JPH09161541A - Low wind pressure electric wire with low degree of slackness - Google Patents
Low wind pressure electric wire with low degree of slacknessInfo
- Publication number
- JPH09161541A JPH09161541A JP7338227A JP33822795A JPH09161541A JP H09161541 A JPH09161541 A JP H09161541A JP 7338227 A JP7338227 A JP 7338227A JP 33822795 A JP33822795 A JP 33822795A JP H09161541 A JPH09161541 A JP H09161541A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- low
- section
- segment
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4415—Cables for special applications
- G02B6/4416—Heterogeneous cables
- G02B6/4422—Heterogeneous cables of the overhead type
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Non-Insulated Conductors (AREA)
- Suspension Of Electric Lines Or Cables (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高温時の電線弛度
が小さく、かつ、強風時の風圧抵抗が小さい低弛度低風
圧電線に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low slack low wind piezo electric wire which has a small wire sag at high temperatures and a small wind pressure resistance under strong wind.
【0002】[0002]
【従来の技術】架空電線に用いる電線は現在ACSR
(鋼心アルミより線)が主流であり、大容量化や弛度の
減少を図るため、耐熱性の向上、あるいは低線膨張の鋼
線たとえばインバー鋼線等の採用など、多くの材質や機
械特性の改良、開発が行われている。また、最近ではイ
ンバー鋼線の代わりにSic(炭化けい素)繊維強化ア
ルミニウム複合線、炭素繊維またはアラミド繊維に樹脂
を含浸させたFRP線、あるいはその他の無機、有機繊
維をアルミまたは亜鉛メッキして線材化した素線をより
合わせてACSRの鋼心として低線膨張化と軽量化を図
り、高温時の電線伸びを抑制して低弛度化を図る研究開
発も行われている。2. Description of the Related Art Electric wires used for overhead electric wires are currently ACSR.
(Stand core aluminum stranded wire) is the mainstream, and in order to increase capacity and decrease sag, heat resistance has been improved or low linear expansion steel wire such as Invar steel wire has been adopted, and many materials and machinery have been adopted. The characteristics are being improved and developed. Recently, instead of Invar steel wire, Sic (silicon carbide) fiber reinforced aluminum composite wire, FRP wire in which carbon fiber or aramid fiber is impregnated with resin, or other inorganic or organic fiber is plated with aluminum or zinc. Research and development has also been conducted to reduce the linear expansion and weight reduction of the ACSR steel core by twisting together the strands made into wire rods, and suppressing the wire elongation at high temperatures to achieve low sag.
【0003】〔従来技術の問題点〕前記のように低弛度
化を図った電線は、高温時の電線伸びによる弛度の増加
を抑制できるので鉄塔等の塔高を低くできる点で有利で
あるが、強風時の風圧荷重の増加は従来のACSRと同
等であり、特に超高圧多導体、多回線の送電線において
は電線の風圧荷重が鉄塔強度設計上支配的な要因である
から、単に弛度を抑制しただけでは経済的なメリットは
不充分である。[Problems of Prior Art] As described above, an electric wire having a low degree of sag is advantageous in that it can suppress an increase in sag due to the elongation of the electric wire at a high temperature, so that the tower height of a steel tower or the like can be lowered. However, the increase in wind pressure load during strong winds is equivalent to that of the conventional ACSR, and especially in ultra-high-voltage multi-conductor and multi-line transmission lines, the wind pressure load of electric wires is the dominant factor in the strength design of steel towers. The economic merit is not enough just to control the sag.
【0004】外周面が概ね平滑な鋼心アルミより線とし
て、図17に示したように、鋼撚線5上のアルミ撚線6
の外周の最外層に断面扇形のセグメント素線15をより
合わせ、この各より合わせセグメント素線15、15の
隣接部16の表面側にV字形溝17が形成されている電
線が知られている。この電線は最外層の断面扇形のより
合わせセグメント素線15、15の隣接部16の表面側
に形成されるV字形溝17に段差が形成されているため
に、風が当たるとこのV字形溝18の段差が境界層を乱
し風圧荷重が増大することが判明した。しかしながらよ
り合わせセグメント素線隣接部のV字形溝17の段差を
無くして平滑な表面を作り出すのは容易でなく製造コス
トが高くなる。As shown in FIG. 17, an aluminum stranded wire 6 on a steel stranded wire 5 is used as an aluminum stranded wire having a substantially smooth outer peripheral surface.
There is known an electric wire in which a segment wire 15 having a fan-shaped cross section is twisted on the outermost layer of the outer circumference of the wire, and a V-shaped groove 17 is formed on the surface side of the adjacent portion 16 of each twisted segment wire 15, 15. . This electric wire has a step in the V-shaped groove 17 formed on the surface side of the adjacent segment 16 of the twisted segment wires 15 having a fan-shaped cross section in the outermost layer, and therefore, when the wind hits, the V-shaped groove is formed. It was found that 18 steps disturb the boundary layer and the wind load increases. However, it is not easy to create a smooth surface by eliminating the steps of the V-shaped groove 17 adjacent to the twisted segment wire, and the manufacturing cost becomes high.
【0005】本発明者等は、低風圧電線の開発過程にお
いて、送電線の表面に特殊ならせん状の溝を設ければ3
0〜40m/s以上の強風下において風圧抵抗が減少す
ることを見出し、これにもとずいて架空線を、最外層に
断面扇形のセグメント素線を複数本より合わせ、各セグ
メント素線の隣接部の表面側に断面円弧状溝部を設けて
構成することにより電線の風圧低減を可能にし、さら
に、前記の断面円弧状溝部の溝巾Lと断面扇形のセグメ
ント素線表面の非溝部の巾Mとの比L/Mを0.10≦
L/M≦1.55とし、また、断面円弧状溝部の最大深
さHと架空線直径Dとの比H/Dを0.0055≦H/
D≦0.082とし、また、最外層の前記断面扇形のセ
グメント素線のより合わせ本数が6本以上、36本以下
とした構成とすることにより低風圧下を可能にした特願
平7−113687号の電線を開発した。The inventors of the present invention have found that in the process of developing a low wind piezoelectric wire, if a special spiral groove is provided on the surface of the power transmission line,
It was found that the wind pressure resistance decreases under strong winds of 0 to 40 m / s or more, and accordingly, overhead wires are combined with multiple segment fan-shaped segment wires in the outermost layer, and each segment wire is adjacent. It is possible to reduce the wind pressure of the electric wire by providing a groove portion having an arcuate cross section on the surface side of the portion, and further, the groove width L of the groove portion having the arcuate cross section and the width M of the non-groove portion of the segment wire surface having the sectoral cross section. The ratio L / M to 0.10 ≦
L / M ≦ 1.55, and the ratio H / D between the maximum depth H of the circular-arc groove section and the overhead wire diameter D is 0.0055 ≦ H /
Japanese Patent Application No. Hei. 7- which enables low wind pressure by setting D ≦ 0.082 and the number of twisted strands of the sector-shaped segmental wire of the outermost layer being 6 or more and 36 or less. The electric wire of 113687 was developed.
【0006】前記のように低風圧電線は、風圧は低減で
きても高温時の電線伸びによる弛度の増加はさけられな
い。たとえば、径間長が1000〜3000m級になる
と弛度は数十m以上になり、船舶等が横断する場合には
最大弛度に制限を受ける。したがって低風圧化を図った
電線でも高温時の弛度増加は線下条件によっては高強度
な電線にしなければならず、常時使用張力を著しく高い
張力で架設しなければならないので、鉄塔設計上不利で
ある。また、高張力で架設すれば、低風圧電線は表面が
ほぼ平滑であるから微風振動が生じやすくなり、振動に
よる素線疲労の懸念が高くなり、大掛かりな防振装置の
設置や日常の保守点検に多大の費用を要することにな
る。As described above, the low-wind piezoelectric wire can reduce the wind pressure, but cannot avoid an increase in the sag due to the wire extension at high temperature. For example, when the span length is in the 1000 to 3000 m class, the sag becomes several tens of meters or more, and when a ship or the like crosses, the maximum sag is limited. Therefore, even for wires with low wind pressure, the increase in slackness at high temperature requires a high strength wire depending on the wire conditions, and it is necessary to erect with a significantly high tension at all times, which is a disadvantage for the tower design. Is. In addition, when installed with high tension, the surface of low-wind piezoelectric wire is almost smooth, so slight wind vibration is likely to occur, and there is a higher concern of wire fatigue due to vibration, and installation of large-scale anti-vibration devices and daily maintenance inspections are performed. Will cost a lot of money.
【0007】[0007]
【発明が解決しようとする課題】今後電力需要の伸びが
予想され、特に国内においては山岳地ばかりでなく市街
地を通過するルートも多く、コンパクトで高密度な送電
技術の開発が望まれており、このためには、(1) 台風時
などの高風速下でも電線が受ける風圧荷重の増加を少な
くし、(2) 電線の温度が上昇する高温時でも弛度の増加
を抑制する、ことにより鉄塔設計等をコンパクトで経済
的なものにすることが望ましい。しかしながら従来のA
CSRや弛度抑制型電線、あるいは低風圧電線等は、低
弛度化の単一機能、または低風圧化の単一機能しか有せ
ず、低弛度、低風圧の複合機能を併せ持つものではなか
った。The demand for electric power is expected to grow in the future, and particularly in Japan, there are many routes that pass not only in mountainous areas but also in urban areas, and development of compact and high-density transmission technology is desired. To do this, (1) reduce the increase in wind pressure load on the wires even under high wind speeds such as during typhoons, and (2) suppress the increase in sag even at high temperatures when the wires rise in temperature. It is desirable to make the design etc. compact and economical. However, conventional A
A CSR, a sag control type electric wire, a low wind piezoelectric wire, or the like has only a single function of low sag or a low wind pressure, and does not have a combined function of low sag and low wind pressure. There wasn't.
【0008】本発明は前記の課題を解決し、高温時の電
線伸びによる弛度の増加を抑制することができ、かつ、
高風速下でも電線の風圧荷重の増加を少なくすることが
できる、低コストの低弛度低風圧電線を提供することを
目的とする。The present invention solves the above-mentioned problems and can suppress an increase in slack due to the elongation of an electric wire at a high temperature, and
An object of the present invention is to provide a low-cost low-sagility low-wind piezoelectric wire that can reduce an increase in wind pressure load on an electric wire even under high wind speed.
【0009】[0009]
【課題を解決するための手段】前記の目的を達成するた
め本発明の低弛度低風圧電線は下記(1)乃至(9)の
構成を特徴とするものであり、本発明における低弛度低
風圧電線の「電線」とは、送電線のみでなく、架空地線
も含むものである。In order to achieve the above object, the low sag / low wind piezoelectric wire of the present invention is characterized by the following constitutions (1) to (9). The "electric wire" of the low wind piezoelectric wire includes not only a power transmission line but also an overhead ground wire.
【0010】(1)より線中心の張力分担芯材5に、線
膨張係数が −6〜6×10-6/℃であり、かつ弾性係
数が 100〜600GPa である低線膨張係数で高
弾性係数の線材を用い、より線の最外層には超耐熱アル
ミ合金または特別耐熱アルミ合金からなる断面扇形セグ
メント素線1を複数本より合わせ、前記のより合わせる
各断面扇形セグメント素線1の隣接部2の表面側に断面
円弧状溝部3を設けたことを特徴とするものである。(1) The tension-sharing core material 5 having a linear center has a linear expansion coefficient of −6 to 6 × 10 −6 / ° C. and an elastic coefficient of 100 to 600 GPa and a low linear expansion coefficient and high elasticity. Wires with a coefficient are used, and the outermost layer of the stranded wire is composed of a plurality of fan-shaped segment wire segments 1 made of a super heat-resistant aluminum alloy or a special heat-resistant aluminum alloy. A groove portion 3 having an arcuate cross section is provided on the front surface side of 2.
【0011】(2)前記(1)の低弛度低風圧電線にお
いて、張力分担芯材5に、インバー線または炭化けい素
繊維,炭素繊維、アルミナ繊維等の無機繊維、またはア
ラミド繊維等の有機繊維からなる細線条の表面に、アル
ミ、亜鉛、クロームまたは銅等の群のいずれかの金属の
めっきまたは被覆を施した複合線材を用いたことを特徴
とし、この複合線材のプリフォームワイヤをより合わせ
て用いる。(2) In the low slack low wind piezoelectric wire of the above (1), the tension-sharing core material 5 includes an invar wire or an inorganic fiber such as silicon carbide fiber, carbon fiber or alumina fiber, or an organic fiber such as aramid fiber. A preformed wire of this composite wire is more characterized by using a composite wire that is plated or coated with a metal selected from the group consisting of aluminum, zinc, chrome, copper, etc. on the surface of a thin filament made of fiber. Used together.
【0012】(3)また、前記(1)または(2)の低
弛度低風圧電線において、断面円弧状溝部3の溝巾Lと
断面扇形のセグメント素線表面の非溝部の巾Mとの比L
/Mが0.10≦L/M≦1.55 であることを特徴
とするものである。(3) Further, in the low sag and low wind piezoelectric wire of (1) or (2), the groove width L of the groove portion 3 having an arcuate cross section and the width M of the non-groove portion of the segment wire surface having a fan-shaped cross section. Ratio L
/ M is 0.10 ≦ L / M ≦ 1.55.
【0013】(4)また、前記(1)、(2)または
(3)の低弛度低風圧電線において、断面円弧状溝部3
の最大深さHと架空線直径Dとの比H/Dを0.005
5≦H/D≦0.082 とすることを特徴とするもの
である。(4) Further, in the low sag / low wind piezoelectric wire of (1), (2) or (3), the groove portion 3 having an arcuate cross section is used.
The ratio H / D between the maximum depth H and the overhead wire diameter D is 0.005
It is characterized in that 5 ≦ H / D ≦ 0.082.
【0014】(5)また、前記(1)、(2)、(3)
または(4)の低弛度低風圧電線において、最外層によ
り合わせる複数本の断面扇形セグメント素線1のうち少
なくとも1本好ましくは2本のセグメント素線11を、
その外表面7が他のセグメント素線1の外表面4よりも
高く突出する突出段差tを形成した外表面突出セグメン
ト素線11としたことを特徴とするものである。(5) Further, the above (1), (2) and (3)
Alternatively, in the low-sagility low-wind piezoelectric wire of (4), at least one, and preferably two segment wires 11 of a plurality of sector-shaped segment wires 1 having a cross-section that are fitted to each other by the outermost layer,
The outer surface 7 is an outer surface protruding segment wire 11 having a protruding step t protruding higher than the outer surface 4 of another segment wire 1.
【0015】(6)また、前記(5)の低弛度低風圧電
線において、外表面突出セグメント素線11の突出段差
tを 0.5〜5.0mm好ましくは0.5〜2.0m
mとしたことを特徴とするものである。(6) In the low sag / low wind piezoelectric wire of (5), the protrusion step t of the outer surface protruding segment wire 11 is 0.5 to 5.0 mm, preferably 0.5 to 2.0 m.
It is characterized in that it is m.
【0016】(7)また、前記(5)または(6)の低
弛度低風圧電線において、外表面突出セグメント素線1
1の突出段差tを形成した肩部12に 15°≦θ≦6
0°のデフレクター角θを設けたことを特徴とするもの
である。(図2および図3参照)(7) Further, in the low sag / low wind piezoelectric wire of (5) or (6), the outer surface protruding segment element wire 1 is used.
15 ° ≦ θ ≦ 6 on the shoulder 12 having the protruding step t of 1
It is characterized in that a deflector angle θ of 0 ° is provided. (See Figures 2 and 3)
【0017】(8)また、前記(1)乃至(6)の低弛
度低風圧電線において、最外層の断面扇形セグメント素
線隣接部2の表面側の溝部を断面半円状溝部3aに形成
し、この最外層の断面半円状溝部3aのうち少なくとも
1つの断面半円状溝部3aに断面円形の素線14を嵌合
してより合わせ、この断面円形素線14の最外側表面1
4bを断面扇形セグメント素線1の外表面4よりも高く
突出させて突出段差tを形成したことを特徴とするもの
である。(図4参照)(8) Further, in the low sag and low wind piezoelectric wire of the above (1) to (6), the groove portion on the front surface side of the sectoral segment wire adjacent portion 2 of the outermost layer is formed in the semicircular groove portion 3a in cross section. Then, the wire 14 having a circular cross-section is fitted and twisted into at least one semi-circular groove 3a of the cross-section of the outermost layer, and the outermost surface 1 of the cross-section circular wire 14 is fitted.
4b is projected higher than the outer surface 4 of the sectoral segment wire 1 in cross section to form a protruding step t. (See Fig. 4)
【0018】(9)また、前記(1)乃至(8)の低弛
度低風圧電線において、最外層の断面扇形セグメント素
線1のより合わせ本数Nが 6≦N≦36 であること
を特徴とするものである。(9) Further, in the low slack low wind piezoelectric wires of the above (1) to (8), the number N of twisted wires of the sectoral segment wire 1 of the outermost layer is 6≤N≤36. It is what
【0019】(10)なお、前記(5)の低弛度低風圧
電線において、最外層により合わせる外表面突出セグメ
ント素線11を少なくとも2本とし、外表面突出セグメ
ント素線11の突出段差t、および前記外表面突出セグ
メント素線11、11群の中心角θ2 (図2、図3)
を、0.5≦t≦2.0(mm)、20°≦θ2 ≦60
°とすると効果的である。(10) In the low sag / wind wind piezoelectric wire of the above (5), at least two outer surface protruding segment wires 11 to be joined by the outermost layer are provided, and the protruding step t of the outer surface protruding segment wire 11 is And the central angle θ2 of the outer surface projecting segment wires 11 and 11 (FIGS. 2 and 3)
0.5 ≤ t ≤ 2.0 (mm), 20 ° ≤ θ2 ≤ 60
A value of ° is effective.
【0020】前記(1)〜(9)のように構成したこと
による作用は以下のとおりである。より線中心の張力分
担芯材5に、線膨張係数が −6〜6×10-6/℃で、
かつ弾性係数が 100〜600GPa である低線膨
張係数、高弾性係数の線材を用い、かつ、最外層の断面
扇形セグメント素線1に、超耐熱アルミ合金または特別
耐熱アルミ合金からなる素線を用いることにより、高温
時の電線伸びによる弛度の増加が抑制される。また、最
外層により合わせる断面扇形セグメント素線1の隣接部
2の表面側に断面円弧状溝部3を設けることにより、台
風時などの高風速下でも電線が受ける風圧荷重の増加が
少なくなる。The operation resulting from the constitutions (1) to (9) is as follows. The tension-sharing core material 5 at the stranded center has a linear expansion coefficient of −6 to 6 × 10 −6 / ° C.,
In addition, a wire having a low linear expansion coefficient and a high elastic coefficient having an elastic modulus of 100 to 600 GPa is used, and a wire made of a super heat-resistant aluminum alloy or a special heat-resistant aluminum alloy is used as the outermost cross-sectional sector segment wire 1. As a result, an increase in slackness due to wire extension at high temperature is suppressed. Further, by providing the groove portion 3 having an arcuate cross section on the surface side of the adjoining portion 2 of the sector segment wire 1 having a cross section that is matched with the outermost layer, the increase in wind pressure load applied to the wire is reduced even under a high wind speed such as during a typhoon.
【0021】張力分担芯材5に、インバー線または炭化
けい素繊維,炭素繊維、アルミナ繊維等の無機繊維、ま
たはアラミド繊維等の有機繊維からなる低線膨張係数、
高弾性係数の細線条の表面に、アルミ、亜鉛、クローム
または銅等の群のいずれかの金属のめっきまたは被覆を
施した複合線材を用いることにより、夏季に最高潮流と
なった場合でもテンションメンバー(張力分担芯材)の
温度伸びは通常のACSRの鋼心の伸びの1/3〜1/
4となり大巾に弛度が抑制される。The tension-sharing core material 5 has a low linear expansion coefficient made of Invar wire or inorganic fiber such as silicon carbide fiber, carbon fiber and alumina fiber, or organic fiber such as aramid fiber,
By using a composite wire that has been plated or coated with a metal from the group consisting of aluminum, zinc, chrome, or copper on the surface of a thin wire with a high elastic modulus, tension members can be used even when the peak current is reached in summer. The temperature elongation of (tension-sharing core material) is 1/3 to 1/1 / the elongation of the normal ACSR steel core.
It becomes 4 and the sagging is greatly suppressed.
【0022】また、最外層の断面扇形セグメント素線1
のより合わせ層と中心の張力分担芯材5との中間のアル
ミ線撚り合わせ層6に超耐熱アルミ合金素線を用いれば
電流容量が2倍程度に増大する。なお、前記の張力分担
芯材に線膨張係数の小さいインバー線を用いた電線で
は、通常90℃前後の遷移点でアルミ部分の応力分担が
0になり、それ以上の温度ではインバー線のみの線膨張
係数αsと弾性係数Esを用いて張力計算を行う。In addition, the outermost cross-section fan-shaped segment wire 1
If a super heat-resistant aluminum alloy element wire is used for the aluminum wire twisting layer 6 in the middle between the twisting layer and the central tension-sharing core material 5, the current capacity is doubled. In the case of an electric wire using an Invar wire with a small linear expansion coefficient as the tension-sharing core material, the stress sharing of the aluminum part is usually 0 at the transition point around 90 ° C., and at temperatures above that, only the Invar wire is used. The tension is calculated using the expansion coefficient αs and the elastic coefficient Es.
【0023】最外層により合わせる断面扇形セグメント
素線1の隣接部2の表面側に断面円弧状溝部3を設けた
電線は、長手方向にスパイラル状の溝を形成する。この
断面円弧状の溝3を有する架空電線に風が当たると、表
面を流れる層流の境界層はこの溝段差のない断面円弧状
溝部3を通過して風下側に移り、剥離点Pが風下側の電
線後方に移行して風圧荷重が減少する。An electric wire in which a groove portion 3 having an arcuate cross section is provided on the surface side of the adjacent portion 2 of the sectoral segment wire 1 having a cross section formed by the outermost layer forms a spiral groove in the longitudinal direction. When wind hits the overhead wire having the groove 3 having an arcuate cross section, the boundary layer of the laminar flow flowing on the surface passes through the groove part 3 having an arcuate cross section and moves to the leeward side, and the separation point P is leeward. Wind power load is reduced by moving to the rear side of the wire.
【0024】断面円弧状溝部3が楕円状の円曲面の緩い
勾配の円弧状曲面である場合は、断面円弧状溝部3を通
過する境界層は乱されることなく通過して剥離点Pが風
下側に移行する。図5に示したように、架空電線に風が
当たってその気流Fの層流が電線表面を形成している最
外層の断面扇形セグメント素線1の外周面4に沿って流
れるときにその外周面4上に薄い層厚δの境界層Bを形
成して、流れ線矢印fのように風下側に流れ、その外周
面4上の各位置における境界層Bの流速分布はB1 →B
2 →B3 →B4 のように変化する。境界層が緩い勾配の
断面円弧状溝部3を通過するときはB2 のようになり、
この円弧状溝部3内で渦流Cが生じて円弧状溝部3を通
過する境界層Bの運動エネルギーの消耗の減少が生じ、
このエネルギー消耗の減少分だけ、運動エネルギー消耗
により生ずる境界層の電線表面からの剥離が遅れて剥離
点Pが風下側に流れ電線後方側に移行して剥離する。こ
の剥離点Pの下流は低圧領域になり逆流Rが生じこの領
域との境界は不連続面SDになる。このように断面円弧
状溝部3を通過する境界層は乱されることなく風下側に
移行して剥離点Pが風下側に移行することにより、電線
風上側における高い空気圧が電線後方側にも及ぶことに
なって電線にかかる風圧荷重が低減する。断面扇形セグ
メント素線1の隣接部2の表面側の隣接角部は断面円弧
状溝部3の底部に位置しているので、隣接部2の表面側
に段差があっても、その影響は断面円弧状溝部3内の流
れに限定され、該溝部3内の渦流Cにより電線表面の境
界層への影響が低減される。In the case where the circular-arc groove section 3 is an elliptic circular curved surface with a gentle slope, the boundary layer passing through the circular-section groove section 3 passes without being disturbed, and the separation point P is leeward. Move to the side. As shown in FIG. 5, when the overhead wire is exposed to wind and the laminar flow of the air flow F flows along the outer peripheral surface 4 of the sectoral segment wire 1 of the outermost layer forming the surface of the wire, its outer circumference A boundary layer B having a thin layer thickness δ is formed on the surface 4, flows to the leeward side as indicated by the flow line arrow f, and the flow velocity distribution of the boundary layer B at each position on the outer peripheral surface 4 is B1 → B
It changes like 2 → B3 → B4. When the boundary layer passes through the groove 3 with a gentle gradient in cross section, it becomes B2,
A vortex flow C is generated in the arcuate groove portion 3 to reduce consumption of kinetic energy of the boundary layer B passing through the arcuate groove portion 3,
Due to this reduction in energy consumption, the separation of the boundary layer from the surface of the electric wire caused by the consumption of kinetic energy is delayed, and the separation point P flows to the leeward side and moves to the rear side of the electric wire to separate. A low-pressure region is formed downstream of the separation point P, a backflow R is generated, and a boundary with this region becomes a discontinuous surface SD. In this way, the boundary layer passing through the groove 3 having the arcuate cross section moves to the leeward side without being disturbed and the separation point P moves to the leeward side, so that the high air pressure on the windward side of the wire also extends to the rear side of the wire. As a result, the wind pressure load on the wire is reduced. Since the adjacent corners on the surface side of the adjacent portion 2 of the sectoral segment wire 1 in cross section are located at the bottom of the arc-shaped groove portion 3 in cross section, even if there is a step on the surface side of the adjacent portion 2, the effect is the cross section circle. The influence on the boundary layer on the surface of the electric wire is reduced due to the vortex C in the groove 3, which is limited to the flow in the arc-shaped groove 3.
【0025】最外層の断面扇形セグメント素線1の隣接
部2の表面側に設ける断面円弧状溝部3の円弧面が半円
状の場合は、この断面半円状溝部を通過する境界層は積
極的に乱流化されて通過し剥離点が風下側に移行する。
断面円弧状溝部3の円弧を半円状に近づけると、図6に
示したように、電線表面を形成する最外層の断面扇形セ
グメント素線の外周面4上を流れる層流の薄い層厚δの
境界層Bは、その外周面4上の各位置における流速分布
がB1 →B2 →B3 →B4 のように変化し、断面半円状
溝部3a内では渦流Cが生じてB2 のようになり、この
断面半円状溝部3aの風下側肩部3bを越える時に肩部
3bが乱流化の基点になって層厚δ′の境界層に乱流化
が起こる。このため境界層内に強い混合乱流が生じて剥
離点Pが風下側に移行し、不連続面SDの下流は逆流R
が生じて低圧領域になり、電線風上側の高い空気圧が電
線風下側に導かれて電線の風圧荷重が低減する。また最
外層の断面扇形セグメント素線のより合わせにより断面
円弧状溝部3が電線外周面に電線長手方向のスパイラル
溝を形成しているので、このスパイラル溝に沿った気流
の流れが生じて後流側での流れの混合が活発化され、電
線後方の後流領域の減少が生じ、これによっても風圧荷
重の低下が生ずることになる。When the arcuate surface of the arcuate cross-section groove portion 3 provided on the surface side of the adjoining portion 2 of the sectoral segment wire 1 of the outermost layer is semicircular, the boundary layer passing through this semicircular groove portion in cross section is positive. Turbulent flow and passes, and the separation point shifts to the leeward side.
When the circular arc of the arcuate cross-section groove portion 3 is approximated to a semi-circular shape, as shown in FIG. 6, the thin layer thickness δ of the laminar flow that flows on the outer peripheral surface 4 of the sectoral segment wire of the outermost layer forming the electric wire surface. In the boundary layer B, the flow velocity distribution at each position on the outer peripheral surface 4 changes like B1 → B2 → B3 → B4, and a vortex C is generated in the groove 3a having a semi-circular cross section to become like B2. When the leeward side shoulder portion 3b of the semicircular groove portion 3a is crossed, the shoulder portion 3b serves as a base point of turbulence and turbulence occurs in the boundary layer of the layer thickness δ '. Therefore, strong mixing turbulence occurs in the boundary layer, the separation point P shifts to the leeward side, and the backflow R occurs downstream of the discontinuous surface SD.
Occurs in a low pressure region, and high air pressure on the windward side of the wire is guided to the leeward side of the wire, reducing the wind pressure load on the wire. Moreover, since the arcuate cross-section groove portion 3 forms a spiral groove in the electric wire longitudinal direction on the outer peripheral surface of the electric wire by twisting the cross-section fan-shaped segment wires of the outermost layer, the flow of the air flow along the spiral groove occurs and the wake flow occurs. The flow mixing on the side is activated, and the wake region behind the wire is reduced, which also causes a reduction in wind pressure load.
【0026】前記のように、最外層の断面扇形セグメン
ト素線1の隣接部2の表面側に断面円弧状溝部3を設け
ることにより、この断面円弧状溝部3内の渦流が境界層
の運動エネルギーの消耗を減らして、剥離点を後方に移
行させ、さらにまた、断面円弧状溝部3の円弧面を半円
状に近づけると、その溝の肩部が境界層の乱流化の基点
になり、境界層の乱流化が生じて剥離点を風下側に移行
させ、このような剥離点の後方移行によって抗力係数が
小さくなる。As described above, by providing the groove section 3 having an arcuate cross section on the surface side of the adjacent section 2 of the sectoral segment wire 1 having the outermost cross section, the vortex flow in the arcuate groove section 3 has a kinetic energy of the boundary layer. When the separation point is moved backward and the arc surface of the groove portion 3 having an arcuate cross section is approximated to a semi-circular shape, the shoulder portion of the groove serves as a base point of turbulence of the boundary layer, The boundary layer becomes turbulent and the separation point is moved to the leeward side, and the rearward movement of the separation point reduces the drag coefficient.
【0027】最外層により合わせる断面扇形セグメント
素線1の隣接部2の表面側に設ける断面円弧状溝部3の
溝巾Lと該扇形セグメント素線1の表面の非溝部の巾M
との比L/Mは、0.1未満では溝部3の巾が狭すぎて
該円弧状溝部3を設けた効果が充分に得られず、1.5
5を越えると架空線表面の粗面化が著しくなって、風圧
低減効果が少ない。前記L/Mを 0.10≦L/M≦
1.55 とすることにより充分な風圧低減効果が得ら
れる。The groove width L of the arcuate cross-section groove portion 3 provided on the surface side of the adjoining portion 2 of the fan-shaped segment wire element 1 to be fitted by the outermost layer and the width M of the non-groove portion on the surface of the fan-shaped segment wire element 1 are provided.
If the ratio L / M is less than 0.1, the width of the groove portion 3 is too narrow and the effect of providing the arc-shaped groove portion 3 cannot be sufficiently obtained.
When it exceeds 5, the surface of the overhead wire is significantly roughened and the effect of reducing the wind pressure is small. The L / M is 0.10 ≦ L / M ≦
By setting it to 1.55, a sufficient wind pressure reducing effect can be obtained.
【0028】前記の断面円弧状溝部3の溝の最大深さH
は、最大深さHと電線の直径Dとの比H/Dが、0.0
055以下では、境界層が断面円弧状溝部3を通過する
際の該溝部3内の渦流Cによる電線表面の境界層への影
響の低減効果が小さい。またH/Dが0.082を越え
ると電線表面の粗面化が著しくなり風圧低減効果が少な
い。したがってこのH/Dは0.0055≦D/H≦
0.082の範囲とするのが好ましい。The maximum depth H of the groove of the above-mentioned groove portion 3 having an arcuate cross section
Is the ratio H / D of the maximum depth H and the diameter D of the wire is 0.0
When it is 055 or less, the effect of reducing the influence of the eddy current C in the groove portion 3 on the boundary layer on the surface of the electric wire when the boundary layer passes through the groove portion 3 having an arcuate cross section is small. When H / D exceeds 0.082, the surface of the wire is significantly roughened and the effect of reducing wind pressure is small. Therefore, this H / D is 0.0055 ≦ D / H ≦
The range of 0.082 is preferable.
【0029】最外層により合わせる断面扇形セグメント
素線11の外表面7を他の断面扇形セグメント素線1の
外表面4よりも高く突出させることにより、風が電線に
吹きつけたときに生ずる風騒音が低減する。この外表面
突出セグメント素線11の外表面7が他のセグメント素
線1の外表面4よりも突出する突出段差の高さtは、
0.5mm未満では風騒音低減効果が少なく、4mm〜
5mm以上ではコロナ騒音が大きくなるので、0.5〜
5.0mm好ましくは 0.5mm≦t≦2.0mm
とするのがよい。Wind noise generated when wind blows on the electric wire by making the outer surface 7 of the fan-shaped segment wire 11 having a cross section fitted to the outermost layer higher than the outer surface 4 of the fan-shaped segment wire 1 having another cross section. Is reduced. The height t of the protruding step at which the outer surface 7 of this outer surface protruding segment wire 11 projects more than the outer surface 4 of another segment wire 1 is
If it is less than 0.5 mm, the effect of reducing wind noise is small and it is from 4 mm to
If it is 5 mm or more, corona noise will increase, so 0.5-
5.0 mm, preferably 0.5 mm ≦ t ≦ 2.0 mm
It is good to do.
【0030】前記の最外層の断面扇形セグメント素線1
の外表面4よりも高く突出する外表面突出セグメント素
線11の突出段差の高さtを、従来の低騒音電線の突出
高さよりも大巾に低くしたことにより、斜風を受けた場
合の揚力が著しく低くなり、低周波大振幅のいわゆるギ
ャロッピング振動が起こりにくくなる。The outermost cross-sectional sectoral segment wire 1
The height t of the protruding step of the outer surface protruding segment element wire 11 protruding higher than the outer surface 4 of the above is made much lower than the protruding height of the conventional low noise electric wire, so The lift force is remarkably lowered, and so-called galloping vibration of low frequency and large amplitude is less likely to occur.
【0031】断面扇形のセグメント素線の外表面を突出
させると、風がその突出した肩部に当たると渦流が生じ
やすくなって風圧が増加するが、外表面突出セグメント
素線群11、11の互いに反対側の両肩部12、12
に、この肩部の突出勾配を緩い勾配面にするデフレクタ
ー角を設けたことにより、肩部に風が当たっても渦流が
生じなくなる。このデフレクター角θは、15°以下で
も、60°以上でも効果が少ないので、15°≦θ≦6
0°の範囲が好適である。また、この外表面突出セグメ
ント素線11、11は、その両肩部12、12に設けた
デフレクター角とともに、隣接部8の表面側に設けた断
面円弧状溝部9により、高電界下における軽雨時のコロ
ナ騒音が低減する。When the outer surface of the segment wire having a fan-shaped cross section is projected, when the wind hits the protruding shoulder, a vortex is easily generated and the wind pressure increases, but the outer surface projecting segment wire groups 11 and 11 are separated from each other. Opposite shoulders 12, 12
In addition, since the deflector angle is formed so that the protruding slope of the shoulder portion is a gentle slope surface, vortex does not occur even if wind hits the shoulder portion. If the deflector angle θ is 15 ° or less or 60 ° or more, the effect is small. Therefore, 15 ° ≦ θ ≦ 6
A range of 0 ° is preferred. The outer surface projecting segment wires 11 and 11 together with the deflector angles provided on the shoulders 12 and 12 thereof, and the arcuate cross-sectional groove portion 9 provided on the surface side of the adjacent portion 8 cause light rain under a high electric field. The corona noise during use is reduced.
【0032】前記(8)の構成(図4に示した実施形
態)のように、最外層のセグメント素線隣接部2の表面
側に設ける断面円弧状溝部3を、その円弧状を半円状に
した断面半円状溝部3aに形成し、この最外層の断面半
円状溝部3aのうちの少なくとも1つの断面半円状溝部
3aに断面円形の素線14を嵌合してより合わせること
により、断面半円状溝部3aがこれを通過する境界層を
積極的に乱流化して剥離点を風下側に移行させ、電線に
かかる風圧荷重を低減する。またこの断面半円状溝部3
aに嵌合した断面円形素線14が風騒音を低減する。断
面半円状溝部3aの半円形状は断面円形素線14の嵌合
に適する。As in the structure (8) (embodiment shown in FIG. 4), the arcuate cross-section groove portion 3 provided on the surface side of the segment wire adjoining portion 2 of the outermost layer has a semicircular arc shape. The semi-circular groove part 3a having a circular cross-section, and by fitting the strand 14 having a circular cross-section into at least one of the semi-circular groove parts 3a of the outermost layer and fitting them together. The groove portion 3a having a semicircular cross section positively makes the boundary layer passing therethrough turbulent to move the separation point to the leeward side and reduce the wind pressure load applied to the electric wire. Also, this semi-circular groove portion 3
The circular cross-section wire 14 fitted in a reduces wind noise. The semicircular shape of the groove 3a having a semicircular cross section is suitable for fitting the strand 14 having a circular cross section.
【0033】最外層の断面扇形セグメント素線1のより
合わせ本数すなわち電線外周面に電線長手方向にスパイ
ラル状に形成される断面円弧状溝部3のスパイラル溝の
本数は、6本未満では電線外周面における該断面円弧状
のスパイラル溝の間隔が開きすぎて風圧低減効果が少な
くなり、36本を越えると電線表面の粗面化が著しくな
って風圧低減効果が充分に得られない。したがってこの
最外層の断面扇形セグメント素線1のより合わせ本数は
6本以上で36本以下が好適である。If the number of stranded wires of the sector-shaped segment wire 1 of the outermost layer, that is, the number of spiral grooves of the arcuate cross-section groove portion 3 formed spirally in the electric wire outer peripheral surface in the electric wire longitudinal direction is less than 6, the electric wire outer peripheral surface is formed. In this case, the space between the spiral grooves having an arcuate cross section is too widened to reduce the effect of reducing the wind pressure. When the number exceeds 36, the surface of the wire is significantly roughened and the effect of reducing the wind pressure cannot be sufficiently obtained. Therefore, the number of twisted wires of the sector-shaped segment wire 1 of the outermost layer is preferably 6 or more and 36 or less.
【0034】前記(5)の低弛度低風圧電線における外
表面突出セグメント素線11、11群の中心角θ2 は、
外層セグメント素線の数にもよるが、20°≦θ2 ≦6
0°の範囲がコロナ騒音防止上好ましい。The central angle θ 2 of the outer surface projecting segment wires 11 and 11 in the low sag / low wind piezoelectric wire (5) is
20 ° ≤ θ2 ≤ 6 depending on the number of outer segment wires
The range of 0 ° is preferable for preventing corona noise.
【0035】[0035]
【発明の実施の形態】以下本発明の実施の形態を図面に
より説明する。図1乃至図4は本発明の低弛度低風圧電
線の各実施の形態を電線断面で示す。図1に示した本発
明の第1の実施の形態の低弛度低風圧電線は、電線10
の中心の張力分担芯材5を構成する線材を、線膨張係数
が −6〜6×10-6/℃であり、かつ弾性係数が 1
00〜600GPaである低線膨張係数で高弾性係数の
インバー型合金を用いたインバー線で構成する。この張
力分担芯材5の周りに超耐熱アルミ合金より線6をより
合わせ、その外周の最外層に超耐熱アルミ合金からなる
断面扇形セグメント素線1を複数本より合わせて本発明
の低弛度低風圧電線10を構成する。このように構成し
た電線は低風圧化インバー心超耐熱アルミ合金より線で
あり、本発明では以下LP−ZTACIRと言う。前記
の超耐熱アルミ合金の代わりにいわゆる特別耐熱アルミ
合金を用いてもよくこれは低風圧化インバー心特別耐熱
アルミ合金より線であり以下LP−XTACIRと言
う。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 are sectional views of electric wires showing respective embodiments of the low slack low wind piezoelectric wire of the present invention. The low sag and low wind piezoelectric wire of the first embodiment of the present invention shown in FIG.
The linear material that constitutes the core of tension-sharing core 5 has a linear expansion coefficient of −6 to 6 × 10 −6 / ° C. and an elastic coefficient of 1
The Invar wire is made of an Invar type alloy having a low linear expansion coefficient of 00 to 600 GPa and a high elastic coefficient. A super-heat-resistant aluminum alloy wire 6 is twisted around the tension-sharing core material 5, and a plurality of fan-shaped segment wires 1 having a cross-section made of a super-heat-resistant aluminum alloy are wound on the outermost layer of the outer circumference of the twisted core material 5 to reduce the low sag of the present invention. The low wind piezoelectric wire 10 is configured. The electric wire configured in this manner is a low wind pressure Invar-core super heat-resistant aluminum alloy stranded wire, which is hereinafter referred to as LP-ZTACIR in the present invention. A so-called special heat-resistant aluminum alloy may be used in place of the above-mentioned super heat-resistant aluminum alloy, which is a low wind pressure Invar core special heat-resistant aluminum alloy twisted wire and is hereinafter referred to as LP-XTACIR.
【0036】本発明の低弛度低風圧電線において、前記
のLP−ZTACIRおよびLP−XTACIRの構成
材料は以下の表1のとおりである。Table 1 below shows the constituent materials of the LP-ZTACIR and LP-XTACIR in the low-sagility low-wind piezoelectric wire of the present invention.
【0037】[0037]
【表1】 [Table 1]
【0038】また、LP−ZTACI およびLP−X
TACIRの機械的特性および許容温度特性を従来のA
CSRと対比して下記の表2に示す。Further, LP-ZTACI and LP-X
The mechanical properties and allowable temperature characteristics of TACIR are
It is shown in Table 2 below in comparison with CSR.
【0039】[0039]
【表2】 [Table 2]
【0040】また、前記の線膨張係数が−6〜6×10
-6/℃で、かつ弾性係数が100600GPaの低線膨
張係数、高弾性係数の張力分担芯材5を構成する線材と
して、炭化けい素繊維、炭素繊維またはアルミナ繊維等
の無機繊維の表面に、アルミ、亜鉛、クロームまたは銅
等の群のいずれかの金属のめっき施しまたは被覆を施し
た耐熱性を有する複合線材を用い、そのプリフォームワ
イヤをより合わせて前記の張力分担芯材5を構成する。The coefficient of linear expansion is -6 to 6 × 10.
As a wire constituting the tension-sharing core material 5 having a low linear expansion coefficient and a high elastic modulus of -6 / ° C and an elastic modulus of 100600 GPa, the surface of an inorganic fiber such as silicon carbide fiber, carbon fiber or alumina fiber, A composite wire material having heat resistance, which is plated or coated with a metal selected from the group consisting of aluminum, zinc, chrome, and copper, is used, and the pre-formed wires are twisted together to form the tension-sharing core material 5. .
【0041】また、前記の低線膨張係数、高弾性係数の
張力分担芯材5を構成する線材として、アラミド繊維等
の耐熱性有機繊維に金属のめっきまたは被覆を施した複
合線材を用い、またはアラミド繊維等の耐熱性有機繊維
に樹脂を含浸させ固化したFRP線材、またはこのFR
P線材に耐候性を強化するアルミその他の金属を被覆し
た複合線材を用いて前記の張力分担芯材5を構成する。
この低線膨張係数とは−6〜6×10-6/℃であり、高
弾性係数とは100〜600GPa 程度の値を意味す
るものである。As the wire material constituting the tension-sharing core material 5 having a low linear expansion coefficient and a high elastic coefficient, a composite wire material in which a heat-resistant organic fiber such as aramid fiber is plated or coated with metal, or FRP wire made by impregnating a heat-resistant organic fiber such as aramid fiber with a resin and solidifying it, or this FR
The tension-sharing core material 5 is configured by using a composite wire material in which a P wire material is coated with aluminum or other metal for strengthening weather resistance.
The low linear expansion coefficient is −6 to 6 × 10 −6 / ° C., and the high elastic coefficient is a value of about 100 to 600 GPa.
【0042】前記の図1に示した本発明の第1の実施の
形態の低弛度低風圧電線10は、その最外層により合わ
せる超耐熱アルミ合金線または特別耐熱アルミ合金線か
らなる断面扇形の各セグメント素線の隣接部2の電線表
面側に、円形や楕円形等の円弧のように断面が凹円弧状
の溝部3を設ける。この断面円弧状溝部3は素線1のよ
り合わせにより電線10の外周面において電線長手方向
のスパイラル溝を形成する。この電線10に風が当たる
と、その表面を流れる層流の境界層は断面円弧状溝部3
を通過して風下側に移り、剥離点が風下側の電線後方側
に移行して風圧荷重が低減する。The low slack low wind piezoelectric wire 10 according to the first embodiment of the present invention shown in FIG. 1 has a fan-shaped cross section composed of a super heat resistant aluminum alloy wire or a special heat resistant aluminum alloy wire to be matched depending on the outermost layer thereof. On the electric wire surface side of the adjacent portion 2 of each segment wire, a groove portion 3 having a concave arc-shaped cross section such as a circular arc or an elliptical arc is provided. The groove portion 3 having an arcuate cross section forms a spiral groove in the electric wire longitudinal direction on the outer peripheral surface of the electric wire 10 by twisting the wires 1. When the electric wire 10 is exposed to wind, the boundary layer of the laminar flow flowing on the surface of the electric wire 10 has a circular groove section 3
To move to the leeward side, the separation point moves to the rearward side of the electric wire on the leeward side, and the wind pressure load is reduced.
【0043】前記の最外層の断面扇形セグメント素線1
のより合わせ本数すなわち断面円弧状溝部3により電線
外周面に長手方向にスパイラルに形成される溝の本数
は、6本以上で36本以下が望ましい。図1に示した実
施例は12本より合わせた例である。断面凹円弧状溝部
3の溝巾Lは、断面扇形セグメント素線1の表面の非溝
部の巾をMとすると、L/Mが 0.10≦L/M≦
1.55 の範囲であることが望ましい。また、断面円
弧状溝部3の深さは、最大深さをHとし電線の直径をD
とするとH/Dが 0.0055≦D/H≦0.082
の範囲であることが望ましい。The above-mentioned outermost layer cross-section fan-shaped segment wire 1
The number of twists, that is, the number of grooves spirally formed in the longitudinal direction on the outer peripheral surface of the electric wire by the groove portion 3 having an arcuate cross section is preferably 6 or more and 36 or less. The embodiment shown in FIG. 1 is an example in which twelve wires are combined. The groove width L of the concave arcuate groove 3 is L / M 0.10 ≦ L / M ≦, where M is the width of the non-groove on the surface of the fan-shaped segment wire 1.
It is desirable that the range is 1.55. Further, regarding the depth of the groove portion 3 having an arcuate cross section, the maximum depth is H and the diameter of the electric wire is D.
Then, H / D is 0.0055 ≦ D / H ≦ 0.082
Is desirably within the range.
【0044】図2は本発明の第2の実施の形態の低弛度
低風圧電線10を示す。この第2の実施の形態は、中心
の張力分担芯材であるインバー鋼より線5の周りに超耐
熱アルミ合金撚線6をより合わせ、その外周の最外層
に、超耐熱アルミ合金または特別耐熱アルミ合金からな
る断面扇形のセグメント素線1をより合わせることは前
記図1に示した第1の実施の形態と同様であるが、この
最外層の断面扇形セグメント素線のうちの少なくとも2
本の断面扇形のセグメント素線11、11は、その外表
面7を他のセグメント素線1の外表面4よりも高く突出
させる。この他のセグメント素線1の外表面4よりも高
く突出する段差を形成する突出高さtは0.5mm〜5
mm好ましくは0.5mm〜2mmの範囲が望ましい。FIG. 2 shows a low slack low wind piezoelectric wire 10 according to a second embodiment of the present invention. In the second embodiment, a super heat-resistant aluminum alloy stranded wire 6 is twisted around an invar steel stranded wire 5 which is a central core material for tension sharing, and a super heat-resistant aluminum alloy or a special heat-resistant aluminum alloy is used as the outermost layer of the outer circumference. Although the segment wires 1 each having a fan-shaped cross section made of an aluminum alloy are twisted together as in the first embodiment shown in FIG. 1, at least two of the segment wire segments having a fan-shaped cross section of the outermost layer are combined.
The segment wires 11, 11 having a fan-shaped cross section of the book have an outer surface 7 protruding higher than the outer surface 4 of another segment wire 1. The protruding height t that forms a step protruding higher than the outer surface 4 of the other segment wire 1 is 0.5 mm to 5 mm.
mm, preferably 0.5 mm to 2 mm.
【0045】前記の2本接して並ぶ外表面突出セグメン
ト素線群11、11の互いに反対側の肩部12、12に
は、それぞれ、この肩部に生じやすい渦流の発生を防ぐ
ために肩部の突出勾配を緩い勾配面にするデフレクター
角θを設ける。このデフレクター角θは 15°≦θ≦
60° の範囲であることが望ましい。図2は、2本並
ぶ外表面突出セグメント素線群11、11の左側のセグ
メント素線群11の左肩部12のみに角度θを図示した
が、右側のセグメント素線群11の右肩部12にも同じ
く角度θが形成されているものである。The outer surface projecting segment wire groups 11, 11 arranged in contact with each other at the two shoulder portions 12, 12 on the opposite sides to each other are formed in order to prevent the generation of eddy currents which tend to occur in these shoulder portions. A deflector angle θ is provided to make the protruding slope a gentle slope. This deflector angle θ is 15 ° ≦ θ ≦
It is desirable that the range is 60 °. In FIG. 2, the angle θ is shown only in the left shoulder 12 of the segment wire group 11 on the left side of the two outer surface projecting segment wire groups 11 arranged side by side, but the right shoulder 12 of the segment wire group 11 on the right side is illustrated. Similarly, the angle θ is also formed.
【0046】図2に示したθ2 は、前記の並接する本数
の外表面突出セグメント素線11、11群の両側面のな
す中心角であり、この外表面突出セグメント素線11、
11群の中心角θ2 は、外層セグメント素線の数にもよ
るが、20°≦θ2 ≦60°の範囲がコロナ騒音防止上
好ましい。Θ 2 shown in FIG. 2 is a central angle formed by both side surfaces of the outer surface projecting segment wires 11 and 11 group of the number of which are juxtaposed with each other.
The central angle θ 2 of the 11th group depends on the number of outer segment wire strands, but is preferably in the range of 20 ° ≦ θ 2 ≦ 60 ° from the viewpoint of preventing corona noise.
【0047】前記の図2に示した第2の実施形態におい
ても、断面扇形セグメント素線1の隣接部2の電線表面
側には前記第1実施形態と同様に断面円弧状溝部3を設
け、前記の外表面突出セグメント素線11、11相互の
隣接部8の表面側にも断面円弧状溝部9を設ける。この
各溝部3と溝部9の最大深さをHは前記図1に示した実
施形態と同様であり、各溝部3および溝部9の溝巾Lと
断面扇形セグメント素線1および11の表面の非溝部の
巾Mとの比L/Mも前記図1に示した実施形態と同様で
ある。Also in the second embodiment shown in FIG. 2, in the same manner as in the first embodiment, a groove portion 3 having an arcuate cross section is provided on the electric wire surface side of the adjacent portion 2 of the sectoral segment wire 1 in cross section. A groove portion 9 having an arcuate cross section is also provided on the surface side of the adjacent portion 8 between the outer surface protruding segment wires 11 and 11. The maximum depth H of each groove 3 and the groove 9 is the same as that of the embodiment shown in FIG. 1, and the groove width L of each groove 3 and the groove 9 and the non-uniformity of the surface of the segment wire segments 1 and 11 in cross section. The ratio L / M to the width M of the groove is similar to that of the embodiment shown in FIG.
【0048】図3は本発明の第3の実施の形態の低弛度
低風圧電線10を示し、図2と同一符号は同一部分を示
す。この第3の実施の形態は、前記の図2に示した第2
の実施形態の変形例であり、図2におけるインバー鋼撚
心線5をアルミ覆鋼線とし、その周りにより合わせる超
耐熱アルミ合金撚線6のかわりに超耐熱アルミ合金また
は特別耐熱アルミ合金からなる断面扇形セグメント素線
13をより合わせた形態である。この図3の第3実施形
態の電線も、最外層の断面扇形セグメント素線のうち少
なくとも2本の断面扇形のセグメント素線11、11の
外表面を他のセグメント素線1の外表面よりも突出高さ
tだけ高く突出した段差を形成し、この段差tは0.5
mm〜5mm好ましくは0.5mm〜2mmの範囲とす
ること、この外表面突出セグメント素線群11、11の
反対側の両肩部12、12にデフレクター角θを設ける
こと、外表面突出セグメント素線11、11相互の隣接
部8の表面側に断面円弧状溝部9を設けること、外表面
突出セグメント素線11、11群の両側面の中心角θ2
を20°≦θ2 ≦60°の範囲とすること、は前記図2
に示した第2実施形態と同様である。FIG. 3 shows a low sag / low wind piezoelectric wire 10 according to a third embodiment of the present invention, and the same reference numerals as those in FIG. 2 indicate the same parts. This third embodiment is similar to the second embodiment shown in FIG.
2 is a modified example of the embodiment of FIG. 2, in which the Invar steel twisted core wire 5 in FIG. 2 is an aluminum covered steel wire, and is made of a super heat resistant aluminum alloy or a special heat resistant aluminum alloy instead of the super heat resistant aluminum alloy twisted wire 6 to be fitted around it This is a form in which the fan-shaped cross-section segment wires 13 are twisted together. In the electric wire according to the third embodiment of FIG. 3, the outer surface of at least two sector-shaped segment wires 11, 11 of the sector-shaped segment wire of the outermost layer is higher than that of the other segment wires 1. A step is formed that protrudes as high as the protrusion height t, and this step t is 0.5
mm to 5 mm, preferably 0.5 mm to 2 mm, providing the deflector angle θ on both shoulders 12, 12 on the opposite side of the outer surface projecting segment element wire groups 11, 11. Providing a groove portion 9 having an arcuate cross section on the surface side of the adjacent portions 8 of the lines 11 and 11, the central angle θ2 of both side surfaces of the outer surface projecting segment wires 11 and 11
Is within the range of 20 ° ≦ θ2 ≦ 60 °.
It is similar to the second embodiment shown in FIG.
【0049】前記の第2、第3の実施の形態は、電線1
0の外周面から突出する外表面突出セグメント素線11
が風騒音を低減する。第2、第3の実施形態において、
最外層における、断面扇形セグメント素線1のより合わ
せ本数Nとし、外表面突出セグメント素線11の本数を
nとしたときn/Nを 0.025≦n/N≦0.5の
範囲とすることができる。In the second and third embodiments, the electric wire 1
Outer surface protruding segment wire 11 protruding from the outer peripheral surface of 0
Reduces wind noise. In the second and third embodiments,
In the outermost layer, the number N of twisted cross-section fan-shaped segment wires 1 is N, and the number n of outer-surface protruding segment wires 11 is n, and n / N is in the range of 0.025 ≦ n / N ≦ 0.5. be able to.
【0050】図4は本発明の第4の実施の形態の低弛度
低風圧電線10を示し、図1と同一符号は同一部分を示
す。この第4の実施の形態は、インバー鋼撚心線5を亜
鉛めっきし、その周りにより合わせる超耐熱アルミ合金
撚線6のかわりに超耐熱アルミ合金または特別耐熱アル
ミ合金からなる断面扇形セグメント素線13をより合わ
せることは前記第3の実施形態と同様であるが、断面扇
形扇形セグメント素線を13a、13bの2層にした形
態である。この第4の実施形態は、最外層の断面扇形セ
グメント素線1の隣接部2の電線表面側に設ける断面円
弧状溝部3を、断面半円状の溝部3aに形成し、この最
外層の断面半円状溝部3aのうち少なくとも1つの断面
半円状溝部3aに断面円形の素線14を嵌合する。tは
この断面半円状溝部3aに嵌合した円形素線14の最外
側表面14bが断面扇形セグメント素線1の外表面4よ
りも高く突出する突出高さであり、前記第2の実施形態
と同様にこの突出高さtは0.5mm〜5mm好ましく
は0.5mm〜2mmの範囲であることが望ましい。L
は断面半円状溝部3aの溝巾、Mは断面扇形セグメント
素線1の表面の非溝部の巾であり、その比L/Mは前記
第1の実施形態と同様である。この第4の実施形態は、
境界層が断面半円状溝部3aを通過し風下側肩部を越え
る時に肩部が乱流化の基点になって積極的に乱流化され
剥離点が風下側に移行して電線にかかる風圧荷重が低減
する。また断面扇形セグメント素線1の外表面よりも高
く突出する断面円形素線14は風騒音を低減する。FIG. 4 shows a low sag / low wind piezoelectric wire 10 according to a fourth embodiment of the present invention, and the same reference numerals as those in FIG. 1 indicate the same parts. In the fourth embodiment, instead of the super heat-resistant aluminum alloy twisted wire 6 in which the Invar steel twisted core wire 5 is galvanized, the cross-section fan-shaped segment wire made of a super heat-resistant aluminum alloy or a special heat-resistant aluminum alloy is used. Tying 13 together is the same as in the third embodiment, but is a form in which the fan-shaped segment wire segments in cross section are formed into two layers 13a and 13b. In the fourth embodiment, an arcuate groove 3 having a cross section provided on the electric wire surface side of the adjacent portion 2 of the sectoral segment wire 1 having the outermost layer is formed in a groove 3a having a semicircular cross section, and the cross section of the outermost layer is formed. The wire 14 having a circular cross section is fitted into at least one of the semicircular groove sections 3a of the semicircular groove sections 3a. t is a projection height at which the outermost surface 14b of the circular wire 14 fitted in the semicircular groove portion 3a of the cross section projects higher than the outer surface 4 of the sector wire element 1 in cross section, and the second embodiment is used. Similarly to the above, the protrusion height t is preferably in the range of 0.5 mm to 5 mm, and more preferably 0.5 mm to 2 mm. L
Is the groove width of the semi-circular groove portion 3a in cross section, M is the width of the non-groove portion on the surface of the sector wire segment 1 in cross section, and the ratio L / M thereof is the same as in the first embodiment. In this fourth embodiment,
When the boundary layer passes through the semicircular groove 3a in cross section and crosses the leeward side shoulder, the shoulder becomes a turbulence base point and is actively turbulent, and the separation point moves to the leeward side and wind pressure is applied to the wire. The load is reduced. Further, the circular wire 14 having a circular cross section protruding higher than the outer surface of the segment wire 1 having a fan-shaped cross section reduces wind noise.
【0051】前記の図1に示した本発明の第1の実施の
形態の低弛度低風圧電線について風洞実験を行った。図
1に示した型の電線においてその直径Dが36.6mm
φのLP−XTACIRを作成し、最外層の断面扇形セ
グメント素線1の本数N、断面円弧状溝部3の溝巾L、
前記溝部3の最大深さHを種々に変化させ、レイノルズ
数が 1.2×104 〜9.9×104 の範囲内で抗
力係数を測定した。比較のため鋼心の周りに断面円形ア
ルミ線をより合わせた従来の通常の鋼心アルミより線
(ACSR)についても風洞実験を行った。なお、レイ
ノルズ数Re はRe =ρUD/μ(但しρは空気密度、
Uは空気の流速、Dは電線の直径、μは粘性係数)の式
から求めた。抗力係数CdはCd=2d/(ρU2 A)
(但しdは電線の受ける力、Aは電線の風上側投影面
積)の式から求めた。この実験結果は図7〜図14に示
したとおりである。A wind tunnel experiment was conducted on the low sag and low wind piezoelectric wire of the first embodiment of the present invention shown in FIG. The electric wire of the type shown in FIG. 1 has a diameter D of 36.6 mm.
A φ-LP-XTACIR is created, and the number N of the sector-shaped segment wire 1 in the outermost layer, the groove width L of the arc-shaped groove portion 3 in the cross section,
The maximum depth H of the groove 3 was variously changed, and the drag coefficient was measured within a Reynolds number of 1.2 × 10 4 to 9.9 × 10 4 . For comparison, a wind tunnel experiment was also performed on a conventional ordinary steel-core aluminum stranded wire (ACSR) in which a circular-section aluminum wire was twisted around the steel core. The Reynolds number Re is Re = ρUD / μ (where ρ is the air density,
U is the velocity of air, D is the diameter of the wire, and μ is the viscosity coefficient. The drag coefficient Cd is Cd = 2d / (ρU 2 A)
(Where d is the force received by the wire and A is the windward projected area of the wire). The results of this experiment are as shown in FIGS.
【0052】図7は、断面円弧状溝部3の深さHを1.
0mm(H/D=0.027)、該円弧状溝部3の溝径
R(円弧状溝部3の円弧の半径)を1.0mmに設定
し、該円弧状溝部3の溝本数すなわち最外層の断面扇形
セグメント素線1のより合わせ本数Nを変化させたとき
の、抗力係数Cdとレイノルズ数Re との関係を示す。
この図7により、電線にかかる風圧の影響が問題となる
レイノルズ数Re が5×104 (約20m/s)以上の
条件において、本発明の電線はいずれも従来品よりも抗
力係数Cdが小さい領域が存在することがわかる。特に
溝本数Nが6本以上36本以下において抗力係数Cdの
低下が著しい。In FIG. 7, the depth H of the groove portion 3 having an arcuate cross section is 1.
0 mm (H / D = 0.027), the groove diameter R of the arcuate groove 3 (the radius of the arc of the arcuate groove 3) is set to 1.0 mm, and the number of grooves of the arcuate groove 3, that is, the outermost layer The relationship between the drag coefficient Cd and the Reynolds number Re when the number N of twisted cross-section fan-shaped segment wires 1 is changed is shown.
According to this FIG. 7, under the condition of Reynolds number Re of 5 × 10 4 (about 20 m / s) or more, where the influence of wind pressure applied to the electric wire becomes a problem, all the electric wires of the present invention have smaller drag coefficient Cd than the conventional product. It can be seen that the area exists. In particular, when the number of grooves N is 6 or more and 36 or less, the drag coefficient Cd is significantly reduced.
【0053】図8は、前記断面円弧状溝部3の溝本数
(最外層の断面扇形セグメント素線の本数)Nを10
本、該溝部3の深さHを0.3mm(H/D=0.00
82)に設定し、断面凹円弧状溝部3の溝巾Lと断面扇
形セグメント素線1の表面の非溝部の巾Mとの比L/M
を変化させたときの、抗力係数Cdとレイノルズ数Re
との関係を示す。この図8から、レイノルズ数Re が5
×104 以上の条件において、本発明の架空電線は
0.10≦L/M≦1.55 の範囲において抗力係数
Cdが小さい領域があることがわかる。In FIG. 8, the number N of grooves in the arcuate section groove 3 (the number of fan-shaped segment wire segments in the outermost layer) N is 10
Book, the depth H of the groove 3 is 0.3 mm (H / D = 0.00
82), and the ratio L / M of the groove width L of the concave arcuate groove section 3 to the width M of the non-groove section on the surface of the fan-shaped segment wire 1 in section.
Drag coefficient Cd and Reynolds number Re when changing
The relationship is shown below. From this FIG. 8, the Reynolds number Re is 5
Under the condition of × 10 4 or more, the overhead wire of the present invention
It can be seen that there is a region where the drag coefficient Cd is small in the range of 0.10 ≦ L / M ≦ 1.55.
【0054】図9は、前記の断面円弧状溝部3の溝本数
Nを24本とし、該溝部3の深さHを0.2mmに設定
し、前記のL/Mを変化させたときの、抗力係数Cdと
レイノルズ数Re との関係を示す。この図9から、レイ
ノルズ数Re が5×104 以上の条件において、本発明
の架空電線はいずれも従来品よりも抗力係数Cdが小さ
い領域が存在することがわかる。特にL/Mが1.5以
下、0.6以上のときに抗力係数Cdが全域にわたり小
さい。FIG. 9 shows a case where the number N of grooves of the arcuate groove 3 in cross section is 24, the depth H of the groove 3 is set to 0.2 mm, and the above L / M is changed. The relationship between the drag coefficient Cd and the Reynolds number Re is shown. From FIG. 9, it is understood that under the condition that the Reynolds number Re is 5 × 10 4 or more, the overhead wire of the present invention has a region where the drag coefficient Cd is smaller than that of the conventional product. In particular, when L / M is 1.5 or less and 0.6 or more, the drag coefficient Cd is small over the entire region.
【0055】図10は、前記のL/Mを0.75、溝本
数Nを12本に設定し、前記溝部3の深さHを0.15
〜3.0mm(H/D=0.0041〜0.082)に
変化させたときの、抗力係数Cdとレイノルズ数Re と
の関係を示す。この図10から、レイノルズ数Re が5
×104 以上の条件において、本発明の架空電線はいず
れも従来品よりも抗力係数Cdが小さい領域が存在する
ことがわかる。In FIG. 10, the above L / M is set to 0.75, the number N of grooves is set to 12, and the depth H of the groove 3 is set to 0.15.
The relationship between the drag coefficient Cd and the Reynolds number Re when changed to ˜3.0 mm (H / D = 0.0041 to 0.082) is shown. From this FIG. 10, the Reynolds number Re is 5
Under the condition of × 10 4 or more, it is understood that the overhead wire of the present invention has a region where the drag coefficient Cd is smaller than that of the conventional product.
【0056】図11は、前記のL/Mを1.2、溝本数
Nを24本に設定し、前記溝部3の深さHを変化させた
ときの、抗力係数Cdとレイノルズ数Re との関係を示
す。この図11から、レイノルズ数Re が5×104 以
上の条件において、本発明の架空電線は、断面円弧状溝
部3の深さHが0.5〜5mmの範囲において抗力係数
Cdが小さい。FIG. 11 shows the drag coefficient Cd and the Reynolds number Re when the L / M is set to 1.2, the number of grooves N is set to 24, and the depth H of the groove 3 is changed. Show the relationship. From FIG. 11, under the condition that the Reynolds number Re is 5 × 10 4 or more, the overhead wire of the present invention has a small drag coefficient Cd in the range where the depth H of the groove portion 3 having an arcuate cross section is 0.5 to 5 mm.
【0057】図12は、前記L/Mを1.2、前記溝部
3の深さHを2.0mmに設定し、前記溝本数Nを変化
させたときの、抗力係数Cdとレイノルズ数Re との関
係を示す。この図12から、レイノルズ数Re が5×1
04 以上の条件において、本発明の架空電線はいずれも
従来品よりも抗力係数Cdが小さいことがわかる。FIG. 12 shows that when the L / M is set to 1.2, the depth H of the groove 3 is set to 2.0 mm, and the number N of the grooves is changed, the drag coefficient Cd and the Reynolds number Re are shown. Shows the relationship. From this FIG. 12, the Reynolds number Re is 5 × 1.
It is understood that under the conditions of 0 4 or more, the overhead wire of the present invention has a smaller drag coefficient Cd than the conventional product.
【0058】図13は、風が電線に吹き付けると生ずる
風騒音について本発明の電線と従来品とを比較実験し
た、風速20m/sにおける騒音レベルと周波数特性を
示す。この実験に用いた本発明の電線は、図3に示した
型のLP−XTACIR610mm2 相当の電線であ
り、外径Dが34.2mm、図3における外表面突出セ
グメント素線11の他のセグメント素線1の外表面より
も突出する突出高さtが1mm、デフレクター角θが4
5°、外表面突出セグメント素線11、11群の中心角
θ2 が40°、溝本数(最外層セグメント素線本数)N
が18本、溝部3の深さHが2.0mm、より合わせセ
グメント素線のよりピッチ長360mmの電線を使用
し、比較例として従来のACSR610mm2 および図
15に示した型の電線を使用して比較実験をした。この
実験結果により、本発明の架空電線は騒音レベルが10
0〜130HZ 付近で15〜22db[A]も大幅に低
下していることが確認された。なお、外表面突出セグメ
ント素線11、11群の中心角θ2 は、外層セグメント
素線の数にもよるが、20°〜60°の範囲がコロナ騒
音防止上好ましい。FIG. 13 shows a noise level and a frequency characteristic at a wind speed of 20 m / s, which is obtained by comparing and comparing the wind noise generated when wind blows on the electric wire with the electric wire of the present invention and a conventional product. The electric wire of the present invention used in this experiment is an electric wire equivalent to LP-XTACIR 610 mm 2 of the type shown in FIG. 3, and has an outer diameter D of 34.2 mm and other segment of the outer surface protruding segment wire 11 in FIG. The protrusion height t protruding from the outer surface of the wire 1 is 1 mm, and the deflector angle θ is 4
5 °, outer surface protruding segment wires 11, the central angle θ2 of the 11 group is 40 °, the number of grooves (the number of outermost segment wire segments) N
18 wires, the depth H of the groove 3 is 2.0 mm, and the twisted segment wires have a pitch length of 360 mm. As a comparative example, the conventional ACSR 610 mm 2 and the wire of the type shown in FIG. 15 are used. I did a comparative experiment. From this experimental result, the overhead wire of the present invention has a noise level of 10
15~22db [A] may also have decreased significantly was confirmed in the vicinity 0~130H Z. The central angle .theta.2 of the outer surface projecting segment wires 11 and 11 group is preferably in the range of 20.degree.
【0059】図14は、図1のように段差のない電線と
図2〜図4のように段差tを有する電線との風騒音特性
(図13)において、tの段差を0〜0.7mm変えた
時の卓越周波数の風音レベルを実測した結果である。図
14において、t=0mmの風音レベルは図1の段差の
ない電線の場合の風音レベルである。この図1の電線に
対して、段差を次第に高くして行くとt>1.5mmの
範囲では段差の風騒音防止効果が飽和することがわかっ
た。人が騒音と感じる風速として20m/sもの強風の
場合は周囲の騒音と区別できず、これより低風速領域が
問題であり段差のない図1の電線の場合の風騒音レベル
よりも10dB下がればほぼ問題ないと考えられるの
で、図14の実測結果より、段差tの有効範囲としては
0.5≦t≦2.0(mm)であれば十分である。FIG. 14 shows wind noise characteristics (FIG. 13) of an electric wire having no step as shown in FIG. 1 and an electric wire having step t as shown in FIGS. It is the result of actually measuring the wind noise level of the dominant frequency when changing it. In FIG. 14, the wind noise level at t = 0 mm is the wind noise level in the case of the stepless electric wire in FIG. It was found that, with respect to the electric wire of FIG. 1, when the step was gradually increased, the wind noise prevention effect of the step was saturated in the range of t> 1.5 mm. When a wind speed of 20 m / s, which is perceived as noise by a person, is indistinguishable from the surrounding noise, and a lower wind speed region is a problem, and if the wind noise level is 10 dB lower than that of the electric wire of FIG. Since it is considered that there is almost no problem, it is sufficient from the actual measurement result of FIG. 14 that the effective range of the step difference t is 0.5 ≦ t ≦ 2.0 (mm).
【0060】図15に示したa乃至fの各電線断面の輪
郭形状および図16に示したg乃至jの各電線断面の形
状は、スーパーコンピューターにより流体解析を行う際
に使用した電線供試体の断面モデルを示したものであ
る。各モデルは電線表面に形成された円弧状の溝の数と
溝の深さおよび巾で特徴ずけられ、これらの違いにより
電線断面後方にできる渦の大きさおよび数、渦の剥離点
が異なることがシミュレートされた。The outline shapes of the electric wire cross sections of a to f shown in FIG. 15 and the electric wire cross sections of g to j shown in FIG. 16 are the same as those of the electric wire specimen used when performing the fluid analysis by the supercomputer. It is a cross-sectional model. Each model is characterized by the number of arcuate grooves formed on the surface of the wire, the depth and width of the groove, and the size and number of vortices formed behind the wire cross section and the separation point of vortices differ due to these differences. Was simulated.
【0061】前記の本発明の低弛度低風圧電線を500
kv級ACSR810mm2 の4導体2回線の送電線に
前記本発明の低弛度低風圧電線を適用すると、設計風圧
荷重は、従来は100kgf/mm2 であるのに対し、
本発明は60kgf/mm2に低減することができ、ま
た、電流容量も2倍に増大でき、さらに、弛度の増加を
抑制できるので鉄塔重量で7%、工事費全体では約5%
の低減を図ることがで可能である。The above-mentioned low sag / low wind piezoelectric wire of the present invention is 500
Applying low sag low wind wires of the present invention to four-conductor 2 lines of the transmission line of the kv-class ACSR810mm 2, whereas the design wind load, conventionally is 100 kgf / mm 2,
The present invention can be reduced to 60 kgf / mm 2 , the current capacity can be doubled, and the increase in sag can be suppressed, so that the weight of the steel tower is 7%, and the total construction cost is about 5%.
Can be reduced.
【0062】[0062]
【発明の効果】前記のように本発明の低弛度低風圧電線
は、最外層の断面扇形セグメント素線の隣接部に断面円
弧状溝部を設けたので、電線外周面のセグメント素線隣
接部は従来のようなV字形溝の段差が形成されず凹円弧
状面になり、風が表面を流れる境界層の剥離点が電線風
下側へ移行して、風圧荷重を低減させることができる。
しかも低コストで容易に低風圧の電線を製作することが
できる。As described above, in the low sag and low wind piezoelectric wire of the present invention, since the arcuate groove section is provided in the adjoining portion of the sectoral segment wire of the outermost layer, the segment wire adjoining portion of the outer peripheral surface of the wire. The conventional V-shaped groove does not have a stepped portion, but has a concave arcuate surface, and the separation point of the boundary layer where the wind flows on the surface moves to the leeward side of the wire, and the wind pressure load can be reduced.
Moreover, a low wind pressure electric wire can be easily manufactured at low cost.
【0063】また、断面円弧状溝部の溝巾Lと断面扇形
セグメント素線の表面の非溝部の巾Mとの比L/Mを
0.10≦L/M≦1.55 の範囲とし、該溝部3の
最大深さHと電線直径Dとの比H/Dを 0.0055
≦D/H≦0.082 の範囲とし、最外層の断面扇形
のセグメント素線のより合わせ本数を6本以上36本以
下としたことにより、有効な風圧荷重低減効果を得るこ
とができる。Further, the ratio L / M of the groove width L of the arcuate section groove section and the width M of the non-groove section on the surface of the sector wire segment in section is given by:
The ratio H / D between the maximum depth H of the groove portion 3 and the wire diameter D is set to 0.0055 in the range of 0.10 ≦ L / M ≦ 1.55.
An effective wind pressure load reducing effect can be obtained by setting the range of ≦ D / H ≦ 0.082 and setting the number of stranded wires of the segment wire having a fan-shaped cross section of the outermost layer to 6 or more and 36 or less.
【0064】また、本発明の低弛度低風圧電線は、最外
層の断面扇形セグメント素線のより合わせの中に外表面
が突出する外表面突出セグメント素線を設けたので、風
圧荷重が低減するだけでなく、風騒音を低減し、かつ軽
雨時のコロナ騒音を低減することができる。さらに外表
面突出セグメント素線の突出高さを0.5〜5mm好ま
しくは0.5〜2mmの範囲とし、外表面突出セグメン
ト素線の両肩部に15°≦θ≦60°のデフレクター角
θを設けたことにより、風圧荷重低減効果を増すことが
できる。Further, since the low-sagility low-wind piezoelectric wire of the present invention is provided with the outer surface projecting segment wire having the outer surface projecting in the twisting of the cross-section fan-shaped segment wires of the outermost layer, the wind pressure load is reduced. It is possible to reduce wind noise and corona noise during light rain. Further, the protrusion height of the outer surface projecting segment wire is set in the range of 0.5 to 5 mm, preferably 0.5 to 2 mm, and the deflector angle θ of 15 ° ≦ θ ≦ 60 ° on both shoulders of the outer surface projecting segment wire. By providing the, it is possible to increase the wind pressure load reducing effect.
【0065】また、最外層の断面扇形セグメント素線の
外表面上に突出する外表面突出セグメント素線の突出段
差の高さを、従来の低騒音電線の突出高さよりも大巾に
低くしたので、斜風を受けた場合の揚力が著しく低くな
り、低周波大振幅のいわゆるギャロッピング振動が起こ
りにくくなる。Further, since the height of the protruding step of the outer surface protruding segment wire protruding above the outer surface of the outermost layer fan-shaped segment wire is made much lower than that of the conventional low noise electric wire. The lift force when receiving an oblique wind is significantly reduced, and so-called galloping vibration of low frequency and large amplitude is less likely to occur.
【0066】また、本発明の低弛度低風圧電線は、鋼心
にインバー線を用い、最外層に超耐熱アルミ合金または
特別耐熱アルミ合金のセグメント素線を用いたので、高
温時の弛度を大巾に抑制できる。したがって架空電線が
横方向からの強風を受けた場合の横揺れ量も、低風圧構
造と相まって大巾に抑制できる。この結果、鉄塔の塔
高、アーム巾、鉄塔基礎等を著しく軽減でき、送電線の
建設費を大巾に節約することができ。これは従来のイン
バー電線や低風圧電線には見られない効果であり今後建
設される大束径多導体送電線や1000KV UHV送
電線等の鉄塔の一層のコンパクト化を容易に実現するこ
とができるものである。In addition, since the low-relaxation low-wind piezoelectric wire of the present invention uses the Invar wire for the steel core and the segment wire of the super heat-resistant aluminum alloy or the special heat-resistant aluminum alloy for the outermost layer, Can be greatly suppressed. Therefore, the amount of rolling when the overhead wire receives a strong wind from the lateral direction can be greatly suppressed in combination with the low wind pressure structure. As a result, the tower height, arm width, steel tower foundation, etc. of the tower can be significantly reduced, and the construction cost of the transmission line can be greatly saved. This is an effect not seen in conventional Invar electric wires and low-wind piezoelectric wires, and it is possible to easily realize further compactification of steel towers such as large bundle diameter multi-conductor transmission lines and 1000KV UHV transmission lines to be constructed in the future. Is.
【図1】本発明の第1の実施の形態を示す図FIG. 1 is a diagram showing a first embodiment of the present invention.
【図2】本発明の第2の実施の形態を示す図FIG. 2 is a diagram showing a second embodiment of the present invention.
【図3】本発明の第3の実施の形態を示す図FIG. 3 is a diagram showing a third embodiment of the present invention.
【図4】本発明の第4の実施の形態を示す図FIG. 4 is a diagram showing a fourth embodiment of the present invention.
【図5】風気流の断面円弧状溝部における境界層の状況
の説明図FIG. 5 is an explanatory view of a state of a boundary layer in a groove section having an arc cross section of a wind flow.
【図6】風気流の断面半円状溝部における境界層の状況
の説明図FIG. 6 is an explanatory view of a state of a boundary layer in a groove having a semicircular cross section of a wind flow.
【図7】断面円弧状溝部の深さを設定し溝本数を変化さ
せたときの抗力係数とレイノルズ数の関係を示す図FIG. 7 is a diagram showing the relationship between the drag coefficient and the Reynolds number when the depth of a groove having an arcuate cross section is set and the number of grooves is changed.
【図8】溝本数と溝部の深さを設定し溝巾Lと非溝部M
の巾との比L/Mを変化させたときの抗力係数とレイノ
ルズ数の関係を示す図FIG. 8 shows the groove width L and the non-groove portion M by setting the number of grooves and the depth of the groove portion.
Showing the relationship between the drag coefficient and Reynolds number when the ratio L / M with the width of
【図9】溝本数と溝部の深さの設定値を変えL/Mの変
化を変えたときの抗力係数とレイノルズ数の関係を示す
図FIG. 9 is a diagram showing the relationship between the drag coefficient and the Reynolds number when the set values of the number of grooves and the depth of the groove are changed and the change of L / M is changed.
【図10】L/Mと溝本数を設定し溝部の深さを変化さ
せたときの抗力係数とレイノルズ数の関係を示す図FIG. 10 is a diagram showing the relationship between the drag coefficient and the Reynolds number when L / M and the number of grooves are set and the depth of the groove is changed.
【図11】L/Mと溝本数を設定し溝部の深さの変化を
変えたときの抗力係数とレイノルズ数の関係を示す図FIG. 11 is a diagram showing the relationship between the drag coefficient and the Reynolds number when L / M and the number of grooves are set and the change in the depth of the groove is changed.
【図12】L/Mと溝部の深さを設定し溝本数を変化さ
せたときの抗力係数とレイノルズ数の関係を示す図FIG. 12 is a diagram showing the relationship between the drag coefficient and the Reynolds number when L / M and the depth of the groove are set and the number of grooves is changed.
【図13】本発明の架空電線と従来品の風騒音比較実験
結果の騒音レベルと周波数特性を示す図FIG. 13 is a diagram showing the noise level and frequency characteristics of the wind noise comparison test results of the overhead wire of the present invention and the conventional product.
【図14】段差tと卓越周波数風音レベルの関係を示す
図FIG. 14 is a diagram showing a relationship between a step t and a predominant frequency wind sound level.
【図15】風洞実験を行った電線供試体のその他の形状
を示す断面図FIG. 15 is a cross-sectional view showing another shape of the electric wire test piece subjected to the wind tunnel test.
【図16】風洞実験を行った電線供試体のさらにその他
の形状を示す断面図FIG. 16 is a cross-sectional view showing still another shape of the electric wire test piece subjected to the wind tunnel experiment.
【図17】従来の架空電線の1例を示す図FIG. 17 is a diagram showing an example of a conventional overhead wire.
1:断面扇形セグメント素線 2、8:隣接部 3、9:断面円弧状溝部 3a:断面半円状溝部 5:張力分担芯材 4、7:外表面 10:電線 11:外表面突出セグメント素線 12:肩部 14:断面円形素線 D:電線直径 H:溝部3の最大深さ L:溝部3の溝巾 M:非溝部の巾 N:溝本数(=断面扇形のセグメント素線の本数) θ:デフレクター角 θ2:突出セグメント素線の中心角 1: Cross-section fan-shaped segment wire 2, 8: Adjacent part 3, 9: Cross-section arc-shaped groove part 3a: Cross-section semicircular groove part 5: Tension sharing core material 4, 7: Outer surface 10: Electric wire 11: Outer surface protruding segment element Line 12: Shoulder 14: Circular wire having a circular section D: Diameter of electric wire H: Maximum depth of groove 3 L: Width of groove 3 M: Width of non-groove N: Number of grooves (= number of segment wires having a fan-shaped cross section) ) Θ: Deflector angle θ2: Center angle of protruding segment wire
フロントページの続き (72)発明者 宗像 武男 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 菊池 直志 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内Front page continuation (72) Inventor Takeo Munakata 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Naoshi Kikuchi 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Industry Co., Ltd.
Claims (9)
6〜6×10-6/℃で、かつ弾性係数が 100〜60
0GPa である低線膨張係数、高弾性係数の線材を用
い、最外層に超耐熱アルミ合金または特別耐熱アルミ合
金からなる断面扇形セグメント素線を複数本より合わ
せ、前記各より合わせセグメント素線の隣接部の表面側
に断面円弧状溝部を設けたことを特徴とする低弛度低風
圧電線。1. The tension-sharing core material has a linear expansion coefficient of −
6 to 6 × 10 −6 / ° C. and an elastic modulus of 100 to 60
Using a wire with a low coefficient of linear expansion and a high elastic coefficient of 0 GPa, combine a plurality of sector-shaped segment wires made of super heat-resistant aluminum alloy or special heat-resistant aluminum alloy in the outermost layer, and adjoin each twisted segment wire A low slack low wind piezoelectric wire, characterized in that a groove portion having an arcuate cross section is provided on the surface side of the portion.
けい素繊維,炭素繊維、アルミナ繊維等の無機繊維、ま
たはアラミド繊維等の有機繊維からなる細線条の表面
に、アルミ、亜鉛、クロームまたは銅等の群のいずれか
の金属のめっきまたは被覆を施した複合線材を用いたこ
とを特徴とする請求項1の低弛度低風圧電線。2. The tension-sharing core material is made of Invar wire or inorganic fiber such as silicon carbide fiber, carbon fiber, alumina fiber, or organic filaments such as aramid fiber. 2. The low-sagility low-wind piezoelectric wire according to claim 1, wherein a composite wire material plated or coated with any metal of the group of copper or the like is used.
グメント素線表面の非溝部の巾Mとの比L/Mが 0.
10≦L/M≦1.55 であることを特徴とする請求
項1または2の低弛度低風圧電線。3. The ratio L / M of the groove width L of the arcuate section groove section and the width M of the non-groove section on the surface of the segment wire having a fan-shaped section is 0.
The low sag and low wind piezoelectric wire according to claim 1 or 2, wherein 10 ≦ L / M ≦ 1.55.
径Dとの比H/Dが0.0055≦H/D≦0.082
であることを特徴とする請求項1、2または3の低弛
度低風圧電線。4. The ratio H / D of the maximum depth H of the arcuate section groove and the overhead wire diameter D is 0.0055 ≦ H / D ≦ 0.082.
The low sag low wind piezoelectric wire according to claim 1, 2 or 3.
セグメント素線のうち少なくとも1本のセグメント素線
を、その外表面が他のセグメント素線の外表面よりも高
く突出する突出段差を形成した外表面突出セグメント素
線としたことを特徴とする請求項1、2、3または4の
低弛度低風圧電線。5. A protruding step is formed in which at least one segment wire among the plurality of sector-shaped segment wires to be joined by the outermost layer is formed so that its outer surface projects higher than the outer surfaces of other segment wires. 5. The low slack low wind piezoelectric wire according to claim 1, wherein the outer surface protruding segment element wire is used.
を 0.5〜5.0mm好ましくは0.5〜2.0mm
としたことを特徴とする請求項5の低弛度低風圧電線。6. A protruding step t of an outer surface protruding segment wire.
0.5-5.0 mm, preferably 0.5-2.0 mm
The low slack low wind piezoelectric wire according to claim 5.
形成した肩部に15°≦θ≦60° のデフレクター角
θを設けたことを特徴とする請求項5または6の低弛度
低風圧電線。7. The low sag and low wind pressure according to claim 5 or 6, characterized in that a deflector angle θ of 15 ° ≦ θ ≦ 60 ° is provided on a shoulder portion formed with a protruding step of the outer surface protruding segment element wire. Electrical wire.
の表面側の溝部を断面半円状溝部に形成し、最外層の断
面半円状溝部のうち少なくとも1つの断面半円状溝部に
断面円形の素線を嵌合して前記断面円形素線の最外側表
面を断面扇形セグメント素線の外表面よりも高く突出さ
せて突出段差を形成したことを特徴とする請求項1、
2、3、4、5または6の低弛度低風圧電線。8. A groove on the surface side of the section adjacent to the sectoral segment wire of the outermost layer is formed in a semicircular groove section, and at least one of the semicircular groove sections of the outermost layer has a cross section in the semicircular groove section. 2. A protrusion step is formed by fitting a circular wire and projecting an outermost surface of the circular wire having a cross section higher than an outer surface of the segment wire having a fan-shaped cross section.
2, 3, 4, 5 or 6 low sag low wind piezoelectric wire.
合わせ本数Nが6≦N≦36 であることを特徴とする
請求項1乃至8の低弛度低風圧電線。9. The low sag and low wind piezoelectric wire according to any one of claims 1 to 8, wherein the number N of stranded wires of the sector-shaped segment wire of the outermost layer is 6 ≦ N ≦ 36.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33822795A JP3445425B2 (en) | 1995-12-01 | 1995-12-01 | Low sag low wind piezoelectric wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33822795A JP3445425B2 (en) | 1995-12-01 | 1995-12-01 | Low sag low wind piezoelectric wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09161541A true JPH09161541A (en) | 1997-06-20 |
JP3445425B2 JP3445425B2 (en) | 2003-09-08 |
Family
ID=18316130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33822795A Expired - Lifetime JP3445425B2 (en) | 1995-12-01 | 1995-12-01 | Low sag low wind piezoelectric wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3445425B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012256454A (en) * | 2011-06-07 | 2012-12-27 | Kyushu Electric Power Co Inc | Overhead transmission line |
CN102855988A (en) * | 2012-09-25 | 2013-01-02 | 上海贝恩科电缆有限公司 | Travelling cable for high-speed parallelly-connected elevators |
CN107833662A (en) * | 2017-10-20 | 2018-03-23 | 南方电网科学研究院有限责任公司 | Stranded carbon fiber windproof lead |
CN116487106A (en) * | 2023-06-21 | 2023-07-25 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | Low wind pressure transmission conductor with drag reduction and vibration reduction performance |
-
1995
- 1995-12-01 JP JP33822795A patent/JP3445425B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012256454A (en) * | 2011-06-07 | 2012-12-27 | Kyushu Electric Power Co Inc | Overhead transmission line |
CN102855988A (en) * | 2012-09-25 | 2013-01-02 | 上海贝恩科电缆有限公司 | Travelling cable for high-speed parallelly-connected elevators |
CN107833662A (en) * | 2017-10-20 | 2018-03-23 | 南方电网科学研究院有限责任公司 | Stranded carbon fiber windproof lead |
CN116487106A (en) * | 2023-06-21 | 2023-07-25 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | Low wind pressure transmission conductor with drag reduction and vibration reduction performance |
CN116487106B (en) * | 2023-06-21 | 2023-12-12 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | Low wind pressure transmission conductor with drag reduction and vibration reduction performance |
Also Published As
Publication number | Publication date |
---|---|
JP3445425B2 (en) | 2003-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5711143A (en) | Overhead cable and low sag, low wind load cable | |
US5171942A (en) | Oval shaped overhead conductor and method for making same | |
JP2001291429A (en) | Overhead power line and optical fiber composite overhead earth-wire | |
US6242693B1 (en) | Overhead cable | |
JP3445425B2 (en) | Low sag low wind piezoelectric wire | |
US6331677B1 (en) | Overhead wire | |
JP3540602B2 (en) | Low wind piezoelectric wire | |
US3500625A (en) | Parallel cables | |
JP2898903B2 (en) | Overhead wire | |
CN107833662A (en) | Stranded carbon fiber windproof lead | |
CN210984371U (en) | Low wind pressure aluminium package steel core height leads aluminium type stranded conductor | |
CN116487106B (en) | Low wind pressure transmission conductor with drag reduction and vibration reduction performance | |
JP2001043740A (en) | Overhead transmission line | |
JP2001035260A (en) | Overhead wire | |
CN219321079U (en) | Large-section steel core medium-strength aluminum alloy stranded wire | |
JP2000090744A (en) | Steel core aluminum stranded wire | |
CN221861305U (en) | Low wind pressure fiber resin matrix composite core overhead cable | |
JP3122722B2 (en) | Steel cord for rubber reinforcement | |
CN222260594U (en) | Self-supporting medium voltage water-blocking overhead insulated cable | |
Kikuchi et al. | Development of conductors with reduced wind drag and wind noise for overhead power transmission lines | |
JPH09245527A (en) | Wire for overhead wire and overhead wire using the wire | |
JP2002084942A (en) | Fishline | |
JPH05242734A (en) | Galloping preventing type overhead transmission line | |
JP3345854B2 (en) | Spiral rod for wind noise reduction and low wind noise electric wire | |
JPH08124429A (en) | Electric wire for melting ice and snow |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080627 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 7 |