[go: up one dir, main page]

JPH09161806A - Secondary battery electrode or secondary battery - Google Patents

Secondary battery electrode or secondary battery

Info

Publication number
JPH09161806A
JPH09161806A JP7324590A JP32459095A JPH09161806A JP H09161806 A JPH09161806 A JP H09161806A JP 7324590 A JP7324590 A JP 7324590A JP 32459095 A JP32459095 A JP 32459095A JP H09161806 A JPH09161806 A JP H09161806A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
void
battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7324590A
Other languages
Japanese (ja)
Inventor
Katsunori Nishimura
勝憲 西村
Hidetoshi Honbou
英利 本棒
Seiji Takeuchi
瀞士 武内
Tadashi Muranaka
村中  廉
Tatsuo Horiba
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP7324590A priority Critical patent/JPH09161806A/en
Publication of JPH09161806A publication Critical patent/JPH09161806A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve electrode strength while restraining the capacity lowering of an electrode, by joining the metallic base of two-dimensional structure to a multi-void metallic later, to form an current collector to fill a void in the multi-void metallic later with a mixture including battery active material. SOLUTION: In this secondary battery electrode, a current collector, to which the metallic base 1 of two-dimensional structure is joined, is quipped on a multi- void metallic layer 2 or 2 and 4; and voids in the metallic layers 2 and 4 are filled with mixtures including battery active material. The void ratio of the metallic layers 2 and 4 are preferably 85% or more. The base 1 is formed of metallic foil, and a metallic plate or a metallic boring plate. The metallic layers 2 and 4 or the base 1 is formed of stainless steel, nickel, aluminum, copper, or titanium. The elongation percentage of the electrode before and after press molding the electrode is 10% or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特にリチウム二次
電池等の二次電池用電極、二次電池、その組電池をから
なる繰返し充電可能な電源または二次電池利用機器に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rechargeable power source or an apparatus using a secondary battery, which is composed of an electrode for a secondary battery such as a lithium secondary battery, a secondary battery, and an assembled battery thereof.

【0002】[0002]

【従来の技術】非水電解液二次電池の代表例であるリチ
ウム二次電池は、リチウムイオン電池として既に実用化
され、ビデオカメラ、携帯用電話などのポ−タブル電気
機器に利用されている。これらの電池の多くは円筒型で
あり、電池活物質を含有する合剤を、有孔金属板よりな
る集電体にリチウム板を圧着したもの又は金属箔の表面
に塗布したフィルム状電極を用いている。この電極とセ
パレ−タを捲回することによって、電極面積を大きくと
り、高レ−ト充放電を可能にしている。フィルム状電極
の捲回は比較的容易であるため、捲回式円筒型電池の構
造に関する公知例は数多い(特開昭60-109173号公報、
特開平1-272049号公報又は特開平5-74488号公報な
ど)。
2. Description of the Related Art A lithium secondary battery, which is a typical example of a non-aqueous electrolyte secondary battery, has already been put to practical use as a lithium ion battery and used in portable electric equipment such as video cameras and mobile phones. . Most of these batteries are of a cylindrical type, and a film electrode in which a mixture containing a battery active material is pressure-bonded to a lithium plate on a current collector made of a perforated metal plate or a film electrode applied to the surface of a metal foil is used. ing. By winding the electrode and the separator, a large electrode area is obtained and high rate charge / discharge is enabled. Since the winding of the film electrode is relatively easy, there are many known examples of the structure of the wound cylindrical battery (Japanese Patent Laid-Open No. 60-109173).
JP-A-1-72049 or JP-A-5-74488).

【0003】他方、角型電池は円筒型電池よりも無駄な
空間なく配置できるので、組電池を利用した電源に有利
である。角型電池の場合も、フィルム状電極を利用した
捲回式電極群構造(特開平5-135780号公報)の他に、短
冊形電極の積層式構造(特開平6-150974号公報)が考え
られている。特に後者の方が、電池内部の体積に対する
電極群の充填率が高い点で有利である。
On the other hand, the prismatic battery can be arranged with less wasted space than the cylindrical battery, which is advantageous for a power source using an assembled battery. Also in the case of the prismatic battery, in addition to the wound-type electrode group structure using the film-shaped electrode (JP-A-5-135780), a laminated electrode structure of strip-shaped electrodes (JP-A-6-150974) is considered. Has been. In particular, the latter is advantageous in that the filling rate of the electrode group with respect to the volume inside the battery is high.

【0004】積層式角型電池の容量が大きくなると、多
数の正極と負極の位置を正確に合わせて積層する技術が
必須になる。フィルム状電極は捲回式電池に有利である
が、電極が強固でないため、積層式電池には不向きであ
る。集電体上の合剤塗布層を厚くすると、電極強度が改
善されるが、充放電中に電池活物質が脱落しやすいこと
や、電池活物質の容量が低下するなどの問題が生じる。
そこで、アルミニウム繊維からなる空隙の多い多孔質シ
−トに正極活物質を保持させた電極(特開平6-196170号
公報)、ニッケル金属多孔体に負極活物質を保持させた
電極(特開平7-22021号公報)を用い、電極を厚膜化し
て、少ない積層数で電池を製造する方法が提案されてい
る。
As the capacity of a stacked prismatic battery increases, a technology for stacking a large number of positive electrodes and negative electrodes in a precise alignment becomes essential. The film-like electrode is advantageous for a wound battery, but is not suitable for a laminated battery because the electrode is not strong. When the mixture coating layer on the current collector is thickened, the electrode strength is improved, but problems such as the battery active material easily falling off during charging / discharging and the capacity of the battery active material falling are caused.
Therefore, an electrode having a positive electrode active material held on a porous sheet made of aluminum fibers and having a large number of voids (Japanese Patent Laid-Open No. 6-196170) and an electrode having a nickel metal porous body holding a negative electrode active material (Japanese Patent Laid-Open No. H7-78170) No. 22021), there is proposed a method of manufacturing a battery with a small number of layers by thickening electrodes.

【0005】[0005]

【発明が解決しようとする課題】上記従来例の説明で述
べたように、電極の積層枚数を減らすと、多数の電極の
積層が容易になる。そのためには、電池活物質を含む合
剤部分が厚くなっても良好な電気伝導性が得られるよう
に、多孔質又は多空隙な金属層構造をもつ集電体の利用
が有効である。ところで、多空隙金属層へ多くの電池活
物質を保持させるために、多空隙金属層の空隙率を90%
以上にすると、多空隙構造を形成する金属繊維等の線径
が小さくなり、平面方向に対する金属層の強度が弱くな
る傾向がある。その結果、多空隙金属層へ電池活物質を
保持させた電極をプレスすると、電極の延びが発生し、
所望の電極密度が得られなくなることがある。すなわ
ち、電極が延びると、次のような問題が生じる。加圧成
型によって、多空隙金属層の網目構造が破壊されて、す
なわち金属繊維等が切れることによって、また合剤も割
れてその割れた部分が点在することにより集電体の抵抗
値が増加する。さらに電極延び率の増大とともに、多孔
質金属層の細孔径も増加して、細孔内に保持されていた
電池活物質が集電体より脱落し、機能しなくなる。
As described above in the description of the conventional example, when the number of laminated electrodes is reduced, it becomes easy to laminate a large number of electrodes. For that purpose, it is effective to use a current collector having a porous or multi-void metal layer structure so that good electric conductivity can be obtained even if the mixture portion containing the battery active material becomes thick. By the way, in order to retain a large amount of battery active material in the multi-void metal layer, the porosity of the multi-void metal layer is 90%.
With the above, the wire diameter of the metal fiber or the like forming the multi-void structure tends to be small, and the strength of the metal layer in the plane direction tends to be weak. As a result, when the electrode holding the battery active material on the multi-void metal layer is pressed, extension of the electrode occurs,
The desired electrode density may not be obtained. That is, when the electrodes extend, the following problems occur. Due to the pressure molding, the network structure of the multi-void metal layer is destroyed, that is, the metal fibers are cut, and the mixture is also broken and the cracked portions are scattered, increasing the resistance value of the current collector. To do. Furthermore, as the electrode extension rate increases, the pore diameter of the porous metal layer also increases, and the battery active material retained in the pores falls off from the current collector and ceases to function.

【0006】本発明の目的は、電極の容量低下を抑制し
ながら、電極強度を向上させることにより、電極の厚膜
化を可能とする二次電池用電極、二次電池、その組電池
をからなる繰返し充電可能な電源または二次電池利用機
器を提供することである。
An object of the present invention is to provide an electrode for a secondary battery, a secondary battery, and an assembled battery thereof which can increase the thickness of the electrode by improving the electrode strength while suppressing the decrease in the capacity of the electrode. Another object of the present invention is to provide a rechargeable power source or a device using a secondary battery.

【0007】[0007]

【課題を解決するための手段】本発明者らは上述の技術
的課題に取り組んだ結果、繊維状構造または網目構造を
もつ多空隙(多孔質)金属層に、金属箔、金属板、金属
穿孔板などの二次元構造の金属性基体を接合させた集電
体を開発し、加圧成型時にその金属性基体によって電極
の延びを抑制でき、上記課題を解決できた。
As a result of addressing the above technical problems, the present inventors have found that a multi-void (porous) metal layer having a fibrous structure or a mesh structure is provided with a metal foil, a metal plate, and metal perforations. A current collector in which a metallic substrate having a two-dimensional structure such as a plate is joined has been developed, and the extension of the electrode can be suppressed by the metallic substrate at the time of pressure molding, and the above problems can be solved.

【0008】すなわち、本発明は、多空隙金属層に二次
元構造の金属製基体を接合させた集電体を有し、前記多
空隙金属層内の空隙に電池活物質を含む合剤を保持する
二次電池用電極である。
That is, the present invention has a current collector in which a metal substrate having a two-dimensional structure is bonded to a multi-void metal layer, and holds a mixture containing a battery active material in the void in the multi-void metal layer. It is a secondary battery electrode.

【0009】また本願他の本発明は、多空隙金属層に、
加圧成型される際に前記多空隙金属層の伸びを防止又は
低減する金属製基体を接合させた集電体を有し、前記多
空隙金属層内の空隙に電池活物質を含む合剤を保持する
二次電池用電極である。
Further, the present invention of the present application and the like further provides a multi-void metal layer,
A mixture containing a current collector to which a metal substrate that prevents or reduces the elongation of the multi-void metal layer when pressure-molded is bonded, and a mixture containing a battery active material in the void in the multi-void metal layer is formed. It is a secondary battery electrode to be held.

【0010】また本願他の本発明は、前記各発明におい
て、金属性基体の両面に多空隙金属層が接合されている
二次電池用電極である。
Further, the present invention of the present application is the electrode for a secondary battery according to each of the above-mentioned inventions, wherein the multi-void metal layer is bonded to both surfaces of the metallic substrate.

【0011】また本願他の本発明は、前記各発明におい
て、多空隙金属層の空隙率が85%以上である二次電池
用電極である。
Further, the present invention of the present application is the electrode for a secondary battery in each of the above inventions, wherein the porosity of the multi-void metal layer is 85% or more.

【0012】また本願他の本発明は、前記各発明におい
て、金属性基体は金属箔、金属板または金属穿孔板から
なり、金属穿孔板である時はその孔内にも前記合剤があ
る二次電池用電極である。
Further, in the present invention of the present application and the like, in each of the above-mentioned inventions, the metallic substrate is made of a metal foil, a metal plate or a metal perforated plate, and when the metal substrate is a metal perforated plate, the mixture is also present in the hole. It is an electrode for a secondary battery.

【0013】また本願他の本発明は、前記各発明におい
て、合剤の嵩密度が該合剤の真密度の70%以上の値で
ある二次電池用電極である。
Further, the present invention of the present application is the electrode for a secondary battery in each of the above inventions, wherein the bulk density of the mixture is 70% or more of the true density of the mixture.

【0014】また本願他の本発明は、前記各発明におい
て、電極の加圧成型の前後における該電極の延び率が1
0%以下である二次電池用電極である。
Further, in the present invention of the present application and the like, in each of the above-mentioned inventions, the extension rate of the electrode before and after the pressure molding of the electrode is 1
It is an electrode for a secondary battery whose content is 0% or less.

【0015】また本願他の本発明は、前記各発明におい
て、多空隙金属層または金属性基体がステンレス鋼、ニ
ッケル、アルミニウム、銅またはチタンからなる二次電
池用電極である。
Further, the present invention of the present application is the electrode for a secondary battery in each of the above inventions, wherein the multi-void metal layer or the metallic substrate is made of stainless steel, nickel, aluminum, copper or titanium.

【0016】また本願他の本発明は、前記各発明におい
て、多空隙金属層の厚さが5mm以下であり、金属性基
体の厚さが0.5mm以下である二次電池用電極であ
る。
The present invention of the present application is the electrode for a secondary battery according to each of the above-mentioned inventions, wherein the thickness of the multi-void metal layer is 5 mm or less and the thickness of the metallic substrate is 0.5 mm or less.

【0017】また本願他の本発明は、正極、負極および
電解質を有する二次電池であって、正極と負極の少なく
とも一方は前記いずれかの電極であることを特徴とする
二次電池である。
The present invention of the present application and others is a secondary battery having a positive electrode, a negative electrode and an electrolyte, wherein at least one of the positive electrode and the negative electrode is any one of the above electrodes.

【0018】また本願他の本発明は、前記二次電池にお
いて、コバルト酸リチウム、ニッケル酸リチウム、鉄酸
リチウムまたはスピネル型マンガン酸化物のうち少なく
とも1種類の酸化物を含む合剤を保持する正極と、リチ
ウムを電気化学的に挿入及び脱離可能な天然黒鉛、メソ
フェーズ炭素、非晶質黒鉛、膨張黒鉛、リチウムと合金
化可能な金属あるいは合金を有する前記黒鉛、又はリチ
ウムと合金化可能な金属または合金のうち少なくとも1
種類を含む合剤を保持する負極と、6フッ化リン酸リチ
ウム、6フッ化砒素酸リチウム、トリフルオロ酢酸リチ
ウムまたは過塩素酸リチウムを含む電解質からなること
を特徴とするものである。
Further, the present invention according to another aspect of the present invention is the positive electrode in the secondary battery, which holds a mixture containing at least one kind of oxide of lithium cobalt oxide, lithium nickel oxide, lithium iron oxide or spinel type manganese oxide. And natural graphite capable of electrochemically inserting and releasing lithium, mesophase carbon, amorphous graphite, expanded graphite, the above-mentioned graphite having a metal or an alloy capable of alloying with lithium, or a metal capable of alloying with lithium Or at least one of the alloys
It is characterized in that it is composed of a negative electrode holding a mixture containing various kinds, and an electrolyte containing lithium hexafluorophosphate, lithium hexafluoroarsenate, lithium trifluoroacetate or lithium perchlorate.

【0019】また本願他の本発明は、前記各二次電池に
おいて、角型電池容器に正極、負極、および電解質を収
納したものであることを特徴とするものである。
Further, the present invention according to the present invention is characterized in that each of the secondary batteries is a prismatic battery container in which a positive electrode, a negative electrode and an electrolyte are housed.

【0020】また本願他の本発明は、前記二次電池を複
数備え、該二次電池を直列または並列に接続した組電池
からなることを特徴とする繰返し充電可能な電源であ
る。
Another aspect of the present invention is a rechargeable power source comprising a plurality of the secondary batteries and an assembled battery in which the secondary batteries are connected in series or in parallel.

【0021】また本願他の本発明は、前記いずれかの二
次電池、または前記電源を具備する二次電池利用機器で
ある。
Further, the present invention according to another aspect of the present invention is an apparatus using a secondary battery including any one of the above secondary batteries or the power source.

【0022】ここで、多空隙金属層は、内部構造が繊維
状または網目状であって、外観形状がシ−ト状であれ
ば、種類、製法に制限されない。以下では構造の異なる
多空隙金属層の作製方法について説明する。
Here, the multi-void metal layer is not limited in type and manufacturing method as long as the internal structure is fibrous or mesh-like and the external appearance is sheet-like. Hereinafter, a method for producing multi-void metal layers having different structures will be described.

【0023】繊維状構造をもつ多空隙金属層は、射出法
や気相成長法によって作製した金属繊維を堆積し、加圧
成型することにより得られる。フィルム状電極と同程
度、あるいはそれ以上に多くの電池活物質を電極に保持
させるために、多空隙金属層の空隙率(気孔率)は85
%以上であることが望ましい。空隙率85%以上の多空
隙金属層を得るためには、たとえば線径が20μm以下
の極細繊維を用い、成型時の圧力を調節すればよい。リ
チウム二次電池の多空隙金属層に利用可能な金属は、正
極にはニッケル、アルミニウム、ステンレス鋼などの耐
腐食性金属、負極にはリチウムと合金化しない銅、ニッ
ケル、ステンレス鋼などが挙げられる。
The multi-void metal layer having a fibrous structure is obtained by depositing metal fibers produced by an injection method or a vapor growth method and press-molding. The porosity of the multi-pore metal layer is 85 in order to hold the battery active material as much as or more than the film electrode in the electrode.
% Is desirable. In order to obtain a multi-void metal layer having a porosity of 85% or more, for example, ultrafine fibers having a wire diameter of 20 μm or less may be used and the pressure during molding may be adjusted. Examples of metals that can be used for the multi-void metal layer of the lithium secondary battery include corrosion-resistant metals such as nickel, aluminum, and stainless steel for the positive electrode, and copper, nickel, and stainless steel that do not alloy with lithium for the negative electrode. .

【0024】他方、網目状構造をもつ多空隙金属層は、
以下で例示する方法で製造することができる。リチウム
二次電池用として利用可能な金属は、上述と同じであ
る。金属塩の液相還元法、気相還元法、バルク金属の粉
砕法などによって作製した金属粒子または繊維状金属粉
末を、粗粉砕した高分子粒子と加圧成型し、高分子粒子
のみを熱分解、または融解させることにより、網目状構
造をもつ多空隙金属層が得られる。または、高分子粒子
表面に気相熱分解法や無電解めっきなどによって金属を
析出させ、高分子粉末のみを熱分解させてもよい。多空
隙金属層の空隙率(気孔率)を85%以上にするために
は、粒径0.1〜1mmの高分子粒子を用い、高分子粒
子の配合比と成型圧力を調節すればよい。分解性高分子
あるいは低融点高分子の例として、ポリエチレン、ポリ
プロピレン、ウレタン樹脂、ブタジエンゴム等がある。
熱処理温度は材料に依存するが、金属溶解温度よりもで
きるだけ低温が望ましく、一般的に300〜800℃の
範囲の温度を選択するのがよい。また焼結時のガス雰囲
気は、金属の酸化を避けるために、真空または不活性ガ
ス雰囲気が適している。
On the other hand, the multi-void metal layer having a mesh structure is
It can be manufactured by the method exemplified below. The metals that can be used for the lithium secondary battery are the same as described above. Metal particles or fibrous metal powder produced by liquid phase reduction method of metal salt, vapor phase reduction method, pulverization method of bulk metal, etc. are pressure-molded with coarsely pulverized polymer particles, and only polymer particles are thermally decomposed. Or by melting, a multi-void metal layer having a network structure is obtained. Alternatively, a metal may be deposited on the surface of the polymer particles by vapor phase pyrolysis, electroless plating, or the like, and only the polymer powder may be pyrolyzed. In order to set the porosity (porosity) of the multi-void metal layer to 85% or more, polymer particles having a particle size of 0.1 to 1 mm may be used and the compounding ratio of the polymer particles and the molding pressure may be adjusted. Examples of the decomposable polymer or the low melting point polymer include polyethylene, polypropylene, urethane resin, and butadiene rubber.
Although the heat treatment temperature depends on the material, it is preferably as low as possible below the metal melting temperature, and it is generally preferable to select a temperature in the range of 300 to 800 ° C. In addition, the gas atmosphere during sintering is preferably a vacuum or an inert gas atmosphere in order to avoid metal oxidation.

【0025】上記の方法で作製した多空隙金属層を金属
箔に接触させ、該金属層と金属箔の間に通電し、溶接す
る。その他の接合方法として、超音波溶接、ろう付け、
加熱溶着などがある。該金属層に接合する二次元構造の
金属製基体には、金属板やそれに穿孔処理を施した金属
穿孔板も使用可能である。多空隙金属層の厚さは、5m
m以下、二次元構造の金属製基体の厚さは20〜500
μmの範囲であれば、両者を接合した集電体を用いた電
極を加圧成型したとき、電極の延びを10%以下に低減
でき、所望の合剤密度が得られた。また、該二次元基体
には多空隙金属層との接合ができれば薄い基体を用い、
その両面に多空隙金属層を接合した集電体を使用する方
が望ましい。その理由は、前記二次元基体の体積を小さ
くし、電池容量を大きくするためである。正極に利用可
能な二次元金属製基体の材料は、アルミニウム、ステン
レス鋼などである。また負極には、銅、ニッケル、ステ
ンレス鋼、チタンなどが利用可能である。
The multi-void metal layer produced by the above method is brought into contact with the metal foil, and an electric current is applied between the metal layer and the metal foil to weld them. Other joining methods include ultrasonic welding, brazing,
There is heat welding. A metal plate or a metal perforated plate obtained by perforating the metal plate can be used as the two-dimensionally-structured metal substrate to be bonded to the metal layer. The thickness of the multi-pore metal layer is 5 m
m or less, the thickness of the two-dimensionally structured metal substrate is 20 to 500
When the thickness is in the range of μm, when the electrode using the current collector in which both are joined is pressure-molded, the extension of the electrode can be reduced to 10% or less, and the desired mixture density was obtained. In addition, a thin substrate is used for the two-dimensional substrate if it can be joined to the multi-void metal layer,
It is preferable to use a current collector having a multi-void metal layer bonded to both surfaces thereof. The reason is to reduce the volume of the two-dimensional substrate and increase the battery capacity. The material of the two-dimensional metallic substrate that can be used for the positive electrode is aluminum, stainless steel, or the like. Further, copper, nickel, stainless steel, titanium, etc. can be used for the negative electrode.

【0026】本発明で検討したリチウム二次電池用正極
活物質は、コバルト酸リチウム、ニッケル酸リチウム、
鉄酸リチウム、スピネル型マンガン酸化物である。これ
に黒鉛、メソフェ−ズ炭素、非晶質炭素、アセチレンブ
ラックなどの導電性カ−ボン、バインダ−、および有機
溶媒を混合して正極合剤とし、ドクタ−ブレ−ド法、デ
ィッピング法などによって、正極合剤を集電体の多空隙
金属層内部へ塗り込み、合剤を乾燥する。
The positive electrode active materials for lithium secondary batteries studied in the present invention are lithium cobalt oxide, lithium nickel oxide,
Lithium iron oxide and spinel type manganese oxide. Graphite, mesophase carbon, amorphous carbon, conductive carbon such as acetylene black, a binder, and an organic solvent are mixed to form a positive electrode mixture, which is then formed by a doctor blade method, a dipping method, or the like. The positive electrode mixture is applied to the inside of the multi-pore metal layer of the current collector, and the mixture is dried.

【0027】他方、負極活物質には、電気化学的にリチ
ウムイオンを挿入・脱離可能な炭素、たとえば、黒鉛、
メソフェ−ズ炭素、非晶質炭素、膨張黒鉛などが利用可
能である。その他に、リチウムと合金化する金属または
合金、あるいは炭素粒子表面に金属を担持した材料が用
いられる。上の正極と同様に、負極活物質にバインダ−
と有機溶媒を混合して合剤スラリーとし、この負極合剤
を集電体の多空隙金属層内部へ塗り込み、乾燥する。
On the other hand, in the negative electrode active material, carbon capable of electrochemically inserting and removing lithium ions, for example, graphite,
Mesophase carbon, amorphous carbon, expanded graphite and the like can be used. In addition, a metal or alloy capable of alloying with lithium, or a material in which a metal is supported on the surface of carbon particles is used. As with the positive electrode above, a binder is added to the negative electrode active material.
And an organic solvent are mixed to form a mixture slurry, and this negative electrode mixture is applied to the inside of the multi-pore metal layer of the current collector and dried.

【0028】このように作製した正極と負極を加圧成型
し、二次電池用電極として使用する。二次元構造の金属
製基体は加圧成型しても延びにくいので、本発明の集電
体は、加圧成型時に多孔体の平面方向の延びを抑制でき
る。電極の延びを10%以下に抑制すると、加圧後の電
極に保持される合剤の嵩密度は、合剤真密度の70%以
上まで増加可能である。また、本発明は上記の電池活物
質以外にも適用可能であり、負極にリチウム金属シ−ト
を用いてもよい。
The positive electrode and the negative electrode thus produced are pressure-molded and used as an electrode for a secondary battery. Since the metal substrate having a two-dimensional structure does not easily extend even when pressure-molded, the current collector of the present invention can suppress the planar extension of the porous body during pressure-molding. When the extension of the electrode is suppressed to 10% or less, the bulk density of the mixture held by the electrode after pressurization can be increased to 70% or more of the true density of the mixture. Further, the present invention is applicable to other than the above-mentioned battery active material, and a lithium metal sheet may be used for the negative electrode.

【0029】本発明の正極と負極を加圧成型後に、それ
らを短冊状に切断し、両電極の間にポリプロピレンやポ
リエチレンからなるセパレ−タを挟み、積層する。この
積層電極群を角型電池缶に収納し、電解液を注入後に電
池蓋を取り付け、缶と蓋を溶接することにより、電池が
完成する。使用可能な電解液はエチレンカ−ボネ−ト、
プロピレンカ−ボネ−ト、ジメチルカ−ボネ−ト、ジメ
トキシエタンなどの有機溶媒に、6フッ化リン酸リチウ
ム、6フッ化砒素酸リチウム、トリフルオロ酢酸リチウ
ム、過塩素酸リチウムなどを溶解させた溶液が使用可能
である。
After press-molding the positive electrode and the negative electrode of the present invention, they are cut into strips, and a separator made of polypropylene or polyethylene is sandwiched between both electrodes and laminated. The laminated electrode group is housed in a rectangular battery can, the battery lid is attached after injecting the electrolytic solution, and the can and the lid are welded to complete the battery. Electrolytes that can be used are ethylene carbonate,
Solution prepared by dissolving lithium hexafluorophosphate, lithium hexafluoroarsenate, lithium trifluoroacetate, lithium perchlorate, etc. in an organic solvent such as propylene carbonate, dimethyl carbonate, dimethoxyethane. Can be used.

【0030】本発明によって、電極の厚膜化と電極群の
積層化が容易になるとともに、電池に占めるセパレ−タ
と集電体の体積を低減できるので、電池の容量が増大す
る。また本発明は、以下の理由で特に角型電池に有効で
ある。本発明の電極では、電池活物質が集電体の3次元
構造の中に取り囲まれているため、電池活物質の脱落が
抑制される。そのため、電極群を締め付ける圧力を低減
できるので、電池容器の肉厚を薄くして、電池の軽量化
が図れる。さらに、複数個の本発明の角型リチウム二次
電池を直列あるいは並列で接続し、限られた容積に収納
するとき、円筒型電池と比較して、無駄な空間を極力小
さくできる。したがって本発明は、角型電池からなる組
電池電源のエネルギ−密度を増大させるので、角型電池
の需要度が高いパ−ソナルコンピュ−タ、ワ−ドプロセ
ッサなどの機器システム、あるいは産業用電源や電気自
動車用電源などの軽量化が可能になる。
According to the present invention, it is possible to easily increase the thickness of the electrode and stack the electrode group, and reduce the volume of the separator and the current collector in the battery, so that the capacity of the battery is increased. The present invention is particularly effective for a prismatic battery for the following reasons. In the electrode of the present invention, the battery active material is surrounded by the three-dimensional structure of the current collector, so that the drop of the battery active material is suppressed. Therefore, the pressure for tightening the electrode group can be reduced, so that the wall thickness of the battery container can be reduced and the weight of the battery can be reduced. Furthermore, when a plurality of prismatic lithium secondary batteries of the present invention are connected in series or in parallel and housed in a limited volume, the wasted space can be made as small as possible compared to a cylindrical battery. Therefore, the present invention increases the energy density of an assembled battery power source composed of a prismatic battery, and therefore a device system such as a personal computer or a word processor, which has a high demand for a prismatic battery, or an industrial power source. It is possible to reduce the weight of power supplies for electric vehicles and electric vehicles.

【0031】以上のように本発明の電極を用いることに
より、電極の延びを効果的に抑制できる。また、電極を
厚くすることが可能なので、電池の高容量化と電極積層
の簡易化が可能になる。そのため、本発明の電極は、角
型電池に非常に有効である。
By using the electrode of the present invention as described above, the extension of the electrode can be effectively suppressed. Moreover, since the electrodes can be made thicker, it is possible to increase the capacity of the battery and simplify the electrode stacking. Therefore, the electrode of the present invention is very effective for a prismatic battery.

【0032】[0032]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔実施の形態1〕多空隙金属層としての多孔質アルミニ
ウムは、平均粒径10μmのアルミニウム微粉末と、平
均粒径1mmポリエチレン粒子を充分に混合し、ロ−ル
プレス機を用いて加圧成型し、厚さ1mmのシ−トを作
製した。これを窒素中600℃で加熱し、アルミニウム
微粉末を焼結させた。また、多空隙金属層としての銅の
多孔体は、無電解めっき法によって作製した。ウレタン
樹脂をアルカリ性の硝酸銅溶液に浸漬し、ホルムアルデ
ヒドを添加し、金属銅を樹脂表面に析出させた。これを
加圧成型して厚さ1mmのシ−トを作り、窒素中600
℃で加熱し、銅めっきを焼結させた。上述で作製したア
ルミニウムと銅の多孔体の空隙率は、ともに90%であ
った。
[Embodiment 1] Porous aluminum as a multi-pore metal layer is obtained by sufficiently mixing fine aluminum powder having an average particle size of 10 µm and polyethylene particles having an average particle size of 1 mm and pressure-molding using a roll press machine. A sheet having a thickness of 1 mm was produced. This was heated in nitrogen at 600 ° C. to sinter the fine aluminum powder. Further, the copper porous body as the multi-void metal layer was produced by an electroless plating method. The urethane resin was dipped in an alkaline copper nitrate solution, formaldehyde was added, and metallic copper was deposited on the resin surface. This is pressure-molded to form a sheet with a thickness of 1 mm, and the sheet is placed in nitrogen to 600
The copper plating was sintered by heating at ℃. The porosities of the aluminum and copper porous bodies produced above were both 90%.

【0033】図1は、本実施の形態で用いた電極の外観
図であり、左の図1(A)は二次元構造の金属製基体1
の片面に多空隙金属層2を接合した集電体、右の図1
(B)は二次元構造の金属製基体1の両面に多空隙金属
層2、4を接合した集電体を示す。(A)の場合、正極
集電体は、厚さ50μm、縦幅45mm、横幅30mm
の二次元構造の金属製基体1すなわちアルミニウム箔1
の片面に、厚さ1mm、縦幅40mm、横幅30mmの
多空隙金属層2すなわち多孔質アルミニウム2を電気溶
接して作製した。上部に露出しているアルミニウム箔1
の端から幅10mmを残して切り落し、電極と電池蓋の
端子溶接部3に利用した。同様に、厚さ50μm、縦幅
45mm、横幅30mmのアルミニウム箔1の両面に、
厚さ1mm、縦幅40mm、横幅30mmの多孔質アル
ミニウム2、4を電気溶接し、同一寸法で端子溶接部を
加工した。
FIG. 1 is an external view of an electrode used in the present embodiment, and FIG. 1A on the left is a metal base 1 having a two-dimensional structure.
Current collector with multi-void metal layer 2 bonded to one surface of the
(B) shows a current collector in which the multi-void metal layers 2 and 4 are bonded to both surfaces of a two-dimensionally structured metal substrate 1. In the case of (A), the positive electrode current collector has a thickness of 50 μm, a width of 45 mm, and a width of 30 mm.
2 dimensional structured metal substrate 1, namely aluminum foil 1
A multi-void metal layer 2 having a thickness of 1 mm, a vertical width of 40 mm and a horizontal width of 30 mm, that is, porous aluminum 2 was electro-welded on one surface of the above. Aluminum foil exposed on top 1
It was cut off from the end with a width of 10 mm and used for the electrode and the terminal weld 3 of the battery lid. Similarly, on both sides of the aluminum foil 1 having a thickness of 50 μm, a vertical width of 45 mm, and a horizontal width of 30 mm,
Porous aluminum 2 and 4 having a thickness of 1 mm, a vertical width of 40 mm, and a horizontal width of 30 mm were electrically welded, and a terminal welded portion was processed with the same dimensions.

【0034】これらの2種類の集電体の多空隙金属層
に、コバルト酸リチウム、天然黒鉛、ポリフッ化ビニリ
デンを1−メチル−2−ピロリドンで混合したスラリー
よりなる合剤を塗り込み、乾燥した。充分に1−メチル
−2−ピロリドンを乾燥してから、正極重量を測定し、
その値と集電体重量の差から集電体に充填された合剤重
量を求めた。
A mixture of a slurry prepared by mixing lithium cobalt oxide, natural graphite and polyvinylidene fluoride with 1-methyl-2-pyrrolidone was applied to the multi-void metal layers of these two kinds of current collectors and dried. . After sufficiently drying 1-methyl-2-pyrrolidone, the positive electrode weight is measured,
The weight of the mixture filled in the current collector was calculated from the difference between the value and the weight of the current collector.

【0035】正極をロールプレス機に通し、加圧成型し
た。正極の見かけ体積から、加圧前のアルミニウムの体
積を差し引くことにより、合剤のみの体積を見積もっ
た。先に求めた合剤重量を合剤体積で除し、加圧成型後
の合剤密度を計算した。正極に保持された電池活物質の
嵩密度は、プレス機のロール間隔を調節することにより
制御した。
The positive electrode was passed through a roll press and pressure-molded. The volume of the mixture alone was estimated by subtracting the volume of aluminum before pressing from the apparent volume of the positive electrode. The mixture weight obtained previously was divided by the mixture volume, and the mixture density after pressure molding was calculated. The bulk density of the battery active material held on the positive electrode was controlled by adjusting the roll interval of the press.

【0036】上述の2種類の正極と同様に、図1と同じ
形状をもつ負極を作製した。負極集電体は、厚さ30μ
m、縦幅45mm、横幅30mmの二次元構造の金属製
基体すなわち銅箔の両面に、厚さ1mm、縦幅40m
m、横幅30mmの多空隙金属層すなわち多孔質銅を電
気溶接して作製した。端子溶接部は、図1の形状に加工
した。この集電体の多空隙金属層に、天然黒鉛とポリフ
ッ化ビニリデンを1−メチル−2−ピロリドンで混合し
たスラリーよりなる合剤を塗り込み、乾燥した。充分に
1−メチル−2−ピロリドンを乾燥してから、負極重量
を測定し、その値と集電体重量の差から集電体に充填さ
れた合剤重量を求めた。負極をロールプレス機に通し、
加圧成型した。負極の見かけ体積から、加圧前の銅の体
積を差し引くことにより、合剤のみの体積を見積もっ
た。先に求めた合剤重量を合剤体積で除し、加圧成型後
の合剤密度を計算した。
A negative electrode having the same shape as that of FIG. 1 was prepared in the same manner as the above-mentioned two types of positive electrodes. The negative electrode current collector has a thickness of 30μ
m, vertical width 45 mm, horizontal width 30 mm, two-dimensional structure metal base, that is, copper foil on both sides, thickness 1 mm, vertical width 40 m
It was produced by electrically welding a multi-void metal layer having a width of m and a width of 30 mm, that is, porous copper. The terminal welded portion was processed into the shape shown in FIG. A mixture made of a slurry in which natural graphite and polyvinylidene fluoride were mixed with 1-methyl-2-pyrrolidone was applied to the multi-void metal layer of this current collector and dried. After the 1-methyl-2-pyrrolidone was sufficiently dried, the weight of the negative electrode was measured, and the weight of the mixture filled in the current collector was determined from the difference between the value and the weight of the current collector. Pass the negative electrode through a roll press machine,
It was molded under pressure. The volume of the mixture alone was estimated by subtracting the volume of copper before pressing from the apparent volume of the negative electrode. The mixture weight obtained previously was divided by the mixture volume, and the mixture density after pressure molding was calculated.

【0037】図2は、ロールプレス機のロール間隔と正
極と負極の充填率の関係を示す。ただし、結果は二次元
構造の金属製基体両面に多孔体すなわち多空隙金属層を
接合した結果である。充填率は、合剤の真密度に対する
嵩密度である。本発明の正極は、アルミニウム多孔体の
接合枚数に関係なく、ロール間隔0.4mm以下で、充
填率が70%以上になった。また負極の場合も、ロール
間隔0.4mm以下で、充填率が70%以上になった。
正極と負極の最大合剤嵩密度は、それぞれ3.2g/c
3、1.6g/cm3であった。
FIG. 2 shows the relationship between the roll gap of the roll press and the filling ratio of the positive electrode and the negative electrode. However, the result is the result of bonding a porous body, that is, a multi-void metal layer to both surfaces of the two-dimensional metal substrate. The filling rate is the bulk density relative to the true density of the mixture. In the positive electrode of the present invention, the filling rate was 70% or more at a roll interval of 0.4 mm or less, regardless of the number of bonded aluminum porous bodies. Also in the case of the negative electrode, the filling rate was 70% or more when the roll interval was 0.4 mm or less.
The maximum mixture bulk density of the positive electrode and the negative electrode is 3.2 g / c, respectively.
m 3, was 1.6g / cm 3.

【0038】〔比較例1〕本比較例では、実施の形態1
で用いた同一仕様の多孔質アルミニウムを、アルミニウ
ム箔と接合することなく用いた。多孔質アルミニウムを
厚さ1mm、縦45mm、横30mmに切断し、その上
部5mmを加圧した。その加圧部分の端から幅10mm
を残して、上部すべてを切り落し、電極と電池蓋の端子
溶接部に利用した。この集電体の外観形状は、図1と同
じである。使用したアルミニウム多孔体は、実施の形態
1と同じ製法で作り、その空隙率は90%である。この
集電体に、コバルト酸リチウム、天然黒鉛、ポリフッ化
ビニリデンを1−メチル−2−ピロリドンで混合したス
ラリーを塗り込み、乾燥した。充分に1−メチル−2−
ピロリドンを乾燥してから、正極重量を測定し、その値
と集電体重量の差から集電体に充填された合剤重量を求
めた。加圧成型前後における合剤密度の計算方法は、実
施の形態1と同じである。正極に保持された電池活物質
の嵩密度は、プレス機のロール間隔を調節することによ
り制御した。
Comparative Example 1 In this comparative example, the first embodiment
The porous aluminum of the same specifications used in 1. was used without being joined to the aluminum foil. The porous aluminum was cut into a thickness of 1 mm, a length of 45 mm, and a width of 30 mm, and the upper portion 5 mm was pressed. 10mm width from the end of the pressure part
Then, the entire upper part was cut off and used for the electrode and the terminal welded portion of the battery lid. The external shape of this current collector is the same as in FIG. The aluminum porous body used was manufactured by the same manufacturing method as that of the first embodiment, and its porosity was 90%. A slurry prepared by mixing lithium cobalt oxide, natural graphite and polyvinylidene fluoride with 1-methyl-2-pyrrolidone was applied to this current collector and dried. Enough 1-methyl-2-
After drying the pyrrolidone, the weight of the positive electrode was measured, and the weight of the mixture filled in the current collector was determined from the difference between the value and the weight of the current collector. The method for calculating the mixture density before and after pressure molding is the same as that in the first embodiment. The bulk density of the battery active material held on the positive electrode was controlled by adjusting the roll interval of the press.

【0039】上述の正極と同様に、負極を作製した。実
施の形態1で用いた厚さ1mm、縦幅45mm、横幅3
0mmの多孔質銅の上部5mmを加圧成型した。上の正
極集電体と同様に、プレス部分の端から幅10mmを残
して切り落し、電極と電池蓋の端子溶接部に利用した。
使用した銅多孔体は、実施の形態1と同じ製法で作り、
その空隙率は90%である。この集電体に、天然黒鉛と
ポリフッ化ビニリデンを1−メチル−2−ピロリドンで
混合したスラリーを塗り込み、乾燥した。充分に1−メ
チル−2−ピロリドンを乾燥してから、負極重量を測定
し、その値と集電体重量の差から集電体に充填された合
剤重量を求めた。加圧成型前後における合剤密度の計算
方法は、実施の形態1と同じである。
A negative electrode was prepared in the same manner as the positive electrode described above. The thickness used in the first embodiment is 1 mm, the vertical width is 45 mm, and the horizontal width is 3.
The top 5 mm of 0 mm porous copper was pressure molded. Similar to the above positive electrode current collector, it was cut off from the end of the pressed part leaving a width of 10 mm and used for the terminal welded part of the electrode and the battery lid.
The used copper porous body is made by the same manufacturing method as in the first embodiment,
Its porosity is 90%. A slurry in which natural graphite and polyvinylidene fluoride were mixed with 1-methyl-2-pyrrolidone was applied to this current collector and dried. After the 1-methyl-2-pyrrolidone was sufficiently dried, the weight of the negative electrode was measured, and the weight of the mixture filled in the current collector was determined from the difference between the value and the weight of the current collector. The method for calculating the mixture density before and after pressure molding is the same as that in the first embodiment.

【0040】図2に、ロールプレス機のロール間隔と比
較例1で作製した正極と負極の充填率の関係も示した。
本比較例1電極は、ロール間隔0.6mm以下で、充填
率が50〜60%の範囲よりも増大しなくなった。正極
と負極の最大合剤嵩密度は、それぞれ2.0g/c
3、1.0g/cm3であった。したがって、実施の形
態1の電極の方が比較例1より電池活物質の高密度充填
に有利になることがわかった。
FIG. 2 also shows the relationship between the roll spacing of the roll press and the filling rate of the positive electrode and the negative electrode produced in Comparative Example 1.
In the electrode of Comparative Example 1, the filling rate did not increase beyond the range of 50 to 60% when the roll interval was 0.6 mm or less. The maximum mixture bulk density of the positive electrode and the negative electrode is 2.0 g / c, respectively.
It was m 3 and 1.0 g / cm 3 . Therefore, it was found that the electrode of Embodiment 1 is more advantageous than Comparative Example 1 for high-density filling of the battery active material.

【0041】〔実施の形態2〕実施の形態1で用いたア
ルミニウム箔1の代わりに、厚さ20μm、縦幅45m
m、横幅30mmステンレス鋼板1、および同じ寸法の
ステンレス鋼板に直径2mmの穿孔を5mm間隔で開け
たステンレス鋼穿孔板1の2種類の二次元基体を用い、
それぞれの両面に、実施の形態1と同一仕様のアルミニ
ウム多孔体を接合した。これら2種類の集電体の上部に
おいて、端から幅10mmを残して切り落し、電極と電
池蓋の端子溶接部3に利用した。この集電体に、実施の
形態1と同じ仕様の正極スラリーを塗り込み、乾燥し
た。充分に1−メチル−2−ピロリドンを乾燥してか
ら、正極をロールプレス機に通し、加圧成型した。本実
施の形態の電極の場合、ステンレス鋼がアルミニウムよ
り延びにくいので、二次元基体の厚さを薄くでき、ロー
ル間隔0.3mm以下で、正極合剤の充填率が70%以
上、正極の最大合剤嵩密度は3.2g/cm3を得た。
[Second Embodiment] Instead of the aluminum foil 1 used in the first embodiment, the thickness is 20 μm and the vertical width is 45 m.
m, a width of 30 mm, a stainless steel plate 1, and two kinds of two-dimensional substrates of a stainless steel perforated plate 1 in which perforations having a diameter of 2 mm are opened at 5 mm intervals in a stainless steel plate of the same size,
An aluminum porous body having the same specifications as those of the first embodiment was joined to both sides of each. At the upper part of these two types of current collectors, a width of 10 mm was cut off from the ends and used for the terminal welding part 3 of the electrode and the battery lid. A positive electrode slurry having the same specifications as in Embodiment 1 was applied to this current collector and dried. After sufficiently drying 1-methyl-2-pyrrolidone, the positive electrode was passed through a roll press and pressure-molded. In the case of the electrode of the present embodiment, since stainless steel is less likely to extend than aluminum, the thickness of the two-dimensional substrate can be reduced, the roll interval is 0.3 mm or less, the filling ratio of the positive electrode mixture is 70% or more, and the maximum of the positive electrode is The mixture bulk density was 3.2 g / cm 3 .

【0042】〔実施の形態3〕実施の形態1と同一仕様
の多孔質アルミニウムを、厚さ50μm、縦幅45m
m、横幅30mmのアルミニウム箔、あるいは厚さ50
μm、縦幅45mm、横幅30mm、穿孔径1mmの穿
孔済みアルミニウム箔の両面に電気溶接した。図1
(B)のように、上部に露出しているアルミニウム箔の
端から幅10mmを残して切り落し、電極と電池蓋の端
子溶接部に利用した。この集電体に、コバルト酸リチウ
ム、天然黒鉛、ポリフッ化ビニリデンを1−メチル−2
−ピロリドンで混合したスラリーを塗り込み、乾燥し
た。充分に1−メチル−2−ピロリドンを乾燥してか
ら、正極重量を測定し、その値と集電体重量の差から集
電体に充填された合剤重量を求めた。正極をロールプレ
ス機に通し、加圧成型した。正極の見かけ体積から、加
圧前のアルミニウムの体積を差し引くことにより、合剤
のみの体積を見積もった。先に求めた合剤重量を合剤体
積で除し、加圧成型後の合剤密度を計算した。正極に保
持された電池活物質の嵩密度は、プレス機のロール間隔
を調節することにより制御した。
[Embodiment 3] Porous aluminum having the same specifications as those of Embodiment 1 is used, with a thickness of 50 μm and a vertical width of 45 m.
m, width 30 mm aluminum foil, or thickness 50
Electric welding was performed on both sides of a perforated aluminum foil having a thickness of 45 μm, a width of 45 mm, a width of 30 mm, and a perforation diameter of 1 mm. FIG.
As in (B), it was cut off from the end of the aluminum foil exposed at the upper part, leaving a width of 10 mm, and used for the terminal welding portion of the electrode and the battery lid. Lithium cobalt oxide, natural graphite, and polyvinylidene fluoride were added to this current collector with 1-methyl-2.
Smeared the slurry mixed with pyrrolidone and dried. After the 1-methyl-2-pyrrolidone was sufficiently dried, the weight of the positive electrode was measured, and the weight of the mixture filled in the current collector was determined from the difference between the value and the weight of the current collector. The positive electrode was passed through a roll press and pressure-molded. The volume of the mixture alone was estimated by subtracting the volume of aluminum before pressing from the apparent volume of the positive electrode. The mixture weight obtained previously was divided by the mixture volume, and the mixture density after pressure molding was calculated. The bulk density of the battery active material held on the positive electrode was controlled by adjusting the roll interval of the press.

【0043】ロールプレス機により正極を加圧成型する
際、ロールの回転方向に正極の延びが認められた。図3
は、ロールプレス機のロール間隔と正極の延び率の関係
を示す。延び率は、成型前後におけるロール回転方向に
沿った正極長さの比である。本発明の正極は、ロール間
隔0.2mm以下であっても、延び率が10%以下にな
った。
When the positive electrode was pressure-molded by a roll press, the positive electrode was observed to extend in the direction of roll rotation. FIG.
Shows the relationship between the roll interval of the roll press and the extension rate of the positive electrode. The elongation ratio is the ratio of the positive electrode length along the roll rotation direction before and after molding. In the positive electrode of the present invention, the elongation rate was 10% or less even when the roll interval was 0.2 mm or less.

【0044】実施の形態1と同じ条件、同じ仕様で作成
した本発明の負極は、本発明の正極よりも延び率が小さ
くなった。この理由は、負極に用いた銅の強度が、アル
ミニウムよりも強いためと思われる。
The negative electrode of the present invention prepared under the same conditions and the same specifications as those of the first embodiment has a smaller elongation than the positive electrode of the present invention. This is probably because the strength of copper used for the negative electrode is stronger than that of aluminum.

【0045】〔比較例2〕比較例1で作製した正極を、
実施の形態3と同様に加圧成型し、正極の延び率を測定
した。その結果を図3に示した。比較例2の正極は、実
施の形態3の正極よりも2倍以上も延びやすいことがわ
かった。また比較例2の負極も、実施の形態2の負極よ
りも延び率が高かった。以上の結果から、本発明の電極
は、加圧成型時の延びを効果的に低減できた。
Comparative Example 2 The positive electrode prepared in Comparative Example 1 was
Pressure molding was performed in the same manner as in the third embodiment, and the elongation rate of the positive electrode was measured. The results are shown in Fig. 3. It was found that the positive electrode of Comparative Example 2 was more than twice as easy to stretch than the positive electrode of the third embodiment. Further, the negative electrode of Comparative Example 2 also had a higher elongation rate than the negative electrode of Embodiment 2. From the above results, the electrode of the present invention was able to effectively reduce the elongation during pressure molding.

【0046】〔実施の形態4〕実施の形態1と同様に、
アルミニウムと銅の二次元基体の両面に、多孔質アルミ
ニウムまたは多孔質銅を電気溶接した集電体を用いて、
本発明の正極と負極を作製した。正極と負極の合剤組成
は、実施の形態1で使用したものと同じである。これら
の電極をロールプレス機で加圧成型した。作製した正極
と負極の合剤密度は、それぞれ2.7g/cm3、1.
3g/cm3とした。正極と負極の間に、厚さ25μm
のポリエチレン製微孔フィルムを挾んで積層し、正極9
枚、負極10枚からなる電極群を作製した。正極と負極
の端子溶接部のそれぞれを、電池蓋の下方に取り付けた
端子部に溶接し、電極群と蓋を高さ50mm、幅35m
m、厚さ10mmのステンレス鋼製電池缶9に収納し
た。電池蓋8と缶9の接合部をレーザー溶接して、図4
に示した角型リチウム二次電池を完成した。この電池の
外部に正極端子6、負極端子7、安全弁5がある。この
電池の出力電圧、設計容量は、それぞれ3.6V、14
60mAhであり、300Wh/l、140Wh/kg
のエネルギー密度が得られた。
[Fourth Embodiment] Similar to the first embodiment,
On both sides of a two-dimensional substrate of aluminum and copper, using a current collector in which porous aluminum or copper is electrically welded,
A positive electrode and a negative electrode of the present invention were produced. The mixture composition of the positive electrode and the negative electrode is the same as that used in the first embodiment. These electrodes were pressure-molded with a roll press. The mixture densities of the manufactured positive electrode and negative electrode were 2.7 g / cm 3 and 1.
It was 3 g / cm 3 . 25 μm thick between the positive and negative electrodes
The polyethylene microporous film of
An electrode group consisting of one sheet and 10 sheets of negative electrode was prepared. Each of the positive and negative terminal welds is welded to the terminal attached below the battery lid, and the electrode group and lid are 50 mm high and 35 m wide.
It was stored in a stainless steel battery can 9 having a thickness of 10 mm and a thickness of 10 mm. Laser welding of the joint between the battery lid 8 and the can 9
The prismatic lithium secondary battery shown in was completed. Outside the battery, there are a positive electrode terminal 6, a negative electrode terminal 7, and a safety valve 5. The output voltage and design capacity of this battery are 3.6V and 14V, respectively.
60mAh, 300Wh / l, 140Wh / kg
The energy density of was obtained.

【0047】上限と下限の終止電圧をそれぞれ4.2
V、2.5Vとして、500mAの定電流で充放電試験
をおこなった。サイクル数と放電容量の関係を、図5に
示す。本発明の電極を用いた電池は、安定したサイクル
寿命をもち、400サイクル時でも初期の95%以上の
容量を保持した。
The upper and lower cutoff voltages are set to 4.2, respectively.
A charging / discharging test was conducted at a constant current of 500 mA with V and 2.5 V. The relationship between the number of cycles and the discharge capacity is shown in FIG. The battery using the electrode of the present invention had a stable cycle life and retained the capacity of 95% or more of the initial capacity even after 400 cycles.

【0048】〔比較例3〕比較例1と同一仕様の集電体
を用いて、比較例3の正極と負極を作製した。各電極の
合剤密度は、それぞれ2.0g/cm3、1.0g/c
3とした。正極と負極の間に、厚さ25μmのポリエ
チレン製多孔質シートを挾んで積層し、正極8枚、負極
9枚からなる電極群を作製した。正極と負極の端子溶接
部のそれぞれを、電池蓋の下方に取り付けた端子部に溶
接し、電極群と蓋を高さ50mm、幅35mm、厚さ1
0mmのステンレス鋼製電池缶に収納した。電池蓋と缶
の接合部をレーザー溶接して、図4に示した電池を完成
した。
[Comparative Example 3] A positive electrode and a negative electrode of Comparative Example 3 were produced using a current collector having the same specifications as in Comparative Example 1. The mixture density of each electrode is 2.0 g / cm 3 and 1.0 g / c, respectively.
It was m 3. A 25 μm-thick polyethylene porous sheet was sandwiched between the positive electrode and the negative electrode to form an electrode group consisting of 8 positive electrodes and 9 negative electrodes. Each of the positive electrode and negative electrode terminal welds is welded to the terminal attached below the battery lid, and the electrode group and the lid are 50 mm in height, 35 mm in width, and 1 in thickness.
It was stored in a 0 mm stainless steel battery can. The joint between the battery lid and the can was laser-welded to complete the battery shown in FIG.

【0049】上限と下限の終止電圧をそれぞれ4.2
V、2.5Vとして、500mAの定電流で充放電試験
をおこなった。サイクル数と放電容量の関係を、図5に
示す。比較例1の電極の合剤密度は、実施の形態4で使
用した電極の合剤密度まで大きくすることができなかっ
たため、電池の初期の電池容量が実施の形態4よりも小
さくなった。また、電極密度が低いことに起因する電池
活物質間の集電性の劣化のため、比較例3の電池容量
も、サイクル数とともに低下した。400サイクル時の
容量値は、初期容量の86%であった。したがって、本
発明の電極を利用することにより、電池の容量低下を大
幅に改善できることが明らかになった。
The upper and lower end voltages are set to 4.2, respectively.
A charging / discharging test was conducted at a constant current of 500 mA with V and 2.5 V. The relationship between the number of cycles and the discharge capacity is shown in FIG. Since the mixture density of the electrode of Comparative Example 1 could not be increased to the mixture density of the electrode used in the fourth embodiment, the initial battery capacity of the battery was smaller than that of the fourth embodiment. Further, the battery capacity of Comparative Example 3 also decreased with the number of cycles due to the deterioration of the current collecting property between the battery active materials due to the low electrode density. The capacity value after 400 cycles was 86% of the initial capacity. Therefore, it was revealed that the use of the electrode of the present invention can significantly reduce the decrease in battery capacity.

【0050】〔実施の形態5〕図6は、4個の角型リチ
ウム二次電池からなる組電池パックである。実施の形態
4と同一仕様の角型電池9を4個作製し、それらの電池
を組電池パック容器10に収納した。各電池をIC回路
をもつ配線基板11に接続し、4直列2並列の組電池を
組み立てた。電池パックからの出力は、容器10の底面
に取り付けた外部正極端子12と外部負極端子14から
得られる。外部端子13はコモン端子である。この電池
パックの出力電圧、容量はそれぞれ14.4V、2.9
Ahであり、205Wh/l、100Wh/kgのエネ
ルギー密度が得られた。本実施の形態で使用した角型電
池と同じ容量、かつ同じエネルギー密度の円筒型電池を
使用した場合と比較すると、体積エネルギー密度で円筒
型電池の約1.5倍、重量エネルギー密度で円筒型電池
の約1.2倍の向上ができた。
[Embodiment 5] FIG. 6 shows an assembled battery pack including four prismatic lithium secondary batteries. Four prismatic batteries 9 having the same specifications as those of the fourth embodiment were produced, and these batteries were housed in an assembled battery pack container 10. Each battery was connected to a wiring board 11 having an IC circuit, and a 4-series 2-parallel assembled battery was assembled. The output from the battery pack is obtained from the external positive electrode terminal 12 and the external negative electrode terminal 14 attached to the bottom surface of the container 10. The external terminal 13 is a common terminal. The output voltage and capacity of this battery pack are 14.4 V and 2.9, respectively.
Ah, and energy densities of 205 Wh / l and 100 Wh / kg were obtained. Compared to the case where a cylindrical battery having the same capacity and the same energy density as the rectangular battery used in the present embodiment is used, the volume energy density is about 1.5 times that of the cylindrical battery, and the weight energy density is cylindrical. I was able to improve the battery by about 1.2 times.

【0051】〔実施の形態6〕図7は、実施の形態5の
組電池パックの電源15を、パーソナルコンピュータま
たはワードプロセッサのキーボード部16の底面に組み
込んだ例である。この電源15によって、パーソナルコ
ンピュータまたはワードプロセッサのディスプレイ17
の表示とフロッピーディスクのドライブ15の運転に利
用できる。本発明のパーソナルコンピュータまたはワー
ドプロセッサは、従来のニッケル−カドミニウム角型電
池、円筒型リチウム二次電池よりも、1/1.5〜1/
2まで小型化、軽量化が図れた。
[Sixth Embodiment] FIG. 7 shows an example in which the power supply 15 of the battery pack of the fifth embodiment is incorporated in the bottom surface of the keyboard portion 16 of a personal computer or a word processor. The power supply 15 allows the display 17 of a personal computer or a word processor to be displayed.
Can be used to display and drive the floppy disk drive 15. The personal computer or word processor of the present invention is 1 / 1.5 to 1/1 / thicker than the conventional nickel-cadmium prismatic battery and cylindrical lithium secondary battery.
Up to 2 size and weight were reduced.

【0052】[0052]

【発明の効果】本発明の電極を用いると、電極合剤の嵩
密度を増加でき、電極の延びも低減できる。そのため、
電池の高容量化、長寿命化が可能になる。また、電極枚
数を低減できるので、電池の積層が容易になる。
When the electrode of the present invention is used, the bulk density of the electrode mixture can be increased and the extension of the electrode can be reduced. for that reason,
It is possible to increase the capacity and extend the life of the battery. Further, since the number of electrodes can be reduced, stacking of batteries becomes easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る二次電池用電極を示し、(A)と
(B)はそれぞれ異なる実施の形態を示す斜視図であ
る。
FIG. 1 is a perspective view showing an electrode for a secondary battery according to the present invention, in which (A) and (B) show different embodiments.

【図2】ロールプレス機のロール間隔と実施の形態1お
よび比較例1の電極合剤の真密度に対する嵩密度の関係
を示す図である。
FIG. 2 is a diagram showing a relationship between a roll interval of a roll press machine and a bulk density with respect to a true density of the electrode mixture of Embodiment 1 and Comparative Example 1.

【図3】ロールプレス機のロール間隔と実施の形態2お
よび比較例2の電極延び率の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a roll interval of a roll press machine and an electrode extension ratio in the second embodiment and the second comparative example.

【図4】本発明に係る角型リチウム二次電池の斜視図で
ある。
FIG. 4 is a perspective view of a prismatic lithium secondary battery according to the present invention.

【図5】本発明の角型リチウム二次電池と比較例3の角
型リチウム二次電池の充放電サイクル数と電池容量の関
係を示す図である。
5 is a diagram showing the relationship between the number of charge / discharge cycles and the battery capacity of the prismatic lithium secondary battery of the present invention and the prismatic lithium secondary battery of Comparative Example 3. FIG.

【図6】本発明の角型リチウム二次電池を4直列2並列
で接続した組電池パックを示す斜視図である。
FIG. 6 is a perspective view showing an assembled battery pack in which the rectangular lithium secondary batteries of the present invention are connected in 4 series and 2 parallel.

【図7】本発明の組電池パックを装着したパ−ソナルコ
ンピュ−タまたはワ−ドプロセッサょ示す斜視図であ
る。
FIG. 7 is a perspective view showing a personal computer or a word processor equipped with the battery pack of the present invention.

【符号の説明】[Explanation of symbols]

1 二次元基体 2 多空隙金属層 3 電極端子溶接部 4 多空隙金属層 5 安全弁 6 正極外部端子 7 負極外部端子 8 電池蓋 9 電池容器 10 組電池パック容器 11 IC制御パネル 12 外部正極端子 13 コモン端子 14 外部負極端子 15 組電池パック 16 キ−ボ−ド部 17 ディスプレイ DESCRIPTION OF SYMBOLS 1 Two-dimensional base 2 Multi-void metal layer 3 Electrode terminal welding part 4 Multi-void metal layer 5 Safety valve 6 Positive external terminal 7 Negative external terminal 8 Battery lid 9 Battery container 10 Assembly battery pack container 11 IC control panel 12 External positive electrode terminal 13 Common Terminal 14 External negative electrode terminal 15 Battery pack 16 Keyboard section 17 Display

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/80 H01M 4/80 C 10/40 10/40 Z (72)発明者 武内 瀞士 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 村中 廉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 堀場 達雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location H01M 4/80 H01M 4/80 C 10/40 10/40 Z (72) Inventor Toshio Takeuchi Ibaraki Hitachi 1-1, Omika-cho, Hitachi, Ltd. Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Ren Muranaka 7-1-1, Omika-cho, Hitachi, Hitachi, Ibaraki Inside Hitachi Research Laboratory, Hitachi (72) Inventor Tatsuo HORIBA 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 多空隙金属層に二次元構造の金属製基体
を接合させた集電体を有し、前記多空隙金属層内の空隙
に電池活物質を含む合剤を保持する二次電池用電極。
1. A secondary battery having a current collector in which a metal substrate having a two-dimensional structure is bonded to a multi-void metal layer, and holding a mixture containing a battery active material in the void in the multi-void metal layer. Electrodes.
【請求項2】 多空隙金属層に、加圧成型される際に前
記多空隙金属層の伸びを防止又は低減する金属製基体を
接合させた集電体を有し、前記多空隙金属層内の空隙に
電池活物質を含む合剤を保持する二次電池用電極。
2. A multi-void metal layer having a current collector to which a metal substrate that prevents or reduces the elongation of the multi-void metal layer when pressure-molded is bonded, An electrode for a secondary battery, which holds a mixture containing a battery active material in the void.
【請求項3】 請求項1又は2において、金属性基体の
両面に多空隙金属層が接合されている二次電池用電極。
3. The electrode for a secondary battery according to claim 1, wherein the multi-void metal layer is bonded to both surfaces of the metallic substrate.
【請求項4】 請求項1〜3のいずれかにおいて、多空
隙金属層の空隙率が85%以上である二次電池用電極。
4. The electrode for a secondary battery according to claim 1, wherein the porosity of the multi-void metal layer is 85% or more.
【請求項5】 請求項1〜4のいずれかにおいて、金属
性基体は金属箔、金属板または金属穿孔板からなり、金
属穿孔板である時はその孔内にも前記合剤がある二次電
池用電極。
5. The metallic substrate according to claim 1, wherein the metallic substrate is a metal foil, a metal plate or a metal perforated plate, and when the metal substrate is a metal perforated plate, the mixture also exists in the holes thereof. Battery electrode.
【請求項6】 請求項1〜5のいずれかにおいて、合剤
の嵩密度が該合剤の真密度の70%以上の値である二次
電池用電極。
6. The electrode for a secondary battery according to claim 1, wherein the bulk density of the mixture is 70% or more of the true density of the mixture.
【請求項7】 請求項1〜6のいずれかにおいて、電極
の加圧成型の前後における該電極の延び率が10%以下
である二次電池用電極。
7. The electrode for a secondary battery according to claim 1, wherein the extension rate of the electrode before and after pressure molding is 10% or less.
【請求項8】 請求項1〜7のいずれかにおいて、多空
隙金属層または金属性基体がステンレス鋼、ニッケル、
アルミニウム、銅またはチタンからなる二次電池用電
極。
8. The multi-void metal layer or the metallic substrate according to any one of claims 1 to 7,
A secondary battery electrode made of aluminum, copper or titanium.
【請求項9】 請求項1〜8のいずれかにおいて、多空
隙金属層の厚さが5mm以下であり、金属性基体の厚さ
が0.5mm以下である二次電池用電極。
9. The electrode for a secondary battery according to claim 1, wherein the multi-void metal layer has a thickness of 5 mm or less and the metallic substrate has a thickness of 0.5 mm or less.
【請求項10】 正極、負極および電解質を有する二次
電池であって、正極と負極の少なくとも一方は請求項1
〜9のいずれかに記載の電極であることを特徴とする二
次電池。
10. A secondary battery having a positive electrode, a negative electrode and an electrolyte, wherein at least one of the positive electrode and the negative electrode is defined by claim 1.
A secondary battery, which is the electrode according to any one of items 1 to 9.
【請求項11】 請求項10において、コバルト酸リチ
ウム、ニッケル酸リチウム、鉄酸リチウムまたはスピネ
ル型マンガン酸化物のうち少なくとも1種類の酸化物を
含む合剤を保持する正極と、リチウムを電気化学的に挿
入及び脱離可能な天然黒鉛、メソフェーズ炭素、非晶質
黒鉛、膨張黒鉛、リチウムと合金化可能な金属あるいは
合金を有する前記黒鉛、又はリチウムと合金化可能な金
属または合金のうち少なくとも1種類を含む合剤を保持
する負極と、6フッ化リン酸リチウム、6フッ化砒素酸
リチウム、トリフルオロ酢酸リチウムまたは過塩素酸リ
チウムを含む電解質からなることを特徴とする二次電
池。
11. The positive electrode according to claim 10, which holds a mixture containing at least one oxide selected from lithium cobalt oxide, lithium nickel oxide, lithium iron oxide, and spinel-type manganese oxide, and lithium electrochemically. At least one of natural graphite, mesophase carbon, amorphous graphite, expanded graphite, a metal or alloy capable of alloying with lithium, or a metal or alloy capable of alloying with lithium. A secondary battery comprising: a negative electrode that holds a mixture containing: and an electrolyte containing lithium hexafluorophosphate, lithium hexafluoroarsenate, lithium trifluoroacetate, or lithium perchlorate.
【請求項12】 請求項10又は11において、角型電
池容器に正極、負極、および電解質を収納したものであ
ることを特徴とする二次電池。
12. The secondary battery according to claim 10, wherein the positive electrode, the negative electrode, and the electrolyte are housed in a rectangular battery container.
【請求項13】 請求項10又は11記載の二次電池を
複数備え、該二次電池を直列または並列に接続した組電
池からなることを特徴とする繰返し充電可能な電源。
13. A rechargeable power source comprising a plurality of secondary batteries according to claim 10 or 11 and comprising an assembled battery in which the secondary batteries are connected in series or in parallel.
【請求項14】 請求項10、11又は12記載の二次
電池、または請求項13記載の電源を具備する二次電池
利用機器。
14. A secondary battery utilizing device comprising the secondary battery according to claim 10, 11 or 12, or the power source according to claim 13.
JP7324590A 1995-12-13 1995-12-13 Secondary battery electrode or secondary battery Pending JPH09161806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7324590A JPH09161806A (en) 1995-12-13 1995-12-13 Secondary battery electrode or secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7324590A JPH09161806A (en) 1995-12-13 1995-12-13 Secondary battery electrode or secondary battery

Publications (1)

Publication Number Publication Date
JPH09161806A true JPH09161806A (en) 1997-06-20

Family

ID=18167522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7324590A Pending JPH09161806A (en) 1995-12-13 1995-12-13 Secondary battery electrode or secondary battery

Country Status (1)

Country Link
JP (1) JPH09161806A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056332A1 (en) * 1998-04-24 1999-11-04 Hitachi, Ltd. Lithium secondary cell
WO2000049674A1 (en) * 1999-02-19 2000-08-24 Fujitsu Limited Alkaline secondary battery
JP2004259636A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005093294A (en) * 2003-09-18 2005-04-07 National Institute Of Advanced Industrial & Technology Electrode for secondary battery, and the secondary battery using the same
JP2006059641A (en) * 2004-08-19 2006-03-02 Nissan Motor Co Ltd Electrode for secondary battery and secondary battery using it
JP2010272425A (en) * 2009-05-22 2010-12-02 Mitsubishi Materials Corp Electrode for nonaqueous electrolyte secondary battery, and method of manufacturing the same
JP2010272426A (en) * 2009-05-22 2010-12-02 Mitsubishi Materials Corp Electrode for nonaqueous electrolyte secondary battery, and method of manufacturing the same
JP2011096444A (en) * 2009-10-28 2011-05-12 Mitsubishi Materials Corp Positive electrode for nonaqueous electrolyte secondary battery
JP2011113667A (en) * 2009-11-24 2011-06-09 Sharp Corp Non-aqueous electrolyte secondary battery
WO2013140940A1 (en) * 2012-03-22 2013-09-26 住友電気工業株式会社 Lithium secondary battery
JP2014089916A (en) * 2012-10-31 2014-05-15 Tdk Corp Collector for lithium ion secondary battery, and lithium ion secondary battery using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056332A1 (en) * 1998-04-24 1999-11-04 Hitachi, Ltd. Lithium secondary cell
KR100360359B1 (en) * 1998-04-24 2002-11-13 가부시끼가이샤 히다치 세이사꾸쇼 Lithium secondary cell
WO2000049674A1 (en) * 1999-02-19 2000-08-24 Fujitsu Limited Alkaline secondary battery
JP2004259636A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005093294A (en) * 2003-09-18 2005-04-07 National Institute Of Advanced Industrial & Technology Electrode for secondary battery, and the secondary battery using the same
JP2006059641A (en) * 2004-08-19 2006-03-02 Nissan Motor Co Ltd Electrode for secondary battery and secondary battery using it
JP2010272425A (en) * 2009-05-22 2010-12-02 Mitsubishi Materials Corp Electrode for nonaqueous electrolyte secondary battery, and method of manufacturing the same
JP2010272426A (en) * 2009-05-22 2010-12-02 Mitsubishi Materials Corp Electrode for nonaqueous electrolyte secondary battery, and method of manufacturing the same
JP2011096444A (en) * 2009-10-28 2011-05-12 Mitsubishi Materials Corp Positive electrode for nonaqueous electrolyte secondary battery
JP2011113667A (en) * 2009-11-24 2011-06-09 Sharp Corp Non-aqueous electrolyte secondary battery
WO2013140940A1 (en) * 2012-03-22 2013-09-26 住友電気工業株式会社 Lithium secondary battery
JPWO2013140940A1 (en) * 2012-03-22 2015-08-03 住友電気工業株式会社 Lithium secondary battery
JP2014089916A (en) * 2012-10-31 2014-05-15 Tdk Corp Collector for lithium ion secondary battery, and lithium ion secondary battery using the same

Similar Documents

Publication Publication Date Title
EP0725983B1 (en) Bipolar electrochemical battery of stacked wafer cells
KR100658255B1 (en) High performance type three-dimensional cell
JP5073144B2 (en) Lithium ion secondary battery
JP4126157B2 (en) Organic electrolyte battery
US20120263993A1 (en) Electrochemical device
US20120264022A1 (en) Electrode for electrochemical device and method for producing the same
KR20090008121A (en) Power storage device
JP2004259636A (en) Nonaqueous electrolyte secondary battery
JP2003526185A (en) Lithium battery
KR101979040B1 (en) Lithium accumulator
US6346343B1 (en) Secondary lithium battery comprising lithium deposited on negative electrode material
JPH09161806A (en) Secondary battery electrode or secondary battery
EP0408249B1 (en) Non-aqueous alkali metal battery having an improved cathode
JP6583993B2 (en) Lithium secondary battery charge / discharge method
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP2020087554A (en) Electrolyte solution for zinc battery and zinc battery
JPH1167273A (en) Lithium secondary battery
JP2019091571A (en) Lithium secondary battery
JPH09161763A (en) Lithium ion secondary battery
JP2666382B2 (en) Rechargeable battery
JP2021197219A (en) Bipolar type all-solid battery
JP7643574B2 (en) Secondary battery and manufacturing method thereof
EP4564509A1 (en) Solid-state electrolyte, preparation method therefor, secondary battery, battery module, battery pack and electrical apparatus
KR100625958B1 (en) Lithium secondary battery and manufacturiing method therefor
JPH04286864A (en) secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090424

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100424

EXPY Cancellation because of completion of term