JPH09165459A - Method for producing surface-hydrophobic molded article and surface-hydrophobic molded article - Google Patents
Method for producing surface-hydrophobic molded article and surface-hydrophobic molded articleInfo
- Publication number
- JPH09165459A JPH09165459A JP32876695A JP32876695A JPH09165459A JP H09165459 A JPH09165459 A JP H09165459A JP 32876695 A JP32876695 A JP 32876695A JP 32876695 A JP32876695 A JP 32876695A JP H09165459 A JPH09165459 A JP H09165459A
- Authority
- JP
- Japan
- Prior art keywords
- oligomer
- fluorine
- meth
- monomer
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 33
- 239000000178 monomer Substances 0.000 claims abstract description 138
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 120
- 239000011342 resin composition Substances 0.000 claims abstract description 90
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 70
- 239000011737 fluorine Substances 0.000 claims abstract description 55
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 52
- 125000004429 atom Chemical group 0.000 claims abstract description 43
- 238000003887 surface segregation Methods 0.000 claims abstract description 33
- 239000011347 resin Substances 0.000 claims abstract description 17
- 229920005989 resin Polymers 0.000 claims abstract description 17
- 238000000465 moulding Methods 0.000 claims abstract description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 90
- 230000002209 hydrophobic effect Effects 0.000 claims description 53
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 31
- 238000006116 polymerization reaction Methods 0.000 claims description 17
- 238000001420 photoelectron spectroscopy Methods 0.000 claims description 15
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 15
- 229920002554 vinyl polymer Polymers 0.000 claims description 15
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 claims description 13
- 230000005284 excitation Effects 0.000 claims description 12
- 229920001223 polyethylene glycol Polymers 0.000 claims description 12
- 239000002202 Polyethylene glycol Substances 0.000 claims description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 9
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 3
- 229920006037 cross link polymer Polymers 0.000 claims description 3
- 230000000704 physical effect Effects 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 77
- -1 coatings Substances 0.000 description 21
- 239000000758 substrate Substances 0.000 description 19
- 238000000921 elemental analysis Methods 0.000 description 17
- 239000007789 gas Substances 0.000 description 12
- 239000012071 phase Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical class OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 11
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 10
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 8
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 8
- 239000004926 polymethyl methacrylate Substances 0.000 description 8
- OVQQQQUJAGEBHH-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,10,10,10-heptadecafluorodecyl prop-2-enoate Chemical compound FC(F)(F)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)OC(=O)C=C OVQQQQUJAGEBHH-UHFFFAOYSA-N 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 229920001296 polysiloxane Polymers 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 230000000379 polymerizing effect Effects 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 5
- 239000004205 dimethyl polysiloxane Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 5
- 238000007493 shaping process Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical class CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000003505 polymerization initiator Substances 0.000 description 4
- 229920001451 polypropylene glycol Polymers 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical class CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229920001600 hydrophobic polymer Polymers 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- RKYJPYDJNQXILT-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxycarbonyl)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(=O)OCCOC(=O)C=C RKYJPYDJNQXILT-UHFFFAOYSA-N 0.000 description 2
- JQUDJGPHZMBOEN-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]-1-methoxyethanol;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(O)COCCOCCOCCOCCOCCOCCOCCOCCO JQUDJGPHZMBOEN-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- WGKYSFRFMQHMOF-UHFFFAOYSA-N 3-bromo-5-methylpyridine-2-carbonitrile Chemical compound CC1=CN=C(C#N)C(Br)=C1 WGKYSFRFMQHMOF-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 125000003827 glycol group Chemical group 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical class OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- 229920000847 nonoxynol Polymers 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 2
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- ILLKMACMBHTSHP-UHFFFAOYSA-N tetradecaethylene glycol Chemical compound OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO ILLKMACMBHTSHP-UHFFFAOYSA-N 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- HHQAGBQXOWLTLL-UHFFFAOYSA-N (2-hydroxy-3-phenoxypropyl) prop-2-enoate Chemical compound C=CC(=O)OCC(O)COC1=CC=CC=C1 HHQAGBQXOWLTLL-UHFFFAOYSA-N 0.000 description 1
- QRPXLOVCJSWXTK-UHFFFAOYSA-N 1,1,2,2,3,3,3-heptafluoropropyl formate Chemical compound FC(F)(F)C(F)(F)C(F)(F)OC=O QRPXLOVCJSWXTK-UHFFFAOYSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- JWTGRKUQJXIWCV-UHFFFAOYSA-N 1,2,3-trihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(O)C(O)CO JWTGRKUQJXIWCV-UHFFFAOYSA-N 0.000 description 1
- MVCWBQIXWFLOCV-UHFFFAOYSA-N 1,6-diisocyanatohexane;prop-2-enoic acid Chemical compound OC(=O)C=C.O=C=NCCCCCCN=C=O MVCWBQIXWFLOCV-UHFFFAOYSA-N 0.000 description 1
- WGYZMNBUZFHYRX-UHFFFAOYSA-N 1-(1-methoxypropan-2-yloxy)propan-2-ol Chemical compound COCC(C)OCC(C)O WGYZMNBUZFHYRX-UHFFFAOYSA-N 0.000 description 1
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 description 1
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 1
- QTKPMCIBUROOGY-UHFFFAOYSA-N 2,2,2-trifluoroethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(F)(F)F QTKPMCIBUROOGY-UHFFFAOYSA-N 0.000 description 1
- YHYCMHWTYHPIQS-UHFFFAOYSA-N 2-(2-hydroxyethoxy)-1-methoxyethanol Chemical compound COC(O)COCCO YHYCMHWTYHPIQS-UHFFFAOYSA-N 0.000 description 1
- HLIQLHSBZXDKLV-UHFFFAOYSA-N 2-(2-hydroxyethoxy)-1-phenoxyethanol Chemical compound OCCOCC(O)OC1=CC=CC=C1 HLIQLHSBZXDKLV-UHFFFAOYSA-N 0.000 description 1
- IAMASUILMZETHW-UHFFFAOYSA-N 2-(2-hydroxyethoxy)-1-phenoxyethanol;prop-2-enoic acid Chemical compound OC(=O)C=C.OCCOCC(O)OC1=CC=CC=C1 IAMASUILMZETHW-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- IEQWWMKDFZUMMU-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethyl)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)CCOC(=O)C=C IEQWWMKDFZUMMU-UHFFFAOYSA-N 0.000 description 1
- BXPKASQEUYICBF-UHFFFAOYSA-N 2-(3-prop-2-enoyloxypropoxycarbonyl)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(=O)OCCCOC(=O)C=C BXPKASQEUYICBF-UHFFFAOYSA-N 0.000 description 1
- YKHNTDZZKRMCQV-UHFFFAOYSA-N 2-(phenoxymethyl)oxirane;prop-2-enoic acid Chemical compound OC(=O)C=C.C1OC1COC1=CC=CC=C1 YKHNTDZZKRMCQV-UHFFFAOYSA-N 0.000 description 1
- SHJIJMBTDZCOFE-UHFFFAOYSA-N 2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]-1-methoxyethanol Chemical compound COC(O)COCCOCCOCCO SHJIJMBTDZCOFE-UHFFFAOYSA-N 0.000 description 1
- XXHDHAPOSIFMIG-UHFFFAOYSA-N 2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]-1-phenoxyethanol Chemical compound OCCOCCOCCOCC(O)OC1=CC=CC=C1 XXHDHAPOSIFMIG-UHFFFAOYSA-N 0.000 description 1
- TVFJLSWPPLFHKR-UHFFFAOYSA-N 2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]-1-phenoxyethanol;prop-2-enoic acid Chemical compound OC(=O)C=C.OCCOCCOCCOCC(O)OC1=CC=CC=C1 TVFJLSWPPLFHKR-UHFFFAOYSA-N 0.000 description 1
- OBFOSROPNNOGQF-UHFFFAOYSA-N 2-[2-[2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]-1-phenoxyethanol Chemical compound OCCOCCOCCOCCOCCOCC(O)OC1=CC=CC=C1 OBFOSROPNNOGQF-UHFFFAOYSA-N 0.000 description 1
- WBSXINVZPSZFFL-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]-1-methoxyethanol Chemical compound COC(O)COCCOCCOCCOCCOCCOCCOCCOCCO WBSXINVZPSZFFL-UHFFFAOYSA-N 0.000 description 1
- FZSWBHCVSRPGLZ-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]-1-phenoxyethanol Chemical compound OCCOCCOCCOCCOCCOCCOCCOCCOCC(O)OC1=CC=CC=C1 FZSWBHCVSRPGLZ-UHFFFAOYSA-N 0.000 description 1
- DXVLAUMXGHQKAV-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-(2-hydroxypropoxy)propoxy]propoxy]propoxy]propoxy]propoxy]propoxy]propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)CO DXVLAUMXGHQKAV-UHFFFAOYSA-N 0.000 description 1
- XUAGABNXLLHNRF-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-hydroxypropoxy)propoxy]propoxy]propoxy]propoxy]propoxy]propoxy]propoxy]propoxy]propoxy]propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)CO XUAGABNXLLHNRF-UHFFFAOYSA-N 0.000 description 1
- QXPWMXUQWAZTJE-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]-1-methoxyethanol Chemical compound COC(O)COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO QXPWMXUQWAZTJE-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- ROPDSOYFYJCSTC-UHFFFAOYSA-N 2-phenoxyundecyl prop-2-enoate Chemical compound CCCCCCCCCC(COC(=O)C=C)OC1=CC=CC=C1 ROPDSOYFYJCSTC-UHFFFAOYSA-N 0.000 description 1
- AGNTUZCMJBTHOG-UHFFFAOYSA-N 3-[3-(2,3-dihydroxypropoxy)-2-hydroxypropoxy]propane-1,2-diol Chemical compound OCC(O)COCC(O)COCC(O)CO AGNTUZCMJBTHOG-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- WMONOXOCMIPNNU-UHFFFAOYSA-N C=CC(=O)OCCCC(O)COC(=O)C1=CC=CC=C1C(O)=O Chemical compound C=CC(=O)OCCCC(O)COC(=O)C1=CC=CC=C1C(O)=O WMONOXOCMIPNNU-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- QVHMSMOUDQXMRS-UHFFFAOYSA-N PPG n4 Chemical compound CC(O)COC(C)COC(C)COC(C)CO QVHMSMOUDQXMRS-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical class CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002519 antifouling agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- ZNAAXKXXDQLJIX-UHFFFAOYSA-N bis(2-cyclohexyl-3-hydroxyphenyl)methanone Chemical compound C1CCCCC1C=1C(O)=CC=CC=1C(=O)C1=CC=CC(O)=C1C1CCCCC1 ZNAAXKXXDQLJIX-UHFFFAOYSA-N 0.000 description 1
- JZQAAQZDDMEFGZ-UHFFFAOYSA-N bis(ethenyl) hexanedioate Chemical compound C=COC(=O)CCCCC(=O)OC=C JZQAAQZDDMEFGZ-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001941 electron spectroscopy Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- IYNRVIKPUTZSOR-HWKANZROSA-N ethenyl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC=C IYNRVIKPUTZSOR-HWKANZROSA-N 0.000 description 1
- YCUBDDIKWLELPD-UHFFFAOYSA-N ethenyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OC=C YCUBDDIKWLELPD-UHFFFAOYSA-N 0.000 description 1
- IGBZOHMCHDADGY-UHFFFAOYSA-N ethenyl 2-ethylhexanoate Chemical compound CCCCC(CC)C(=O)OC=C IGBZOHMCHDADGY-UHFFFAOYSA-N 0.000 description 1
- FFYWKOUKJFCBAM-UHFFFAOYSA-N ethenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC=C FFYWKOUKJFCBAM-UHFFFAOYSA-N 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- GLVVKKSPKXTQRB-UHFFFAOYSA-N ethenyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC=C GLVVKKSPKXTQRB-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- HJBYJZCUFFYSGA-UHFFFAOYSA-N prop-2-enoyl fluoride Chemical compound FC(=O)C=C HJBYJZCUFFYSGA-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- 125000004205 trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- XZHNVYDCJNNJEQ-UHFFFAOYSA-N trifluoromethyl formate Chemical compound FC(F)(F)OC=O XZHNVYDCJNNJEQ-UHFFFAOYSA-N 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
(57)【要約】
【解決手段】 フッ素含有重合性モノマーおよび/また
はオリゴマー(A)と、親水性構造部分を有する重合性
モノマーおよび/またはオリゴマー(B)とを必須成分
として含有し、且つ該(A)の含有率が0.01〜10
重量%である重合性樹脂組成物(I)を賦形し、重合硬
化させる表面疎水性成形物の製造方法、およびフッ素含
有重合性モノマー単位および/またはオリゴマー単位を
必須の成分として有する重合硬化樹脂成形物であり、表
面のフッ素原子数の総原子数中に占める数の割合の百分
率が5%以上で、且つフッ素原子の表面偏析倍率が10
〜2000倍である表面疎水性成形物。
【効果】 フッ素原子が表面に多く内部に少ない成分傾
斜構造を有し、且つフッ素原子の離脱がしにくい優れた
表面疎水性成形物が一工程で容易に生産性よく製造でき
る。また、表面疎水性成形物は、表面疎水性に優れるに
もかかわらず物性低下が極めて少なく、且つフッ素原子
の離脱がしにくい。(57) Abstract: A fluorine-containing polymerizable monomer and / or oligomer (A) and a polymerizable monomer and / or oligomer (B) having a hydrophilic structural portion are contained as essential components, and Content of (A) is 0.01 to 10
A method for producing a surface-hydrophobic molded article in which the polymerizable resin composition (I) is polymerized and cured by weight, and a polymerized cured resin having a fluorine-containing polymerizable monomer unit and / or oligomer unit as an essential component It is a molded product, the percentage of the number of fluorine atoms on the surface in the total number of atoms is 5% or more, and the surface segregation ratio of fluorine atoms is 10%.
A surface-hydrophobic molding that is up to 2000 times. [Effect] An excellent surface-hydrophobic molded article having a large number of fluorine atoms on the surface and a small component inside and having less fluorine atoms can be easily produced with high productivity in one step. In addition, the surface-hydrophobic molded article has excellent surface hydrophobicity, but the physical properties thereof are not significantly deteriorated, and the fluorine atoms are hardly released.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、化学工業、塗装、
包装、印刷、自動車工業、紡績、医療、人工臓器等種々
分野において、接着性、摩擦、耐摩耗性、潤滑、撥水
性、撥油性、剥離性、帯電防止、耐薬品性、耐汚染性、
生体親和性、抗血栓性などの表面物性に優れる表面疎水
性成形物およびその製造方法に関する。TECHNICAL FIELD The present invention relates to the chemical industry, coating,
In various fields such as packaging, printing, automobile industry, spinning, medicine, artificial organs, adhesion, friction, abrasion resistance, lubrication, water repellency, oil repellency, peelability, antistatic, chemical resistance, stain resistance,
The present invention relates to a surface-hydrophobic molded article having excellent surface physical properties such as biocompatibility and antithrombogenicity, and a method for producing the same.
【0002】[0002]
【従来の技術】成形物の表面物性は各分野での利用にお
いて、最も重要な特性の一つであり、高分子材料、塗
装、紙、繊維等の成形物の表面を、用途に応じて、疎水
化することがしばしばある。表面疎水性成形物の最も一
般的なものは、ポリメチルメタクリレート(PMM
A)、ポリカーボネート(PC)、ポリウレタン等のポ
リマーと、シリコーン系ポリマーやフッ素系ポリマー等
のように分子内に疎水性基や疎水性原子を有する疎水性
ポリマーとを、溶剤に溶解し、混合する方法や、溶融混
練する方法等でブレンドした後、成形したものなどが挙
げられる。2. Description of the Related Art Surface properties of molded products are one of the most important properties for use in various fields, and the surface properties of molded products such as polymer materials, coatings, papers, fibers, etc. Often hydrophobized. The most common surface hydrophobic molding is polymethylmethacrylate (PMM).
Polymers such as A), polycarbonate (PC), and polyurethane, and a hydrophobic polymer having a hydrophobic group or a hydrophobic atom in the molecule such as a silicone-based polymer or a fluorine-based polymer are dissolved in a solvent and mixed. Examples include those molded by blending by a method or a method of melt-kneading.
【0003】例えば、Macromolecules
第18巻第3号580頁(1985)には、シリコーン
系ポリマーをポリメチルメタクリレート(PMMA)に
ブレンドしてフィルム化する表面疎水性成形物の製造方
法が報告されており、Macromolecules
第18巻2675頁(1985)には、ポリカーボネー
ト(PC)とポリジメチルシロキサン(PDMS)の混
合比を変えてブロック共重合体を合成し、圧縮成形また
はキャスト法でフィルムを作製する表面疎水性成形物の
製造方法が報告されている。For example, Macromolecules
Vol. 18, No. 3, pp. 580 (1985) reports a method for producing a surface-hydrophobic molded article by blending a silicone-based polymer with polymethylmethacrylate (PMMA) to form a film. Macromolecules
Volume 18, page 2675 (1985), Surface hydrophobic molding in which a block copolymer is synthesized by changing the mixing ratio of polycarbonate (PC) and polydimethylsiloxane (PDMS) and a film is produced by compression molding or casting method. The manufacturing method of the product has been reported.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記
の報告によると、フィルム表面のシロキサン基含有率は
PMMAにブレンドするシリコーン系ポリマーの量のみ
に依存し、表面のシロキサン基含有率を上げるには、大
量のシリコーン系ポリマーをブレンドしなければならな
い。この場合、表面疎水性に寄与しないシリコーン系ポ
リマーがフィルムの内部に大量に存在することになるた
め、フィルム強度、剛性等の各種物性の低下を起こす。
一方、このような方法は、両者のポリマーが互いに化学
結合していないため、熱処理や化学薬品等に晒される
と、表面の疎水性ポリマーが層転移や溶出を起こし、表
面の疎水性が急に低下し、それと同時にフィルム内部の
疎水性ポリマーも溶出し、フィルム全体の物性も変化し
てしまうという大きな問題がある。例えば、上記の報
告に、シリコーン系ポリマーとPMMAのブレンドフィ
ルムをヘキサンで処理すると、表面のシリコーン系ポリ
マーが大部分または完全に除かれたと指摘されている。However, according to the above report, the content of siloxane groups on the film surface depends only on the amount of the silicone-based polymer blended with PMMA, and in order to increase the content of siloxane groups on the surface, Large amounts of silicone-based polymer must be blended. In this case, since a large amount of the silicone-based polymer that does not contribute to the surface hydrophobicity is present inside the film, various physical properties such as film strength and rigidity are deteriorated.
On the other hand, in such a method, since both polymers are not chemically bonded to each other, when exposed to heat treatment or chemicals, the hydrophobic polymer on the surface undergoes layer transition or elution, and the hydrophobicity on the surface suddenly increases. There is a big problem that the hydrophobic polymer inside the film is eluted at the same time and the physical properties of the entire film are changed. For example, it is pointed out in the above report that when a blended film of a silicone-based polymer and PMMA was treated with hexane, the silicone-based polymer on the surface was largely or completely removed.
【0005】また、上記の報告によると、フィルムの
表面をX線励起による光電子分光法(Electron
Spectroscopy for Chemica
lAnalysis=ESCA)等により分析したとこ
ろ、フィルム中のPDMSの平均含有率が25重量%の
場合でPDMSの表面偏析倍率は3.1倍程度と低く、
フィルムの内部にも多くのPDMSが存在していた。According to the above report, the surface of the film is subjected to photoelectron spectroscopy by X-ray excitation (Electron spectroscopy).
Spectroscopy for Chemica
(Analysis = ESCA), the average PDMS content in the film was 25% by weight, and the PDMS surface segregation ratio was as low as about 3.1 times.
There was also a lot of PDMS inside the film.
【0006】[0006]
【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、含有率0.01
〜10重量%のフッ素含有重合性モノマーおよび/また
はオリゴマー(A)と、親水性構造部分を有する重合性
モノマーおよび/またはオリゴマー(B)とを必須成分
として含有する重合性樹脂組成物(I)を賦形し、次い
で重合硬化させる等の方法で製造すると、この重合性樹
脂組成物(I)中のフッ素含有重合性モノマーおよび/
またはオリゴマー(A)の多くが賦形後、重合硬化され
るまでの間に表面に移動して、表面には多く、内部には
少ない成分傾斜構造を形成し、次いで重合硬化により樹
脂の構造単位として親水性構造部分を有する重合性モノ
マーおよび/またはオリゴマー(B)と共重合されるた
め、成形物の表面フッ素原子濃度やフッ素原子の成分傾
斜の程度を(A)、(B)両成分の種類や含有割合等を
適宜変更するだけで容易に幅広く調整することが可能
で、フッ素原子が表面に多く内部に少ない成分傾斜構造
を有する物性低下の少ない優れた表面疎水性成形物が一
工程で容易に製造できること、しかも得られた成形物は
フッ素原子が成形物を構成する樹脂のモノマー単位およ
び/またはオリゴマー単位の一部として含有されている
ため、フッ素原子の離脱がしにくいことを見い出した。Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that the content rate is 0.01
A polymerizable resin composition (I) containing as an essential component 10 to 10% by weight of a fluorine-containing polymerizable monomer and / or oligomer (A) and a polymerizable monomer and / or oligomer (B) having a hydrophilic structural portion. Is formed and then polymerized and cured, and the like, and the fluorine-containing polymerizable monomer and // in the polymerizable resin composition (I) are produced.
Or, most of the oligomer (A) moves to the surface after being shaped and before being polymerized and cured to form a component-gradient structure on the surface and in a large amount on the inside, and then a structural unit of the resin by polymerization and curing. As a result of being copolymerized with the polymerizable monomer and / or oligomer (B) having a hydrophilic structural part as the component, the surface fluorine atom concentration of the molded article and the degree of the fluorine atom component gradient can be adjusted to those of both components (A) and (B). A wide range can be easily adjusted simply by appropriately changing the type and content ratio, and an excellent surface-hydrophobic molded product with a large number of fluorine atoms on the surface and a small component gradient structure inside, with little deterioration in physical properties, can be obtained in one step. Since it can be easily produced, and the obtained molded product contains a fluorine atom as a part of the monomer unit and / or oligomer unit of the resin constituting the molded product, I found that hard to Nugashi.
【0007】また、上記の製造方法は、重合硬化が実質
的に瞬間的に完了するため、生産性が高く、成形性、特
に複雑な形状物の表面塗布が容易であり、しかも成形物
に架橋構造を容易に導入することができるため、成形物
の機械的強度、耐熱性、耐薬品性などの向上を計ること
ができる。Further, in the above-mentioned manufacturing method, the polymerization and curing are substantially instantaneously completed, so that the productivity is high, the moldability, especially the surface application of a complicated shape is easy, and the molding is crosslinked. Since the structure can be easily introduced, it is possible to improve the mechanical strength, heat resistance and chemical resistance of the molded product.
【0008】更に、本発明者らは、表面疎水性成形物の
中でも、表面から内部に向けてフッ素含有重合性モノマ
ー単位および/またはオリゴマー単位の含有率が連続的
に変化する成分傾斜構造を有する重合硬化樹脂成形物で
あり、表面においてX線励起による光電子分光法(ES
CA)で測定したフッ素原子数の総原子数中に占める数
の割合の百分率が5%以上で、且つフッ素原子の表面偏
析倍率が10〜2000倍である等の条件を満たす表面
疎水性成形物は、上記製造方法に限らず、それ以外の製
造方法で製造されたものであっても、フッ素原子が成形
物の表面には多いが、内部には少ないため、表面疎水性
に優れるにもかかわらず物性低下が極めて少なく、且つ
フッ素原子が成形物を構成する重合硬化樹脂のモノマー
単位および/またはオリゴマー単位の一部として含有さ
れているため、フッ素原子の離脱がしにくいという極め
て優れた効果を奏する表面疎水性成形物であることを見
い出し、本発明を完成するに至った。Further, the present inventors have a component-gradient structure in which the content ratio of the fluorine-containing polymerizable monomer unit and / or oligomer unit continuously changes from the surface to the inside among the surface-hydrophobic molded products. It is a polymerized and cured resin molded product, and photoelectron spectroscopy (ES
Surface hydrophobic molded article satisfying the conditions that the percentage of the number of fluorine atoms in the total number of atoms measured by CA) is 5% or more and the surface segregation ratio of fluorine atoms is 10 to 2000 times. Is not limited to the above-mentioned manufacturing method, and even if it is manufactured by any other manufacturing method, fluorine atoms are present on the surface of the molded article in a large amount, but since they are few inside, it is excellent in surface hydrophobicity. The deterioration of physical properties is extremely small, and since the fluorine atom is contained as a part of the monomer unit and / or oligomer unit of the polymerized and cured resin constituting the molded product, the extremely excellent effect that the fluorine atom is hard to be released is obtained. The present invention was completed by discovering that the surface-hydrophobic molded article is effective.
【0009】即ち、本発明は、(1)フッ素含有重合性
モノマーおよび/またはオリゴマー(A)と、親水性構
造部分を有する重合性モノマーおよび/またはオリゴマ
ー(B)とを必須成分として含有し、且つ全モノマーお
よび/またはオリゴマー成分中のフッ素含有重合性モノ
マーおよび/またはオリゴマー(A)の含有率が0.0
1〜10重量%である重合性樹脂組成物(I)を賦形
し、次いで重合硬化させることを特徴とする表面疎水性
成形物の製造方法、(2)重合性樹脂組成物(I)に含
まれる全モノマーおよび/またはオリゴマー成分中のフ
ッ素含有重合性モノマーおよび/またはオリゴマー
(A)の含有率が0.03〜5重量%で、且つ親水性構
造部分を有する重合性モノマーおよび/またはオリゴマ
ー(B)のフッ素含有重合性モノマーおよび/またはオ
リゴマー(A)に対する倍率(B/A)が15〜250
0重量倍である上記(1)記載の製造方法、(3)重合
性樹脂組成物(I)が、フッ素含有重合性モノマーおよ
び/またはオリゴマー(A)と、親水性構造部分を有す
る重合性モノマーおよび/またはオリゴマー(B)と、
その他の重合性モノマーおよび/またはオリゴマー
(C)とを含有するものである上記(1)または(2)
記載の製造方法、(4)重合性樹脂組成物(I)として
エネルギー線硬化性樹脂組成物を用い、これを賦形した
後、エネルギー線照射により重合硬化させる上記
(1)、(2)または(3)記載の製造方法、(5)フ
ッ素含有重合性モノマーおよび/またはオリゴマー
(A)がフッ素含有ビニルモノマーおよび/またはオリ
ゴマーであり、親水性構造部分を有する重合性モノマー
および/またはオリゴマー(B)が親水性構造部分を有
する(メタ)アクリルモノマーおよび/またはオリゴマ
ーである上記(1)、(2)、(3)または(4)記載
の製造方法、(6)フッ素含有ビニルモノマーおよび/
またはオリゴマーが、フッ素含有(メタ)アクリルモノ
マーおよび/またはオリゴマーである上記(5)記載の
製造方法、(7)フッ素含有(メタ)アクリルモノマー
および/またはオリゴマーが、フッ素化アルキル基含有
(メタ)アクリレートである上記(6)記載の製造方
法、(8)親水性構造部分を有する(メタ)アクリルモ
ノマーおよび/またはオリゴマーが、親水構造部分とし
て水酸基および/またはポリエチレングリコール構造単
位を有する(メタ)アクリルモノマーおよび/またはオ
リゴマーである上記(5)、(6)または(7)記載の
製造方法、(9)重合性樹脂組成物(I)が多官能性モ
ノマーおよび/またはオリゴマーを含有するものであ
り、該重合性樹脂組成物(I)に含まれる全モノマーお
よび/またはオリゴマー成分中の多官能性モノマーおよ
び/またはオリゴマーの含有率が5〜100重量%であ
る上記(1)〜(8)のいずれか1つに記載の製造方
法、(10)重合性樹脂組成物(I)を賦形した後、重
合硬化後の表面においてX線励起による光電子分光法
(ESCA)で測定したフッ素原子数の総原子数中に占
める数の割合の百分率が3%以上で、且つフッ素原子の
表面偏析倍率が3.5倍以上となるまで放置し、次いで
重合硬化させる上記(1)〜(9)のいずれか1つに記
載の製造方法、(11)重合性樹脂組成物(I)を膜状
に賦形し、重合硬化させる上記(1)〜(10)のいず
れか1つに記載の製造方法、That is, the present invention contains (1) a fluorine-containing polymerizable monomer and / or oligomer (A) and a polymerizable monomer and / or oligomer (B) having a hydrophilic structural portion as essential components, The content of the fluorine-containing polymerizable monomer and / or oligomer (A) in all the monomers and / or oligomer components is 0.0
1 to 10% by weight of the polymerizable resin composition (I) is shaped, and then polymerized and cured, and a method for producing a surface-hydrophobic molded article, (2) the polymerizable resin composition (I) The content of the fluorine-containing polymerizable monomer and / or oligomer (A) in all the contained monomers and / or oligomer components is 0.03 to 5% by weight, and the polymerizable monomer and / or oligomer has a hydrophilic structural portion. The ratio (B / A) of (B) to the fluorine-containing polymerizable monomer and / or oligomer (A) is 15 to 250.
The production method according to (1) above, which is 0 times by weight, (3) the polymerizable resin composition (I) has a fluorine-containing polymerizable monomer and / or oligomer (A), and a polymerizable monomer having a hydrophilic structural portion. And / or an oligomer (B),
The above (1) or (2) containing other polymerizable monomer and / or oligomer (C)
The production method described in (4) above, wherein the energy ray-curable resin composition is used as the polymerizable resin composition (I), and after shaping this, the above-mentioned (1), (2) or polymerizing and curing by energy ray irradiation or (3) Production method, (5) Fluorine-containing polymerizable monomer and / or oligomer (A) is a fluorine-containing vinyl monomer and / or oligomer, and a polymerizable monomer and / or oligomer (B having a hydrophilic structure portion) ) Is a (meth) acrylic monomer and / or oligomer having a hydrophilic structure portion, the production method according to the above (1), (2), (3) or (4), (6) a fluorine-containing vinyl monomer and / or
Alternatively, the oligomer is a fluorine-containing (meth) acrylic monomer and / or oligomer, and the production method according to the above (5), (7) The fluorine-containing (meth) acrylic monomer and / or oligomer is a fluorinated alkyl group-containing (meth). The production method according to (6) above, which is an acrylate, and (8) the (meth) acrylic monomer and / or oligomer having a hydrophilic structural portion has a hydroxyl group and / or a polyethylene glycol structural unit as a hydrophilic structural portion (meth) acrylic. The production method according to the above (5), (6) or (7), which is a monomer and / or oligomer, and (9) the polymerizable resin composition (I) contains a polyfunctional monomer and / or oligomer. All monomers and / or oligomers contained in the polymerizable resin composition (I) The production method according to any one of (1) to (8) above, wherein the content of the polyfunctional monomer and / or oligomer in the component is 5 to 100% by weight, and (10) the polymerizable resin composition ( After shaping I), the percentage of the number of fluorine atoms in the total number of atoms measured by photoelectron spectroscopy (ESCA) by X-ray excitation on the surface after polymerization and curing is 3% or more, and The production method according to any one of the above (1) to (9), which is allowed to stand until the surface segregation ratio of atoms becomes 3.5 times or more, and then polymerized and cured, (11) the polymerizable resin composition (I ) Is shaped into a film and is polymerized and cured, the production method according to any one of (1) to (10) above,
【0010】(12)表面から内部に向けてフッ素含有
重合性モノマー単位および/またはオリゴマー単位の含
有率が連続的に変化する成分傾斜構造を有する重合硬化
樹脂成形物であり、表面においてX線励起による光電子
分光法(ESCA)で測定したフッ素原子数の総原子数
中に占める数の割合の百分率が5%以上で、且つフッ素
原子の表面偏析倍率が10〜2000倍であることを特
徴とする表面疎水性成形物、(13)表面においてX線
励起による光電子分光法(ESCA)で測定したフッ素
原子数の総原子数中に占める数の割合の百分率が5〜7
0%で、且つフッ素原子の表面偏析倍率が10〜150
0倍である上記(12)載の成形物、(14)成形物
が、ビニル系共重合体からなる成形物である上記(1
2)または(13)記載の成形物、(15)成形物が、
上記(1)〜(11)のいずれか1つに記載の製造方法
で製造された成形物である上記(12)または(13)
記載の成形物、(16)成形物が、架橋重合体からなる
成形物である上記(12)、(13)、(14)または
(15)記載の成形物、および(17)成形物が、膜状
の成形物である上記(12)〜(16)のいずれか1つ
に記載の成形物を提供するものである。(12) A polymerized and cured resin molded product having a component gradient structure in which the content of fluorine-containing polymerizable monomer units and / or oligomer units continuously changes from the surface to the inside, and the surface is X-ray excited. The percentage of the number of fluorine atoms in the total number of fluorine atoms measured by photoelectron spectroscopy (ESCA) is 5% or more, and the surface segregation ratio of fluorine atoms is 10 to 2000 times. Surface-hydrophobic molded article, (13) The percentage of the number of fluorine atoms in the total number of atoms measured by X-ray excited photoelectron spectroscopy (ESCA) on the surface is 5 to 7
0%, and the surface segregation ratio of fluorine atoms is 10 to 150.
The molded product of (12) and the molded product of (14), which are 0 times, are molded products made of a vinyl-based copolymer.
The molded product according to 2) or (13), or the molded product (15) is
(12) or (13), which is a molded article produced by the production method according to any one of (1) to (11) above.
The molded product according to the above (12), (13), (14) or (15), and the molded product according to (17), wherein the molded product according to (16) is a molded product comprising a crosslinked polymer, The molded article according to any one of the above (12) to (16), which is a film-shaped molded article, is provided.
【0011】尚、本発明で言う表面、総原子数およびフ
ッ素原子の表面偏析倍率とは、以下の通りである。表面
とは、島津X線光電子分析装置 ESCA 850型〔X
線銃のアノード材質:マグネシウム、アナライザ:阻止
電場型アナライザ、アナライザのエネルギー分解能:A
g3d5/2で1.15eV(半値幅)〕を用い、成形
物表面と光電子検出器の角度(θ):15゜の条件でX
線励起による光電子分光法(ESCA)により元素分析
される成形物表面の薄層を言う。総原子数とは、X線励
起による光電子分光法(ESCA)による元素分析で測
定可能な各種原子の数の総数を言う。フッ素原子の表面
偏析倍率とは、X線励起による光電子分光法(ESC
A)による元素分析で測定した成形物表面のフッ素原子
数の総原子数中に占める数の割合の百分率〔X=(成形
物表面のフッ素原子数/成形物表面の総原子数)×10
0(%)〕と、重合性樹脂組成物(I)の組成から算出
した成形物全体のフッ素原子数の総原子数中に占める数
の割合の百分率〔Y=(成形物全体のフッ素原子数/成
形物全体の総原子数)×100(%)〕の比(X/Y)
を言う。The surface, the total number of atoms, and the surface segregation ratio of fluorine atoms referred to in the present invention are as follows. Surface means Shimadzu X-ray photoelectron analyzer ESCA 850 type [X
Ray gun anode material: Magnesium, analyzer: blocking electric field analyzer, analyzer energy resolution: A
g3d5 / 2 1.15 eV (half-value width)], and the angle between the surface of the molded product and the photoelectron detector (θ): 15 ° X
It refers to a thin layer on the surface of a molded article that is subjected to elemental analysis by photoelectron spectroscopy (ESCA) by line excitation. The total number of atoms means the total number of various atoms which can be measured by elemental analysis by photoelectron spectroscopy (ESCA) by X-ray excitation. The surface segregation ratio of fluorine atoms means photoelectron spectroscopy (ESC) by X-ray excitation.
Percentage of the ratio of the number of fluorine atoms on the surface of the molded product to the total number of atoms measured by elemental analysis according to A) [X = (the number of fluorine atoms on the surface of the molded product / the total number of atoms on the surface of the molded product) × 10
0 (%)] and the percentage of the number of fluorine atoms in the entire molded product calculated from the composition of the polymerizable resin composition (I) in the total number of atoms [Y = (number of fluorine atoms in the entire molded product. / (Total number of atoms in the entire molded product) x 100 (%)] ratio (X / Y)
Say
【0012】[0012]
【発明の実施の形態】本発明で用いる重合性樹脂組成物
(I)としては、フッ素含有重合性モノマーおよび/ま
たはオリゴマー(A)と親水性構造部分を有する重合性
モノマーおよび/またはオリゴマー(B)とを必須成分
として含有し、且つ全モノマーおよび/またはオリゴマ
ー成分中のフッ素含有重合性モノマーおよび/またはオ
リゴマー(A)の含有率が0.01〜10重量%である
ものであればよく、例えば上記(A)と(B)と、更に
必要によりその他の重合性モノマーおよび/またはオリ
ゴマー(C)とを含有し、且つこれら(A)と(B)
と、更に必要により(C)とからなる全モノマーおよび
/またはオリゴマー成分中でのフッ素含有重合性モノマ
ーおよび/またはオリゴマー(A)の含有率が0.01
〜10重量%であるエネルギー線硬化性樹脂組成物や熱
硬化性樹脂組成物等が挙げられ、なかでも短時間で硬化
することからエネルギー線硬化性樹脂組成物が好まし
い。BEST MODE FOR CARRYING OUT THE INVENTION The polymerizable resin composition (I) used in the present invention includes a fluorine-containing polymerizable monomer and / or oligomer (A) and a polymerizable monomer and / or oligomer (B) having a hydrophilic structural moiety. ) And as an essential component, and the content of the fluorine-containing polymerizable monomer and / or oligomer (A) in all the monomer and / or oligomer components is 0.01 to 10% by weight, For example, it contains the above-mentioned (A) and (B) and, if necessary, other polymerizable monomer and / or oligomer (C), and these (A) and (B)
And the content of the fluorine-containing polymerizable monomer and / or oligomer (A) in the total monomer and / or oligomer component consisting of (C) is 0.01 if necessary.
Examples of the energy ray-curable resin composition and the thermosetting resin composition are 10% by weight. Among them, the energy ray-curable resin composition is preferable because it cures in a short time.
【0013】ここで用いるフッ素含有重合性モノマーお
よび/またはオリゴマー(A)としては、特に限定はな
く、フッ素原子を含有する重合性のモノマーおよび/ま
たはオリゴマーがいずれも挙げられるが、通常はフッ素
含有ビニルモノマーおよび/またはオリゴマーを用い
る。The fluorine-containing polymerizable monomer and / or oligomer (A) used here is not particularly limited, and any polymerizable monomer and / or oligomer containing a fluorine atom can be mentioned, but usually a fluorine-containing polymerizable monomer and / or oligomer is used. Vinyl monomers and / or oligomers are used.
【0014】上記フッ素含有ビニルモノマーおよび/ま
たはオリゴマーとしては、なかでもフッ素含有ビニルモ
ノマーが好ましく、例えばトリフルオロエチル(メタ)
アクリレート、テトラフルオロプロピル(メタ)アクリ
レート、ヘキサフルオロブチル(メタ)アクリレート、
ヘキサフルオロプロピル(メタ)アクリレート、オクタ
フルオロペンチル(メタ)アクリレート、ヘプタデカフ
ルオロデシル(メタ)アクリレート、パーフルオロ(メ
タ)アクリロイルフルオライド、ビス−(トリフルオロ
メチルフォルメート)−メチル(メタ)アクリレート、
ビス−(テトラフルオロエチルフォルメート)−メチル
(メタ)アクリレート、ビス−(ヘプタフルオロプロピ
ルフォルメート)−メチル(メタ)アクリレート等のフ
ッ素化アルキル基含有(メタ)アクリレート、フッ化ビ
ニル、フッ化ビニリデンなどが挙げられ、反応速度が速
いことからフッ素化アルキル基含有(メタ)アクリレー
トが特に好ましい。これらフッ素含有ビニルモノマーお
よび/またはオリゴマーは単独で用いても混合して用い
ても良い。尚、ここで(メタ)アクリルとは、アクリル
および/またはメタクリルを表し、以下も同様である。The fluorine-containing vinyl monomer and / or oligomer is preferably a fluorine-containing vinyl monomer, for example, trifluoroethyl (meth).
Acrylate, tetrafluoropropyl (meth) acrylate, hexafluorobutyl (meth) acrylate,
Hexafluoropropyl (meth) acrylate, octafluoropentyl (meth) acrylate, heptadecafluorodecyl (meth) acrylate, perfluoro (meth) acryloylfluoride, bis- (trifluoromethylformate) -methyl (meth) acrylate,
Fluorinated alkyl group-containing (meth) acrylates such as bis- (tetrafluoroethyl formate) -methyl (meth) acrylate and bis- (heptafluoropropyl formate) -methyl (meth) acrylate, vinyl fluoride, vinylidene fluoride And the like, and a fluorinated alkyl group-containing (meth) acrylate is particularly preferable because of its high reaction rate. These fluorine-containing vinyl monomers and / or oligomers may be used alone or in combination. Here, (meth) acrylic means acrylic and / or methacrylic, and the same applies below.
【0015】また、親水性構造部分を有する重合性モノ
マーおよび/またはオリゴマー(B)としては、特に限
定はなく、親水性構造部分を含有する重合性のモノマー
および/またはオリゴマーがいずれも挙げられるが、通
常は親水性構造部分を有する(メタ)アクリルモノマー
および/またはオリゴマーを用いる。Further, the polymerizable monomer and / or oligomer (B) having a hydrophilic structure portion is not particularly limited, and any polymerizable monomer and / or oligomer having a hydrophilic structure portion can be mentioned. Usually, a (meth) acrylic monomer and / or oligomer having a hydrophilic structural portion is used.
【0016】上記親水性構造部分を有する(メタ)アク
リルモノマーおよび/またはオリゴマーとしては、例え
ば2−ヒドロキシエチル(メタ)アクリレート、2−ヒ
ドロキシプロピル(メタ)アクリレート、ブタンジオー
ルモノ(メタ)アクリレート、2−ヒドロキシブチル
(メタ)アクリレート、2−ヒドロキシ−3−フェノキ
シプロピル(メタ)アクリレート、グリセロールモノ
(メタ)アクリレート、2−(メタ)アクリロイルオキ
シエチル−2−ヒドロキシプロピルフタレート、3−ク
ロロ−2−ヒドロキシプロピル(メタ)アクリレート、
グリセリンジ(メタ)アクリレート、2−ヒドロキシ−
3−アクリロイルオキシプロピル(メタ)アクリレー
ト、エピクロロヒドリン変性エチレングリコールジ(メ
タ)アクリレート、エピクロロヒドリン変性1,6−ヘ
キサンジオールジ(メタ)アクリレート、エピクロロヒ
ドリン変性プロピレングリコールジ(メタ)アクリレー
ト、トリグリセロールジ(メタ)アクリレート、エピク
ロロヒドリン変性グリセロールトリ(メタ)アクリレー
ト、エピクロロヒドリン変性トリメチロールトリ(メ
タ)アクリレートなどの水酸基を有するもの、Examples of the (meth) acrylic monomer and / or oligomer having the hydrophilic structure portion include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, butanediol mono (meth) acrylate, 2 -Hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycerol mono (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, 3-chloro-2-hydroxy Propyl (meth) acrylate,
Glycerin di (meth) acrylate, 2-hydroxy-
3-acryloyloxypropyl (meth) acrylate, epichlorohydrin-modified ethylene glycol di (meth) acrylate, epichlorohydrin-modified 1,6-hexanediol di (meth) acrylate, epichlorohydrin-modified propylene glycol di (meth) ) Those having a hydroxyl group such as acrylate, triglycerol di (meth) acrylate, epichlorohydrin-modified glycerol tri (meth) acrylate, epichlorohydrin-modified trimethylol tri (meth) acrylate,
【0017】ジエチレングリコールモノ(メタ)アクリ
レート、トリエチレングリコールモノ(メタ)アクリレ
ート、テトラエチレングリコールモノ(メタ)アクリレ
ート、ノナエチレングリコールモノ(メタ)アクリレー
ト、テトラデカエチレングリコールモノ(メタ)アクリ
レート、トリエイコサエチレングリコールモノ(メタ)
アクリレート、ポリエチレングリコールモノ(メタ)ア
クリレート、メトキシジエチレングリコール(メタ)ア
クリレート、メトキシトリエチレングリコール(メタ)
アクリレート、メトキシテトラエチレングリコール(メ
タ)アクリレート、メトキシノナエチレングリコール
(メタ)アクリレート、メトキシテトラデカエチレング
リコール(メタ)アクリレート、メトキシトリエイコサ
エチレングリコール(メタ)アクリレート、メトキシポ
リエチレングリコール(メタ)アクリレート、フェノキ
シジエチレングリコール(メタ)アクリレート、フェノ
キシテトラエチレングリコール(メタ)アクリレート、
フェノキシヘキサエチレングリコール(メタ)アクリレ
ート、フェノキシノナエチレングリコール(メタ)アク
リレート、フェノキシポリエチレングリコール(メタ)
アクリレート、ジエチレングリコールジ(メタ)アクリ
レート、トリエチレングリコールジ(メタ)アクリレー
ト、テトラエチレングリコールジ(メタ)アクリレー
ト、ノナエチレングリコールジ(メタ)アクリレート、
テトラデカエチレングリコールジ(メタ)アクリレー
ト、ポリエチレングリコールジ(メタ)アクリレート、
エチレンオキサイド変性ビスフェノールAジ(メタ)ア
クリレート、ポリエチレングリコール変性トリメチロー
ルプロパントリ(メタ)アクリレートなどのポリエチレ
ングリコール構造単位を有するもの、Diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, nonaethylene glycol mono (meth) acrylate, tetradecaethylene glycol mono (meth) acrylate, trieicosa Ethylene glycol mono (meta)
Acrylate, polyethylene glycol mono (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth)
Acrylate, methoxytetraethylene glycol (meth) acrylate, methoxynonaethylene glycol (meth) acrylate, methoxytetradecaethylene glycol (meth) acrylate, methoxytrieicosa ethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxy Diethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate,
Phenoxyhexaethylene glycol (meth) acrylate, phenoxynonaethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth)
Acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, nonaethylene glycol di (meth) acrylate,
Tetradeca ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate,
Those having a polyethylene glycol structural unit such as ethylene oxide-modified bisphenol A di (meth) acrylate and polyethylene glycol-modified trimethylolpropane tri (meth) acrylate,
【0018】メトキシジプロピレングリコール(メタ)
アクリレート、テトラプロピレングリコールモノ(メ
タ)アクリレート、ノナプロピレングリコールモノ(メ
タ)アクリレート、ドデカプロピレングリコールモノ
(メタ)アクリレート、トリプロピレングリコールジア
クリレート、ポリプロピレングリコール変性トリメチロ
ールプロパントリ(メタ)アクリレートなどのポリプロ
ピレングリコール構造単位を有するもの、Methoxydipropylene glycol (meth)
Polypropylene glycol such as acrylate, tetrapropylene glycol mono (meth) acrylate, nonapropylene glycol mono (meth) acrylate, dodecapropylene glycol mono (meth) acrylate, tripropylene glycol diacrylate, polypropylene glycol modified trimethylolpropane tri (meth) acrylate Having structural units,
【0019】2−(メタ)アクリロイルオキシエチルハ
イドロゲンフタレート、2−(メタ)アクリロイルオキ
シプロピルハイドロゲンフタレート、2−(メタ)アク
リロイルオキシプロピルヘキサヒドロハイドロゲンフタ
レート、(メタ)アクリル酸ダイマー、ω−カルボキシ
カプロラクトンモノ(メタ)アクリレート、2−(メ
タ)アクリロイルオキシエチルコハク酸などのカルボキ
シル基を有するもの、2- (meth) acryloyloxyethyl hydrogen phthalate, 2- (meth) acryloyloxypropyl hydrogen phthalate, 2- (meth) acryloyloxypropyl hexahydrohydrogen phthalate, (meth) acrylic acid dimer, ω-carboxycaprolactone mono Those having a carboxyl group such as (meth) acrylate and 2- (meth) acryloyloxyethylsuccinic acid,
【0020】N,N−ジメチルアミノエチル(メタ)ア
クリレート、トリメチルアミノエチル(メタ)アクリレ
ート、(メタ)アクリルアミド、N,N−ジメチル(メ
タ)アクリルアミド、N,N−ジエチル(メタ)アクリ
ルアミド、N,N−ジメチルアミノプロピル(メタ)ア
クリルアミド、(メタ)アクリロイルモルホリンなど、
アミノ基やアミド基を有するもの、N, N-dimethylaminoethyl (meth) acrylate, trimethylaminoethyl (meth) acrylate, (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, (meth) acryloylmorpholine, etc.,
Having an amino group or an amide group,
【0021】更にウレタンオリゴマーの(メタ)アクリ
レート、エポキシオリゴマーの(メタ)アクリレート、
ビスフェノールA含有(メタ)アクリレート等のオリゴ
マーであって、水酸基、ポリエチレングリコール鎖、ポ
リプロピレングリコール鎖、カルボキシル基、アミノ
基、アミド基などの親水性基を含有するものFurther, a urethane oligomer (meth) acrylate, an epoxy oligomer (meth) acrylate,
Oligomers such as bisphenol A-containing (meth) acrylates containing hydrophilic groups such as hydroxyl groups, polyethylene glycol chains, polypropylene glycol chains, carboxyl groups, amino groups, amide groups, etc.
【0022】等が挙げられ、なかでも親水性構造部分と
して水酸基および/またはポリエチレングリコール構造
単位を有する(メタ)アクリルモノマーおよび/または
オリゴマーが好適である。これら親水性構造部分を有す
るモノマーおよび/またはオリゴマーは単独で用いても
混合して用いても良い。Among them, (meth) acrylic monomers and / or oligomers having a hydroxyl group and / or a polyethylene glycol structural unit as a hydrophilic structural part are preferred. These monomers and / or oligomers having a hydrophilic structure portion may be used alone or in combination.
【0023】本発明で用いる重合性樹脂組成物(I)に
は、必要に応じて、例えば成形物の強度、伸度、剛性等
を調節する目的で、上記フッ素含有重合性モノマーおよ
び/またはオリゴマー(A)および親水性構造部分を有
する重合性モノマーおよび/またはオリゴマー(B)以
外のその他の重合性モノマーおよび/またはオリゴマー
(C)を含有させることができる。The polymerizable resin composition (I) used in the present invention contains the above-mentioned fluorine-containing polymerizable monomer and / or oligomer for the purpose of adjusting strength, elongation, rigidity and the like of the molded product, if necessary. Other polymerizable monomers and / or oligomers (C) other than (A) and the polymerizable monomer and / or oligomer (B) having a hydrophilic structure portion can be contained.
【0024】必要に応じて用いるその他の重合性モノマ
ーおよび/またはオリゴマー(C)としては、その種類
について特に制限はないが、上記フッ素含有重合性モノ
マーおよび/またはオリゴマー(A)および親水性構造
部分を有する重合性モノマーおよび/またはオリゴマー
(B)と相溶するものが好ましく、通常これら(A)お
よび(B)以外のその他のビニルモノマーおよび/また
はオリゴマーを用いる。The type of other polymerizable monomer and / or oligomer (C) used as required is not particularly limited, but the above-mentioned fluorine-containing polymerizable monomer and / or oligomer (A) and hydrophilic structural moiety are used. Those which are compatible with the polymerizable monomer and / or oligomer (B) having OH are usually used, and other vinyl monomers and / or oligomers other than these (A) and (B) are usually used.
【0025】上記その他のビニルモノマーとしては、エ
チル(メタ)アクリレート、n−ブチル(メタ)アクリ
レート、イソブチル(メタ)アクリレート、t−ブチル
(メタ)アクリレート、ヘキシル(メタ)アクリレー
ト、2−エチルヘキシル(メタ)アクリレート、ラウリ
ル(メタ)アクリレート、ステアリル(メタ)アクリレ
ート、フェニル(メタ)アクリレート、フェニルセロソ
ルブ(メタ)アクリレート、イソボルニル(メタ)アク
リレート、ジシクロペンタニル(メタ)アクリレート、
ジシクロペンテニロキシエチル(メタ)アクリレート、
メタクリル酸ビニル、安息香酸ビニル、ピバル酸ビニ
ル、酪酸ビニル、ラウリン酸ビニル、クロトン酸ビニ
ル、2−エチルヘキサン酸ビニル、スチレンなどの単官
能モノマー、Examples of the above-mentioned other vinyl monomers include ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth). ) Acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, phenyl (meth) acrylate, phenyl cellosolve (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate,
Dicyclopentenyloxyethyl (meth) acrylate,
Monofunctional monomers such as vinyl methacrylate, vinyl benzoate, vinyl pivalate, vinyl butyrate, vinyl laurate, vinyl crotonate, vinyl 2-ethylhexanoate, and styrene,
【0026】1,6−ヘキサンジオールジ(メタ)アク
リレート、ポリプロピレングリコールジ(メタ)アクリ
レート、ネオペンチルグリコールジ(メタ)アクリレー
ト、2,2′−ビス(4−(メタ)アクリロイルオキシ
ポリプロピレンオキシフェニル)プロパン、ジシクロペ
ンタニルジ(メタ)アクリレ−ト、フェニルグリシジル
エ−テルアクリレ−トトリレンジイソシアネ−ト、アジ
ピン酸ジビニルなどの2官能モノマ−、1,6-hexanediol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 2,2'-bis (4- (meth) acryloyloxy polypropyleneoxyphenyl) Bifunctional monomers such as propane, dicyclopentanyl di (meth) acrylate, phenylglycidyl ether acrylate tolylene diisocyanate and divinyl adipate,
【0027】トリメチロ−ルプロパントリ(メタ)アク
リレ−ト、トリメチロ−ルエタントリ(メタ)アクリレ
−ト、トリス[(メタ)アクリロキシエチル]イソシア
ネ−ト、ペンタエリスリト−ルトリ(メタ)アクリレ−
トなどの3官能モノマ−、Trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, tris [(meth) acryloxyethyl] isocyanate, pentaerythritol tri (meth) acrylate
Trifunctional monomer such as G
【0028】ペンタエリスリト−ルテトラ(メタ)アク
リレ−ト、グリセリンジ(メタ)アクリレ−トヘキサメ
チレンジイソシアネ−トなどの4官能モノマ−、ジペン
タエリスリト−ルモノヒドロキシペンタ(メタ)アクリ
レ−トなどの5官能モノマ−、ジペンタエリスリト−ル
ヘキサ(メタ)アクリレ−トなどの6官能モノマ−等が
挙げられる。Tetrafunctional monomers such as pentaerythritol tetra (meth) acrylate and glycerin di (meth) acrylate hexamethylene diisocyanate, dipentaerythritol monohydroxypenta (meth) acrylate. And pentafunctional monomers such as dipentaerythritol hexa (meth) acrylate, and the like.
【0029】また、その他のビニルオリゴマ−として
は、例えばエネルギ−線照射や加熱により重合可能で重
量平均分子量500〜50000のものが挙げられ、具
体的にはビスフェノ−ルA−ジエポキシ−(メタ)アク
リル酸付加物など、エポキシ樹脂の(メタ)アクリル酸
エステル、ポリエーテル樹脂の(メタ)アクリル酸エス
テル、ポリブタジエン樹脂の(メタ)アクリル酸エステ
ル、分子末端に(メタ)アクリル基を有するポリウレタ
ン樹脂等を挙げることができる。Other vinyl oligomers include, for example, those having a weight average molecular weight of 500 to 50,000, which can be polymerized by irradiation with energy rays or heating, and specifically, bisphenol A-diepoxy- (meth). Acrylic acid adducts, (meth) acrylic acid ester of epoxy resin, (meth) acrylic acid ester of polyether resin, (meth) acrylic acid ester of polybutadiene resin, polyurethane resin having (meth) acrylic group at the molecular end, etc. Can be mentioned.
【0030】これらその他の重合性モノマーおよび/ま
たはオリゴマー(C)は、単独で用いても混合して用い
ても良く、例えばオリゴマー同士を混合して用いること
もできるし、モノマーとオリゴマーを混合して用いるこ
ともできる。These other polymerizable monomers and / or oligomers (C) may be used alone or as a mixture, for example, the oligomers may be mixed and used, or the monomer and the oligomer may be mixed. Can also be used.
【0031】本発明で用いる重合性樹脂組成物(I)中
に含有されるフッ素含有重合性モノマーおよび/または
オリゴマー(A)と、親水性構造部分を有する重合性モ
ノマーおよび/またはオリゴマー(B)と、更に必要に
より使用されるその他の重合性モノマーおよび/または
オリゴマー(C)の使用量は、要求される表面疎水性の
程度、(A)、(B)、更に必要に応じて使用される
(C)の各成分の種類等により異なり、該重合性樹脂組
成物(I)に含まれる全モノマーおよび/またはオリゴ
マー成分中での(A)の含有率が0.01〜10重量
%、これに対して(B)と、更に必要に応じて使用され
る(C)の合計の含有率が99.99〜90重量%とな
る範囲で適宜選択される。なかでも、要求される成形物
の表面特性、例えば撥水性、耐汚染性、耐溶剤性、剥離
性等と、成形物全体の物性、例えば強度、剛性等とのバ
ランスに優れる成形物が得られることから、全モノマー
および/またはオリゴマー成分中での(A)の含有率が
0.03〜5重量%で、且つ(B)の(A)に対する倍
率(B/A)が15〜2500重量倍となる範囲が好ま
しく、0.03〜3重量%で、且つ(B)の(A)に対
する倍率(B/A)が20〜2000重量倍となる範囲
が特に好ましい。尚、その他の重合性モノマーおよび/
またはオリゴマー(C)の使用量は、全モノマーおよび
/またはオリゴマー成分中での(C)の含有率が0〜9
0重量%となる範囲が好ましい。The fluorine-containing polymerizable monomer and / or oligomer (A) contained in the polymerizable resin composition (I) used in the present invention, and the polymerizable monomer and / or oligomer (B) having a hydrophilic structure portion. In addition, the amount of the other polymerizable monomer and / or oligomer (C) used, if necessary, depends on the required degree of surface hydrophobicity, (A), (B), and if necessary. The content of (A) in all the monomer and / or oligomer components contained in the polymerizable resin composition (I) is 0.01 to 10% by weight, which varies depending on the type of each component of (C). On the other hand, the total content of (B) and (C), which is optionally used, is appropriately selected within the range of 99.99 to 90% by weight. Above all, a molded product having an excellent balance of required surface properties of the molded product, such as water repellency, stain resistance, solvent resistance, and peelability, and physical properties of the entire molded product, such as strength and rigidity, can be obtained. Therefore, the content of (A) in all the monomer and / or oligomer components is 0.03 to 5% by weight, and the ratio (B / A) of (B) to (A) is 15 to 2500 times by weight. The range is preferably 0.03 to 3% by weight, and the range in which the ratio (B / A) of (B) to (A) is 20 to 2000 times by weight is particularly preferable. In addition, other polymerizable monomers and /
Alternatively, the amount of the oligomer (C) used is such that the content of (C) in all the monomers and / or oligomer components is 0 to 9
The range of 0% by weight is preferable.
【0032】また、本発明で用いる重合性樹脂組成物
(I)としては、その中に含まれる(A)と、(B)
と、更に必要に応じて使用される(C)とからなる全モ
ノマーおよび/またはオリゴマー成分の一部乃至全部が
多官能性モノマーおよび/またはオリゴマーであると、
重合硬化により架橋し、耐熱性、耐候性、耐摩擦性、耐
薬品性等の物性に優れる成形物が得られると共に、架橋
構造の導入により表面のフッ素原子がより離脱しにくく
なり、表面疎水性の耐久性が向上するため、好ましい。
上記全モノマーおよび/またはオリゴマー成分中に含有
される多官能性モノマーおよび/またはオリゴマーの含
有率は、要求される成形物の物性や表面疎水性の耐久性
の程度により異なるが、通常5〜100重量%であり、
なかでも物性および表面疎水性の耐久性に優れる成形物
が得られることから60〜99.95重量%が好まし
い。ここで用いる多官能性モノマーおよび/またはオリ
ゴマーとしては、前記した(A)、(B)および(C)
のうち2官能以上のものがいずれも使用できるが、通常
は2〜6官能のモノマーおよび/またはオリゴマーを適
宜選択する。The polymerizable resin composition (I) used in the present invention includes (A) and (B) contained therein.
And a part or all of all the monomer and / or oligomer components consisting of (C) and optionally used (C) are polyfunctional monomers and / or oligomers,
Crosslinking by polymerization curing gives a molded article with excellent physical properties such as heat resistance, weather resistance, abrasion resistance, and chemical resistance, and the introduction of a crosslinked structure makes it more difficult for fluorine atoms on the surface to dissociate, resulting in surface hydrophobicity. It is preferable because the durability of is improved.
The content of the polyfunctional monomer and / or oligomer contained in the total monomer and / or oligomer component varies depending on the required physical properties of the molded article and the durability of surface hydrophobicity, but is usually 5 to 100. % By weight,
Above all, 60 to 99.95% by weight is preferable because a molded product excellent in physical properties and surface hydrophobicity can be obtained. Examples of the polyfunctional monomer and / or oligomer used here include (A), (B) and (C) described above.
Of these, those having two or more functional groups can be used, but normally, a monomer and / or an oligomer having two to six functional groups is appropriately selected.
【0033】本発明で用いる重合性樹脂組成物(I)に
は、必要に応じて上記(A)および(B)以外のその他
の重合性モノマーおよび/またはオリゴマー(C)以外
に他の化合物、例えば非重合性樹脂、界面活性剤、重合
開始剤、増感剤、酸化防止剤、滑剤、防かび剤、生物付
着防止剤、無機充填剤、着色剤、繊維等を含有させるこ
とができる。また、重合性樹脂組成物(I)を繊維等に
含浸させて用いることもできる。In the polymerizable resin composition (I) used in the present invention, other compounds other than the polymerizable monomers and / or oligomers (C) other than the above (A) and (B), if necessary, For example, a non-polymerizable resin, a surfactant, a polymerization initiator, a sensitizer, an antioxidant, a lubricant, an antifungal agent, an anti-fouling agent, an inorganic filler, a coloring agent, a fiber and the like can be contained. Also, the polymerizable resin composition (I) can be used by impregnating fibers or the like.
【0034】上記重合性樹脂組成物(I)を用いて表面
疎水性成形物を製造するには、重合性樹脂組成物(I)
を目的とする形状に賦形した後、各種の硬化手段により
重合硬化させればよい。To produce a surface-hydrophobic molded article using the above-mentioned polymerizable resin composition (I), the polymerizable resin composition (I) is used.
After being shaped into a desired shape, it may be polymerized and cured by various curing means.
【0035】重合性樹脂組成物(I)を賦形する方法に
限定はないが、膜状に賦形するには、例えば重合性樹脂
組成物(I)を基板に塗布またはキャストする方法やス
リットから押し出す方法等が、繊維状に賦形するには、
例えば重合性樹脂組成物(I)をノズルから押し出す方
法等が、粒子状に賦形するには、例えば重合性樹脂組成
物(I)をノズルから滴下する方法や噴霧する方法等が
挙げられる。更に、予め賦形された含浸可能な基体に重
合性樹脂組成物(I)を含浸させる方法、繊維等の基材
に重合性樹脂組成物(I)を含浸させた後、機械的に賦
形する方法等でもよい。尚、重合性樹脂組成物(I)の
粘度が高い場合には、溶剤を添加して低粘度化した後、
賦形し、次いで加熱等により溶剤を除去することもでき
る。The method for shaping the polymerizable resin composition (I) is not limited, but for shaping into a film, for example, a method of coating or casting the polymerizable resin composition (I) on a substrate or slits. The method of extruding from, to shape into a fibrous shape,
For example, a method of extruding the polymerizable resin composition (I) from a nozzle and the like can be exemplified by a method of dropping the polymerizable resin composition (I) from a nozzle and a method of spraying the particle. Furthermore, a method of impregnating a pre-shaped impregnable substrate with the polymerizable resin composition (I), or a substrate such as fibers is impregnated with the polymerizable resin composition (I) and then mechanically shaped. The method or the like may be used. When the viscosity of the polymerizable resin composition (I) is high, after adding a solvent to reduce the viscosity,
It is also possible to remove the solvent by shaping and then heating.
【0036】賦形された重合性樹脂組成物(I)は、賦
形した後、放置すると、賦形された重合性樹脂組成物
(I)の表面のフッ素原子濃度が高くなり、フッ素原子
の表面偏析倍率が向上するので好ましく、例えば重合硬
化後の表面においてX線励起による光電子分光法(ES
CA)で測定したフッ素原子数の総原子数中に占める数
の割合の百分率が3%以上、好ましくは5%以上、特に
好ましくは5〜70%で、且つフッ素原子の表面偏析倍
率が3.5倍以上、好ましくは10〜2000倍、特に
好ましくは10〜1500倍となるまで放置する。放置
時間は、通常10秒〜1時間、好ましくは室温で20〜
180秒間、40〜150℃の加熱下〔ただし、重合性
樹脂組成物(I)に含まれる各成分の沸点未満〕で5〜
120秒間である。When the shaped polymerizable resin composition (I) is shaped and then left to stand, the concentration of fluorine atoms on the surface of the shaped polymerizable resin composition (I) increases, and The surface segregation ratio is improved, which is preferable. For example, photoelectron spectroscopy (ES) by X-ray excitation on the surface after polymerization and curing.
The percentage of the number of fluorine atoms in the total number of atoms measured by CA) is 3% or more, preferably 5% or more, particularly preferably 5 to 70%, and the surface segregation ratio of fluorine atoms is 3. It is left to stand 5 times or more, preferably 10 to 2000 times, particularly preferably 10 to 1500 times. The standing time is usually 10 seconds to 1 hour, preferably 20 to 20 at room temperature.
5 to 180 seconds under heating at 40 to 150 ° C. (however, less than the boiling point of each component contained in the polymerizable resin composition (I))
120 seconds.
【0037】賦形された重合性樹脂組成物(I)を重合
硬化させる方法にも限定はないが、通常はエネルギー線
照射および/または加熱による重合硬化方法が採用さ
れ、なかでも短時間で硬化することから重合性樹脂組成
物(I)としてエネルギー線硬化性樹脂組成物を用い、
エネルギー線照射により重合硬化させる方法が好まし
い。ここで用いるエネルギー線硬化性樹脂組成物として
は、なかでも紫外線硬化性樹脂組成物が好ましく、紫外
線硬化性樹脂組成物には、重合硬化速度を早めるために
紫外線重合開始剤や光増感剤等を含有させることが好ま
しい。There is no limitation on the method for polymerizing and curing the shaped polymerizable resin composition (I), but a method for polymerizing and curing by irradiating with energy rays and / or heating is usually employed. Therefore, the energy ray curable resin composition is used as the polymerizable resin composition (I),
A method of polymerizing and curing by irradiation with energy rays is preferable. The energy ray curable resin composition used here is preferably an ultraviolet curable resin composition, and the ultraviolet curable resin composition contains an ultraviolet polymerization initiator or a photosensitizer in order to accelerate the polymerization and curing rate. Is preferably contained.
【0038】重合性樹脂組成物(I)としてエネルギー
線硬化性樹脂組成物を用い、エネルギー線照射により重
合硬化させるに際して、酸素による重合硬化の阻害を受
ける場合、例えば賦形された紫外線硬化性樹脂組成物に
紫外線を照射する場合、エネルギー線の照射を窒素、炭
酸ガス、アルゴン等の不活性ガス雰囲気下で行うと、重
合硬化速度を速めることができることから好ましく、更
に、重合性樹脂組成物(I)中に溶解している酸素を除
去することによって、重合硬化速度を速めることも好ま
しい。When the energy ray-curable resin composition is used as the polymerizable resin composition (I) and the polymerization and curing is effected by irradiation with energy rays and the polymerization and curing are inhibited by oxygen, for example, a shaped ultraviolet-curable resin is used. When the composition is irradiated with ultraviolet rays, irradiation with energy rays is preferably performed in an atmosphere of an inert gas such as nitrogen, carbon dioxide, or argon, because the polymerization and curing rate can be accelerated, and further, the polymerizable resin composition ( It is also preferable to accelerate the polymerization and curing rate by removing oxygen dissolved in I).
【0039】また、エネルギー線照射により重合硬化し
た後の成形物は、更に熱処理することもできる。熱処理
により未反応モノマーの除去や硬化、寸法安定性の付与
などが計れる。Further, the molded product after being polymerized and cured by irradiation with energy rays can be further heat-treated. By heat treatment, removal of unreacted monomer, curing, and dimensional stability can be achieved.
【0040】賦形された重合性樹脂組成物(I)の重合
硬化に用いられるエネルギー線としては、例えば電子
線、γ線、X線、紫外線、可視光線等を挙げることがで
き、なかでも装置および取扱いの簡便さから紫外線が最
も好ましい。照射する紫外線の強度は10〜5000m
W/cm2 が好ましく、露光時間は0.01〜180秒
程度である。電子線もまた好ましいエネルギー線であ
り、添加剤の有無による重合硬化性の影響を受けず、更
に重合開始剤も不要であるため、重合開始剤の残留が問
題となる場合には、特に好ましい。Examples of the energy rays used for polymerization and curing of the shaped polymerizable resin composition (I) include electron beams, γ rays, X rays, ultraviolet rays and visible rays. Ultraviolet rays are most preferable because of easy handling. The intensity of ultraviolet rays to be irradiated is 10 to 5000 m
W / cm 2 is preferable, and the exposure time is about 0.01 to 180 seconds. An electron beam is also a preferable energy beam, is not affected by the presence or absence of an additive for the polymerization curability, and a polymerization initiator is unnecessary. Therefore, it is particularly preferable when the residual polymerization initiator is a problem.
【0041】以上のようにして得られる表面疎水性成形
物は、表面および内部に同一のフッ素含有重合性モノマ
ー単位および/またはオリゴマー単位を重合硬化樹脂の
構成単位として含有する成形物であり、その表面から内
部に向けてフッ素含有重合性モノマー単位および/また
はオリゴマー単位の含有率が連続的に変化する成分傾斜
構造を有し、且つ表面のフッ素含有重合性モノマー単位
および/またはオリゴマー単位の含有率が内部より高い
重合硬化樹脂成形物である。The surface-hydrophobic molded article obtained as described above is a molded article containing the same fluorine-containing polymerizable monomer unit and / or oligomer unit as the constitutional unit of the polymerizing and curing resin on the surface and inside thereof. Content of the fluorine-containing polymerizable monomer unit and / or oligomer unit continuously changes from the surface to the inside, and the content of the fluorine-containing polymerizable monomer unit and / or oligomer unit on the surface Is a polymerized and cured resin molded product having a higher level than the inside.
【0042】これら表面疎水性成形物のなかでも、表面
から内部に向けてフッ素含有重合性モノマー単位および
/またはオリゴマー単位の含有率が連続的に変化する成
分傾斜構造を有する重合硬化樹脂成形物であり、表面に
おいてX線励起による光電子分光法(ESCA)で測定
したフッ素原子数の総原子数中に占める数の割合の百分
率〔(成形物表面のフッ素原子数/成形物表面の総原子
数)×100(%)〕が5%以上で、且つフッ素原子の
表面偏析倍率が10〜2000倍であるという条件を満
たす本発明の表面疎水性成形物が、極めて優れた表面疎
水性を示し、しかもフッ素含有重合性モノマーおよび/
またはオリゴマー(A)の添加による物性低下が少な
く、且つフッ素原子が離脱しにくいという効果を奏する
ことから好ましい。ここにおいて、成形物を構成する重
合硬化樹脂としては、フッ素含有ビニルモノマー単位お
よび/またはオリゴマー単位を含有するビニル系共重合
体が好ましく、特にフッ素含有(メタ)アクリルモノマ
ー単位および/またはオリゴマー単位を含有する(メ
タ)アクリル系共重合体が好ましい。Among these surface-hydrophobic moldings, polymerization-curing resin moldings having a component gradient structure in which the content of fluorine-containing polymerizable monomer units and / or oligomer units continuously changes from the surface toward the inside Yes, the percentage of the number of fluorine atoms in the total number of fluorine atoms measured by photoelectron spectroscopy (ESCA) by X-ray excitation on the surface [(the number of fluorine atoms on the surface of the molded product / the total number of atoms on the surface of the molded product) X100 (%)] is 5% or more, and the surface hydrophobic molded article of the present invention which satisfies the condition that the surface segregation ratio of fluorine atoms is 10 to 2000 times shows extremely excellent surface hydrophobicity, and Fluorine-containing polymerizable monomer and /
Alternatively, it is preferable because addition of the oligomer (A) causes less deterioration in physical properties and the effect that the fluorine atom is less likely to be released. Here, a vinyl-based copolymer containing a fluorine-containing vinyl monomer unit and / or an oligomer unit is preferable as the polymerization-curable resin constituting the molded product, and a fluorine-containing (meth) acrylic monomer unit and / or an oligomer unit is particularly preferable. The (meth) acrylic copolymer contained is preferable.
【0043】上記した本発明の表面疎水性成形物を製造
する方法としては、上記の条件を満たす成形物を製造で
きる方法であればよく、特に限定されるものではない
が、なかでも前記した本発明の表面疎水性成形物の製造
方法、即ちフッ素含有重合性モノマーおよび/またはオ
リゴマー(A)と、親水性構造部分を有する重合性モノ
マーおよび/またはオリゴマー(B)とを必須成分とし
て含有する重合性樹脂組成物(I)を賦形し、重合硬化
させる等の製造方法が、成形物の表面フッ素原子濃度や
フッ素原子の成分傾斜の程度を、フッ素含有重合性モノ
マーおよび/またはオリゴマー(A)と親水性構造部分
を有する重合性モノマーおよび/またはオリゴマー
(B)の種類や含有割合等を適宜変更する等の方法で容
易に幅広く調整することが可能で、フッ素原子が表面に
多く内部に少ない成分傾斜構造を有する優れた表面疎水
性成形物が一工程で容易に製造できることから好まし
い。The method for producing the above-mentioned surface-hydrophobic molded article of the present invention is not particularly limited as long as it is a method capable of producing a molded article satisfying the above-mentioned conditions. The method for producing a surface-hydrophobic molded article of the invention, that is, a polymerization containing a fluorine-containing polymerizable monomer and / or oligomer (A) and a polymerizable monomer and / or oligomer (B) having a hydrophilic structural portion as essential components The method for producing the resin composition (I), polymerizing and curing the resin composition is such that the fluorine atom-containing polymerizable monomer and / or oligomer (A) can be used to determine the surface fluorine atom concentration and the degree of fluorine atom component inclination. And easily and widely adjusting the kind and content of the polymerizable monomer and / or oligomer (B) having a hydrophilic structural part by appropriate changes. Possible, preferable since the surface-hydrophobic molded product fluorine atom excellent have less component gradient structure inside many on the surface can be easily manufactured in a single step.
【0044】本発明の表面疎水性成形物の有する成分傾
斜構造としては、表面から内部に向けてフッ素含有重合
性モノマー単位および/またはオリゴマー単位の含有率
が連続的に変化する成分傾斜構造であれば、表面から内
部へ向かってフッ素含有重合性モノマー単位および/ま
たはオリゴマー単位の含有率またはフッ素原子濃度が徐
々に低下してもよいし、ある厚みから急激に低下しても
よく、成形物の厚み方向全体でのフッ素含有重合性モノ
マー単位および/またはオリゴマー単位の含有率または
フッ素原子濃度の分布状態は特に限定されない。The component gradient structure of the surface-hydrophobic molded article of the present invention may be a component gradient structure in which the content of fluorine-containing polymerizable monomer units and / or oligomer units continuously changes from the surface toward the inside. For example, the content of the fluorine-containing polymerizable monomer unit and / or oligomer unit or the fluorine atom concentration may be gradually decreased from the surface to the inside, or may be rapidly decreased from a certain thickness. The content of fluorine-containing polymerizable monomer units and / or oligomer units or the distribution state of fluorine atom concentration in the entire thickness direction is not particularly limited.
【0045】また、本発明の表面疎水性成形物中のフッ
素原子の含有状態としては、上記したように表面におい
てX線励起による光電子分光法(ESCA)で測定した
フッ素原子数の総原子数中に占める数の割合の百分率が
5%以上で、且つフッ素原子の表面偏析倍率が10〜2
000倍であればよいが、なかでも表面特性、例えば撥
水性、耐汚染性、剥離性などを良好に維持するために
は、表面においてX線励起による光電子分光法(ESC
A)で測定したフッ素原子数の総原子数中に占める数の
割合の百分率が5〜70%であることが好ましく、且つ
フッ素原子の表面偏析倍率が10〜1500倍であるこ
と、特に10〜1300倍であることが好ましい。表面
において測定したフッ素原子数の総原子数中に占める数
の割合の百分率が5%未満またはフッ素原子の表面偏析
倍率が10倍未満であると、表面疎水性が十分発揮でき
ない。尚、表面におけるフッ素原子数の総原子数に対す
る割合やフッ素原子の表面偏析倍率の上限は成形物の特
性からは高い方が好ましいが、フッ素原子の表面偏析倍
率を2000倍より大きくすることは製造上困難であ
る。Further, the state of containing fluorine atoms in the surface-hydrophobic molded article of the present invention is as described above, in the total number of fluorine atoms measured by X-ray excited photoelectron spectroscopy (ESCA) on the surface. The percentage of the number of the fluorine atoms is 5% or more, and the surface segregation ratio of fluorine atoms is 10 to 2
000 times, but in order to maintain good surface characteristics such as water repellency, stain resistance, and peelability, photoelectron spectroscopy (ESC) by X-ray excitation on the surface is preferable.
The percentage of the number of fluorine atoms in the total number of fluorine atoms measured in A) is preferably 5 to 70%, and the surface segregation ratio of fluorine atoms is 10 to 1500 times, particularly 10 to 10. It is preferably 1300 times. If the percentage of the number of fluorine atoms in the total number of fluorine atoms measured on the surface is less than 5% or the surface segregation ratio of fluorine atoms is less than 10, the surface hydrophobicity cannot be sufficiently exhibited. The ratio of the number of fluorine atoms to the total number of atoms on the surface and the upper limit of the surface segregation ratio of fluorine atoms are preferably higher in view of the characteristics of the molded product, but it is not possible to increase the surface segregation ratio of fluorine atoms to more than 2000 times. It's difficult.
【0046】更に、本発明の表面疎水性成形物として
は、架橋重合体からなるものが、耐熱性、耐候性、耐摩
擦性、耐薬品性等の物性に優れると共に、表面のフッ素
原子が離脱しにくく表面疎水性の耐久性にも優れるた
め、好ましい。成形物の架橋構造の度合い(架橋密度)
は、特に限定はなく、要求される成形物の物性や表面疎
水性の耐久性を考慮して適宜選択すればよい。成形物に
架橋構造を導入する方法は任意であり、光架橋、水架橋
等の成形後の後架橋法や、重合性樹脂成分の一部乃至全
部として多官能モノマーおよび/またはオリゴマーを使
用する硬化時の架橋法等があり、なかでも硬化時の架橋
法が成形速度の向上や生産性の面で好ましい。この硬化
時の架橋法で用いる重合性樹脂成分としては、例えば前
記本発明の表面疎水性成形物の製造方法で用いる重合性
樹脂組成物(I)に含まれる全モノマーおよび/または
オリゴマー成分であって、その一部乃至全部として多官
能モノマーおよび/またはオリゴマーを含有するものが
挙げられる。この場合の架橋構造導入度合いの調節方法
は、多官能モノマーおよび/またはオリゴマーの添加割
合を調整する方法や、同じ添加割合でより官能数の多い
モノマーおよび/またはオリゴマーを使用する等の方法
がある。Further, the surface-hydrophobic molded article of the present invention is made of a cross-linked polymer and has excellent physical properties such as heat resistance, weather resistance, abrasion resistance and chemical resistance, and fluorine atoms on the surface are released. It is preferable because it is difficult to do and has excellent durability of surface hydrophobicity. Degree of crosslinked structure (crosslink density)
Is not particularly limited, and may be appropriately selected in consideration of required physical properties of the molded product and durability of surface hydrophobicity. The method for introducing a crosslinked structure into the molded product is arbitrary, such as a post-crosslinking method after molding such as photocrosslinking or water crosslinking, or curing using a polyfunctional monomer and / or oligomer as a part or all of the polymerizable resin component. And the like. Among them, the crosslinking method at the time of curing is preferable from the viewpoint of improvement in molding speed and productivity. The polymerizable resin component used in the crosslinking method at the time of curing is, for example, all the monomer and / or oligomer components contained in the polymerizable resin composition (I) used in the method for producing a surface-hydrophobic molded article of the present invention. Then, the thing containing a polyfunctional monomer and / or oligomer as a part or all of it is mentioned. In this case, the method of adjusting the degree of introduction of the crosslinked structure includes a method of adjusting the addition ratio of the polyfunctional monomer and / or oligomer, and a method of using a monomer and / or oligomer having a higher functional number at the same addition ratio. .
【0047】本発明の表面疎水性成形物は、膜状、繊維
状、粒子状、その他任意の形状であってよく、なかでも
膜状であることが好ましい。膜の厚みは特に限定する必
要がなく、薄いフィルム状のものであってもよいし、厚
い板状のものであってもよい。また、その膜が基板に塗
布した状態のものであってもよい。基板は平なものであ
ってもよいし、その他の任意の形状のものであってもよ
い。The surface-hydrophobic molded article of the present invention may be in the form of a film, a fiber, a particle, or any other shape, with the film being preferred. The thickness of the film is not particularly limited, and may be a thin film shape or a thick plate shape. Further, the film may be applied to the substrate. The substrate may be flat or may have any other shape.
【0048】[0048]
【実施例】以下に実施例および比較例を挙げて本発明を
更に具体的に説明するが、本発明の範囲がこれにより限
定されるものではない。EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the scope of the present invention is not limited thereto.
【0049】実施例1 オクタフルオロペンチルアクリレート(ビスコート8
F:大阪有機化学工業株式会社製のフッ素含有アクリル
モノマ−)0.5部、メトキシノナエチレングリコール
アクリレート(NK−エステルAM−90G:新中村化
学工業株式会社製のポリエチレングリコール構造単位を
有するアクリルモノマ−)60部、ジシクロペンタニル
ジアクリレート(カヤラッドR−684:日本化薬株式
会社製のアクリルモノマ−)39.5部および1−ヒド
ロキシシクロヘキシルフェニルケトン(イルガキュアー
184チバガイギー社製の紫外線重合開始剤)2部を均
一に混合し、重合性樹脂組成物(I−1)を得た。Example 1 Octafluoropentyl acrylate (biscoat 8
F: 0.5 part of a fluorine-containing acrylic monomer manufactured by Osaka Organic Chemical Industry Co., Ltd., methoxynonaethylene glycol acrylate (NK-ester AM-90G: acrylic monomer having a polyethylene glycol structural unit manufactured by Shin Nakamura Chemical Co., Ltd.) -) 60 parts, dicyclopentanyl diacrylate (Kayarad R-684: acrylic monomer manufactured by Nippon Kayaku Co., Ltd.) 39.5 parts, and 1-hydroxycyclohexyl phenyl ketone (IRGACURE 184 UV polymerization start manufactured by Ciba Geigy). 2 parts of the agent) were uniformly mixed to obtain a polymerizable resin composition (I-1).
【0050】フィルムアプリケーターによりガラス板上
に上記重合性樹脂組成物(I−1)を厚みが120μm
になるように塗布し、窒素気流下に30秒間静置した
後、100mW/cm2 の紫外線ランプにより紫外線を
20秒間照射し、得られた透明な膜をガラスより剥して
表面疎水性膜(1)を得た。ここで窒素雰囲気と接する
側を気相側、ガラス(基板)と接する側を基板側と定義
する(以下同様)。The polymerizable resin composition (I-1) was applied to a glass plate with a film applicator so that the thickness was 120 μm.
And then leaving it under a nitrogen stream for 30 seconds, and then irradiating it with ultraviolet rays for 20 seconds with a 100 mW / cm 2 ultraviolet lamp, peeling the obtained transparent film from the glass, and then removing the surface hydrophobic film (1 ) Got. Here, the side in contact with the nitrogen atmosphere is defined as the vapor phase side, and the side in contact with the glass (substrate) is defined as the substrate side (the same applies hereinafter).
【0051】島津X線光電子分析装置 ESCA 850
型〔X線銃のアノード材質:マグネシウム、アナライ
ザ:阻止電場型アナライザ、アナライザのエネルギー分
解能:Ag3d5/2で1.15eV(半値幅)〕を用
い、膜表面と光電子検出器の角度(θ):15゜、30
゜および90゜の条件で、得られた表面疎水性膜(1)
の気相側と基板側のX線励起による光電子分光法(ES
CA)による元素分析を行い、各条件でのフッ素原子数
の総原子数中に占める数の割合の百分率(X)を求め、
更に重合性樹脂組成物(I−1)の組成から表面疎水性
膜(1)全体のフッ素原子数の総原子数中に占める数の
割合の百分率(Y)を算出し、フッ素原子の表面偏析倍
率(X/Y)を求めた。結果を表1および表2に示す。Shimadzu X-ray photoelectron analyzer ESCA 850
Type [anode material of X-ray gun: magnesium, analyzer: blocking electric field type analyzer, energy resolution of analyzer: 1.15 eV (half width) at Ag3d5 / 2], and the angle (θ) between the film surface and the photoelectron detector: 15 °, 30
Surface hydrophobic film (1) obtained under the conditions of 90 ° and 90 °
Spectroscopy (ES) by X-ray excitation of gas phase side and substrate side of
CA) to perform elemental analysis to determine the percentage (X) of the number of fluorine atoms in the total number of atoms under each condition,
Further, from the composition of the polymerizable resin composition (I-1), the percentage (Y) of the number of fluorine atoms in the entire surface hydrophobic film (1) in the total number of atoms was calculated, and the surface segregation of fluorine atoms was calculated. The magnification (X / Y) was determined. The results are shown in Tables 1 and 2.
【0052】実施例2 オクタフルオロペンチルアクリレート(ビスコート8
F)0.5部、メトキシノナエチレングリコールアクリ
レート(NK−エステルAM−90G)20部、ジシク
ロペンタニルジアクリレート(カヤラッドR−684)
79.5部および1−ヒドロキシシクロヘキシルフェニ
ルケトン(イルガキュアー184)2部を均一に混合
し、重合性樹脂組成物(I−2)を得た。Example 2 Octafluoropentyl acrylate (biscoat 8
F) 0.5 part, methoxynonaethylene glycol acrylate (NK-ester AM-90G) 20 parts, dicyclopentanyl diacrylate (Kayarad R-684)
79.5 parts and 1-hydroxycyclohexyl phenyl ketone (Irgacure 184) 2 parts were uniformly mixed to obtain a polymerizable resin composition (I-2).
【0053】重合性樹脂組成物(I−1)の代わりに重
合性樹脂組成物(I−2)を用いた以外は実施例1と同
様にして表面疎水性膜(2)を得た。A surface hydrophobic film (2) was obtained in the same manner as in Example 1 except that the polymerizable resin composition (I-2) was used instead of the polymerizable resin composition (I-1).
【0054】得られた表面疎水性膜(2)の気相側では
膜表面と光電子検出器の角度(θ):15゜、30゜お
よび90゜の条件で、また基板側では膜表面と光電子検
出器の角度(θ):15゜の条件で、それぞれ元素分析
を行った以外は実施例1と同様にして、フッ素原子数の
総原子数中に占める数の割合の百分率(X)を求め、更
に表面疎水性膜(2)全体のフッ素原子数の総原子数中
に占める数の割合の百分率(Y)と、フッ素原子の表面
偏析倍率(X/Y)を算出した。結果を表1および表2
に示す。The angle (θ) between the film surface and the photoelectron detector on the gas phase side of the obtained surface hydrophobic film (2): 15 °, 30 ° and 90 °, and on the substrate side, the film surface and the photoelectron. The percentage (X) of the ratio of the number of fluorine atoms in the total number of atoms was determined in the same manner as in Example 1 except that the elemental analysis was performed under the conditions of the detector angle (θ): 15 °. Further, the percentage (Y) of the ratio of the number of fluorine atoms in the total number of fluorine atoms in the entire surface hydrophobic film (2) and the surface segregation ratio (X / Y) of fluorine atoms were calculated. Tables 1 and 2 show the results.
Shown in
【0055】実施例3 ヘプタデカフルオロデシルアクリレート(ビスコート1
7F:大阪有機化学工業株式会社製のフッ素含有アクリ
ルモノマー)0.5部、フェノキシジエチレングリコー
ルアクリレート(P−200A:共栄社化学株式会社製
のポリエチレングリコール構造単位を有するアクリルモ
ノマー)99.5部および1−ヒドロキシシクロヘキシ
ルフェニルケトン(イルガキュアー184)2部を均一
に混合し、重合性樹脂組成物(I−3)を得た。Example 3 Heptadecafluorodecyl acrylate (biscoat 1
7F: 0.5 part of a fluorine-containing acrylic monomer manufactured by Osaka Organic Chemical Industry Co., Ltd., 99.5 parts of phenoxydiethylene glycol acrylate (P-200A: acrylic monomer having a polyethylene glycol structural unit manufactured by Kyoeisha Chemical Co., Ltd.) and 1- 2 parts of hydroxycyclohexyl phenyl ketone (Irgacure 184) were uniformly mixed to obtain a polymerizable resin composition (I-3).
【0056】重合性樹脂組成物(I−1)の代わりに重
合性樹脂組成物(I−3)を用い、得られた膜を基板か
ら剥さないこと以外は実施例1と同様にして表面疎水性
膜(3)を得た。A surface was prepared in the same manner as in Example 1 except that the polymerizable resin composition (I-3) was used in place of the polymerizable resin composition (I-1) and the obtained film was not peeled from the substrate. A hydrophobic membrane (3) was obtained.
【0057】得られた表面疎水性膜(3)の気相側のみ
について膜表面と光電子検出器の角度(θ):15゜、
30゜および90゜の条件で元素分析を行った以外は実
施例1と同様にして、フッ素原子数の総原子数中に占め
る数の割合の百分率(X)を求め、更に表面疎水性膜
(3)全体のフッ素原子数の総原子数中に占める数の割
合の百分率(Y)と、フッ素原子の表面偏析倍率(X/
Y)を算出した。結果を表1および表2に示す。Only on the gas phase side of the obtained surface hydrophobic film (3), the angle between the film surface and the photoelectron detector (θ): 15 °,
In the same manner as in Example 1 except that the elemental analysis was performed under the conditions of 30 ° and 90 °, the percentage (X) of the number of fluorine atoms in the total number of atoms was determined, and the surface hydrophobic film ( 3) Percentage (Y) of the ratio of the total number of fluorine atoms to the total number of atoms, and the surface segregation ratio of fluorine atoms (X /
Y) was calculated. The results are shown in Tables 1 and 2.
【0058】実施例4 ヘプタデカフルオロデシルアクリレート(ビスコート1
7F)0.5部、フェノキシテトラエチレングリコール
アクリレート(M−102:東亜合成株式会社製のポリ
エチレングリコール構造単位を有するアクリルモノマ
ー)99.5部および1−ヒドロキシシクロヘキシルフ
ェニルケトン(イルガキュアー184)2部を均一に混
合し、重合性樹脂組成物(I−4)を得た。Example 4 Heptadecafluorodecyl acrylate (biscoat 1
7F) 0.5 part, phenoxytetraethylene glycol acrylate (M-102: an acrylic monomer having a polyethylene glycol structural unit manufactured by Toagosei Co., Ltd.) 99.5 parts and 1-hydroxycyclohexyl phenyl ketone (Irgacure 184) 2 parts Were uniformly mixed to obtain a polymerizable resin composition (I-4).
【0059】重合性樹脂組成物(I−1)の代わりに重
合性樹脂組成物(I−4)を用い、得られた膜を基板か
ら剥さないこと以外は実施例1と同様にして表面疎水性
膜(4)を得た。A surface was prepared in the same manner as in Example 1 except that the polymerizable resin composition (I-4) was used in place of the polymerizable resin composition (I-1) and the obtained film was not peeled from the substrate. A hydrophobic membrane (4) was obtained.
【0060】得られた表面疎水性膜(4)の気相側のみ
について膜表面と光電子検出器の角度(θ):15゜、
30゜および90゜の条件で元素分析を行った以外は実
施例1と同様にして、フッ素原子数の総原子数中に占め
る数の割合の百分率(X)を求め、更に表面疎水性膜
(4)全体のフッ素原子数の総原子数中に占める数の割
合の百分率(Y)と、フッ素原子の表面偏析倍率(X/
Y)を算出した。結果を表1および表2に示す。Only on the gas phase side of the obtained surface hydrophobic film (4), the angle between the film surface and the photoelectron detector (θ): 15 °,
In the same manner as in Example 1 except that the elemental analysis was performed under the conditions of 30 ° and 90 °, the percentage (X) of the number of fluorine atoms in the total number of atoms was determined, and the surface hydrophobic film ( 4) Percentage (Y) of the total number of fluorine atoms in the total number of atoms and the surface segregation ratio of fluorine atoms (X /
Y) was calculated. The results are shown in Tables 1 and 2.
【0061】実施例5 テトラフルオロプロピルアクリレート(ビスコート4
F:大阪有機化学工業株式会社製のフッ素含有アクリル
モノマー)0.1部、エチレンオキサイド変性ビスフェ
ノールAジアクリレート(ニューフロンティアBPE−
4:第一工業製薬株式会社製の水酸基を有するアクリル
モノマー)99.9部および1−ヒドロキシシクロヘキ
シルフェニルケトン(イルガキュアー184)2部を均
一に混合し、重合性樹脂組成物(I−5)を得た。Example 5 Tetrafluoropropyl acrylate (biscoat 4
F: 0.1 part of a fluorine-containing acrylic monomer manufactured by Osaka Organic Chemical Industry Co., Ltd., ethylene oxide-modified bisphenol A diacrylate (New Frontier BPE-
4: acrylic acid monomer having a hydroxyl group manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) (99.9 parts) and 1-hydroxycyclohexyl phenyl ketone (Irgacure 184) (2 parts) were uniformly mixed to obtain a polymerizable resin composition (I-5). Got
【0062】重合性樹脂組成物(I−1)の代わりに重
合性樹脂組成物(I−5)を用い、得られた膜を基板か
ら剥さないこと以外は実施例1と同様にして表面疎水性
膜(5)を得た。A surface was prepared in the same manner as in Example 1 except that the polymerizable resin composition (I-5) was used in place of the polymerizable resin composition (I-1) and the obtained film was not peeled from the substrate. A hydrophobic membrane (5) was obtained.
【0063】得られた表面疎水性膜(5)の気相側のみ
について膜表面と光電子検出器の角度(θ):15゜、
30゜および90゜の条件で元素分析を行った以外は実
施例1と同様にして、フッ素原子数の総原子数中に占め
る数の割合の百分率(X)を求め、更に表面疎水性膜
(5)全体のフッ素原子数の総原子数中に占める数の割
合の百分率(Y)と、フッ素原子の表面偏析倍率(X/
Y)を算出した。結果を表1および表2に示す。Only on the gas phase side of the obtained surface hydrophobic film (5), the angle (θ) between the film surface and the photoelectron detector: 15 °,
In the same manner as in Example 1 except that the elemental analysis was performed under the conditions of 30 ° and 90 °, the percentage (X) of the number of fluorine atoms in the total number of atoms was determined, and the surface hydrophobic film ( 5) Percentage (Y) of the proportion of the total number of fluorine atoms in the total number of atoms and the surface segregation ratio of fluorine atoms (X /
Y) was calculated. The results are shown in Tables 1 and 2.
【0064】次いで、上記表面疎水性膜(5)の気相側
の表面を厚さにして約60μm切り取り、この表面と光
電子検出器の角度(θ):90゜の条件で元素分析を行
った以外は実施例1と同様にして、表面疎水性膜(5)
の内部のフッ素原子数の総原子数中に占める数の割合の
百分率(x)を求めたところ0.5%であり、表面疎水
性膜(5)の内部はフッ素原子が極めて少なかった。Next, the surface on the gas phase side of the surface hydrophobic film (5) was cut to a thickness of about 60 μm, and elemental analysis was carried out under the condition that the angle between this surface and the photoelectron detector (θ): 90 °. Otherwise in the same manner as in Example 1, except that the surface hydrophobic film (5) was used.
The percentage (x) of the ratio of the number of fluorine atoms in the inside of the total number of atoms was determined to be 0.5%, and the inside of the surface hydrophobic film (5) had very few fluorine atoms.
【0065】また、表面疎水性膜(5)を25℃の水に
1週間浸漬した後、浸漬前後の表面疎水性膜(5)の気
相側について、表面の水接触角を協和科学株式会社製の
液滴法CA−B型接触角計を用いて測定すると共に、膜
表面と光電子検出器の角度(θ):15゜の条件での元
素分析を行って、フッ素原子数の総原子数中に占める数
の割合の百分率(X)を求め、更に表面疎水性膜(5)
全体のフッ素原子数の総原子数中に占める数の割合の百
分率(Y)と、フッ素原子の表面偏析倍率(X/Y)を
算出した。結果を表3に示す。After immersing the surface hydrophobic film (5) in water at 25 ° C. for 1 week, the water contact angles of the surfaces of the gas phase side of the surface hydrophobic film (5) before and after the immersion were measured by Kyowa Scientific Co., Ltd. Manufactured by the droplet method CA-B type contact angle meter, and the elemental analysis was performed under the condition that the angle (θ) between the film surface and the photoelectron detector was 15 °, and the total number of fluorine atoms was calculated. The percentage (X) of the number occupied in the inside is calculated, and the surface hydrophobic film (5)
The percentage (Y) of the ratio of the total number of fluorine atoms to the total number of atoms and the surface segregation ratio (X / Y) of fluorine atoms were calculated. Table 3 shows the results.
【0066】更に、表面疎水性膜(5)を250℃の真
空乾燥機中に8時間放置して熱処理した後、熱処理前後
の表面疎水性膜(5)の気相側について、表面の水接触
角を協和科学株式会社製の液滴法CA−B型接触角計を
用いて測定すると共に、膜表面と光電子検出器の角度
(θ):15゜の条件での元素分析を行って、フッ素原
子数の総原子数中に占める数の割合の百分率(X)を求
め、更に表面疎水性膜(5)全体のフッ素原子数の総原
子数中に占める数の割合の百分率(Y)と、フッ素原子
の表面偏析倍率(X/Y)を算出した。結果を表3に示
す。Further, after the surface hydrophobic film (5) was left in a vacuum dryer at 250 ° C. for 8 hours to be heat-treated, the surface of the surface hydrophobic film (5) before and after the heat treatment was contacted with water. The angle was measured by using a droplet method CA-B type contact angle meter manufactured by Kyowa Kagaku Co., Ltd., and an elemental analysis was performed under the condition that the angle (θ) between the film surface and the photoelectron detector was 15 °, and fluorine was measured. The percentage (X) of the number of atoms in the total number of atoms is calculated, and the percentage of the number of fluorine atoms in the total number of fluorine atoms in the surface hydrophobic film (5) in the total number of atoms (Y), The surface segregation ratio (X / Y) of fluorine atoms was calculated. Table 3 shows the results.
【0067】実施例6 ヘプタデカフルオロデシルアクリレート(ビスコート1
7F)0.1部、トリフルオロエチルメタクリレート
(ビスコート3FM:大阪有機化学工業株式会社製のフ
ッ素含有メタクリルモノマー)0.1部、2−ヒドロキ
シ−3−フェノキシプロピルアクリレート(アロニック
スM−5700:東亜合成株式会社製の水酸基を有する
アクリルモノマー)99.8部および1−ヒドロキシシ
クロヘキシルフェニルケトン(イルガキュアー184)
2部を均一に混合し、重合性樹脂組成物(I−6)を得
た。Example 6 Heptadecafluorodecyl acrylate (biscoat 1
7F) 0.1 part, trifluoroethylmethacrylate (biscoat 3FM: a fluorine-containing methacrylic monomer manufactured by Osaka Organic Chemical Industry Co., Ltd.) 0.1 part, 2-hydroxy-3-phenoxypropyl acrylate (Aronix M-5700: Toagosei) Acrylic monomer having hydroxyl group manufactured by Ltd.) 99.8 parts and 1-hydroxycyclohexyl phenyl ketone (Irgacure 184)
Two parts were uniformly mixed to obtain a polymerizable resin composition (I-6).
【0068】重合性樹脂組成物(I−1)の代わりに重
合性樹脂組成物(I−6)を用い、得られた膜を基板か
ら剥さないこと以外は実施例1と同様にして表面疎水性
膜(6)を得た。A surface was prepared in the same manner as in Example 1 except that the polymerizable resin composition (I-6) was used in place of the polymerizable resin composition (I-1) and the obtained film was not peeled from the substrate. A hydrophobic membrane (6) was obtained.
【0069】得られた表面疎水性膜(6)の気相側のみ
について膜表面と光電子検出器の角度(θ):15゜、
30゜および90゜の条件で元素分析を行った以外は実
施例1と同様にして、フッ素原子数の総原子数中に占め
る数の割合の百分率(X)を求め、更に表面疎水性膜
(6)全体のフッ素原子数の総原子数中に占める数の割
合の百分率(Y)と、フッ素原子の表面偏析倍率(X/
Y)を算出した。結果を表1および表2に示す。Only on the gas phase side of the obtained surface hydrophobic film (6), the angle (θ) between the film surface and the photoelectron detector: 15 °,
In the same manner as in Example 1 except that the elemental analysis was performed under the conditions of 30 ° and 90 °, the percentage (X) of the number of fluorine atoms in the total number of atoms was determined, and the surface hydrophobic film ( 6) Percentage (Y) of the ratio of the total number of fluorine atoms in the total number of atoms and the surface segregation ratio of fluorine atoms (X /
Y) was calculated. The results are shown in Tables 1 and 2.
【0070】実施例7 ヘプタデカフルオロデシルアクリレート(ビスコート1
7F)0.1部、エポキシアクリレート(エポキシエス
テル70PA:共栄社化学株式会社製の水酸基を有する
アクリルオリゴマー)99.9部および1−ヒドロキシ
シクロヘキシルフェニルケトン(イルガキュアー18
4)2部を均一に混合し、重合性樹脂組成物(I−7)
を得た。Example 7 Heptadecafluorodecyl acrylate (biscoat 1
7F) 0.1 part, epoxy acrylate (epoxy ester 70PA: Kyoeisha Chemical Co., Ltd. hydroxyl group-containing acrylic oligomer) 99.9 parts and 1-hydroxycyclohexyl phenyl ketone (IRGACURE 18)
4) 2 parts were mixed uniformly to give a polymerizable resin composition (I-7).
I got
【0071】重合性樹脂組成物(I−1)の代わりに重
合性樹脂組成物(I−7)を用い、得られた膜を基板か
ら剥さないこと以外は実施例1と同様にして表面疎水性
膜(7)を得た。A surface was prepared in the same manner as in Example 1 except that the polymerizable resin composition (I-7) was used in place of the polymerizable resin composition (I-1) and the obtained film was not peeled from the substrate. A hydrophobic membrane (7) was obtained.
【0072】得られた表面疎水性膜(7)の気相側では
膜表面と光電子検出器の角度(θ):15゜、30゜お
よび90゜の条件で、また基板側では膜表面と光電子検
出器の角度(θ):15゜の条件で、それぞれ元素分析
を行った以外は実施例1と同様にして、フッ素原子数の
総原子数中に占める数の割合の百分率(X)を求め、更
に表面疎水性膜(7)全体のフッ素原子数の総原子数中
に占める数の割合の百分率(Y)と、フッ素原子の表面
偏析倍率(X/Y)を算出した。結果を表1および表2
に示す。On the gas phase side of the obtained surface hydrophobic film (7), the angle (θ) between the film surface and the photoelectron detector was 15 °, 30 ° and 90 °, and on the substrate side, the film surface and the photoelectron were detected. The percentage (X) of the ratio of the number of fluorine atoms in the total number of atoms was determined in the same manner as in Example 1 except that the elemental analysis was performed under the conditions of the detector angle (θ): 15 °. Further, the percentage (Y) of the number of fluorine atoms in the total number of fluorine atoms in the entire surface hydrophobic film (7) and the surface segregation ratio (X / Y) of fluorine atoms were calculated. Tables 1 and 2 show the results.
Shown in
【0073】実施例8 ヘプタデカフルオロデシルアクリレート(ビスコート1
7F)3部、2−アクリロイルオキシエチルハイドロゲ
ンフタレート(アロニックスM−5400:東亜合成株
式会社製のカルボキシル基を有するアクリルオリゴマ
ー)97.0部および1−ヒドロキシシクロヘキシルフ
ェニルケトン(イルガキュアー184)2部を均一に混
合し、重合性樹脂組成物(I−8)を得た。Example 8 Heptadecafluorodecyl acrylate (biscoat 1
7F) 3 parts, 2-acryloyloxyethyl hydrogen phthalate (Aronix M-5400: an acrylic oligomer having a carboxyl group manufactured by Toagosei Co., Ltd.) 97.0 parts and 1-hydroxycyclohexyl phenyl ketone (IRGACURE 184) 2 parts. The mixture was uniformly mixed to obtain a polymerizable resin composition (I-8).
【0074】得られた重合性樹脂組成物(I−8)をス
リット幅0.5mm、長さ30mmのスリット状ノズル
より30ml/分の吐出量で空気中に押し出し、ノズル
下30〜60cmの範囲を、6KWメタルハライドラン
プにより紫外線を集光ミラーを用いて照射して、帯状の
表面疎水性膜(8)を得た。得られた帯状の表面疎水性
膜(8)の厚みは0.3mmであった。The polymerizable resin composition (I-8) thus obtained was extruded into the air through a slit-shaped nozzle having a slit width of 0.5 mm and a length of 30 mm at a discharge rate of 30 ml / min. Was irradiated with ultraviolet rays from a 6 KW metal halide lamp using a condenser mirror to obtain a belt-shaped surface hydrophobic film (8). The thickness of the obtained strip-shaped surface hydrophobic film (8) was 0.3 mm.
【0075】得られた帯状の表面疎水性膜(8)の片側
のみについて膜表面と光電子検出器の角度(θ):15
゜、30゜および90゜の条件で元素分析を行った以外
は実施例1と同様にして、フッ素原子数の総原子数中に
占める数の割合の百分率(X)を求め、更に帯状の表面
疎水性膜(8)全体のフッ素原子数の総原子数中に占め
る数の割合の百分率(Y)と、フッ素原子の表面偏析倍
率(X/Y)を算出した。結果を表1および表2に示
す。The angle (θ) between the film surface and the photoelectron detector on only one side of the obtained strip-shaped surface hydrophobic film (8): 15
The percentage (X) of the ratio of the number of fluorine atoms to the total number of atoms was determined in the same manner as in Example 1 except that the elemental analysis was performed under the conditions of °, 30 ° and 90 °. The percentage (Y) of the number of fluorine atoms in the total number of fluorine atoms in the entire hydrophobic film (8) and the surface segregation ratio (X / Y) of fluorine atoms were calculated. The results are shown in Tables 1 and 2.
【0076】実施例9 ヘプタデカフルオロデシルアクリレート(ビスコート1
7F)0.5部、エポキシアクリレート(エポキシエス
テル80MFA:共栄社化学株式会社製の水酸基を有す
るアクリルオリゴマー)99.5部および1−ヒドロキ
シシクロヘキシルフェニルケトン(イルガキュアー18
4)2部を均一に混合し、重合性樹脂組成物(I−9)
を得た。Example 9 Heptadecafluorodecyl acrylate (biscoat 1
7F) 0.5 part, epoxy acrylate (epoxy ester 80MFA: acrylic oligomer having hydroxyl group manufactured by Kyoeisha Chemical Co., Ltd.) 99.5 parts and 1-hydroxycyclohexyl phenyl ketone (IRGACURE 18)
4) 2 parts were mixed uniformly to give a polymerizable resin composition (I-9).
I got
【0077】得られた重合性樹脂組成物(I−9)を直
径0.5mmノズルより32ml/分の吐出量で空気中
に押し出し、ノズル下30〜60cmの範囲を、6KW
メタルハライドランプにより紫外線を集光ミラーを用い
て照射して、表面疎水性糸(9)を得た。得られた表面
疎水性糸(9)の直径は0.3mmであった。The polymerizable resin composition (I-9) thus obtained was extruded into the air from a nozzle having a diameter of 0.5 mm at a discharge rate of 32 ml / min, and the range from 30 to 60 cm below the nozzle was 6 KW.
Ultraviolet rays were radiated from a metal halide lamp using a condenser mirror to obtain surface hydrophobic yarn (9). The diameter of the obtained surface hydrophobic yarn (9) was 0.3 mm.
【0078】得られた表面疎水性糸(9)の表面と光電
子検出器の角度(θ):15゜、30゜および90゜の
条件で元素分析を行った以外は実施例1と同様にして、
フッ素原子数の総原子数中に占める数の割合の百分率
(X)を求め、更に面疎水性糸(9)全体のフッ素原子
数の総原子数中に占める数の割合の百分率(Y)と、フ
ッ素原子の表面偏析倍率(X/Y)を算出した。結果を
表1および表2に示す。Angles (θ) between the surface of the surface hydrophobic yarn (9) thus obtained and the photoelectron detector: 15 °, 30 ° and 90 °. ,
The percentage (X) of the ratio of the number of fluorine atoms in the total number of atoms is calculated, and the percentage (Y) of the ratio of the number of fluorine atoms in the total surface hydrophobic yarn (9) to the total number of atoms (Y) is calculated. The surface segregation ratio (X / Y) of fluorine atoms was calculated. The results are shown in Tables 1 and 2.
【0079】比較例1 ポリフッ化ビニリデン(KF1000:呉羽化学工業株
式会社製)35部、ポリメチルメタクリレート(PMM
A)65部および溶剤としてN,N−ジメチルアセトア
ミド(DMAc)350部を均一に混合し、重合性樹脂
組成物(I−1′)を得た。Comparative Example 1 35 parts of polyvinylidene fluoride (KF1000: manufactured by Kureha Chemical Industry Co., Ltd.), polymethylmethacrylate (PMM)
A) (65 parts) and 350 parts of N, N-dimethylacetamide (DMAc) as a solvent were uniformly mixed to obtain a polymerizable resin composition (I-1 ′).
【0080】フィルムアプリケーターによりガラス板上
に上記重合性樹脂組成物(I−1′)を厚みが250μ
mになるように塗布し、150℃、真空下の条件でN,
N−ジメチルアセトアミド(DMAc)を揮発させ、得
られた透明な膜をガラスより剥して表面疎水性膜
(1′)を得た。The polymerizable resin composition (I-1 ') having a thickness of 250 μm was applied onto a glass plate by a film applicator.
m, and apply N, under conditions of 150 ° C and vacuum.
N-Dimethylacetamide (DMAc) was volatilized, and the obtained transparent film was peeled from the glass to obtain a surface hydrophobic film (1 ').
【0081】得られた表面疎水性膜(1′)の気相側と
基板側において、試料表面と光電子検出器の角度
(θ):15゜の条件で、それぞれ元素分析を行った以
外は実施例1と同様にして、フッ素原子数の総原子数に
対する含有率(X)を求め、更に表面疎水性膜(2′)
全体のフッ素原子数の総原子数に対する含有率(Y)
と、フッ素原子の表面偏析倍率(X/Y)を算出した。
結果を表2に示す。On the gas phase side and the substrate side of the obtained surface hydrophobic film (1 '), the conditions were such that the angle (θ) between the sample surface and the photoelectron detector was 15 °, except that elemental analysis was performed. In the same manner as in Example 1, the content ratio (X) of the number of fluorine atoms to the total number of atoms was determined, and the surface hydrophobic film (2 ')
Content of total number of fluorine atoms to total number of atoms (Y)
Then, the surface segregation ratio (X / Y) of fluorine atoms was calculated.
Table 2 shows the results.
【0082】比較例2 ヘプタデカフルオロデシルアクリレート(ビスコート1
7F)1部、ノニルフェノキシエチルアクリレート(ア
ロニックスM−111:東亜合成株式会社製の親水性基
を有しないアクリルモノマー)99部および1−ヒドロ
キシシクロヘキシルフェニルケトン(イルガキュアー1
84)2部を均一に混合し、重合性樹脂組成物(I−
2′)を得た。Comparative Example 2 Heptadecafluorodecyl acrylate (biscoat 1
7F) 1 part, 99 parts nonylphenoxyethyl acrylate (Aronix M-111: acrylic monomer having no hydrophilic group manufactured by Toagosei Co., Ltd.) and 1-hydroxycyclohexyl phenyl ketone (IRGACURE 1
84) 2 parts are mixed uniformly, and the polymerizable resin composition (I-
2 ') was obtained.
【0083】重合性樹脂組成物(I−1)の代わりに重
合性樹脂組成物(I−2′)を用い、得られた膜を基板
から剥さないこと以外は実施例1と同様にして表面疎水
性膜(2′)を得た。In the same manner as in Example 1 except that the polymerizable resin composition (I-2 ′) was used in place of the polymerizable resin composition (I-1) and the obtained film was not peeled from the substrate. A surface hydrophobic membrane (2 ') was obtained.
【0084】得られた表面疎水性膜(2′)の気相側に
おいて、膜表面と光電子検出器の角度(θ):15゜の
条件で元素分析を行った以外は実施例1と同様にして、
フッ素原子数の総原子数に対する含有率(X)を求め、
更に表面疎水性膜(2′)全体のフッ素原子数の総原子
数に対する含有率(Y)と、フッ素原子の表面偏析倍率
(X/Y)を算出した。結果を表2に示す。On the gas phase side of the obtained surface hydrophobic film (2 '), the same procedure as in Example 1 was carried out except that the elemental analysis was carried out under the condition that the angle (θ) between the film surface and the photoelectron detector was 15 °. hand,
Calculate the content (X) of the number of fluorine atoms with respect to the total number of atoms,
Further, the content (Y) of the number of fluorine atoms in the entire surface hydrophobic film (2 ′) with respect to the total number of atoms and the surface segregation ratio (X / Y) of fluorine atoms were calculated. Table 2 shows the results.
【0085】比較例3 オクタフルオロペンチルアクリレート(ビスコート8
F)0.5部、ラウリルアクリレート99.5部および
1−ヒドロキシシクロヘキシルフェニルケトン(イルガ
キュアー184)2部を均一に混合し、重合性樹脂組成
物(I−3′)を得た。Comparative Example 3 Octafluoropentyl acrylate (biscoat 8
F) 0.5 part, 99.5 parts of lauryl acrylate and 2 parts of 1-hydroxycyclohexyl phenyl ketone (Irgacure 184) were uniformly mixed to obtain a polymerizable resin composition (I-3 ′).
【0086】重合性樹脂組成物(I−1)の代わりに重
合性樹脂組成物(I−3′)を用い、得られた膜を基板
から剥さないこと以外は実施例1と同様にして表面疎水
性膜(3′)を得た。In the same manner as in Example 1 except that the polymerizable resin composition (I-3 ') was used instead of the polymerizable resin composition (I-1) and the obtained film was not peeled from the substrate. A surface hydrophobic membrane (3 ') was obtained.
【0087】得られた表面疎水性膜(3′)の気相側と
基板側において、試料表面と光電子検出器の角度
(θ):15゜の条件で、それぞれ元素分析を行った以
外は実施例1と同様にして、フッ素原子数の総原子数に
対する含有率(X)を求め、更に表面疎水性膜(3′)
全体のフッ素原子数の総原子数に対する含有率(Y)
と、フッ素原子の表面偏析倍率(X/Y)を算出した。
結果を表2に示す。On the gas phase side and the substrate side of the obtained surface hydrophobic film (3 '), the conditions were such that the angle (θ) between the sample surface and the photoelectron detector was 15 °, except that elemental analysis was performed. In the same manner as in Example 1, the content ratio (X) of the number of fluorine atoms to the total number of atoms was determined, and the surface hydrophobic film (3 ')
Content of total number of fluorine atoms to total number of atoms (Y)
Then, the surface segregation ratio (X / Y) of fluorine atoms was calculated.
Table 2 shows the results.
【0088】[0088]
【表1】 [Table 1]
【0089】[0089]
【表2】 [Table 2]
【0090】[0090]
【表3】 [Table 3]
【0091】[0091]
【発明の効果】本発明の表面疎水性成形物の製造方法
は、成形物の表面フッ素原子濃度やフッ素原子の成分傾
斜の程度を容易に幅広く調整することが可能で、フッ素
原子が表面に多く内部に少ない成分傾斜構造を有し、且
つフッ素原子の離脱がしにくい優れた表面疎水性成形物
が一工程で容易に生産性よく製造できる。しかも、この
製造方法は、成形物に架橋構造を容易に導入することが
でき、これにより成形物の機械的強度、耐熱性、耐薬品
性などの向上を計ることもできる。また、本発明の表面
疎水性成形物は、表面疎水性に優れるにもかかわらず物
性低下が極めて少なく、且つフッ素原子の離脱がしにく
い。INDUSTRIAL APPLICABILITY According to the method for producing a surface-hydrophobic molded article of the present invention, it is possible to easily and widely adjust the surface fluorine atom concentration and the degree of the fluorine atom component gradient, and a large number of fluorine atoms are present on the surface. An excellent surface-hydrophobic molded product having a small component gradient structure inside and less likely to release fluorine atoms can be easily manufactured with high productivity in one step. In addition, this manufacturing method can easily introduce a crosslinked structure into the molded product, and thereby can improve the mechanical strength, heat resistance, chemical resistance and the like of the molded product. Further, the surface-hydrophobic molded article of the present invention is excellent in surface-hydrophobicity, but its physical properties are not significantly deteriorated, and fluorine atoms are hard to be released.
Claims (17)
はオリゴマー(A)と、親水性構造部分を有する重合性
モノマーおよび/またはオリゴマー(B)とを必須成分
として含有し、且つ全モノマーおよび/またはオリゴマ
ー成分中のフッ素含有重合性モノマーおよび/またはオ
リゴマー(A)の含有率が0.01〜10重量%である
重合性樹脂組成物(I)を賦形し、次いで重合硬化させ
ることを特徴とする表面疎水性成形物の製造方法。1. A fluorine-containing polymerizable monomer and / or oligomer (A) and a polymerizable monomer and / or oligomer (B) having a hydrophilic structure portion as essential components, and all monomers and / or oligomers. The polymerizable resin composition (I) having a content of the fluorine-containing polymerizable monomer and / or oligomer (A) in the component of 0.01 to 10% by weight is shaped and then polymerized and cured. A method for producing a surface-hydrophobic molded article.
ノマーおよび/またはオリゴマー成分中のフッ素含有重
合性モノマーおよび/またはオリゴマー(A)の含有率
が0.03〜5重量%で、且つ親水性構造部分を有する
重合性モノマーおよび/またはオリゴマー(B)のフッ
素含有重合性モノマーおよび/またはオリゴマー(A)
に対する倍率(B/A)が15〜2500重量倍である
請求項1記載の製造方法。2. The content of fluorine-containing polymerizable monomer and / or oligomer (A) in all the monomer and / or oligomer components contained in the polymerizable resin composition (I) is 0.03 to 5% by weight, And a fluorine-containing polymerizable monomer and / or oligomer (A) of a polymerizable monomer and / or oligomer (B) having a hydrophilic structure part
The manufacturing method according to claim 1, wherein the magnification (B / A) is 15 to 2500 times by weight.
重合性モノマーおよび/またはオリゴマー(A)と、親
水性構造部分を有する重合性モノマーおよび/またはオ
リゴマー(B)と、その他の重合性モノマーおよび/ま
たはオリゴマー(C)とを含有するものである請求項1
または2記載の製造方法。3. The polymerizable resin composition (I) comprises a fluorine-containing polymerizable monomer and / or oligomer (A), a polymerizable monomer and / or oligomer (B) having a hydrophilic structural portion, and other polymerization. A polymerizable monomer and / or oligomer (C) is contained.
Or the production method according to 2.
ー線硬化性樹脂組成物を用い、これを賦形した後、エネ
ルギー線照射により重合硬化させる請求項1、2または
3記載の製造方法。4. The method according to claim 1, 2 or 3, wherein an energy ray-curable resin composition is used as the polymerizable resin composition (I), which is shaped and then polymerized and cured by irradiation with energy rays.
はオリゴマー(A)がフッ素含有ビニルモノマーおよび
/またはオリゴマーであり、親水性構造部分を有する重
合性モノマーおよび/またはオリゴマー(B)が親水性
構造部分を有する(メタ)アクリルモノマーおよび/ま
たはオリゴマーである請求項1、2、3または4記載の
製造方法。5. The fluorine-containing polymerizable monomer and / or oligomer (A) is a fluorine-containing vinyl monomer and / or oligomer, and the polymerizable monomer and / or oligomer (B) having a hydrophilic structure portion is a hydrophilic structure portion. The method according to claim 1, 2, 3 or 4, which is a (meth) acrylic monomer and / or oligomer having
はオリゴマーが、フッ素含有(メタ)アクリルモノマー
および/またはオリゴマーである請求項5記載の製造方
法。6. The method according to claim 5, wherein the fluorine-containing vinyl monomer and / or oligomer is a fluorine-containing (meth) acrylic monomer and / or oligomer.
よび/またはオリゴマーが、フッ素化アルキル基含有
(メタ)アクリレートである請求項6記載の製造方法。7. The method according to claim 6, wherein the fluorine-containing (meth) acrylic monomer and / or oligomer is a fluorinated alkyl group-containing (meth) acrylate.
ルモノマーおよび/またはオリゴマーが、親水構造部分
として水酸基および/またはポリエチレングリコール構
造単位を有する(メタ)アクリルモノマーおよび/また
はオリゴマーである請求項5、6または7記載の製造方
法。8. The (meth) acrylic monomer and / or oligomer having a hydrophilic structural portion is a (meth) acrylic monomer and / or oligomer having a hydroxyl group and / or a polyethylene glycol structural unit as a hydrophilic structural portion. The method according to claim 6, 6 or 7.
マーおよび/またはオリゴマーを含有するものであり、
該重合性樹脂組成物(I)に含まれる全モノマーおよび
/またはオリゴマー成分中の多官能性モノマーおよび/
またはオリゴマーの含有率が5〜100重量%である請
求項1〜8のいずれか1つに記載の製造方法。9. The polymerizable resin composition (I) contains a polyfunctional monomer and / or oligomer,
Polyfunctional monomer in all monomers and / or oligomer components contained in the polymerizable resin composition (I), and / or
Alternatively, the production method according to any one of claims 1 to 8, wherein the content of the oligomer is 5 to 100% by weight.
後、重合硬化後の表面においてX線励起による光電子分
光法(ESCA)で測定したフッ素原子数の総原子数中
に占める数の割合の百分率が3%以上で、且つフッ素原
子の表面偏析倍率が3.5倍以上となるまで放置し、次
いで重合硬化させる請求項1〜9のいずれか1つに記載
の製造方法。10. After the polymerizable resin composition (I) has been shaped, the number of fluorine atoms measured by X-ray excitation photoelectron spectroscopy (ESCA) on the surface after polymerization and curing is determined by the number of fluorine atoms in the total number of atoms. 10. The production method according to claim 1, wherein the percentage is 3% or more and the surface segregation ratio of fluorine atoms is 3.5 times or more, followed by polymerization and curing.
し、次いで重合硬化させる請求項1〜10のいずれか1
つに記載の製造方法。11. The polymerizable resin composition (I) is shaped into a film, and then polymerized and cured, to thereby form a film.
Manufacturing method described in.
性モノマー単位および/またはオリゴマー単位の含有率
が連続的に変化する成分傾斜構造を有する重合硬化樹脂
成形物であり、表面においてX線励起による光電子分光
法(ESCA)で測定したフッ素原子数の総原子数中に
占める数の割合の百分率が5%以上で、且つフッ素原子
の表面偏析倍率が10〜2000倍であることを特徴と
する表面疎水性成形物。12. A polymerized and cured resin molded product having a component gradient structure in which the content of fluorine-containing polymerizable monomer units and / or oligomer units continuously changes from the surface to the inside, and the surface is formed by X-ray excitation. A surface characterized by a percentage of the number of fluorine atoms in the total number of fluorine atoms measured by photoelectron spectroscopy (ESCA) of 5% or more, and a surface segregation ratio of fluorine atoms of 10 to 2000 times. Hydrophobic molding.
光法(ESCA)で測定したフッ素原子数の総原子数中
に占める数の割合の百分率が5〜70%で、且つフッ素
原子の表面偏析倍率が10〜1500倍である請求項1
2記載の成形物。13. The percentage of the number of fluorine atoms in the total number of fluorine atoms measured by X-ray excitation photoelectron spectroscopy (ESCA) on the surface is 5 to 70%, and the surface segregation ratio of fluorine atoms is It is 10 to 1500 times.
The molded article according to 2.
成形物である請求項12または13記載の成形物。14. The molded product according to claim 12, wherein the molded product is a molded product made of a vinyl-based copolymer.
1つに記載の製造方法で製造された成形物である請求項
12または13記載の成形物。15. The molded product according to claim 12 or 13, which is a molded product manufactured by the manufacturing method according to any one of claims 1 to 11.
である請求項12、13、14または15記載の成形
物。16. The molded product according to claim 12, 13, 14 or 15, which is a molded product made of a crosslinked polymer.
12〜16のいずれか1つに記載の成形物。17. The molded product according to claim 12, wherein the molded product is a film-shaped molded product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32876695A JPH09165459A (en) | 1995-12-18 | 1995-12-18 | Method for producing surface-hydrophobic molded article and surface-hydrophobic molded article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32876695A JPH09165459A (en) | 1995-12-18 | 1995-12-18 | Method for producing surface-hydrophobic molded article and surface-hydrophobic molded article |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09165459A true JPH09165459A (en) | 1997-06-24 |
Family
ID=18213908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32876695A Pending JPH09165459A (en) | 1995-12-18 | 1995-12-18 | Method for producing surface-hydrophobic molded article and surface-hydrophobic molded article |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09165459A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016092844A1 (en) * | 2014-12-12 | 2016-06-16 | 富士フイルム株式会社 | Polymer, composition, optical film, and liquid crystal display device |
WO2018161079A1 (en) | 2017-03-03 | 2018-09-07 | Harland Medical Systems, Inc. | Coating composition comprised of a hydrophilic crosslinker, a hydrophobic crosslinker and optionally a hydrogel and methods of making and using the same |
US10696104B2 (en) | 2013-12-18 | 2020-06-30 | Bridgestone Americas Tire Operations, Llc | Tires and other objects having an aerodynamic/hydrodynamic surface treatment |
WO2020195916A1 (en) * | 2019-03-25 | 2020-10-01 | 第一工業製薬株式会社 | Composition that contains fluorine-containing copolymer, and defoamer |
-
1995
- 1995-12-18 JP JP32876695A patent/JPH09165459A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10696104B2 (en) | 2013-12-18 | 2020-06-30 | Bridgestone Americas Tire Operations, Llc | Tires and other objects having an aerodynamic/hydrodynamic surface treatment |
WO2016092844A1 (en) * | 2014-12-12 | 2016-06-16 | 富士フイルム株式会社 | Polymer, composition, optical film, and liquid crystal display device |
KR20170083128A (en) * | 2014-12-12 | 2017-07-17 | 후지필름 가부시키가이샤 | Polymer, composition, optical film, and liquid crystal display device |
CN107001512A (en) * | 2014-12-12 | 2017-08-01 | 富士胶片株式会社 | polymer, composition, optical film and liquid crystal display device |
JPWO2016092844A1 (en) * | 2014-12-12 | 2017-09-21 | 富士フイルム株式会社 | Polymer, composition, optical film, and liquid crystal display device |
US20170283701A1 (en) * | 2014-12-12 | 2017-10-05 | Fujifilm Corporation | Polymer, composition, optical film, and liquid crystal display device |
CN107001512B (en) * | 2014-12-12 | 2020-03-03 | 富士胶片株式会社 | Polymer, composition, optical film and liquid crystal display device |
WO2018161079A1 (en) | 2017-03-03 | 2018-09-07 | Harland Medical Systems, Inc. | Coating composition comprised of a hydrophilic crosslinker, a hydrophobic crosslinker and optionally a hydrogel and methods of making and using the same |
EP3589704A4 (en) * | 2017-03-03 | 2020-12-16 | Harland Medical Systems, Inc. | COATING COMPOSITION WITH A HYDROPHILIC CROSSLINKER, A HYDROPHOBIC CROSSLINKER AND, IF APPLICABLE, A HYDROGEL AND A METHOD FOR MANUFACTURING AND USING THEREOF |
WO2020195916A1 (en) * | 2019-03-25 | 2020-10-01 | 第一工業製薬株式会社 | Composition that contains fluorine-containing copolymer, and defoamer |
CN113631239A (en) * | 2019-03-25 | 2021-11-09 | 第一工业制药株式会社 | Composition containing fluorine-containing copolymer and defoaming agent |
CN113631239B (en) * | 2019-03-25 | 2023-03-17 | 第一工业制药株式会社 | Composition containing fluorine-containing copolymer and defoaming agent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5889073A (en) | Process for producing material with hydrophilic surface | |
JP5664547B2 (en) | Transfer sheet and manufacturing method thereof | |
US8802197B2 (en) | Method of producing an article comprising an interpenetrating polymer network (IPN) and an article comprising an IPN | |
JP4426157B2 (en) | Porous forming photocurable resin composition and cured porous resin | |
JP2008248181A (en) | Porous film having hydrophilic graft polymer, method for using the same and method for producing the same | |
JPH09165459A (en) | Method for producing surface-hydrophobic molded article and surface-hydrophobic molded article | |
JP5638173B1 (en) | Substrate film formation method | |
EP0535750B1 (en) | Method for grafting hydrophilic monomers containing double bonds onto formed bodies with polymer surfaces | |
JP2013071118A (en) | Coating film having super-hydrophilic surface area, and method for producing the same | |
JP2009256577A (en) | Coating agent and clear coat film | |
JP2002200623A (en) | Manufacturing method of resin composite | |
JP2011006667A (en) | Water-repellent film and method for producing the same | |
JP4946215B2 (en) | Anti-reflection laminate | |
JP6878958B2 (en) | Ionizing radiation polymerizable composition, ionizing radiation curable film and method for producing this ionizing radiation curable film | |
JP7005907B2 (en) | Curable composition and membrane | |
JP3605868B2 (en) | Water and oil repellent materials | |
JP3753502B2 (en) | Method for producing surface hydrophilic molding | |
JPH11302421A (en) | Method for producing surface hydrophilic molded article | |
JPH0655848B2 (en) | Coating composition with excellent adhesion | |
JP2001329027A (en) | Resin composite, composition, and their production methods | |
JP2005272708A (en) | Surface-treated polycarbonate molded article | |
JP3259040B2 (en) | Manufacturing method of synthetic resin molded product with scratch-resistant film | |
JP2000212313A (en) | Method for producing surface hydrophilic molded article | |
JPH11181131A (en) | Method for immobilizing hydrophobic compound | |
WO2021010440A1 (en) | Porous film and method for producing porous film |