JPH09170749A - Heating furnace and its operation method - Google Patents
Heating furnace and its operation methodInfo
- Publication number
- JPH09170749A JPH09170749A JP8208282A JP20828296A JPH09170749A JP H09170749 A JPH09170749 A JP H09170749A JP 8208282 A JP8208282 A JP 8208282A JP 20828296 A JP20828296 A JP 20828296A JP H09170749 A JPH09170749 A JP H09170749A
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- exhaust gas
- combustion exhaust
- heat storage
- heating furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Landscapes
- Air Supply (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、蓄熱式燃焼バー
ナを備えた加熱炉およびその操業方法、特に未燃焼の可
燃成分が燃焼排ガスとともに排出されるのを防止するこ
とのできる加熱炉およびその操業方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating furnace provided with a regenerative combustion burner and its operating method, and more particularly to a heating furnace and its operating method capable of preventing unburned combustible components from being discharged together with combustion exhaust gas. Regarding the method.
【0002】[0002]
【従来の技術】蓄熱式燃焼バーナを配置した加熱炉は、
燃焼バーナに付設した蓄熱体に、高温の燃焼排ガスの保
有する顕熱を蓄熱し、燃焼時に燃焼用空気をこの蓄熱体
を通して高温に予熱して燃焼に供するので、燃焼効率の
高い加熱炉として近年製鉄所等で採用されている。2. Description of the Related Art A heating furnace equipped with a regenerative combustion burner is
The sensible heat of high-temperature combustion exhaust gas is stored in the heat storage body attached to the combustion burner, and the combustion air is preheated to a high temperature through this heat storage body during combustion and used for combustion. It is used in steelworks.
【0003】ところで、蓄熱式燃焼バーナを配置した加
熱炉において、被加熱物を加熱する場合に、燃料と燃焼
用空気とが混合された状態で供給され、被加熱物の表面
近傍で燃焼が行われると、被加熱物の表面が容易に酸化
され、発生したスケールが成品の表面に残留して、品質
が低下するという問題がある。When heating an object to be heated in a heating furnace provided with a regenerative combustion burner, fuel and combustion air are supplied in a mixed state, and combustion occurs near the surface of the object to be heated. If so, there is a problem that the surface of the object to be heated is easily oxidized, the generated scale remains on the surface of the product, and the quality is deteriorated.
【0004】上述のような問題があるため、特開平7−
102313号公報において開示された加熱炉用蓄熱型
交番燃焼バーナにおいては、図4に示すように、燃料供
給孔31を炉壁32から炉33内に30cm程度突き出
す状態に設けて、燃料34が被加熱物35を覆うように
噴射されるようにしている。Due to the above-mentioned problems, Japanese Patent Laid-Open No. 7-
In the heat storage type alternating combustion burner for a heating furnace disclosed in Japanese Patent No. 102313, as shown in FIG. 4, a fuel supply hole 31 is provided so as to protrude from the furnace wall 32 into the furnace 33 by about 30 cm, and the fuel 34 is not covered. The heating object 35 is sprayed so as to cover it.
【0005】そして、燃焼用空気孔36は、炉壁32か
ら炉33内に突き出さないように、かつ燃焼用空気37
は前記燃料34よりも被加熱物35から離れた位置に噴
射されるように設けられており、燃焼によって発生する
火炎38は、燃料34に遮られて直接被加熱物35に当
たらないようになっている。すなわち、被加熱物35近
傍の炉33内の雰囲気は、還元性雰囲気となっており、
これにより被加熱物35の酸化が抑制されるというもの
である。The combustion air holes 36 are arranged so as not to protrude from the furnace wall 32 into the furnace 33, and the combustion air 37 is provided.
Is provided so as to be injected to a position farther from the object to be heated 35 than the fuel 34, and the flame 38 generated by combustion is blocked by the fuel 34 and does not directly hit the object 35 to be heated. ing. That is, the atmosphere in the furnace 33 near the object 35 to be heated is a reducing atmosphere,
This suppresses the oxidation of the object 35 to be heated.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上述し
た特開平7−102313号公報において開示された加
熱炉用蓄熱型交番燃焼バーナを配置した加熱炉で、被加
熱物を加熱する場合、次のような問題点があった。すな
わち、炉内の被加熱物の配置状況や、燃焼バーナの火炎
の経時変化の度合いによっては、炉内に噴射された燃料
がすぐに燃焼されないので、未燃焼の可燃成分を含有し
た燃焼排ガスが、排気状態にある他の燃焼バーナに吸引
されて炉外に排出されるので、燃焼効率が低くなるとい
う問題点があった。However, in the case of heating an object to be heated in the heating furnace in which the heat storage type alternating combustion burner for heating furnace disclosed in the above-mentioned Japanese Patent Laid-Open No. 7-102313 is arranged, the following is required. There was a problem. That is, depending on the arrangement of the heated object in the furnace and the degree of change over time of the flame of the combustion burner, the fuel injected into the furnace is not immediately burned, so the combustion exhaust gas containing unburned combustible components is However, since it is sucked by another combustion burner in the exhaust state and discharged to the outside of the furnace, there is a problem that the combustion efficiency becomes low.
【0007】また、上記以外の蓄熱式燃焼バーナを用い
た場合であっても、燃料の組成が変動するようなときに
は、一定空気比で燃焼していても、未燃焼の可燃成分が
発生する場合があり、このことに起因しても燃焼効率が
低下するという問題点がある。Further, even when a heat storage type combustion burner other than the above is used, when the composition of the fuel fluctuates, unburned combustible components are generated even if burning at a constant air ratio. However, there is a problem that the combustion efficiency is reduced due to this.
【0008】この発明は、従来技術の上述のような問題
点を解消するためになされたものであり、被加熱物の配
置や火炎の経時変化あるいは燃料組成の変動等があって
も、燃焼効率が低下しない加熱炉およびその操業方法を
提供することを目的としている。The present invention has been made in order to solve the above-mentioned problems of the prior art. Even if the arrangement of the object to be heated, the flame changes with time, or the fuel composition changes, the combustion efficiency is improved. It is an object of the present invention to provide a heating furnace and a method of operating the heating furnace that do not decrease.
【0009】[0009]
【課題を解決するための手段】この発明に係る加熱炉
は、交番燃焼する蓄熱式燃焼バ−ナを1組以上配置した
加熱炉において、蓄熱体の燃焼排ガス出側に、燃焼排ガ
ス中の可燃成分を検出する可燃成分検出手段を設けると
ともに、蓄熱体の燃焼排ガス入側に、燃焼排ガス中の可
燃成分を完全燃焼させるための燃焼用空気供給手段を設
けたものである。A heating furnace according to the present invention is a heating furnace in which one or more sets of regenerative combustion burners that perform alternating combustion are arranged. Combustible component detection means for detecting the components is provided, and combustion air supply means for completely burning the combustible components in the combustion exhaust gas is provided on the combustion exhaust gas inlet side of the heat storage body.
【0010】この発明に係る加熱炉においては、可燃成
分検出手段により蓄熱体通過後の燃焼排ガス中に含まれ
る可燃成分を検出する。そして、可燃成分が含まれると
判断された場合には、その燃焼排ガスを排出中の蓄熱式
燃焼バーナの蓄熱体燃焼排ガス入側に設けた燃焼用空気
供給手段により、可燃成分を完全燃焼させるための燃焼
用空気を供給する。In the heating furnace according to the present invention, the combustible component detecting means detects the combustible component contained in the combustion exhaust gas after passing through the heat storage body. When it is determined that the combustible component is contained, in order to completely burn the combustible component by the combustion air supply means provided on the heat storage body combustion exhaust gas inlet side of the regenerative combustion burner that is discharging the combustion exhaust gas. Supply the combustion air.
【0011】したがって、可燃成分が燃焼排ガスととも
に、炉外に排出されることがなく、可燃成分が燃焼され
ることによって発生する燃焼排ガス中の顕熱が、蓄熱体
に蓄熱できるので、燃焼効率が高まる。Therefore, the sensible heat in the combustion exhaust gas generated by the combustion of the combustible component can be stored in the heat storage body without the combustible component being discharged together with the combustion exhaust gas to the outside of the furnace, so that the combustion efficiency is improved. Increase.
【0012】また、前記可燃成分検出手段により検出さ
れた可燃成分を完全燃焼させるための理論空気量を算出
する理論空気量算出手段を設けたものである。A theoretical air amount calculating means for calculating a theoretical air amount for completely burning the combustible component detected by the combustible component detecting means is provided.
【0013】この発明に係る加熱炉においては、理論空
気量算出手段により可燃成分を完全燃焼させるための理
論空気量を算出し、算出した理論空気量に基づいて燃焼
用空気を燃焼用空気供給手段に供給するので、燃焼用空
気を過剰に供給することがなくなり、蓄熱体が過剰空気
により冷却されることもなく、燃焼排ガス中の保有する
顕熱を効率よく蓄熱できる。In the heating furnace according to the present invention, the theoretical air amount calculating means calculates the theoretical air amount for completely combusting the combustible components, and the combustion air is supplied based on the calculated theoretical air amount. Since the combustion air is not excessively supplied, the heat storage body is not cooled by the excess air, and the sensible heat contained in the combustion exhaust gas can be efficiently stored.
【0014】また、この発明に係る第一の加熱炉の操業
方法は、交番燃焼する蓄熱式燃焼バ−ナを1組以上配置
した加熱炉の操業方法において、燃焼排ガスを排出して
いる蓄熱式燃焼バーナの蓄熱体燃焼排ガス出側で、燃焼
排ガス中の可燃成分を検出し、燃焼排ガス中に可燃成分
が含まれると判定された場合には、前記蓄熱式燃焼バー
ナの蓄熱体燃焼排ガス入側において、燃焼排ガス中の可
燃成分を完全燃焼させるための燃焼用空気を供給するも
のである。A first heating furnace operating method according to the present invention is a heating furnace operating method in which one or more sets of alternating combustion type regenerative combustion burners are arranged. When a combustible component in the combustion exhaust gas is detected on the heat storage medium combustion exhaust gas outlet side of the combustion burner and it is determined that the combustion exhaust gas contains a combustible component, the heat storage type combustion exhaust gas inlet side of the heat storage type combustion burner. In the above, the combustion air for completely burning the combustible components in the combustion exhaust gas is supplied.
【0015】この操業方法により、可燃成分が燃焼排ガ
スとともに、炉外に排出されることがなく、可燃成分が
燃焼されることによって発生する燃焼排ガス中の顕熱
が、蓄熱体に蓄熱できるので、燃焼効率が高まる。By this operating method, the sensible heat in the combustion exhaust gas generated by the combustion of the combustible component can be stored in the heat storage body without the combustible component being discharged together with the combustion exhaust gas outside the furnace. Increases combustion efficiency.
【0016】また、この発明に係る第二の蓄熱式燃焼バ
ーナを備えた加熱炉の操業方法は、交番燃焼する蓄熱式
燃焼バ−ナを1組以上配置した加熱炉の操業方法におい
て、燃焼排ガスを排出している蓄熱式燃焼バーナの蓄熱
体燃焼排ガス出側で、燃焼排ガス中の可燃成分を検出
し、燃焼排ガス中に可燃成分が含まれると判定された場
合には、前記蓄熱式燃焼バーナの蓄熱体燃焼排ガス入側
において、燃焼排ガス中の可燃成分を完全燃焼させ、か
つ完全燃焼させた後の燃焼排ガス温度が蓄熱体の耐熱温
度を超えない温度で酸素含有ガスを供給するものであ
る。A second aspect of the present invention is a method of operating a heating furnace equipped with a second regenerative combustion burner, which is a method of operating a heating furnace in which one or more sets of regenerative combustion burners that perform alternating combustion are arranged. At the discharge side of the heat storage type combustion exhaust gas of the heat storage type combustion burner that is discharging, the combustible component in the combustion exhaust gas is detected, and when it is determined that the combustible component is contained in the combustion exhaust gas, the heat storage type combustion burner On the inlet side of the heat storage medium combustion exhaust gas, the combustible components in the combustion exhaust gas are completely burned, and the oxygen-containing gas is supplied at a temperature at which the temperature of the combustion exhaust gas after complete combustion does not exceed the heat resistant temperature of the heat storage body. .
【0017】この操業方法により、可燃成分が燃焼排ガ
スとともに、炉外に排出されることがなく、可燃成分が
燃焼されることによって発生する燃焼排ガス中の顕熱
が、蓄熱体に蓄熱できるので、燃焼効率が高まる。By this operating method, the sensible heat in the combustion exhaust gas generated by the combustion of the combustible component can be stored in the heat storage body without the combustible component being discharged together with the combustion exhaust gas outside the furnace. Increases combustion efficiency.
【0018】また、可燃成分が燃焼された後の燃焼排ガ
スにより、蓄熱体の温度が耐熱温度を超えることがない
ので、蓄熱体の寿命が低下することはない。Further, since the temperature of the heat storage body does not exceed the heat resistant temperature due to the combustion exhaust gas after the combustible components are burned, the life of the heat storage body does not decrease.
【0019】[0019]
【発明の実施の形態】この発明の第一の実施の形態の蓄
熱式燃焼バーナを備えた加熱炉の操業方法を、図1によ
り説明する。図1の加熱炉1においては、蓄熱式燃焼バ
ーナ2aおよび2cで燃焼しており、蓄熱式燃焼バーナ
2aと対になっている蓄熱式燃焼バーナ2bおよび蓄熱
式燃焼バーナ2cと対になっている蓄熱式燃焼バーナ2
dで燃焼排ガスを排出している状況を示している。そし
て、空気比1.05程度のほぼ完全燃焼状態で操業して
いる場合の例である。BEST MODE FOR CARRYING OUT THE INVENTION A method of operating a heating furnace equipped with a regenerative combustion burner according to a first embodiment of the present invention will be described with reference to FIG. In the heating furnace 1 of FIG. 1, combustion is carried out by the regenerative combustion burners 2a and 2c, and the regenerative combustion burner 2b and the regenerative combustion burner 2c paired with the regenerative combustion burner 2a are paired. Regenerative combustion burner 2
The state in which the combustion exhaust gas is discharged is shown in d. And, it is an example in the case of operating in an almost complete combustion state with an air ratio of about 1.05.
【0020】この加熱炉の操業方法においては、加熱炉
1の燃焼している蓄熱式燃焼バーナ2aおよび2cで発
生した燃焼排ガス3は、燃焼排ガス3を排出している蓄
熱式燃焼バーナ2bおよび2dの蓄熱体4bおよび4d
を通過し、それぞれの切替弁5Aおよび5Bを通って燃
焼排ガス本管6に達し、系外に排出される。そして、燃
料の組成が変化した場合には、未燃焼可燃成分が上記の
ような経路を経て、系外に排出される可能性がある。In this operating method of the heating furnace, the combustion exhaust gas 3 generated in the regenerative combustion burners 2a and 2c burning in the heating furnace 1 is the regenerative combustion burners 2b and 2d discharging the combustion exhaust gas 3. Heat storage bodies 4b and 4d
To reach the combustion exhaust gas main pipe 6 through the respective switching valves 5A and 5B, and is discharged to the outside of the system. Then, when the composition of the fuel changes, the unburned combustible components may be discharged to the outside of the system through the above-mentioned route.
【0021】この燃焼排ガス本管6には、試料採取管7
が設けられており、この試料採取管7には燃焼排ガス中
の未燃焼の可燃成分を検出するための成分分析器8が接
続されている。この成分分析器8には、COガスを対象
とした赤外線分析器等を用いるとよい。The combustion exhaust gas main pipe 6 includes a sampling pipe 7
Is provided, and a component analyzer 8 for detecting unburned combustible components in the combustion exhaust gas is connected to the sampling pipe 7. An infrared analyzer or the like for CO gas may be used as the component analyzer 8.
【0022】この成分分析器8により、燃焼排ガス3中
の未燃焼の可燃成分の濃度を検出する。そして、未燃焼
の可燃成分が検出された場合には、信号が補助燃焼用空
気弁制御器9に送られ、補助燃焼用空気弁制御器9から
は弁の開指令が発せられ、補助燃焼用空気弁10bおよ
び10dが開状態となり、補助燃焼用空気が燃焼用空気
配管11から分岐した補助燃焼用空気配管12bおよび
12dを通って、燃焼排ガスを排出している蓄熱式燃焼
バーナ2bおよび2dのそれぞれの蓄熱体4bおよび4
dの炉1に近い側に供給される。The component analyzer 8 detects the concentration of unburned combustible components in the combustion exhaust gas 3. Then, when an unburned combustible component is detected, a signal is sent to the auxiliary combustion air valve controller 9, and a valve opening command is issued from the auxiliary combustion air valve controller 9 for auxiliary combustion. The air valves 10b and 10d are opened, and the auxiliary combustion air passes through the auxiliary combustion air pipes 12b and 12d branched from the combustion air pipe 11 to discharge the combustion exhaust gas to the regenerative combustion burners 2b and 2d. Each heat storage body 4b and 4
It is supplied to the side closer to the furnace 1 of d.
【0023】一方、燃焼中の蓄熱式燃焼バーナ2aおよ
び2cに対する補助燃焼用空気弁10aおよび10cは
閉じられている。On the other hand, the auxiliary combustion air valves 10a and 10c for the regenerative combustion burners 2a and 2c during combustion are closed.
【0024】この補助燃焼用空気の供給は、蓄熱式燃焼
バーナ2bおよび2dで燃焼排ガスの排出が行われてお
り、かつ成分分析器8で燃焼排ガス中の未燃焼の可燃成
分が検出される間中継続される。The auxiliary combustion air is supplied while the combustion exhaust gas is being discharged by the regenerative combustion burners 2b and 2d and the component analyzer 8 detects unburned combustible components in the combustion exhaust gas. Continued inside.
【0025】また、燃焼を行う蓄熱式燃焼バーナが、蓄
熱式燃焼バーナ2aおよび2cから2bおよび2dに切
り替わった場合に、成分分析器8により未燃焼の可燃成
分が検出された場合には、補助燃焼用空気弁制御器9か
らの弁の開指令は補助燃焼用空気弁10aおよび10c
に発せられる。そして、補助燃焼用空気弁10aおよび
10cが開状態となり、補助燃焼用空気が燃焼用空気配
管11から分岐した補助燃焼用空気配管12aおよび1
2cを通って、燃焼排ガスを排出している蓄熱式燃焼バ
ーナ2aおよび2cのそれぞれの蓄熱体4aおよび4c
の炉1に近い側に供給される。Further, when the heat storage type combustion burner for combustion is switched from the heat storage type combustion burners 2a and 2c to 2b and 2d, when an unburned combustible component is detected by the component analyzer 8, it is assisted. A command to open the valve from the combustion air valve controller 9 is issued by the auxiliary combustion air valves 10a and 10c.
Emitted to Then, the auxiliary combustion air valves 10a and 10c are opened, and the auxiliary combustion air is branched from the combustion air pipe 11 and the auxiliary combustion air pipes 12a and 1 are branched.
Regenerative bodies 4a and 4c of the regenerative combustion burners 2a and 2c, respectively, which discharge combustion exhaust gas through 2c.
Is supplied to the side closer to the furnace 1.
【0026】一方、燃焼中の蓄熱式燃焼バーナ2bおよ
び2dに対する補助燃焼用空気弁10bおよび10dは
閉じられている。On the other hand, the auxiliary combustion air valves 10b and 10d for the regenerative combustion burners 2b and 2d during combustion are closed.
【0027】補助燃焼用空気の供給位置は、図1におい
ては、蓄熱体4a、4b、4cおよび4dの炉1側に近
い流体通路13a、13b、13cおよび13d内とな
っているが、バーナ口に近い炉内1aでもよい。In FIG. 1, the auxiliary combustion air is supplied to the burner port, which is located in the fluid passages 13a, 13b, 13c and 13d near the furnace 1 side of the heat storage bodies 4a, 4b, 4c and 4d. It may be in the furnace 1a close to.
【0028】この実施の形態においては、燃焼排ガス中
に未燃焼可燃成分が検出された場合には、未燃焼可燃成
分を燃焼させるための補助燃焼用空気が蓄熱体の燃焼排
ガス入側(炉側)に供給されるので、燃焼排ガス中の未
燃焼の可燃成分は蓄熱体の入側で燃焼される。In this embodiment, when an unburned combustible component is detected in the combustion exhaust gas, the auxiliary combustion air for burning the unburned combustible component is used as the auxiliary combustion air for the heat storage body at the combustion exhaust gas inlet side (furnace side). ), The unburned combustible components in the combustion exhaust gas are combusted on the inlet side of the heat storage body.
【0029】したがって、蓄熱体を通過する燃焼排ガス
の保有する顕熱量が多くなり、蓄熱体での回収熱量が増
加する。Therefore, the amount of sensible heat possessed by the combustion exhaust gas passing through the heat storage body increases, and the amount of heat recovered in the heat storage body increases.
【0030】そして、蓄熱体で回収された熱エネルギ
は、その蓄熱体を備えた蓄熱式燃焼バーナで燃焼を行う
ときに、燃焼用空気の予熱に用いられる。The heat energy recovered by the heat storage body is used for preheating the combustion air when combustion is performed by the heat storage type combustion burner having the heat storage body.
【0031】したがって、未燃焼の可燃成分が系外に排
出されなくなり、燃焼に利用されるので、炉の燃焼効率
は低下しない。Therefore, since the unburned combustible components are not discharged to the outside of the system and are used for combustion, the combustion efficiency of the furnace does not decrease.
【0032】図1において、符号14a、14b、14
cおよび14dは、燃料遮断弁である。In FIG. 1, reference numerals 14a, 14b, 14
c and 14d are fuel cutoff valves.
【0033】なお、図1においては、4本のバーナ(2
本燃焼、2本排気)の例で説明したが、必ずしもこのよ
うな本数にとらわれることはなく、同一燃焼ゾーンの同
一燃焼タイミングのバーナを同一グループとして、その
グループの燃焼排ガスを1つの分析計で分析して、補助
燃焼用空気の供給を制御するようにしてもよい。In FIG. 1, four burners (2
However, the number of burners in the same combustion zone is the same group, and the combustion exhaust gas of that group is analyzed by one analyzer. It may be analyzed to control the supply of auxiliary combustion air.
【0034】また、補助燃焼用空気弁も必ずしもバーナ
毎に設ける必要はなく、前記同一グループの全バーナに
対して、1つの補助燃焼用空気弁を設けて補助燃焼用空
気を供給するようにしてもよい。Further, it is not always necessary to provide an auxiliary combustion air valve for each burner, and one auxiliary combustion air valve is provided for all the burners of the same group to supply auxiliary combustion air. Good.
【0035】次に、この発明の第二の実施の形態の蓄熱
式燃焼バーナを備えた加熱炉の操業方法を、図2により
説明する。図2の加熱炉1においては、図1の場合と同
様に、蓄熱式燃焼バーナ2aおよび2cで燃焼してお
り、蓄熱式燃焼バーナ2aと対になっている蓄熱式燃焼
バーナ2bおよび蓄熱式燃焼バーナ2cと対になってい
る蓄熱式燃焼バーナ2dで燃焼排ガスを排出している状
況を示している。Next, a method of operating the heating furnace having the regenerative combustion burner according to the second embodiment of the present invention will be described with reference to FIG. In the heating furnace 1 of FIG. 2, as in the case of FIG. 1, the regenerative combustion burners 2a and 2c burn, and the regenerative combustion burner 2b and the regenerative combustion paired with the regenerative combustion burner 2a. It shows a situation in which combustion exhaust gas is being discharged by the regenerative combustion burner 2d paired with the burner 2c.
【0036】また、図2においては、図1と同じ機器が
多く使用されているので、同じ機器に対しては図1と同
一符号を使用し、詳細説明は省略する。In FIG. 2, since the same equipment as that in FIG. 1 is often used, the same reference numerals as those in FIG. 1 are used for the same equipment, and detailed description thereof will be omitted.
【0037】この実施の形態においては、成分分析器8
により検出された未燃焼の可燃成分の濃度の値を理論空
気量演算器15に送り、この値とあらかじめ設定してあ
る単位時間当りの燃焼排ガス発生量とから、未燃焼の可
燃成分を完全燃焼させるための理論空気量が演算され
る。未燃焼の可燃成分をCOで検出している場合には、
下記(1)式に基づいて算出すればよい。In this embodiment, the component analyzer 8
The value of the concentration of the unburned combustible component detected by is sent to the theoretical air amount calculator 15, and the unburned combustible component is completely burned from this value and the preset combustion exhaust gas generation amount per unit time. The theoretical air amount for the operation is calculated. When CO is used to detect unburned combustible components,
It may be calculated based on the following equation (1).
【0038】 Q={G0 ・[CO]/(2×0.21)}・k…………(1) ただし、 Q:補助燃焼用空気流量(Nm3 /h) G0 :理論排ガス流量(Nm3 /h) [CO]:CO濃度(比) k:補正計数 補正計数kは、炉況に応じて定める。Q = {G 0 · [CO] / (2 × 0.21)} · k (1) However, Q: auxiliary combustion air flow rate (Nm 3 / h) G 0 : theoretical exhaust gas Flow rate (Nm 3 / h) [CO]: CO concentration (ratio) k: Correction count The correction count k is determined according to the furnace conditions.
【0039】そして、演算された理論空気量の値が補助
燃焼用空気流量制御器16に送られ、理論空気量の信号
を受けた補助燃焼用空気流量制御器16からは、補助燃
焼用空気流量調整弁20に指令が発せられ、演算された
理論空気量の値に応じて、補助燃焼用空気流量調整弁2
0の開度が調整される。同時に、補助燃焼用空気流量制
御器16からは補助燃焼用空気弁17bおよび17dに
対して弁の開指令が発せられ、補助燃焼用空気弁17b
および17dが開状態となる。Then, the calculated theoretical air amount value is sent to the auxiliary combustion air flow rate controller 16, and the auxiliary combustion air flow rate controller 16 receives the theoretical air amount signal from the auxiliary combustion air flow rate controller 16. A command is issued to the adjusting valve 20, and the auxiliary combustion air flow rate adjusting valve 2 is supplied in accordance with the calculated theoretical air amount value.
The opening degree of 0 is adjusted. At the same time, the auxiliary combustion air flow rate controller 16 issues a command to open the auxiliary combustion air valves 17b and 17d to open the auxiliary combustion air valve 17b.
And 17d are opened.
【0040】そして、補助燃焼用空気が補助燃焼用空気
本管18から分岐した補助燃焼用空気枝管19bおよび
19dを通って、燃焼排ガスを排出している蓄熱式燃焼
バーナ2bおよび2dのそれぞれの蓄熱体4bおよび4
dの炉1に近い側に供給される。Then, the auxiliary combustion air passes through the auxiliary combustion air branch pipes 19b and 19d branched from the auxiliary combustion air main pipe 18 to discharge the combustion exhaust gas from the regenerative combustion burners 2b and 2d, respectively. Heat storage bodies 4b and 4
It is supplied to the side closer to the furnace 1 of d.
【0041】この補助燃焼用空気の供給は、蓄熱式燃焼
バーナ2bおよび2dで燃焼排ガスの排出が行われてお
り、かつ成分分析器8で燃焼排ガス中の未燃焼の可燃成
分が検出される間中継続される。The auxiliary combustion air is supplied while the combustion exhaust gas is being discharged by the regenerative combustion burners 2b and 2d, and the component analyzer 8 detects unburned combustible components in the combustion exhaust gas. Continued inside.
【0042】そして、この間燃焼している蓄熱式燃焼バ
ーナ2aおよび2cに補助燃焼用空気を供給するための
補助燃焼用空気弁17aおよび17cは閉状態となって
いる。The auxiliary combustion air valves 17a and 17c for supplying the auxiliary combustion air to the regenerative combustion burners 2a and 2c which are burning during this period are closed.
【0043】また、燃焼を行う蓄熱式燃焼バーナが、蓄
熱式燃焼バーナ2aおよび2cから2bおよび2dに切
り替わった場合に、成分分析器8により未燃焼の可燃成
分が検出された場合には、補助燃焼用空気流量制御器1
6からからの弁の開指令は補助燃焼用空気流量調整弁2
0に発せられ,演算された理論空気量の値に応じて、補
助燃焼用空気流量調整弁20の開度が調整される。同時
に、補助燃焼用空気流量制御器16からは補助燃焼用空
気弁17aおよび17cに対して弁の開指令が発せら
れ、補助燃焼用空気弁17aおよび17cが開状態とな
る。Further, when the heat storage type combustion burner for combustion is switched from the heat storage type combustion burners 2a and 2c to 2b and 2d, when an unburned combustible component is detected by the component analyzer 8, it is assisted. Combustion air flow controller 1
The command to open the valve from 6 is the auxiliary combustion air flow rate adjustment valve 2
The opening degree of the auxiliary combustion air flow rate adjusting valve 20 is adjusted in accordance with the calculated theoretical air amount value which is emitted to zero. At the same time, the auxiliary combustion air flow rate controller 16 issues a valve opening command to the auxiliary combustion air valves 17a and 17c, and the auxiliary combustion air valves 17a and 17c are opened.
【0044】そして、補助燃焼用空気が補助燃焼用空気
本管18から分岐した補助燃焼用空気枝管19aおよび
19cを通って、燃焼排ガスを排出している蓄熱式燃焼
バーナ2aおよび2cのそれぞれの蓄熱体4aおよび4
cの炉1に近い側に供給される。Then, the auxiliary combustion air passes through the auxiliary combustion air branch pipes 19a and 19c branched from the auxiliary combustion air main pipe 18 to discharge the combustion exhaust gas from each of the regenerative combustion burners 2a and 2c. Heat storage bodies 4a and 4
It is supplied to the side closer to the furnace 1 of c.
【0045】この補助燃焼用空気の供給は、蓄熱式燃焼
バーナ2aおよび2cで燃焼排ガスの排出が行われてお
り、かつ成分分析器8で燃焼排ガス中の未燃焼の可燃成
分が検出される間中継続される。The auxiliary combustion air is supplied while the combustion exhaust gas is being discharged by the regenerative combustion burners 2a and 2c, and the component analyzer 8 detects unburned combustible components in the combustion exhaust gas. Continued inside.
【0046】そして、この間燃焼している蓄熱式燃焼バ
ーナ2bおよび2dに補助燃焼用空気を供給するための
補助燃焼用空気弁17bおよび17dは閉状態となって
いる。The auxiliary combustion air valves 17b and 17d for supplying auxiliary combustion air to the regenerative combustion burners 2b and 2d which are burning during this period are closed.
【0047】補助燃焼用空気の供給位置は、図2におい
ては、蓄熱体4a、4b、4cおよび4dの炉1側に近
い流体通路13a、13b、13cおよび13d内とな
っているが、炉内1aのバーナ口に近い位置でもよい。In FIG. 2, the auxiliary combustion air supply position is in the fluid passages 13a, 13b, 13c and 13d close to the furnace 1 side of the heat storage bodies 4a, 4b, 4c and 4d. It may be located near the burner opening of 1a.
【0048】この実施の形態においては、燃焼排ガス中
に未燃焼の可燃成分が検出された場合には、未燃焼の可
燃成分を完全燃焼させるための理論空気量が演算され、
この理論空気量に応じた補助燃焼用空気が蓄熱体の燃焼
排ガス入側(炉側)に供給されるので、燃焼排ガス中の
未燃焼の可燃成分は蓄熱体の入側で燃焼されるととも
に、燃焼排ガス中に過剰な空気が含まれることもない。In this embodiment, when the unburned combustible component is detected in the combustion exhaust gas, the theoretical air amount for completely burning the unburned combustible component is calculated,
Since the auxiliary combustion air according to this theoretical air amount is supplied to the combustion exhaust gas inlet side (furnace side) of the heat storage body, unburned combustible components in the combustion exhaust gas are burned at the heat storage body inlet side, Excess air is not contained in the combustion exhaust gas.
【0049】したがって、蓄熱体を通過する燃焼排ガス
の保有する顕熱量が多くなるとともに、過剰な空気によ
り燃焼排ガスの温度が低下することもないので、蓄熱体
での熱回収量が第一の実施の形態を実施したとき以上に
向上する。このため、炉の燃焼効率が低下することはな
い。Therefore, the sensible heat amount of the combustion exhaust gas passing through the heat storage body increases and the temperature of the combustion exhaust gas does not decrease due to excess air, so that the heat recovery amount in the heat storage body is the first embodiment. It is improved more than when the above embodiment is carried out. Therefore, the combustion efficiency of the furnace does not decrease.
【0050】次に、この発明の第三の実施の形態の蓄熱
式燃焼バーナを備えた加熱炉の操業方法を、図3により
説明する。この実施の形態においては、燃焼排ガス中の
未燃焼可燃成分を燃焼させるために、補助燃焼用空気配
管が蓄熱体の燃焼排ガス入側の流体通路に接続され、成
分分析器により燃焼排ガス中に未燃焼の可燃成分が検出
された場合に、補助燃焼用空気が前記流体通路に供給さ
れるのは、前述した第一の実施の形態または第二の実施
の形態の場合と同一であるので、同一である部分の説明
は省略し、この実施の形態の特徴点を、図3の蓄熱式燃
焼バ−ナ2の断面図に基づいて説明する。この蓄熱式燃
焼バーナを備えた加熱炉の操業方法においては、補助燃
焼用空気を補助燃焼用空気配管21から流体通路13に
供給して未燃焼の可燃成分を燃焼させた後の燃焼排ガス
の温度を、流体通路13に設けた温度計22で検出し、
検出した燃焼排ガスの温度が、蓄熱体4の耐熱温度を超
える場合には、流体通路13に接続した常温空気配管2
3から、温度計22で検出した燃焼排ガス温度が、蓄熱
体4の耐熱温度以下に低下する量の常温空気を流体通路
13に供給する。Next, a method of operating the heating furnace equipped with the regenerative combustion burner according to the third embodiment of the present invention will be described with reference to FIG. In this embodiment, in order to burn the unburned combustible components in the combustion exhaust gas, the auxiliary combustion air pipe is connected to the fluid passage on the combustion exhaust gas inlet side of the heat storage body, and is not contained in the combustion exhaust gas by the component analyzer. Since the auxiliary combustion air is supplied to the fluid passage when the combustible component of combustion is detected is the same as in the first embodiment or the second embodiment described above, the same. The description of the part that is omitted is omitted, and the characteristic point of this embodiment will be described based on the cross-sectional view of the regenerative combustion burner 2 in FIG. In the operating method of the heating furnace provided with the regenerative combustion burner, the temperature of the combustion exhaust gas after the auxiliary combustion air is supplied from the auxiliary combustion air pipe 21 to the fluid passage 13 to burn the unburned combustible components Is detected by a thermometer 22 provided in the fluid passage 13,
When the detected temperature of the combustion exhaust gas exceeds the heat resistant temperature of the heat storage body 4, the room temperature air pipe 2 connected to the fluid passage 13
3, the normal temperature air is supplied to the fluid passage 13 in an amount such that the combustion exhaust gas temperature detected by the thermometer 22 falls below the heat resistant temperature of the heat storage body 4.
【0051】なお、常温空気配管23から供給するガス
は、燃焼排ガスの温度を調整することのできるガスなら
ば、常温空気に限定する必要はなく、例えば窒素ガス等
にしてもよい。The gas supplied from the room temperature air pipe 23 is not limited to room temperature air as long as the temperature of the combustion exhaust gas can be adjusted, and may be nitrogen gas, for example.
【0052】また、温度計22や常温空気配管23を用
いず、別途測定している炉内温度の条件と未燃焼ガスの
量に応じて、所定量の冷風を補助燃焼用空気配管21か
ら吹き込むようにしてもよい。Further, without using the thermometer 22 and the room temperature air pipe 23, a predetermined amount of cold air is blown from the auxiliary combustion air pipe 21 in accordance with the separately measured furnace temperature condition and the amount of unburned gas. You may do it.
【0053】この実施の形態においては、第一および第
二の実施の形態の場合の効果に加えて、蓄熱体4の寿命
が低下しないという効果がある。In addition to the effects of the first and second embodiments, this embodiment has the effect of not shortening the life of the heat storage body 4.
【0054】[0054]
【実施例】幅2m、長さ4m、高さ2mの炉容積を有
し、幅方向の炉壁に軸中心間距離1mを離して1組の交
番燃焼型蓄熱式燃焼バ−ナを設けたバッチ式加熱炉にお
いて、2600kcal/Nm3 のMガス(製鉄所副生
混合ガス)を空気比0.95で燃焼させる操業を行っ
た。このとき、蓄熱体の燃焼排ガス入側に設置した温度
計により測定した燃焼排ガスの温度は1370℃(一定
時間内の平均温度)であった。EXAMPLE A furnace having a width of 2 m, a length of 4 m and a height of 2 m was provided, and a pair of alternating combustion type regenerative combustion burners were provided on the furnace wall in the width direction with an axial center distance of 1 m. In a batch-type heating furnace, an operation of burning 2600 kcal / Nm 3 of M gas (steel mill by-product mixed gas) at an air ratio of 0.95 was performed. At this time, the temperature of the combustion exhaust gas measured by a thermometer installed on the combustion exhaust gas inlet side of the heat storage body was 1370 ° C. (average temperature within a certain period of time).
【0055】また、燃焼排ガス排出用ブロワ−前に設置
したCO計で燃焼排ガス中のCO濃度を測定したとこ
ろ、CO濃度は350ppmであったので、未燃焼の可
燃成分を完全に燃焼させるために、8Nm3 /hの補助
燃焼用空気を供給した。Further, when the CO concentration in the combustion exhaust gas was measured by the CO meter installed in front of the combustion exhaust gas discharge blower, the CO concentration was 350 ppm, so that the unburned combustible component was completely burned. , 8 Nm 3 / h of auxiliary combustion air was supplied.
【0056】この結果、前記CO計で測定したCO濃度
はほとんど0に近くなったが、前記温度計で測定した未
燃焼の可燃成分を完全に燃焼させた後の燃焼排ガス温度
は、蓄熱体の耐熱温度に基づく上限温度である1400
℃を超えたため、蓄熱体の燃焼排ガス入側における燃焼
排ガス温度を低下させるために、補助燃焼用空気を37
Nm3 /hで供給したところ、蓄熱体の燃焼排ガス入側
における燃焼排ガス温度は1375℃となり、上限温度
の1400℃未満になった。すなわち、このようにする
ことにより、蓄熱体の寿命を低下させないとともに、燃
焼効率も低下させない操業が可能となる。As a result, the CO concentration measured by the CO meter became almost 0, but the combustion exhaust gas temperature after completely burning the unburned combustible components measured by the thermometer was the temperature of the regenerator. 1400 which is the maximum temperature based on the heat resistant temperature
Since the temperature exceeds ℃, in order to reduce the temperature of the combustion exhaust gas on the combustion exhaust gas inlet side of the heat storage body, auxiliary combustion air is
When supplied at Nm 3 / h, the combustion exhaust gas temperature on the combustion exhaust gas inlet side of the heat storage body was 1375 ° C., which was less than the upper limit temperature of 1400 ° C. That is, by doing so, it is possible to perform an operation in which the life of the heat storage body is not reduced and the combustion efficiency is not reduced.
【0057】なお、上記燃焼排ガスの上限温度の基にな
る蓄熱体の耐熱温度は、使用する蓄熱体の材質に基づく
ものである。The heat-resistant temperature of the heat storage body, which is the basis of the upper limit temperature of the combustion exhaust gas, is based on the material of the heat storage body used.
【0058】[0058]
【発明の効果】この発明により、燃焼効率が高まるとと
もに、熱回収効率も高まる。According to the present invention, the combustion efficiency is increased and the heat recovery efficiency is also increased.
【0059】また、被加熱物の酸化を防止しようとした
場合に、燃焼効率が低下することがない。Further, when it is attempted to prevent the object to be heated from being oxidized, the combustion efficiency does not decrease.
【0060】さらには、未燃焼の可燃成分を完全燃焼さ
せても、蓄熱体の寿命が低下しない。Further, even if the unburned combustible components are completely burned, the life of the heat storage body does not decrease.
【図1】本発明の第一の実施形態の加熱炉の操業方法の
説明図である。FIG. 1 is an explanatory diagram of a method for operating a heating furnace according to a first embodiment of the present invention.
【図2】本発明の第二の実施形態の加熱炉の操業方法の
説明図である。FIG. 2 is an explanatory diagram of a heating furnace operating method according to a second embodiment of the present invention.
【図3】本発明の第三の実施形態の加熱炉の操業方法の
説明図である。FIG. 3 is an explanatory diagram of a heating furnace operating method according to a third embodiment of the present invention.
【図4】従来の蓄熱型交番燃焼バーナの説明図である。FIG. 4 is an explanatory view of a conventional heat storage type alternating combustion burner.
1 加熱炉 2a、2b、2c、2d 蓄熱式燃焼バーナ 3 燃焼排ガス 4a、4b、4c、4d 蓄熱体 5A、5B 切替弁 6 燃焼排ガス本管 7 試料採取管 8 成分分析器 9 補助燃焼用空気弁制御器 10a、10b、10c、10d 補助燃焼用空気弁 11 燃焼用空気配管 12a、12b、12c、12d 補助燃焼用空気配管 13a、13b、13c、13 流体通路 14a、14b、14c、14d 燃料遮断弁 15 理論空気量演算器 16 補助燃焼用空気流量制御器 17a、17b、17c、17d 補助燃焼用空気弁 18 補助燃焼用空気本管 19a、19b、19c、19d 補助燃焼用空気枝管 20 補助燃焼用空気流量調整弁 21 補助燃焼用空気配管 22 温度計 23 常温空気配管 1 heating furnace 2a, 2b, 2c, 2d heat storage type combustion burner 3 combustion exhaust gas 4a, 4b, 4c, 4d heat storage body 5A, 5B switching valve 6 combustion exhaust gas main 7 sampling tube 8 component analyzer 9 auxiliary combustion air valve Controller 10a, 10b, 10c, 10d Auxiliary combustion air valve 11 Combustion air piping 12a, 12b, 12c, 12d Auxiliary combustion air piping 13a, 13b, 13c, 13 Fluid passage 14a, 14b, 14c, 14d Fuel cutoff valve 15 theoretical air amount calculator 16 auxiliary combustion air flow rate controller 17a, 17b, 17c, 17d auxiliary combustion air valve 18 auxiliary combustion air main 19a, 19b, 19c, 19d auxiliary combustion air branch pipe 20 auxiliary combustion Air flow control valve 21 Auxiliary combustion air piping 22 Thermometer 23 Room temperature air piping
Claims (4)
上配置した加熱炉において、蓄熱体の燃焼排ガス出側
に、燃焼排ガス中の可燃成分を検出する可燃成分検出手
段を設けるとともに、蓄熱体の燃焼排ガス入側に、燃焼
排ガス中の可燃成分を完全燃焼させるための燃焼用空気
供給手段を設けたことを特徴とする加熱炉。1. A heating furnace in which one or more sets of regenerative combustion burners that perform alternating combustion are arranged, and a combustible component detection means for detecting a combustible component in the combustion exhaust gas is provided on the combustion exhaust gas outlet side of the heat storage body. A heating furnace, characterized in that combustion air supply means for completely burning combustible components in the combustion exhaust gas is provided on the combustion exhaust gas inlet side of the heat storage body.
可燃成分を完全燃焼させるための理論空気量を算出する
理論空気量算出手段を設けたことを特徴とする請求項1
に記載の加熱炉。2. A theoretical air amount calculating means for calculating a theoretical air amount for completely burning the combustible component detected by the combustible component detecting means is provided.
A heating furnace according to item 1.
上配置した加熱炉の操業方法において、燃焼排ガスを排
出している蓄熱式燃焼バーナの蓄熱体燃焼排ガス出側
で、燃焼排ガス中の可燃成分を検出し、燃焼排ガス中に
可燃成分が含まれると判定された場合には、前記蓄熱式
燃焼バーナの蓄熱体燃焼排ガス入側において、燃焼排ガ
ス中の可燃成分を完全燃焼させるための燃焼用空気を供
給することを特徴とする加熱炉の操業方法。3. A method of operating a heating furnace in which one or more sets of regenerative combustion burners that perform alternating combustion are arranged. In the case where it is determined that the combustible component is contained in the combustion exhaust gas, the combustible component in the combustion exhaust gas is completely combusted on the heat storage body combustion exhaust gas inlet side of the regenerative combustion burner. A method of operating a heating furnace, characterized by supplying combustion air.
上配置した加熱炉の操業方法において、燃焼排ガスを排
出している蓄熱式燃焼バーナの蓄熱体燃焼排ガス出側
で、燃焼排ガス中の可燃成分を検出し、燃焼排ガス中に
可燃成分が含まれると判定された場合には、前記蓄熱式
燃焼バーナの蓄熱体燃焼排ガス入側において、燃焼排ガ
ス中の可燃成分を完全燃焼させ、かつ完全燃焼させた後
の燃焼排ガス温度が蓄熱体の耐熱温度を超えない温度で
酸素含有ガスを供給することを特徴とする加熱炉の操業
方法。4. In a method of operating a heating furnace in which one or more sets of regenerative combustion burners that perform alternating combustion are arranged, a regenerator of a regenerative combustion burner that discharges flue gas is discharged from the flue gas outlet side. The combustible component in the combustion exhaust gas is completely burned when the combustible component is detected in the combustion exhaust gas, and it is determined that the combustion exhaust gas contains the combustible component. A method for operating a heating furnace, comprising supplying the oxygen-containing gas at a temperature at which the temperature of the combustion exhaust gas after complete combustion does not exceed the heat resistant temperature of the heat storage body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20828296A JP3617202B2 (en) | 1995-10-19 | 1996-08-07 | Heating furnace and operating method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-271392 | 1995-10-19 | ||
JP27139295 | 1995-10-19 | ||
JP20828296A JP3617202B2 (en) | 1995-10-19 | 1996-08-07 | Heating furnace and operating method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09170749A true JPH09170749A (en) | 1997-06-30 |
JP3617202B2 JP3617202B2 (en) | 2005-02-02 |
Family
ID=26516744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20828296A Expired - Fee Related JP3617202B2 (en) | 1995-10-19 | 1996-08-07 | Heating furnace and operating method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3617202B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002057501A1 (en) * | 2001-01-17 | 2002-07-25 | Kawasaki Steel Corporation | Heating furnace with regenerative burners and method of operating the heating furnace |
CN102072651A (en) * | 2011-01-04 | 2011-05-25 | 中冶南方(武汉)威仕工业炉有限公司 | Heat accumulating type heating furnace totally using blast furnace gas as fuel |
JP2021081111A (en) * | 2019-11-18 | 2021-05-27 | 中外炉工業株式会社 | Heat storage type combustion facility |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103353114B (en) * | 2013-06-21 | 2015-08-26 | 华中科技大学 | A kind of cell burner |
CN106482521A (en) * | 2016-12-05 | 2017-03-08 | 重庆市万盛区万兴建筑材料有限公司 | A kind of brickkiln for firing colliery wastes brick |
-
1996
- 1996-08-07 JP JP20828296A patent/JP3617202B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002057501A1 (en) * | 2001-01-17 | 2002-07-25 | Kawasaki Steel Corporation | Heating furnace with regenerative burners and method of operating the heating furnace |
US6644962B2 (en) | 2001-01-17 | 2003-11-11 | Kawasaki Steel Corporation | Heating furnace having heat regenerating burners and operation method thereof |
EP1757707A3 (en) * | 2001-01-17 | 2007-06-20 | JFE Steel Corporation | Heating furnace having heat regenerating burners and operation method thereof |
CN102072651A (en) * | 2011-01-04 | 2011-05-25 | 中冶南方(武汉)威仕工业炉有限公司 | Heat accumulating type heating furnace totally using blast furnace gas as fuel |
JP2021081111A (en) * | 2019-11-18 | 2021-05-27 | 中外炉工業株式会社 | Heat storage type combustion facility |
Also Published As
Publication number | Publication date |
---|---|
JP3617202B2 (en) | 2005-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3557028B2 (en) | Combustion burner and combustion method in furnace | |
EP0897461B1 (en) | Heat exchanger efficiency control by differential temperature | |
JPH09170749A (en) | Heating furnace and its operation method | |
KR102260259B1 (en) | Apparatus for increasing combustion efficiency of hot blast stoves | |
US12196416B2 (en) | Burner for reducing NOx emissions and method for operating the burner | |
JP2001343104A (en) | Operating method of heating apparatus and heating furnace | |
JP2001026816A (en) | Operating method of continuous heating furnace | |
JPH04270819A (en) | Furnace temperature controlling method | |
JPH10169925A (en) | Radiant tube burner system and operation method thereof | |
JP2687830B2 (en) | Exhaust heat recovery method in heating furnace using regenerative burner | |
JPH052725B2 (en) | ||
JP3044286B2 (en) | Continuous annealing furnace | |
JPS6238410B2 (en) | ||
JP3339324B2 (en) | Combustion control method for regenerative burners | |
JP3289437B2 (en) | Combustion method of heating furnace using regenerative burner | |
JPH06200329A (en) | Operation method of continuous heating furnace with regenerative burner | |
JP7210125B2 (en) | Combustion equipment | |
JP3491444B2 (en) | How to use a regenerative preheater | |
JP2968176B2 (en) | Exhaust gas temperature control method for heat storage regeneration combustion system | |
JP2001272028A (en) | Operating method of continuous heating furnace | |
JPH01139915A (en) | Control method of slurry burner | |
JP3368736B2 (en) | Combustion method of regenerative burner and combustion device thereof | |
JP3142460B2 (en) | Pressure control method for burner combustion air | |
JP3717221B2 (en) | Waste incinerator exhaust gas control system | |
JP2967454B2 (en) | Fuel two-stage combustion device and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20031224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041019 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041101 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071119 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081119 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091119 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101119 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111119 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111119 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121119 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |