiments, it is not necessary to increase the applied voltage, and therefore the amount of charge that moves by one discharge does not increase. Furthermore, in the charging devices of the first to third embodiments, the moving speeds of the charging surface and the surface of the photoconductor differ at the closest portion (A / B) between the charging member (2) and the photoconductor 1a. Therefore, even if a single discharge occurs between the charging member and the photoconductor, the photoconductor surface is sequentially changed to a different place on the charge action surface due to the difference in the moving speed of the charge action surface and the photoconductor surface. opposite. Therefore, even if there is a place where the potential is lowered (a place where the amount of electric charge is reduced) on the charging surface due to discharge, the place where the potential is sequentially higher (the amount of electric charge is large) due to the movement of the charging surface. Location) faces the surface of the photoconductor. In other words, the larger area of the charging surface used to charge the surface of the photoconductor per unit area means that the surface of the charging surface and the surface of the photoconductor are larger than the case where the moving speed of the surface of the charging surface is the same as that at the same speed. This is the case where the moving speed of the surface is different. In the charging devices of the first to third embodiments, since the moving speeds of the charging surface and the photosensitive member surface at the closest portion (A / B) are different as described above, it is possible to further reduce the applied voltage. is there. Therefore, uneven charging is less likely to occur, which is a problem when the charging member has a high resistance region of 10 9 to 10 12 [Ωcm].
【0038】このほか、第1〜第3実施例の帯電装置で
は、従来の近接帯電装置で問題であった、「帯電部材と
感光体との最近接部での距離のばらつきを0.01[m
m]程度に抑える必要がある」といった制限もゆるくな
る。従来の近接帯電装置では、印加電圧(V0)と感光
体の表面電位(VS)との関係は、傾き1の直線にな
る。これは、感光体の表面電位(VS)が VS=V0−Vth (Vthは帯電が始まる電圧) の値になると、それ以上帯電部材と感光体の間で放電が
起こらず、感光体の表面電位が大きくならないためであ
る。Vthが帯電部材と感光体との最近接部(A/B)
での距離に大きく依存するため、従来の帯電装置では、
帯電部材と感光体との最近接部での距離を厳しく制限し
なければならなかった。これに対して、第1〜第3実施
例の帯電装置では、感光体の表面電位は帯電部材から感
光体に供給される電荷量によって決まる。(感光体の表
面電位が、飽和値(V0−Vth)に達するまえに、感
光体が移動して、帯電装置を通過してしまう。)第1〜
第3実施例の帯電装置では、帯電部材から感光体へ移動
する電荷量は、帯電部材の抵抗率と、感光体面に対する
帯電作用面の相対移動速度と、電荷誘導部材9によって
帯電作用面上に発生する誘導電荷の大きさとによって決
定される。このため、感光体帯電時の表面電位の値は、
帯電部材と感光体との最近接部(A/B)での距離のば
らつきの影響をそれほど受けない。つまり、第1〜第3
実施例の帯電装置では、従来の近接帯電装置のように、
帯電部材と感光体との最近接部での距離のばらつきを
0.01[mm]依度に、厳しく制限しなくても、感光
体の表面電位のばらつきを小さくすることができる。In addition, in the charging devices of the first to third embodiments, there was a problem in the conventional proximity charging device, that is, "the variation of the distance between the charging member and the photoconductor at the closest portion is 0.01 [. m
m]]. In the conventional proximity charging device, the relationship between the applied voltage (V 0 ) and the surface potential (V S ) of the photoconductor is a straight line with an inclination of 1. This is because when the surface potential (V S ) of the photoconductor reaches a value of V S = V 0 −Vth (Vth is the voltage at which charging starts), no further discharge occurs between the charging member and the photoconductor, and This is because the surface potential of does not increase. Vth is the closest point between the charging member and the photoconductor (A / B)
Since it greatly depends on the distance at
The distance at the closest point between the charging member and the photoconductor has to be strictly limited. On the other hand, in the charging devices of the first to third embodiments, the surface potential of the photoconductor is determined by the amount of charge supplied from the charging member to the photoconductor. (Before the surface potential of the photoconductor reaches the saturation value (V 0 -Vth), the photoconductor moves and passes through the charging device.)
In the charging device of the third embodiment, the amount of charge transferred from the charging member to the photoconductor is determined by the resistivity of the charging member, the relative movement speed of the charging surface with respect to the photoconductor surface, and the charge guiding member 9 on the charging surface. It is determined by the magnitude of the induced charge generated. Therefore, the value of the surface potential when the photoreceptor is charged is
It is not so much affected by the variation in the distance at the closest portion (A / B) between the charging member and the photoconductor. That is, the first to the third
In the charging device of the embodiment, like the conventional proximity charging device,
The variation in the surface potential of the photoconductor can be reduced without strictly limiting the variation in the distance at the closest portion between the charging member and the photoconductor to 0.01 [mm].
【0039】このように第1〜第3実施例の帯電装置で
は、帯電部材を高抵抗にすることにより、従来の近接帯
電装置に比べて、帯電部材と感光体との最近接部での距
離のばらつきによる、感光体の表面電位のばらつきを、
小さくすることができる。さらに、帯電作用面が移動す
ることと、電荷誘導部材9が配置してあることにより、
印加電圧を大きくしなくても、感光体の表面電位を所望
の電位に帯電するために必要な電荷を供給することがで
きる。このため、帯電むらも発生しない。上述のよう
に、第1〜第3実施例の帯電装置は、従来の近接帯電装
置で問題であった2つの問題を同時に解決している。As described above, in the charging devices of the first to third embodiments, by making the charging member have a high resistance, the distance at the closest portion between the charging member and the photoconductor is larger than that in the conventional proximity charging device. Variations in the surface potential of the photoconductor due to variations in
Can be made smaller. Furthermore, since the charging surface is moved and the charge inducing member 9 is arranged,
Even if the applied voltage is not increased, the electric charges necessary for charging the surface potential of the photoconductor to a desired potential can be supplied. Therefore, uneven charging does not occur. As described above, the charging devices of the first to third embodiments simultaneously solve the two problems that have been encountered in the conventional proximity charging device.
【図1】 本発明の第1実施例の横断面図である。FIG. 1 is a cross sectional view of a first embodiment of the present invention.
【図2】 図1に示す帯電ロ−ラ2の、印加電圧と感光
体1aの表面電位の関係(帯電特性)を実線で示すグラ
フである。2 is a graph showing the relationship (charging characteristics) between the applied voltage and the surface potential of the photoconductor 1a of the charging roller 2 shown in FIG. 1 by a solid line.
【図3】 本発明の第2実施例の横断面図である。FIG. 3 is a transverse sectional view of a second embodiment of the present invention.
【図4】 本発明の第3実施例の横断面図である。FIG. 4 is a cross sectional view of the third embodiment of the present invention.
【図5】 従来の帯電ロ−ラ2を用いた画像形成装置の
横断面図である。FIG. 5 is a transverse sectional view of an image forming apparatus using a conventional charging roller 2.
【図6】 図5に示す帯電ロ−ラ2の拡大横断面図であ
る。6 is an enlarged cross-sectional view of the charging roller 2 shown in FIG.
【図7】 従来の近接帯電方式の帯電ロ−ラ2の横断面
図である。FIG. 7 is a cross-sectional view of a conventional proximity charging type charging roller 2.
【図8】 図7に示す近接帯電方式の帯電ロ−ラ2の帯
電電圧とそれによって感光体1aの表面に形成される電
位との関係(帯電特性)を示すグラフである。8 is a graph showing the relationship (charging characteristics) between the charging voltage of the proximity charging type charging roller 2 shown in FIG. 7 and the potential formed on the surface of the photoconductor 1a by the charging voltage.
【図9】 図7に示す近接帯電方式の帯電ロ−ラ2と感
光体1aの最近接位置A,Bおよび帯電ロ−ラ2の帯電
作用面上の任意の点Xとこの点に最も近い感光体表面上
の点Yを示す横断面図である。9 is the closest position A, B of the charging roller 2 of the proximity charging system and the photosensitive member 1a shown in FIG. 7, and an arbitrary point X on the charging surface of the charging roller 2 and the closest point to this point. FIG. 3 is a cross-sectional view showing a point Y on the surface of the photoconductor.
Claims (4)
に近接してこれを帯電する帯電装置において、 被帯電面に対向する導体と、該導体と被帯電面の間にあ
って該導体に接っした高抵抗層を有し、少くとも被帯電
面に対向する面が移動する帯電部材、および、該移動の
方向に関して、被帯電面に対する帯電部材の最近接部よ
り上流に配置され帯電部材に対向する電荷誘導部材、を
備えることを特徴とする帯電装置。1. A charging device for charging a movable object to be charged so as to approach the surface to be charged in a non-contact manner, and a conductor facing the surface to be charged and the conductor between the conductor and the surface to be charged. A charging member having a high-resistance layer in contact with the charging surface, at least the surface facing the surface to be charged moves, and with respect to the direction of the movement, the charging member is arranged upstream from the closest portion of the charging member to the surface to be charged. A charging device, comprising: a charge inducing member facing the member.
12[Ωcm]である、請求項1記載の帯電装置。2. The high resistance layer has a resistivity of 10 9 to 10 9.
The charging device according to claim 1, wherein the charging device has a resistance of 12 [Ωcm].
度は被帯電面の移動速度と異なる、請求項1記載の帯電
装置。3. The charging device according to claim 1, wherein the moving speed of the moving surface of the charging member at the closest portion is different from the moving speed of the surface to be charged.
した導体および該導体の、帯電部材に対向する表面に積
層された絶縁体の皮膜を含む、請求項1,請求項2又は
請求項3記載の帯電装置。4. The charge inducing member includes a conductor to which a ground or a voltage is applied and a film of an insulator laminated on a surface of the conductor facing the charging member. The charging device described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33134795A JPH09171282A (en) | 1995-12-20 | 1995-12-20 | Charger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33134795A JPH09171282A (en) | 1995-12-20 | 1995-12-20 | Charger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09171282A true JPH09171282A (en) | 1997-06-30 |
Family
ID=18242675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33134795A Pending JPH09171282A (en) | 1995-12-20 | 1995-12-20 | Charger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09171282A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6405006B1 (en) | 1999-10-15 | 2002-06-11 | Ricoh Company, Ltd. | Image forming apparatus and photoconductive belt module having a non-contact proximity charging device |
US6516169B2 (en) | 2000-08-31 | 2003-02-04 | Ricoh Company Limited | Electrophotographic image forming apparatus having a gap between photoreceptor and charger, and process cartridge therefor |
US6803162B2 (en) | 2001-07-26 | 2004-10-12 | Ricoh Company, Ltd. | Electrophotographic image forming apparatus, photoreceptor therefor and method for manufacturing the photoreceptor |
-
1995
- 1995-12-20 JP JP33134795A patent/JPH09171282A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6405006B1 (en) | 1999-10-15 | 2002-06-11 | Ricoh Company, Ltd. | Image forming apparatus and photoconductive belt module having a non-contact proximity charging device |
US6516169B2 (en) | 2000-08-31 | 2003-02-04 | Ricoh Company Limited | Electrophotographic image forming apparatus having a gap between photoreceptor and charger, and process cartridge therefor |
US6803162B2 (en) | 2001-07-26 | 2004-10-12 | Ricoh Company, Ltd. | Electrophotographic image forming apparatus, photoreceptor therefor and method for manufacturing the photoreceptor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3245240B2 (en) | Transfer device for image forming device | |
JPH0576030B2 (en) | ||
JPH1073983A (en) | Image forming device | |
US6606477B2 (en) | Method to control pre- and post-nip fields for transfer | |
JP2002162857A (en) | Fixing device | |
JPH09171282A (en) | Charger | |
JP3454401B2 (en) | Electrostatic recording device | |
JP3874128B2 (en) | Proximity charging device | |
JP3568089B2 (en) | Transfer belt device | |
JP2001005358A (en) | Cleaning device for wet electrophotographic device | |
JP2002202663A (en) | Developing device and image forming device | |
JP3386265B2 (en) | Transfer belt cleaning device | |
JP3032659B2 (en) | Image forming device | |
JPH07168458A (en) | Electrophotographic device | |
JP2000039780A (en) | Image forming device | |
JP3311440B2 (en) | Transfer belt device | |
JP3870678B2 (en) | Charging device and image forming apparatus | |
JP3493957B2 (en) | Charging device | |
JP3993935B2 (en) | Image forming apparatus | |
JP4147835B2 (en) | Contact charger and image forming apparatus | |
JP3728382B2 (en) | Wet image forming device | |
JP3318328B2 (en) | Transfer device for image forming device | |
JPS6221168A (en) | Photosensitive body for electrophotographic device | |
JP2000321868A (en) | One-component developing device | |
JP2001166599A (en) | Transfer device and image forming device |