JPH09161738A - Explosionproof grooving method for battery container and nonaqueous electrolyte battery - Google Patents
Explosionproof grooving method for battery container and nonaqueous electrolyte batteryInfo
- Publication number
- JPH09161738A JPH09161738A JP32417195A JP32417195A JPH09161738A JP H09161738 A JPH09161738 A JP H09161738A JP 32417195 A JP32417195 A JP 32417195A JP 32417195 A JP32417195 A JP 32417195A JP H09161738 A JPH09161738 A JP H09161738A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- groove
- explosion
- battery container
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- Y02E60/12—
Landscapes
- Sealing Battery Cases Or Jackets (AREA)
- Gas Exhaust Devices For Batteries (AREA)
- Primary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電池容器の暴爆防
止用溝付け加工方法、および非水電解液電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of grooving a battery container for preventing explosion and a non-aqueous electrolyte battery.
【0002】[0002]
【従来の技術】近年、非水電解液電池として、リチウ
ム,ナトリウム,カリウムなどの軽金属を負極活物質と
する負極、金属の酸化物,硫化物もしくはハロゲン化物
を正極活物質とする正極、および非水電解液を電池発電
要素として備えた電池が、高電圧,高エネルギー密度お
よび長期信頼性(貯蔵特性良好で,作動温度範囲も広
い)の高い電池として注目されている。たとえば、二酸
化マンガン( MnO2 ),フッ化炭素(CF2 )n ,塩化チ
オニル(SOCl2 )などを正極活物質として成るリチウム
電池が、電卓,時計の電源やメモリのバックアップ電池
として多用されている。すなわち、リチウム電池などの
非水電解液電池は、銀電池やアルカリ電池に比べて自己
放電が小さいため、長期間の使用に耐えることから、前
記電卓,時計などの電源に使用されている。2. Description of the Related Art In recent years, as non-aqueous electrolyte batteries, negative electrodes using light metals such as lithium, sodium and potassium as negative electrode active materials, positive electrodes using metal oxides, sulfides or halides as positive electrode active materials, and Batteries equipped with a water electrolyte as a power generating element have been attracting attention as batteries having high voltage, high energy density and long-term reliability (good storage characteristics and a wide operating temperature range). For example, lithium batteries that use manganese dioxide (MnO 2 ), fluorocarbon (CF 2 ) n , thionyl chloride (SOCl 2 ) as a positive electrode active material are often used as calculators, clock power supplies, and memory backup batteries. . That is, a non-aqueous electrolyte battery such as a lithium battery has a smaller self-discharge than a silver battery or an alkaline battery, and can withstand long-term use. Therefore, it is used as a power source for the calculator, the clock, and the like.
【0003】なお、この種の非水電解液電池では、前記
電池発電要素をステンレス鋼などの金属製電池容器に気
密に内蔵させた構成を採っており、また、電解液として
は、たとえば炭酸プロピレン,炭酸エチレン,1,2-ジメ
トキシエタン,γ -ブチロラクトン,テトラヒドロフラ
ンなどの有機溶剤中に、 LiCl04 ,LiBF4 , LiAsF6な
どのリチウム塩を溶解させて成る有機電解液(非水電解
液)が用いられている。さらに、正極活物質の支持体と
しては炭素系多孔質体が、正極集電体や電池容器として
はニッケル含有量が 3〜20重量%のオーステナイト系ス
テンレス鋼製が一般的に使用されている。In this type of non-aqueous electrolyte battery, the battery power generating element is airtightly contained in a metal battery container such as stainless steel, and the electrolyte is, for example, propylene carbonate. , An ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, and other organic solvents in which a lithium salt such as LiCl0 4 , LiBF 4 , LiAsF 6 is dissolved to form an organic electrolyte (non-aqueous electrolyte) It is used. Further, a carbonaceous porous body is generally used as a support for the positive electrode active material, and an austenitic stainless steel having a nickel content of 3 to 20% by weight is generally used as a positive electrode current collector or a battery container.
【0004】前記非水電解液電池の場合は、ガラスシー
ルを使用したハーメチック構造と、レーザー光封口によ
る完全密閉構造との採用によって、自己劣化の大幅な低
減化、および長期貯蔵性の向上が図られている点で特長
付けられる。しかし、構造の完全密閉化は、一方で、次
のような問題を提起している。すなわち、 (a)電池内部
における負極のリチウムと正極集電体などとの接触によ
る短絡、 (b)電池の正極,負極を誤って外部短絡したと
き、 (c)電池が火中に投入されたとき、 (d)電池が高温
で加熱されたとき、あるいは (e)電池が高電圧で充電さ
れたときなど、いわゆる異常な環境に暴された場合、電
池内部で急激な反応が起こって、電池の内部圧力が異常
に上昇する。そして、この内部圧力の異常な上昇は、電
池容器を破裂させるか、またはガラスのハーメチック部
分を破壊し、電池発電要素中の電解液を噴出・飛散する
恐れを招来する。In the case of the non-aqueous electrolyte battery, by adopting a hermetic structure using a glass seal and a complete hermetic structure by laser light sealing, it is possible to significantly reduce self-deterioration and improve long-term storability. It is characterized by the fact that it is used. However, the complete sealing of the structure, on the other hand, raises the following problems. That is, (a) a short circuit due to contact between lithium of the negative electrode inside the battery and the positive electrode current collector, (b) when the positive and negative electrodes of the battery were accidentally shorted externally, (c) the battery was thrown into a fire. When (d) the battery is heated to a high temperature, or (e) the battery is charged at a high voltage, or when exposed to a so-called abnormal environment, a rapid reaction occurs inside the battery, The internal pressure of the cylinder rises abnormally. Then, the abnormal increase in the internal pressure may cause the battery container to rupture or the hermetic part of the glass to be broken, and the electrolyte solution in the battery power generation element to be jetted and scattered.
【0005】こうした電池の内部圧力の異常な上昇に対
して、たとえば電池容器の外側底面部に、プレス加工に
よって予め暴爆防止用の断面 V字型溝を形設しておき、
電池の内部圧力が異常に上昇した際、この断面 V字型溝
部が破断して内部圧力を逃がして、被害を低減させる手
段が開発されている(たとえば実公昭58-17332号公報,
特開昭63-86244号公報など)。For such an abnormal increase in the internal pressure of the battery, a V-shaped groove for preventing a violent explosion is formed in advance by press working on the outer bottom surface of the battery container.
When the internal pressure of the battery rises abnormally, a means has been developed to reduce the damage by breaking the V-shaped groove of the cross section and letting the internal pressure escape (for example, Japanese Utility Model Publication No. 58-17332).
JP-A-63-86244, etc.).
【0006】[0006]
【発明が解決しようとする課題】しかしながら、暴爆防
止用の断面 V字型溝を鋭利な溝に形設した場合は、使用
する金型の耐久性が損なわれるという問題があるだけで
なく、鋭利な溝が破断し易く、したがって、不所望な電
池容器の亀裂発生が容易に招来され、電池容器の耐久性
が損なわれる恐れがある。また、プレス加工によって、
暴爆防止用の断面V字型溝を形設した場合は、一般的
に、 V字型溝に対応した反対面側が突出した形状を採る
一方、プレス加工硬化によって、形設した溝部の剛性が
増加する。However, when the V-shaped groove for preventing the explosion is formed in a sharp groove, not only is there a problem that the durability of the die used is impaired, The sharp groove is likely to be broken, so that undesired cracking of the battery container may be easily caused and the durability of the battery container may be impaired. Also, by pressing,
When a V-shaped groove with a cross-section for preventing explosion is formed, generally, the opposite surface side corresponding to the V-shaped groove is projected, but the rigidity of the formed groove is increased by press work hardening. To increase.
【0007】この溝部の剛性増加は、安全装置としての
作動圧力を高くするとともに、作動圧力のばらつきも大
きくし、結果的には設定した作動圧力で安全装置として
作動しない場合も生じるという問題がある。したがっ
て、前記プレス加工によって所要の断面 V字型溝を形設
した後、焼鈍処理を施して加工硬化を取り除く必要があ
り、加工工程が煩雑化するだけでなく、コストアップと
もなるので、なお実用上問題がある。This increase in the rigidity of the groove increases the working pressure of the safety device and also increases the variation of the working pressure, and as a result, there is a problem that the safety device may not operate at the set working pressure. . Therefore, it is necessary to remove the work hardening by annealing after forming the V-shaped groove of the required cross section by the press working, which not only complicates the working process, but also increases the cost. There is an upper problem.
【0008】一方、電池容器の底面部の外側および内側
に、それぞれ所要の金型を配置したプレス加工によっ
て、外側底面部に暴爆防止用の底面が平坦な溝を形設す
ることも知られている(たとえば特開昭 63-285860号公
報)。すなわち、上面が電池容器の内底面形状に適合す
る形状を有する円柱状の下金型に、電池容器を嵌合的に
装着配置する一方、同じく電池容器の外底面形状に適合
する形状を有する成形用ダイ(上金型)を下降させる。
このように両金型間で電池容器の底面部を加圧して、前
記暴爆防止用溝の形設によって押出された底面部を平坦
面化し、所定の寸法を維持する手段も知られている。On the other hand, it is also known that a groove having a flat bottom surface for preventing an explosion is formed on the outer bottom surface by press working in which required molds are arranged on the outer and inner sides of the bottom surface of the battery container. (For example, JP-A-63-285860). That is, while the battery container is fitted and arranged in a cylindrical lower mold having an upper surface that conforms to the inner bottom surface shape of the battery container, a molding that also has a shape that conforms to the outer bottom surface shape of the battery container. Lower the die (upper die).
There is also known a means for maintaining a predetermined size by pressurizing the bottom surface of the battery container between both molds to flatten the bottom surface extruded by the formation of the burst explosion prevention groove. .
【0009】しかし、プレス加工によって暴爆防止用の
断面 V字型溝などを形設する場合は、プレス用ポンチ先
端の形状によって、形設される V字型溝などの断面形状
にばらつきが生じる。つまり、信頼性の高い安全装置と
しての機能を呈する暴爆防止用溝を安定的に形設するた
めには、プレス用ポンチ先端については頻繁な日常管理
を必要とし、さらには、加工硬化を取り除くための焼鈍
処理を要するなど操作も煩雑となる。こうした問題は量
産性などの点を踏まえたとき由々しいことであり、有効
な解決策もしくは加工技術の開発が望まれている。However, when a V-shaped groove having a cross section for preventing an explosion is formed by press working, the cross-sectional shape of the V-shaped groove formed varies depending on the shape of the tip of the punch for pressing. . In other words, in order to stably form the explosion-proof groove that functions as a highly reliable safety device, the press punch tip requires frequent daily management, and further work hardening is removed. The operation is complicated, for example, because an annealing process is required. These problems are serious when considering mass productivity, and development of effective solutions or processing techniques is desired.
【0010】本発明は、このような事情に対処してなさ
れたもので、信頼性の高い安全装置として機能する暴爆
防止用の断面 V字型溝を安定的に形設することのできる
電池容器の加工方法、および信頼性の高い安全装置付き
非水電解液電池の提供を目的とする。The present invention has been made in view of such circumstances, and is a battery capable of stably forming a V-shaped groove having a V-shaped cross section for preventing an explosion explosion which functions as a highly reliable safety device. An object of the present invention is to provide a container processing method and a highly reliable non-aqueous electrolyte battery with a safety device.
【0011】[0011]
【課題を解決するための手段】請求項1の発明は、電池
発電要素を内蔵させる金属製電池容器の外側底面に、暴
爆防止用溝付け加工する方法であって、前記溝付けをレ
ーザー光加工で行うことを特徴とする電池容器の暴爆防
止用溝付け加工方法である。According to a first aspect of the present invention, there is provided a method of forming a groove for preventing explosion in an outer bottom surface of a metal battery container having a battery power generating element built therein, the groove forming being a laser beam. A groove forming method for preventing explosion of a battery container, which is characterized in that the groove is formed by processing.
【0012】請求項2の発明は、請求項1記載の電池容
器の暴爆防止用溝付け加工方法において、金属製電池容
器がステンレス鋼製であることを特徴とする。A second aspect of the present invention is characterized in that, in the method of grooving a battery container for preventing explosions according to the first aspect, the metal battery container is made of stainless steel.
【0013】請求項3の発明は、負極構成部材、正極構
成部材、および非水系電解液を有する電池発電要素を内
蔵した金属製電池容器の外側底面に暴爆防止用溝が形設
された非水電解液電池であって、前記暴爆防止用溝がレ
ーザー光加工で形設されたものであることを特徴とする
非水電解液電池である。According to a third aspect of the present invention, a non-explosive explosion preventing groove is formed on the outer bottom surface of a metal battery container containing a negative electrode constituent member, a positive electrode constituent member, and a battery power generating element having a non-aqueous electrolyte solution. It is a water-electrolyte battery, wherein the explosion-proof groove is formed by laser light processing.
【0014】請求項4の発明は、請求項3記載の非水電
解液電池において、金属製電池容器がステンレス鋼製で
あることを特徴とする。The invention of claim 4 is the non-aqueous electrolyte battery according to claim 3, characterized in that the metal battery container is made of stainless steel.
【0015】本発明において、金属製電池容器の外側底
面に、レーザー光加工で形設する暴爆防止用溝(安全装
置)の薄肉部の厚さ(溝の底壁面の厚さ)は、一般的に
0.02〜0.08mm程度が好ましく、また、平面的にはX字
型,Y字型,H字型もしくは*型(放射型)など直線の
交叉・分岐型に形設するのが望ましい。ここで、金属製
電池容器は、一般的に、ニッケル含有量が 3〜20重量%
のオーステナイト系などのステンレス鋼製であり、その
形状,寸法,壁厚などは対象とする電池の容量などによ
って適宜選択される。In the present invention, the thickness of the thin portion (thickness of the bottom wall surface of the groove) of the explosion-proof groove (safety device) formed by laser light processing on the outer bottom surface of the metal battery container is generally To
It is preferably about 0.02 to 0.08 mm, and it is desirable to form a straight cross-over / branch type such as an X-shaped, Y-shaped, H-shaped or * -shaped (radial type) in plan view. Here, the metal battery container generally has a nickel content of 3 to 20% by weight.
Of austenitic stainless steel, and its shape, dimensions, wall thickness, etc. are appropriately selected according to the capacity of the target battery.
【0016】本発明に係る非水電解液電池において、正
極活物質としては、たとえば活物質である二酸化マンガ
ン,フッ化炭素,塩化チオニルなどが挙げらる。さら
に、負極としては、たとえば金属リチウム箔,金属ナト
リウム箔などが挙げられる。In the non-aqueous electrolyte battery according to the present invention, examples of the positive electrode active material include active materials such as manganese dioxide, carbon fluoride and thionyl chloride. Further, examples of the negative electrode include metallic lithium foil and metallic sodium foil.
【0017】また、本発明係る非水電解液電池において
用いる非水電解液としては、たとえばエチレンカーボネ
ート,プロピレンカーボネート,ブチレンカーボネー
ト,γ- ブチロラクトン,スルホラン,アセトニトリ
ル,1,2-ジメトキシメタン,1,3-ジメトキシプロパン,
ジメチルエーテル,テトラヒドロフラン,2-メチルテト
ラヒドロフラン,炭酸ジメチル,炭酸ジエチルおよびエ
チルメチルカーボネートの群れから選ばれた少なくとも
1種から成る有機溶剤(非水溶媒)に、過塩素酸リチウ
ム( LiClO4 ),六フッ化リン酸リチウム(LiPF6 ),
ホウフッ化リチウム(LiBF4 ),六フッ化ヒ素リチウム
( LiAsF6 ),トリフルオロメタンスルホン酸リチウム
(LiCF3 SO3 )などのリチウム塩(電解質)を 0.5〜
1.5 mol/l 程度溶解させた非水電解液が一般的に挙げ
られる。なお、前記非水電解液の代わりにイオン伝導性
の固体電解質、たとえば高分子化合物にリチウム塩を複
合させた高分子固体電解質などを用いることもできる。Examples of the non-aqueous electrolyte used in the non-aqueous electrolyte battery according to the present invention include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, acetonitrile, 1,2-dimethoxymethane, 1,3. -Dimethoxypropane,
An organic solvent (non-aqueous solvent) consisting of at least one selected from the group consisting of dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate is added to lithium perchlorate (LiClO 4 ), hexafluoride. Lithium phosphate (LiPF 6 ),
Lithium borofluoride (LiBF 4 ), lithium arsenide hexafluoride (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) and other lithium salts (electrolytes) 0.5 to
A non-aqueous electrolytic solution in which about 1.5 mol / l is dissolved is generally cited. Instead of the non-aqueous electrolyte solution, an ion conductive solid electrolyte, for example, a polymer solid electrolyte obtained by compounding a lithium salt with a polymer compound may be used.
【0018】さらにまた、負極および正極間を絶縁離隔
するセパレータとしては、たとえばポリエチレン,ポリ
プロピレンなどのポリオレフィン系樹脂の不織布や多孔
膜などを用い得る。Further, as the separator for insulating and separating the negative electrode and the positive electrode, for example, a nonwoven fabric of polyolefin resin such as polyethylene or polypropylene or a porous film may be used.
【0019】請求項1および請求項2の発明では、金属
製電池容器の外側底面の暴爆防止用溝付けをレーザー光
加工で行うため、加工硬化やプレスポンチの摩耗・損傷
に伴う被加工部の耐圧強度のばらつきも回避され、安定
した作動圧力を呈する暴爆防止用溝付けを容易に形設で
きる。In the first and second aspects of the present invention, the groove for preventing the explosion is formed on the outer bottom surface of the metal battery container by laser light processing. Therefore, the work portion caused by work hardening and wear / damage of the press punch is processed. It is also possible to avoid variations in the pressure resistance of, and to easily form a blast groove for preventing explosion that exhibits a stable working pressure.
【0020】請求項3および請求項4の発明では、非水
電解液電池の電池容器外側底面に、レーザー光加工で形
設された暴爆防止用溝を安全装置として備えているた
め、異常環境化により電池内部の圧力が一定の状態に急
上昇した場合など、電池の暴爆を容易にかつ確実に防止
される。つまり、電池容器外側底面に形設された暴爆防
止用溝は、常に、一定の作動圧力を示し、電池の内部が
一定の圧力に上昇したとき始めて、暴爆防止用溝が破断
作用を起こし、所要の暴爆防止に関与するので、非水電
解液電池の信頼性,長寿命化が図られる。According to the third and fourth aspects of the invention, since the non-aqueous electrolyte battery is provided with a blast explosion prevention groove formed by laser light processing on the outer bottom surface of the battery container as a safety device, an abnormal environment is generated. When the internal pressure of the battery suddenly rises to a constant state due to the use of a battery, a battery explosion can be easily and reliably prevented. That is, the explosion-proof groove formed on the outer bottom surface of the battery container always shows a constant working pressure, and the explosion-proof groove causes the breaking action only when the inside of the battery rises to a constant pressure. Since it is involved in the required explosion prevention, the reliability and life of the non-aqueous electrolyte battery can be extended.
【0021】[0021]
【発明の実施の形態】以下、図1 (a), (b)および図2
を参照して実施例を説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, FIG. 1 (a), (b) and FIG.
An example will be described with reference to FIG.
【0022】先ず、電池容器として、負極端子を兼ねる
一端が開口したステンレス鋼製の肉厚 0.3mmの有底円筒
体を用意する一方、この有底円筒体の内底面形状に適合
する上面形状を有する円柱状の支持台をも用意した。次
いで、前記支持台に有底円筒体を嵌合的に装着配置し、
有底円筒体の外側底面にレーザー光を選択的に照射・走
査して、図1 (a)に平面的に、図1 (b)に断面的それぞ
れ示すごとく、幅 0.3mm,深さ0.24mm程度の暴爆防止用
溝を平面形状でH型に形設した。First, as a battery container, a stainless steel bottomed cylindrical body having a thickness of 0.3 mm and having an opening at one end which also serves as a negative electrode terminal is prepared, and a top surface shape conforming to the inner bottom surface shape of the bottomed cylindrical body is prepared. A columnar support having the above was also prepared. Then, the bottomed cylindrical body is fitted and arranged on the support base,
As shown in Fig. 1 (a) in plan view and in Fig. 1 (b) in cross section, the outer bottom surface of the bottomed cylindrical body is selectively irradiated with laser light and scanned to have a width of 0.3 mm and a depth of 0.24 mm. A rough explosion prevention groove of a certain degree was formed in an H shape in a plan view.
【0023】ここで、有底円筒体は、たとえば絞り加工
で形成されたものであり、また、レーザー光の選択的な
照射・走査(レーザー光加工)は、たとえば YAGレーザ
ー装置(KK.東芝製,LAY-600D)を用いて、入力電圧32
0V,パルス幅 1.0ms,繰り返し数50 ppsの条件で行われ
る。なお、図1 (a), (b)において、1は有底円筒体
(電池容器)、1aは有底円筒体1の外側底面、2は暴爆
防止用溝、1bは暴爆防止用溝2の形設による薄肉化部
(厚さ0.06mm程度)である。Here, the bottomed cylindrical body is formed by, for example, drawing, and the selective irradiation / scanning of laser light (laser light processing) is performed, for example, by a YAG laser device (KK. Toshiba product). , LAY-600D), input voltage 32
It is performed under the conditions of 0 V, pulse width 1.0 ms, and repetition rate 50 pps. In FIGS. 1 (a) and 1 (b), 1 is a bottomed cylindrical body (battery container), 1a is an outer bottom surface of the bottomed cylindrical body 2, 2 is an explosion explosion prevention groove, and 1b is an explosion explosion prevention groove. It is a thinned part (thickness of about 0.06 mm) due to the shape of 2.
【0024】上記の加工操作によって、多数個の電池容
器1の外側底面1aに、それぞれ形設した暴爆防止用溝2
の断面形状(幅,深さ)を観察評価したところ、ばらつ
きもほとんど認められず、安定した(一様な)断面形状
の暴爆防止用溝2が形成されていた。つまり、形設され
た暴爆防止用溝2は、ほぼ一様の動作耐圧を呈すること
が確認された。By the above-mentioned processing operation, the explosion-proof grooves 2 formed respectively on the outer bottom surfaces 1a of the plurality of battery containers 1 are formed.
The cross-sectional shape (width, depth) was observed and evaluated. As a result, almost no variation was observed, and the explosion-proof groove 2 having a stable (uniform) cross-sectional shape was formed. That is, it was confirmed that the formed explosion-proof groove 2 exhibits a substantially uniform operating withstand voltage.
【0025】次に、前記暴爆防止用溝2付け有底円筒体
1を負極端子兼用の電池容器として、非水電解液電池を
構成した例について説明する。Next, an example in which a non-aqueous electrolyte battery is constructed by using the bottomed cylindrical body 1 with the blast explosion preventing groove 2 as a battery container which also serves as a negative electrode terminal will be described.
【0026】図2は非水電解液電池の要部構成を断面的
に示したもので、1は非水電解液(有機電解液)系の電
池発電要素3を内装した負極端子を兼ねたステンレス鋼
製の暴爆防止用溝2付け電池容器、4は前記電池発電要
素3の上方に内装配置されたパイプ状の正極端子5の挿
通孔4aを有する絶縁体、6は前記正極端子5を挿通させ
ながら電池発電要素3を内装した電池容器1の開口部を
気密にレーザー封止するステンレス鋼製のメタルトップ
(封口体)である。ここで、パイプ状の正極端子5は、
非水電解液の注入口として使用され、また、前記メタル
トップ6を挿通するパイプ状の正極端子5は、メタルト
ップ6に対して電気的な絶縁を確保されながら、ガラス
シール材7によって気密に封止,固定されている。さら
に、8は前記電池発電要素3および正極端子5を接続す
るリード線、9はパイプ状の正極端子5をレーザー加工
で封口する栓体である。FIG. 2 is a cross-sectional view showing the structure of the main part of a non-aqueous electrolyte battery. Reference numeral 1 is stainless steel which also serves as a negative electrode terminal in which a non-aqueous electrolyte (organic electrolyte) battery power generating element 3 is incorporated. A battery container 4 made of steel with a groove 2 for preventing explosions, 4 is an insulator having an insertion hole 4a for a pipe-shaped positive electrode terminal 5 which is internally arranged above the battery power generating element 3, and 6 is an electrode having the positive electrode terminal 5 inserted therein. It is a stainless steel metal top (sealing body) that hermetically laser-seales the opening of the battery container 1 in which the battery power generating element 3 is installed. Here, the pipe-shaped positive electrode terminal 5 is
The pipe-shaped positive electrode terminal 5, which is used as a non-aqueous electrolyte injection port and is inserted through the metal top 6, is hermetically sealed by the glass sealing material 7 while ensuring electrical insulation with respect to the metal top 6. Sealed and fixed. Further, 8 is a lead wire for connecting the battery power generating element 3 and the positive electrode terminal 5, and 9 is a plug for sealing the pipe-shaped positive electrode terminal 5 by laser processing.
【0027】上記非水電解液電池の構成において、電池
発電要素3は、負極(負極構成部材),正極(正極構成
部材)および非水系電解液で形成されており、負極3aは
筒状に形成された金属リチウムで、電池容器1の内壁面
に圧着的に装着・配置されており、その内側にガラス繊
維不織布製のセパレータ3b1 を介して正極3cが装着・配
置されている。なお、正極3cは非水電解液3dを含浸保持
することが可能な筒状の多孔質炭素体3c1 、この筒状の
多孔質炭素体3c1 の内側に嵌合配置された筒状の、金属
メッシュ製の集電体3c2 で構成されている。In the structure of the above non-aqueous electrolyte battery, the battery power generating element 3 is formed of a negative electrode (negative electrode constituent member), a positive electrode (positive electrode constituent member) and a non-aqueous electrolyte solution, and the negative electrode 3a is formed in a cylindrical shape. in metal lithium, which is crimped to the mounting and arranged on the inner wall surface of the battery container 1, the positive electrode 3c through the separator 3b 1 made of glass fiber non-woven fabric is attached and arranged on the inside. The positive electrode 3c is a cylindrical porous carbon body 3c 1 capable of impregnating and holding the non-aqueous electrolyte 3d, a cylindrical shape fitted and arranged inside the cylindrical porous carbon body 3c 1 , It is composed of a current collector 3c 2 made of a metal mesh.
【0028】さらに、詳述すると、筒状の正極3cは、カ
ーボンブラックにポリテトラフロロエチレンを重量比で
10%加え、さらにエチルアルコールを加えて混練した
後、筒状にプレス成形し、その成形体の中空部に金属メ
ッシュ製の集電体3c2 を挿入,圧接してから、さらに、
150℃程度の温度で、真空下,乾燥固化させることによ
って製造したものであり、前記電池容器1内への装着配
置に当たっては、底壁面に内側にガラス繊維不織布製の
セパレータ3b2 を配置し、負極側との短絡を防止してい
る。More specifically, the cylindrical positive electrode 3c has carbon black and polytetrafluoroethylene in a weight ratio.
After adding 10% and further kneading by adding ethyl alcohol, press-molding into a tubular shape, insert the metal mesh current collector 3c 2 into the hollow portion of the molded body, press-contact, and then
It is manufactured by drying and solidifying under a vacuum at a temperature of about 150 ° C. When mounting the battery container 1 inside, a glass fiber nonwoven fabric separator 3b 2 is placed inside the bottom wall surface. Short circuit with the negative electrode side is prevented.
【0029】また、前記非水系電解液3dは、たとえば四
塩化アルミニウムリチウム(LiAlCl4 )を 1.2モル/リ
ットルの割合で溶解した塩化チオニル(SOCl2 )であ
る。The non-aqueous electrolyte solution 3d is thionyl chloride (SOCl 2 ) in which lithium aluminum tetrachloride (LiAlCl 4 ) is dissolved at a rate of 1.2 mol / liter, for example.
【0030】一方、比較のため、上記構成の非水電解液
電池において、電池容器の外側底面に、上記と同様の平
面形状が略H型の暴爆防止用溝の形設をプレス加工で行
った他は、上記と同様の条件で非水電解液電池置を組み
立て,構成した。On the other hand, for comparison, in the non-aqueous electrolyte battery having the above structure, a similar explosion-proof groove having a substantially H-shaped plan is formed on the outer bottom surface of the battery container by press working. Other than that, the non-aqueous electrolyte battery device was assembled and configured under the same conditions as above.
【0031】比較例1 先端を鋭利にしたポンチを使用したプレス加工で、暴爆
防止用の溝を形設。Comparative Example 1 A groove for preventing a burst explosion was formed by press working using a punch having a sharp tip.
【0032】比較例2 先端に 0.1〜 0.2mmR を付けたポンチを使用したプレス
加工で、暴爆防止用の溝を形設。Comparative Example 2 A groove for preventing a burst explosion was formed by press working using a punch having a tip of 0.1 to 0.2 mmR.
【0033】比較例3 先端に 0.1〜 0.2mmR を付けたポンチを使用したプレス
加工で、暴爆防止用の溝を形設した後、再プレス加工し
て突出した部分を平坦面化。COMPARATIVE EXAMPLE 3 A punch having a tip of 0.1 to 0.2 mmR was used for press working to form a groove for preventing an explosion and then re-press working to flatten the protruding portion.
【0034】上記実施例および比較例1〜3の各非水電
解液電池置について、防爆安全装置の作動圧力,薄肉部
1bの亀裂有無、各非水電解液電池を火中に投入したとき
激しい破裂音を発して破裂したが否か、電池容器外側底
面の平坦性、および暴爆防止用溝の形設加工性(作業
性)ををそれぞれ評価した結果を表1に示す。なお、表
1の数値において、分母は供試験数,分子は事故数であ
り、◎印は良好、○印はやや良好、×印は不良をそれぞ
れ示す。With respect to each of the non-aqueous electrolyte battery devices of the above-mentioned Examples and Comparative Examples 1 to 3, the operating pressure and the thin-walled part of the explosion-proof safety device were set.
The presence or absence of cracks in 1b, whether or not each non-aqueous electrolyte battery ruptured when it was thrown into a fire, the flatness of the outer bottom surface of the battery container, and the machinability of the explosion-proof groove ( Table 1 shows the results of evaluating the workability). In the numerical values in Table 1, the denominator is the number of tests, the numerator is the number of accidents, ⊚ indicates good, ∘ indicates slightly good, and x indicates poor.
【0035】 表1 薄肉部の 耐圧強度(kg/cm2 ) 亀裂 破裂 平坦 作業 厚さ(mm) 平均 最大 最小 有無 数 性 性 実施例 0.06 68 87 53 0/100 0/20 ◎ ◎ 比較例1 0.06 69 86 49 3/100 0/20 × × 比較例2 0.06 81 118 63 0/100 3/20 × × 比較例3 0.06 73 96 54 0/100 1/20 ○ × 表1から分かるように、本発明に係る加工方法で防爆安
全装置として機能する溝を形設した電池容器の場合は、
耐圧強度のばらつきも低減しており、また、薄肉部にお
ける亀裂発生もなく、安定性および信頼性ともすぐれて
いた。さらに、非水電解液電池においても、良好な暴爆
の防止性を示し、安全性や信頼性の大幅な向上が認めら
れる。Table 1 Compressive strength of thin-walled part (kg / cm 2 ) Crack Rupture Flat work Thickness (mm) Average Max Min Min Existence Numerical Examples 0.06 68 87 53 0/100 0/20 ◎ ◎ Comparative Example 1 0.06 69 86 49 3/100 0/20 × × Comparative Example 2 0.06 81 118 63 0/100 3/20 × × Comparative Example 3 0.06 73 96 54 0/100 1/20 ○ × As shown in Table 1, the present invention In the case of a battery container with a groove that functions as an explosion-proof safety device with the processing method according to
Variations in pressure resistance were reduced, cracks did not occur in the thin portion, and stability and reliability were excellent. Further, even in a non-aqueous electrolyte battery, it exhibits good preventive property against explosion and significant improvement in safety and reliability is recognized.
【0036】一方、比較例の場合は、耐圧強度のばらつ
きが低減していると、片や薄肉部における亀裂発生があ
り、あるいは薄肉部における亀裂発生がないと、片や耐
圧強度のばらつきや破裂発生などが認められ、安定性お
よび信頼性に問題があった。なお、本発明は、上記例示
に限定されるものでなく、発明の趣旨を逸脱しない範囲
でいろいろの変形を採ることができる。たとえば、電池
容器の形状は円筒体以外の型であってもよく、電池構成
部材として、前記例示以外の他の代替品を選択した構成
を採ることもできる。On the other hand, in the case of the comparative example, if the variation in compressive strength is reduced, cracks occur in the piece or thin portion, or if there is no crack in the thin portion, variation in the piece or compressive strength or rupture occurs. Occurrence was observed and there was a problem in stability and reliability. The present invention is not limited to the above examples, and various modifications can be made without departing from the spirit of the invention. For example, the shape of the battery container may be a shape other than the cylindrical body, and it is also possible to adopt a configuration in which other substitutes than the above examples are selected as the battery constituent member.
【0037】[0037]
【発明の効果】請求項1および請求項2の発明によれ
ば、レーザー光加工で暴爆防止用の溝付けを行うため、
加工硬化による耐圧強度のばらつきも問題も解消される
だけでなく、プレスポンチの摩耗・損傷の問題もなくな
って、信頼性の高い安全装置として機能する溝、換言す
ると安定した作動圧力を呈する暴爆防止用溝を再現性よ
く、かつ容易に形設することができるので、信頼性の高
い暴爆防止型電池の提供に大きく寄与する。According to the inventions of claims 1 and 2, since a groove for preventing explosion is performed by laser light processing,
Not only the variations and problems of pressure strength due to work hardening are eliminated, but also the problems of press punch wear and damage are eliminated, and grooves that function as a highly reliable safety device, in other words, a burst explosion that exhibits a stable working pressure. Since the prevention groove can be formed easily with good reproducibility, it greatly contributes to the provision of a highly reliable explosion-proof battery.
【0038】請求項3および請求項4の発明によれば、
信頼性の高い安全装置(暴爆防止用溝)を備えているた
め、異常な環境化に伴って電池内部の圧力が急上昇した
場合、電池の暴爆を容易にかつ確実に防止される。つま
り、安全性の高い非水電解液電池が提供される。According to the inventions of claims 3 and 4,
Since a highly reliable safety device (groove for preventing explosion) is provided, when the pressure inside the battery suddenly rises due to an abnormal environment, the battery explosion can be prevented easily and surely. That is, a highly safe non-aqueous electrolyte battery is provided.
【図1】(a)は実施例の暴爆防止用溝の構成を示す電池
容器の外側底面の平面図、 (b)電池容器の断面図。FIG. 1 (a) is a plan view of the outer bottom surface of a battery container showing the structure of a storm explosion prevention groove of the embodiment, and (b) a sectional view of the battery container.
【図2】実施例の非水電解液電池の要部構成を示す断面
図。FIG. 2 is a cross-sectional view showing the configuration of a main part of a non-aqueous electrolyte battery of Example.
1……電池容器(有底筒状体) 1a……電池容器の外側底面 1b……薄肉部(暴爆防止用溝の形設部) 2……暴爆防止用の溝(安全装置) 3……電池発電要素 3a……負極 3b1 ,3b2 ……セパレータ 3c……正極 3a1 ……多孔質炭素体 3a2 ……集電体 3d……非水電解液 4……絶縁体 4a……挿通孔 5……正極端子 6……メタルトップ(封口体) 7……ガラスシール材 8……リード線 9……栓体1 …… Battery container (cylindrical body with a bottom) 1a …… Outside bottom surface of battery container 1b …… Thin-walled part (formation of groove for preventing explosion) 2 …… Groove for preventing explosion (safety device) 3 …… Battery generator element 3a …… Negative electrode 3b 1 , 3b 2 …… Separator 3c …… Positive electrode 3a 1 …… Porous carbon body 3a 2 …… Current collector 3d …… Non-aqueous electrolyte 4 …… Insulator 4a …… Insertion hole 5 Positive electrode terminal 6 Metal top (sealing body) 7 Glass sealing material 8 Lead wire 9 Plug body
Claims (4)
器の外側底面に、暴爆防止用溝付け加工する方法であっ
て、 前記溝付けをレーザー光加工で行うことを特徴とする電
池容器の暴爆防止用溝付け加工方法。1. A method of grooving for preventing a burst explosion on the outer bottom surface of a metal battery container having a built-in battery power generation element, wherein the grooving is performed by laser light processing. Grooving method for preventing explosion.
ことを特徴とする請求項1記載の電池容器の暴爆防止用
溝付け加工方法。2. The groove forming method for preventing explosion of a battery container according to claim 1, wherein the metal battery container is made of stainless steel.
水系電解液を有する電池発電要素を内蔵した金属製電池
容器の外側底面に暴爆防止用溝が形設された非水電解液
電池であって、 前記暴爆防止用溝がレーザー光加工で形設されたもので
あることを特徴とする非水電解液電池。3. A non-aqueous electrolyte battery in which a detonation prevention groove is formed on the outer bottom surface of a metal battery container containing a negative electrode constituent member, a positive electrode constituent member, and a battery power generating element having a non-aqueous electrolyte solution. A non-aqueous electrolyte battery, wherein the burst explosion prevention groove is formed by laser light processing.
ことを特徴とする請求項3記載の非水電解液電池。4. The non-aqueous electrolyte battery according to claim 3, wherein the metal battery container is made of stainless steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32417195A JPH09161738A (en) | 1995-12-13 | 1995-12-13 | Explosionproof grooving method for battery container and nonaqueous electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32417195A JPH09161738A (en) | 1995-12-13 | 1995-12-13 | Explosionproof grooving method for battery container and nonaqueous electrolyte battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09161738A true JPH09161738A (en) | 1997-06-20 |
Family
ID=18162897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32417195A Abandoned JPH09161738A (en) | 1995-12-13 | 1995-12-13 | Explosionproof grooving method for battery container and nonaqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09161738A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999040634A1 (en) * | 1998-02-05 | 1999-08-12 | Dai Nippon Printing Co., Ltd. | Sheet for cell case and cell device |
US6346342B1 (en) | 1999-11-19 | 2002-02-12 | Eveready Battery Company, Inc. | Battery having pressure relief mechanism formed in container |
US7195839B2 (en) | 2003-02-11 | 2007-03-27 | Eveready Battery Company, Inc. | Battery cell with improved pressure relief vent |
US7572545B2 (en) | 2006-05-24 | 2009-08-11 | Everyready Battery Company, Inc. | Battery can having vent and asymmetric welded cover |
US7875376B2 (en) | 2006-05-24 | 2011-01-25 | Eveready Battery Company, Inc. | Battery can having off-center C-shaped vent |
US8158280B2 (en) | 2006-05-24 | 2012-04-17 | Eveready Battery Company, Inc. | Battery container having cruciform vent and cover |
CN102983293A (en) * | 2012-11-30 | 2013-03-20 | 武汉昊诚能源科技有限公司 | Scoring method of anti-explosion battery shell |
CN109226506A (en) * | 2018-10-19 | 2019-01-18 | 上海中天铝线有限公司 | The punch-pin and component of easily broken groove on punching press Integral lithium battery explosion-proof covering board |
-
1995
- 1995-12-13 JP JP32417195A patent/JPH09161738A/en not_active Abandoned
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8323828B2 (en) | 1997-10-14 | 2012-12-04 | Dai Nippon Printing Co., Ltd. | Battery case forming sheet and battery packet |
US6632538B1 (en) | 1998-02-05 | 2003-10-14 | Dai Nippon Printing Co., Ltd. | Sheet for cell and cell device |
CN1293651C (en) * | 1998-02-05 | 2007-01-03 | 大日本印刷株式会社 | Battery case forming sheet and battery packet |
US8455135B2 (en) | 1998-02-05 | 2013-06-04 | Dai Nippon Printing Co., Ltd. | Battery case forming sheet and battery packet |
WO1999040634A1 (en) * | 1998-02-05 | 1999-08-12 | Dai Nippon Printing Co., Ltd. | Sheet for cell case and cell device |
US6346342B1 (en) | 1999-11-19 | 2002-02-12 | Eveready Battery Company, Inc. | Battery having pressure relief mechanism formed in container |
US7195839B2 (en) | 2003-02-11 | 2007-03-27 | Eveready Battery Company, Inc. | Battery cell with improved pressure relief vent |
US8076015B2 (en) | 2003-02-11 | 2011-12-13 | Eveready Battery Company, Inc. | Battery cell with improved pressure relief vent |
US7875376B2 (en) | 2006-05-24 | 2011-01-25 | Eveready Battery Company, Inc. | Battery can having off-center C-shaped vent |
US8268468B2 (en) | 2006-05-24 | 2012-09-18 | Eveready Battery Company, Inc. | Battery can having off-center vent |
US8158280B2 (en) | 2006-05-24 | 2012-04-17 | Eveready Battery Company, Inc. | Battery container having cruciform vent and cover |
US7572545B2 (en) | 2006-05-24 | 2009-08-11 | Everyready Battery Company, Inc. | Battery can having vent and asymmetric welded cover |
CN102983293A (en) * | 2012-11-30 | 2013-03-20 | 武汉昊诚能源科技有限公司 | Scoring method of anti-explosion battery shell |
CN109226506A (en) * | 2018-10-19 | 2019-01-18 | 上海中天铝线有限公司 | The punch-pin and component of easily broken groove on punching press Integral lithium battery explosion-proof covering board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6136464A (en) | Battery and safety device therefor | |
EP3859851A1 (en) | Secondary battery | |
KR100551885B1 (en) | Lithium ion secondary battery | |
US5766791A (en) | Sealed nonaqueous secondary battery | |
CN102142526B (en) | Secondary battery and method of manufacturing same | |
JP5037527B2 (en) | Secondary battery | |
JP2011521426A (en) | Lithium primary battery | |
US20050238956A1 (en) | Negative electrode for lithium battery and lithium battery comprising same | |
KR20080041657A (en) | Battery pack | |
JP2007179803A (en) | Sealing plate for battery case and nonaqueous electrolyte battery | |
JP2004014395A (en) | Battery | |
JPH09161738A (en) | Explosionproof grooving method for battery container and nonaqueous electrolyte battery | |
KR100942906B1 (en) | Electrochemical device showing excellent safety | |
JP4984359B2 (en) | Sealed battery and its sealing plate | |
KR20060111838A (en) | Cylindrical Lithium Secondary Battery and Manufacturing Method Thereof | |
KR20030066172A (en) | Tab for electrode and sealed battery therewith | |
KR20150086797A (en) | Secondary battery | |
JP5044933B2 (en) | battery | |
JP6160513B2 (en) | Power storage device and method for discharging power storage device | |
JPH10233199A (en) | Nonaqueous electrolyte battery | |
KR101810269B1 (en) | The secondary battery with increased bonding strength between electrode assembly and the battery case | |
KR102754588B1 (en) | Top cap, cap assembly for including the same and secondary battery | |
JPH1145701A (en) | Sealed nonaqueous electrolytic battery | |
KR100573102B1 (en) | Case of sealed battery | |
KR20040057363A (en) | Secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20040825 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050208 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20050406 |