[go: up one dir, main page]

JPH09161259A - Magnetic recording medium and magnetic recording method using the same - Google Patents

Magnetic recording medium and magnetic recording method using the same

Info

Publication number
JPH09161259A
JPH09161259A JP32417095A JP32417095A JPH09161259A JP H09161259 A JPH09161259 A JP H09161259A JP 32417095 A JP32417095 A JP 32417095A JP 32417095 A JP32417095 A JP 32417095A JP H09161259 A JPH09161259 A JP H09161259A
Authority
JP
Japan
Prior art keywords
magnetic
coercive force
medium
magnetic recording
remanence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32417095A
Other languages
Japanese (ja)
Inventor
Masaki Yuki
正樹 幸
Hideki Okumura
英樹 奥村
Hirobumi Ito
博文 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32417095A priority Critical patent/JPH09161259A/en
Publication of JPH09161259A publication Critical patent/JPH09161259A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic recording medium having excellent erasing characteristics and O/W characteristics by specifying the squareness ratio of the magnetic recording medium to >=0.8 and the squareness coercive force thereof to >=0.7. SOLUTION: A polyethylene terephthalate(PET) base film having 10μm thickness is coated with a magnetic coating material contg. alloy magnetic powder at 2.5μm thickness by gravure coating and the orientation magnetic field is adjusted in an orienting stage after the application, by which the squareness ratio is adjusted to >=0.8 and the squareness coercive force thereof to >=0.7. The squareness coercive force is expressed by the ratio of the distance 4 from a residual magnetic flux density 3 to a polygon 2 at the point of the coercive force and is a parameter determined as S*=H/Hc which indicates the uniformity of the magnetic characteristics near the coercive force of the medium. All of the particles within the medium are judged to be the same in the coercive force within the medium at the squareness coercive force of 1.0. The squareness coercive force is determined by the drawing of only the straight lines from the chart (BH loop and MH loop) of the magnetic characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はオーディオ、ビデオ
またはデータストレージ等の記録に用いられる塗布型磁
気記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating type magnetic recording medium used for recording audio, video or data storage.

【0002】[0002]

【従来の技術】近年、オーディオ、ビデオを含む情報機
器は情報の高品質化に伴い、デジタル化が進められてい
る。それに伴って磁気記録にもデジタル化に適した媒体
が求められている。
2. Description of the Related Art In recent years, information equipment including audio and video has been digitized along with the improvement in quality of information. Along with this, a medium suitable for digitization is also required for magnetic recording.

【0003】デジタル情報を扱うためには、アナログ情
報より広い帯域が必要となるため、高密度特性に優れた
媒体が必要とされる。塗布型磁気記録媒体の高密度化の
方法として近年特に注目されているのは、記録を司る磁
性層の薄層化である。例えば、特開平5−54381号
公報、同5−73883号公報に示されているように、
従来の塗布媒体では不可能であったサブミクロンの磁性
層の塗布が可能になった。
In order to handle digital information, a wider band is required than in analog information, so that a medium excellent in high density characteristics is required. As a method for increasing the density of a coating type magnetic recording medium, attention has recently been paid particularly to thinning of a magnetic layer for recording. For example, as disclosed in JP-A-5-54381 and JP-A-5-73883,
It has become possible to coat submicron magnetic layers, which was not possible with conventional coating media.

【0004】また、デジタル用の記録機器としては小型
化が追求され、回転シリンダを用いて記録再生を行う機
器の場合は、シリンダ径を小さく設計されるため、でき
るだけシリンダに登載されるヘッドの数を減らすことが
求められる。そのため、記録媒体には上記の高密度記録
特性と共に優れたO/W特性が必要になってくる。ここ
でO/W特性とは、すでに記録されているデータの上か
ら新しいデータを直接記録した時に、前のデータの残存
量がどれくらいあるかという特性をいう。
Further, miniaturization has been pursued as a digital recording device, and in the case of a device for recording / reproducing using a rotary cylinder, the cylinder diameter is designed to be small, so that the number of heads mounted on the cylinder is as large as possible. Is required to be reduced. Therefore, the recording medium is required to have excellent O / W characteristics in addition to the above high-density recording characteristics. Here, the O / W characteristic means a characteristic of how much remaining data is present when new data is directly recorded on the already recorded data.

【0005】従来はこれに対して保磁力の低い媒体を用
いることで対応したり、ヘッドの数を増やし消去用のヘ
ッドをシリンダに登載させていたりした。さらに、デジ
タル記録では記録電流はデータの繰り返し周波数によら
ず、一定であることが望まれる。しかし、従来の磁気記
録媒体では最適記録電流が周波数の依存性を持ってい
る。そこで使用する帯域のうち最もよく使用する周波数
で記録電流を設定し、それより高いまたは低い周波数領
域では最適記録電流からずれたままで、使用していた。
Conventionally, this has been dealt with by using a medium having a low coercive force, or by increasing the number of heads and mounting an erasing head on a cylinder. Further, in digital recording, it is desired that the recording current be constant regardless of the data repetition frequency. However, in the conventional magnetic recording medium, the optimum recording current has frequency dependence. Therefore, the recording current is set at the most frequently used frequency in the used band, and in the frequency range higher or lower than that, the recording current is used while being deviated from the optimum recording current.

【0006】[0006]

【発明が解決しようとする課題】高密度記録特性を向上
させるためには一般的には保磁力を大きくする手法がと
られるが、保磁力を大きくするとデジタル記録に求めら
れる優れたO/W特性を達成することは困難になるとい
う問題があった。また、高密度記録特性を向上させるた
めに磁気エネルギーの大きな金属磁性粉を用いる場合、
ノイズの増大にもつながる。また、デジタル記録では1
と0の並び方が情報を表しており、その繰り返し周期の
高低にかかわらず、常に1はハイレベル、0はローレベ
ルと回路内で扱うのが都合がよい。しかし、磁気記録の
場合はある周波数における記録電流と再生電圧の関係
(その周波数での入出力特性という)では、再生電圧が
最大値を持つことが知られており、しかもその最大再生
電圧を与える最適記録電流値は周波数によって異なる。
つまりデジタル記録では最適記録電流は周波数によらず
一定であることが望ましい。しかしながら、従来の磁気
記録系では周波数によって最適記録電流の値が異なると
いう問題があった。
In order to improve the high-density recording characteristics, generally, a method of increasing the coercive force is used. However, when the coercive force is increased, excellent O / W characteristics required for digital recording are obtained. There was a problem that it would be difficult to achieve. Further, when using metal magnetic powder with large magnetic energy to improve high density recording characteristics,
It also leads to an increase in noise. In digital recording, 1
It is convenient to always handle 1 as a high level and 0 as a low level in the circuit regardless of the height of the repetition cycle. However, in the case of magnetic recording, it is known that the reproduction voltage has the maximum value in terms of the relationship between the recording current and the reproduction voltage at a certain frequency (called the input / output characteristic at that frequency), and that maximum reproduction voltage is given. The optimum recording current value depends on the frequency.
That is, in digital recording, it is desirable that the optimum recording current is constant regardless of frequency. However, the conventional magnetic recording system has a problem that the value of the optimum recording current varies depending on the frequency.

【0007】本発明は前記従来の問題を解決するため、
出力特性を向上させながら消去特性及びO/W特性、さ
らにノイズ特性を改善した塗布型磁気記録媒体を提供す
ることを目的とする。また入出力特性がデジタル記録に
適した記録再生系を含む磁気記録方法を提供することを
目的とする。
In order to solve the above conventional problems, the present invention provides
An object of the present invention is to provide a coating type magnetic recording medium with improved erasing characteristics, O / W characteristics and noise characteristics while improving output characteristics. Another object is to provide a magnetic recording method including a recording / reproducing system whose input / output characteristics are suitable for digital recording.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明の磁気記録媒体は、非磁性支持体上に磁性粉
体を結合剤と共に塗布することによって作成される磁気
記録媒体であって、媒体の角形比が0.80以上である
ことを特徴とする。
In order to achieve the above-mentioned object, the magnetic recording medium of the present invention is a magnetic recording medium prepared by coating a nonmagnetic support with magnetic powder together with a binder. The squareness ratio of the medium is 0.80 or more.

【0009】前記構成においては、媒体の角形保磁力が
0.7以上であることが好ましい。また前記構成におい
ては、磁気記録媒体のdcレマネンス特性と、acレマ
ネンス特性から得られるデルタMプロットの最大値が、
0.5以下であることが好ましい。
In the above structure, the rectangular coercive force of the medium is preferably 0.7 or more. Further, in the above configuration, the maximum value of the dc remanence characteristic of the magnetic recording medium and the maximum value of the delta M plot obtained from the ac remanence characteristic is
It is preferably 0.5 or less.

【0010】また前記構成においては、非磁性支持体上
の磁性層の厚さが0.5μm以下であることが好まし
い。また前記構成においては、非磁性支持体上に厚さ
0.5μm以下の磁性層を有し、媒体の保磁力が200
0エルステッド以上あり、かつ角形保磁力が0.7以上
であり、さらにdcレマネンス特性とacレマネンス特
性から得られるデルタMプロットの最大値が0.5以下
であり、さらにこの磁性層は媒体の面内方向から垂直方
向に向う斜めの方向に配向することが好ましい。
In the above structure, the thickness of the magnetic layer on the non-magnetic support is preferably 0.5 μm or less. Further, in the above structure, a magnetic layer having a thickness of 0.5 μm or less is provided on the non-magnetic support, and the coercive force of the medium is 200
0 oersted or more, a rectangular coercive force of 0.7 or more, a maximum value of Delta M plot obtained from dc remanence characteristics and ac remanence characteristics of 0.5 or less, and the magnetic layer is a medium surface. It is preferable to orient in an oblique direction from the inner direction to the vertical direction.

【0011】次に本発明の磁気記録方法は、非磁性支持
体上に厚さ0.5μm以下の磁性層を有し、媒体の保磁
力が2000エルステッド以上あり、かつ角形保磁力が
0.7以上であり、さらにdcレマネンス特性とacレ
マネンス特性から得られるデルタMプロットの最大値が
0.5以下である磁気記録媒体と、ギャップ部に1.5
T以下の飽和磁束密度を持つ部材を含むヘッドを組み合
わせて磁気記録を行うことを特徴とする。
Next, the magnetic recording method of the present invention has a magnetic layer having a thickness of 0.5 μm or less on a non-magnetic support, the coercive force of the medium is 2000 oersted or more, and the square coercive force is 0.7. The above is the magnetic recording medium having a maximum value of 0.5 or less in the delta M plot obtained from the dc remanence characteristic and the ac remanence characteristic, and 1.5 in the gap portion.
Magnetic recording is performed by combining heads including members having a saturation magnetic flux density of T or less.

【0012】前記において、磁気記録媒体の角形比を
0.80以上、好ましくは0.85以上にし、かつ角形
保磁力を0.7以上にすると、記録密度特性を向上さ
せ、かつO/W特性を向上させることができる。また、
前記の特性に、さらにdcレマネンス特性とacレマネ
ンス特性からもとめられるデルタMプロットのピークが
0.5以下にする。さらに環境保存後のO/Wを向上さ
せるため、非磁性支持体上の磁性層の厚さを0.5μm
以下にしたうえに、角形比を0.80以上好ましくは
0.85以上としかつ角形保磁力を0.7以上とする。
以上の本発明手段において、磁性層の厚さを0.5μm
以下にするには、非磁性支持体上に非磁性層と0.5μ
m以下の磁性層をのせる構造でも、非磁性支持体上に単
層の0.5μm以下の厚みの磁性層をのせる構造でも良
い。
In the above, if the squareness ratio of the magnetic recording medium is 0.80 or more, preferably 0.85 or more and the square coercive force is 0.7 or more, the recording density characteristic is improved and the O / W characteristic is improved. Can be improved. Also,
In addition to the above characteristics, the peak of the Delta M plot obtained from the dc remanence characteristics and the ac remanence characteristics is set to 0.5 or less. Furthermore, in order to improve the O / W after environmental preservation, the thickness of the magnetic layer on the non-magnetic support is 0.5 μm.
In addition to the above, the squareness ratio is 0.80 or more, preferably 0.85 or more, and the square coercive force is 0.7 or more.
In the above-mentioned means of the present invention, the thickness of the magnetic layer is 0.5 μm.
To achieve the following, a nonmagnetic layer and 0.5μ on a nonmagnetic support
The structure may have a magnetic layer of m or less, or a single magnetic layer having a thickness of 0.5 μm or less on a non-magnetic support.

【0013】また、デジタル記録にふさわしい記録再生
特性を得るために、上記の構造であって、角形比を0.
80以上、角形保磁力を0.7以上、デルタMプロット
の最大値が0.5以下の特徴を有し、その保磁力を20
00エルステッド以上にした媒体と、最大飽和磁束密度
が1.5テスラ以下の材料をギャップ部分に有するヘッ
ドを少なくとも記録ヘッドとして用いる。
Further, in order to obtain a recording / reproducing characteristic suitable for digital recording, the above structure is adopted and the squareness ratio is set to 0.
The coercive force is 20 or more, the square coercive force is 0.7 or more, and the maximum value of the Delta M plot is 0.5 or less.
At least a recording head is a head having a medium of at least 00 Oersted and a material having a maximum saturation magnetic flux density of 1.5 Tesla or less in the gap portion.

【0014】また、上記媒体の磁性層を磁性層面内から
膜垂直方向に向かった斜めの方向に配向する。
Further, the magnetic layer of the medium is oriented obliquely from the plane of the magnetic layer toward the direction perpendicular to the film.

【0015】[0015]

【発明の実施の形態】角形比を高くすることは粒子の配
向性が一方向に整列し、記録された方向に生じる媒体か
らの漏れ磁束量を大きくさせることになるので、再生出
力の増大に有効となる。この配向性の有効性は媒体の角
形比が0.8を越えると顕著に現れてくる。また、角形
保磁力S*を大きくすることは保磁力近傍の粒子の分布
を均一にすることになり、記録された信号の境界部分で
ある遷移領域での磁化のにじみを少なくし、記録領域の
境界を鮮明にする。このことは記録波長が小さくなった
ときの出力向上に役立ち、記録密度特性を向上させる。
さらに、このS*を大きくすることはヘッドの記録磁界
によって決定する領域が鮮明に決まることであるから、
十分大きなヘッド磁界で記録を行えば、信号の再書き込
み効果が少なくなりO/W特性や消去特性が向上する。
本発明者らは、角形比が0.8以上でしかも角形保磁力
が0.7以上の場合、顕著にこの効果を発揮させること
を見いだした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Increasing the squareness ratio increases the reproduction output because the orientation of particles is aligned in one direction and the amount of magnetic flux leaked from the medium in the recorded direction is increased. It becomes effective. The effectiveness of this orientation becomes remarkable when the squareness ratio of the medium exceeds 0.8. Further, increasing the square coercive force S * makes the distribution of particles in the vicinity of the coercive force uniform, reducing the bleeding of the magnetization in the transition region which is the boundary portion of the recorded signal, and Sharpen the boundaries. This helps improve the output when the recording wavelength becomes small, and improves the recording density characteristic.
Further, increasing S * means that the area determined by the recording magnetic field of the head is clearly determined.
When recording is performed with a sufficiently large head magnetic field, the signal rewriting effect is reduced and the O / W characteristic and the erasing characteristic are improved.
The present inventors have found that when the squareness ratio is 0.8 or more and the square coercive force is 0.7 or more, this effect is remarkably exhibited.

【0016】しかし、角形比0.8以上、角形保磁力
0.7以上でも、媒体内部の粒子が相互作用を及ぼしあ
って、単独な粒子としての挙動を示さない場合、O/W
特性は向上しないばかりか、ノイズ特性も悪化する。こ
の媒体内の粒子間相互作用はいわゆるHenkel-Plotから
読み取れ、より定量的に示すことのできるDelta-Plotを
見ることで明確に判断できる。この粒子間相互作用とは
1つの粒子が自分自身の持つ磁気特性に従って外部磁界
に反応するのではなく、自分の周囲にある粒子の反転挙
動に従って反応することであると説明できる。従って、
一つ一つの粒子をみると均一性に欠けるにもかかわら
ず、粒子同士が一斉に磁化反転を行うので磁気特性的に
はあたかも均一な粒子であるように見える。しかし、こ
の様な媒体は信号と信号の境界である遷移領域で粒子の
磁化反転挙動がヘッド磁界通りにならない部分が多く、
出力やO/Wの向上に効果がないばかりか、ノイズ特性
が悪化する。
However, even if the squareness ratio is 0.8 or more and the square coercive force is 0.7 or more, if the particles inside the medium interact with each other and do not behave as individual particles, O / W
Not only the characteristics are not improved, but the noise characteristics are also deteriorated. The interaction between particles in this medium can be clearly determined by reading the so-called Henkel-Plot and seeing the Delta-Plot, which can be shown more quantitatively. It can be explained that this interparticle interaction means that one particle does not react to an external magnetic field according to its own magnetic characteristics, but to react according to the inversion behavior of particles around it. Therefore,
Despite the lack of homogeneity of the individual particles, they seem to be uniform particles in terms of magnetic characteristics, because the particles perform magnetization reversal at the same time. However, in such a medium, there are many portions where the magnetization reversal behavior of particles does not pass through the head magnetic field in the transition region which is the boundary between signals,
Not only is it ineffective in improving the output and O / W, but also the noise characteristics are deteriorated.

【0017】また、磁性層の厚さを0.5μm以下と薄
くする媒体構造に、角形比0.8以上、角形保磁力0.
7以上の特性を加えることで、膜厚の減少によるO/W
特性がさらに改善されるのに加えて、記録領域が鮮明に
決まる効果より、記録によって磁化された粒子の発生磁
界が近傍の粒子を磁化しにくくなっており、高温中に保
存された時の磁化の浸透が少なくなる。従って耐候保存
後のO/W特性が悪化しない。
In addition, in the medium structure in which the thickness of the magnetic layer is thinned to 0.5 μm or less, the squareness ratio is 0.8 or more and the square coercive force is 0.
O / W due to reduction of film thickness by adding 7 or more characteristics
In addition to the characteristics being further improved, the magnetic field generated by the particles magnetized by recording makes it difficult to magnetize nearby particles due to the effect of clearly determining the recording area, and the magnetization when stored at high temperature Penetration is reduced. Therefore, the O / W characteristics after weatherproof storage do not deteriorate.

【0018】また、保磁力を2000エルステッド以上
とし、ヘッドギャップ部に1.5T以下の材料を用いる
と、ヘッドは媒体に対して十分な記録を行えなくなる。
従って記録減磁が生じなくなり、記録波長が長い場合も
短い場合も同じ記録電流で記録することができる。ま
た、磁性粒子の配向方向を斜めにした媒体は、リーディ
ングエッジによって発生するヘッド磁界で磁化が決まる
のでトレーリングエッジによる再記録効果がすくなくな
り、オーバーライト特性がよい効果を生むが角形保磁力
を0.7以上にすることによってさらにオーバーライト
特性を向上させることができる。
If the coercive force is 2000 oersteds or more and the material of 1.5 T or less is used for the head gap portion, the head cannot perform sufficient recording on the medium.
Therefore, recording demagnetization does not occur, and recording can be performed with the same recording current regardless of whether the recording wavelength is long or short. Also, in a medium in which the orientation direction of magnetic particles is slanted, the magnetic field is determined by the head magnetic field generated by the leading edge, so the re-recording effect due to the trailing edge is reduced, and a good overwrite characteristic is produced. By setting it to 0.7 or more, the overwrite characteristic can be further improved.

【0019】[0019]

【実施例】次に本発明を実施例を用いて具体的に説明す
る。
Next, the present invention will be described specifically with reference to examples.

【0020】[0020]

【実施例1】まず、サンプルの作成方法について説明す
る。実験に用いた磁性塗料の組成を表1に示す。
Example 1 First, a method of preparing a sample will be described. Table 1 shows the composition of the magnetic paint used in the experiment.

【0021】[0021]

【表1】 [Table 1]

【0022】表1において、これらの材料のうち、磁性
粉および樹脂系バインダー全量とメチルエチルケトン、
トルエン、シクロヘキサノンの混合溶液(混合比率は重
量比で3:3:1)30重量部を連続ニーダーで混練し
た。磁性粉はAとBの2種類を用意した。用いた磁性粉
の諸特性を表2に示す。
In Table 1, among these materials, the magnetic powder and the total amount of the resin-based binder and methyl ethyl ketone,
30 parts by weight of a mixed solution of toluene and cyclohexanone (the mixing ratio is 3: 3: 1 by weight) was kneaded with a continuous kneader. Two types of magnetic powder, A and B, were prepared. Table 2 shows various characteristics of the magnetic powder used.

【0023】[0023]

【表2】 [Table 2]

【0024】表2において、AとBは同じ合金金属磁性
粉であるが、Aは合金磁性粉作成の出発材料となるゲー
サイトを作成した後、微細なフィルターを通過させ形状
の大きいものを省き、粒度分布をよくし、その後、合金
磁性粉としたものである。
In Table 2, A and B are the same alloy metal magnetic powders, but A is made of goethite as a starting material for preparing the alloy magnetic powders, and is then passed through a fine filter to omit large ones. , The particle size distribution was improved, and then the alloy magnetic powder was used.

【0025】その後、この混練物と研磨剤、潤滑剤、及
び残りの混合溶剤をサンドミル中で5時間分散し、最後
にディスパーで撹拌しながら硬化剤を混合させ、最終塗
料を得た。磁性粉A、Bで作成した磁性塗料をそれぞれ
a、bとした。
Then, the kneaded material, the abrasive, the lubricant, and the remaining mixed solvent were dispersed in a sand mill for 5 hours, and finally the hardener was mixed while stirring with a disper to obtain a final coating material. The magnetic paints made from the magnetic powders A and B were designated as a and b, respectively.

【0026】上記の磁性塗料a、bをグラビア塗工で、
10μm厚みのポリエチレンテレフタレート(PET)
ベースフィルムに、厚さ2.5μmの単層に塗工し、塗
布後の配向工程で配向磁界を調節し、角形比を調整した
サンプルを塗料a、bについてそれぞれ4サンプルづつ
作成した。配向磁界の弱い順にサンプルNo.1、2、
3、4とした。
The above magnetic paints a and b are gravure coated,
10 μm thick polyethylene terephthalate (PET)
The base film was applied in a single layer having a thickness of 2.5 μm, the orientation magnetic field was adjusted in the orientation step after application, and four samples were prepared for each of the coating materials a and b in which the squareness ratio was adjusted. Sample No. in order of weak orientation magnetic field. 1, 2,
3 and 4.

【0027】各サンプルはカレンダー処理及び60℃、
24時間の条件で硬化処理を施した後、非磁性支持体の
磁性層と反対の面に、カーボンブラックを主体とするバ
ックコート層を0.7μmの厚さで設け、1/4インチ
幅にスリットした。
Each sample was calendered and 60 ° C.
After the curing treatment for 24 hours, a back coat layer mainly composed of carbon black is formed with a thickness of 0.7 μm on the surface of the non-magnetic support opposite to the magnetic layer, and the width is ¼ inch. I slit.

【0028】塗料a、bで作成したサンプルをそれぞれ
サンプルTA、TBとし配向磁界の弱い順につけた上記
の番号をサンプル名の後ろにつけて区別する。これらの
サンプルの磁気特性を表3に示す。
Samples prepared with paints a and b are referred to as samples TA and TB, respectively, and the above-mentioned numbers, which are given in order of weak orientation magnetic field, are added to the end of the sample name to distinguish them. The magnetic properties of these samples are shown in Table 3.

【0029】[0029]

【表3】 [Table 3]

【0030】表3から明らかな通り、保磁力、飽和磁束
密度はサンプルTA、TBを通じてほぼ同じであるが、
その角形保磁力はサンプルTBが最大でも0.65であ
るのに対して、サンプルTAは0.73と高い値を示し
ている。角形保磁力は図1に示す残留磁束密度3から保
磁力1の点での接線2までの磁界H4と保持力Hc1の
比で表され、S*=H/Hcとして求められるパラメー
タで媒体の保磁力近傍の磁気特性の均一性を示す。従っ
て、従来よく知られているSFDとは異なる。角形保磁
力1.0で媒体内の粒子の保磁力は全て均一であるとい
う判断をする。角形保磁力は磁気特性のチャート(BH
ループ及びMHループ)から直線だけの作図で求めら
れ、誤差が少なく再現性もよい。
As is clear from Table 3, the coercive force and the saturation magnetic flux density are almost the same in the samples TA and TB,
The rectangular coercive force of the sample TB is 0.65 at the maximum, while the sample TA shows a high value of 0.73. The rectangular coercive force is represented by the ratio of the coercive force Hc1 and the magnetic field H4 from the residual magnetic flux density 3 to the tangent line 2 at the point of the coercive force 1 shown in FIG. 1, and is a parameter obtained as S * = H / Hc. It shows the uniformity of magnetic properties near the magnetic force. Therefore, it is different from SFD which is well known in the related art. A square coercive force of 1.0 determines that the coercive force of particles in the medium is uniform. The square coercive force is a magnetic characteristic chart (BH
Loops and MH loops) are obtained by drawing only straight lines, and there are few errors and good reproducibility.

【0031】次に各サンプルについて消去特性を調べ
た。これらのテープをシリンダー径20mm、回転数9
000rpm、シングルヘッドが180度対向した位置
に1つづつ登載された1/4インチの走行系にフルイレ
ースヘッドと固定ヘッドをつけたデッキを用いて測定し
た。テープの走行速度は約2cm/secである。固定
ヘッドは材質がパーマロイでトラック幅100μm、ギ
ャップ長0.7μmのオーディオヘッドである。このヘ
ッドでサンプルTB−1の1kHzと8kHzの再生出
力がほぼ同じになるバイアス電流で1kHzの信号を0
VUのレベルになるように記録し、それをギャップ長6
0μmのフルイレースヘッドに50mAの消去電流を流
して消去し、残った1kHzの信号を測定した。その結
果をサンプルTB−1の値を0dBとして表3に示し
た。表3から明らかな通り、角形比が0.80以上で角
形保磁力が0.7以上のものについては消去特性が低く
なる。
Next, the erase characteristics of each sample were examined. These tapes have a cylinder diameter of 20 mm and a rotation speed of 9
The measurement was performed using a deck equipped with a full erase head and a fixed head in a 1/4 inch traveling system in which single heads were mounted one at a position facing each other at 000 rpm and 180 degrees. The running speed of the tape is about 2 cm / sec. The fixed head is an audio head made of permalloy and having a track width of 100 μm and a gap length of 0.7 μm. With this head, the signal of 1 kHz is reduced to 0 by the bias current at which the reproduction outputs of sample TB-1 at 1 kHz and 8 kHz become almost the same.
Record to VU level and set it to gap length 6
An erasing current of 50 mA was applied to a 0 μm full erase head to erase, and the remaining 1 kHz signal was measured. The results are shown in Table 3 with the value of sample TB-1 set to 0 dB. As is clear from Table 3, the erasing property becomes low for the case where the squareness ratio is 0.80 or more and the square coercive force is 0.7 or more.

【0032】さらに、シリンダに登載されているヘッド
を用いて、波長0.5μmの信号に対する最適記録電流
で波長30μmの正弦波信号を記録し、その上に0.5
μmの信号をオーバーライトし、波長30μmの信号の残
存量をO/W量として測定した。
Furthermore, a head mounted on the cylinder is used to record a sine wave signal having a wavelength of 30 μm with an optimum recording current for a signal having a wavelength of 0.5 μm, and 0.5 is recorded on the sine wave signal.
The signal of μm was overwritten, and the remaining amount of the signal of wavelength 30 μm was measured as the O / W amount.

【0033】測定系の相対速度は約9.42m/sec
であり、0.5μmの信号は18.8MHz、30μmの
信号は314kHzである。この結果も消去率の場合と
同じようにサンプルTB−1のO/W値を0dBとして
結果を表3に示した。この場合も角形比が0.8以上で
角形保磁力が0.7以上のものはO/Wが非常によいこ
とがわかる。
The relative velocity of the measuring system is about 9.42 m / sec.
The signal of 0.5 μm is 18.8 MHz and the signal of 30 μm is 314 kHz. Similar to the case of the erasing rate, this result is shown in Table 3 with the O / W value of sample TB-1 set to 0 dB. Also in this case, it is understood that the O / W is very good when the squareness ratio is 0.8 or more and the square coercive force is 0.7 or more.

【0034】本実施例ではS*を高めるために磁性粉の
原体作成時にその粒度分布をフィルターを通すことでそ
ろえたが、磁性粉の製造過程になんらかの処理を行うこ
とで、配向したときに高いS*を示す磁性粉を得ても良
い。
In this embodiment, in order to increase S *, the particle size distribution of the magnetic powder was made uniform by passing it through a filter at the time of preparation, but by performing some treatment in the manufacturing process of the magnetic powder, when the magnetic powder was oriented You may obtain the magnetic powder which shows high S *.

【0035】[0035]

【実施例2】実施例1のサンプルTAに用いた磁性粉の
代わりに、表4に示す六方晶ヘキサゴナルフェライトで
あるバリウムフェライトを用いてサンプルTCを作成し
た。また、これらのサンプルの磁気特性を表5に示す。
Example 2 A sample TC was prepared by using barium ferrite, which is a hexagonal hexagonal ferrite shown in Table 4, instead of the magnetic powder used in the sample TA of Example 1. The magnetic properties of these samples are shown in Table 5.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】実施例1と同様に配向磁界を調整し角形比
の異なるサンプルを作成した。配向磁界の弱い順に1、
2、3と番号をつける。サンプルTC−3は角形比は
0.83と実施例1のサンプルTA−4より低いもの
の、角形保磁力は0.90と非常に高い。次にこの2つ
のサンプルのデルタMプロットの最大値を調べた。ま
ず、デルタMプロットの具体的な求め方を示す。
Similar to Example 1, the orientation magnetic field was adjusted to prepare samples having different squareness ratios. 1, in order of weak orientation magnetic field,
Number them a few. The sample TC-3 has a squareness ratio of 0.83, which is lower than that of the sample TA-4 of Example 1, but has a very high squareness coercive force of 0.90. The maximum of the Delta M plot of these two samples was then examined. First, a specific method of obtaining the Delta M plot will be shown.

【0039】具体的な手順としてはDCレマネンス(dc
demagnetization remanence)とACレマネンス(isot
hermal remanence)特性を求め、その2つの特性からヘ
ンケルプロットを求める。さらにそのヘンケルプロット
からデルタMプロットを求める。
As a concrete procedure, the DC remanence (dc
demagnetization remanence) and AC remanence (isot
Hermal remanence) characteristic is obtained, and a Henkel plot is obtained from the two characteristics. Further, a Delta M plot is obtained from the Henkel plot.

【0040】図2は一般的な磁気記録媒体の配向方向の
磁気特性を示す。図1と異なり、縦軸は磁化Mで示し
た。この図2中の5は媒体の最大磁化の点である。測定
するサンプルを一度この最大磁化点まで磁化させ、3の
残留磁化まで外部磁界を減少させる。さらに、最大磁化
5にしたのと逆方向のある磁界強度6まで外部磁界を印
加する。そして磁界をゼロにしこの点での残留磁化量7
をこの磁界強度におけるDCレマネンスという。次の磁
界強度8におけるDCレマネンスを測定する時は、再び
5の最大磁化まで外部磁界を印加し、同様の手続きを繰
り返す。この様にして磁界強度とDCレマネンスの関係
を求めたグラフをDCレマネンス特性といい、図2中の
9の曲線で表される。
FIG. 2 shows the magnetic characteristics in the orientation direction of a general magnetic recording medium. Unlike FIG. 1, the vertical axis represents the magnetization M. Reference numeral 5 in FIG. 2 represents the point of maximum magnetization of the medium. The sample to be measured is once magnetized to this maximum magnetization point and the external magnetic field is reduced to a residual magnetization of 3. Further, an external magnetic field is applied up to a certain magnetic field strength 6 in the opposite direction to the maximum magnetization 5. Then, the magnetic field is set to zero and the residual magnetization amount at this point is 7
Is called DC remanence at this magnetic field strength. When measuring the DC remanence at the next magnetic field strength of 8, the external magnetic field is applied again up to the maximum magnetization of 5, and the same procedure is repeated. The graph in which the relationship between the magnetic field strength and the DC remanence is obtained in this manner is called the DC remanence characteristic and is represented by the curve 9 in FIG.

【0041】次にサンプルを図3中の10に示す消磁状
態にする。具体的には交藩減少磁界を印加することでサ
ンプルをこの状態にすることができる。この状態から、
11の点まで外部磁界を印加する。磁化は13の初期磁
化曲線にそって増加する。その後、外部磁界をゼロにす
る。するとサンプルの磁化はある残留状態12になる。
この磁化12を磁界強度11におけるACレマネンスと
いう。次の磁界強度14のACレマネンスを求めるには
再びサンプルの磁化状態を消磁状態とし、同様の手続き
を繰り返す。この様にして求めた磁界強度と磁化の関係
をACレマネンス特性といい、図3中の15の曲線で表
される。
Next, the sample is put into the demagnetized state shown by 10 in FIG. Specifically, the sample can be brought into this state by applying a magnetic field for reducing the cross domain. From this state,
An external magnetic field is applied up to point 11. The magnetization increases along the initial magnetization curve of 13. After that, the external magnetic field is set to zero. The magnetization of the sample is then in some residual state 12.
This magnetization 12 is called AC remanence at the magnetic field strength 11. In order to obtain the AC remanence of the next magnetic field strength 14, the magnetization state of the sample is set to the demagnetization state again, and the same procedure is repeated. The relationship between the magnetic field strength and the magnetization thus obtained is called the AC remanence characteristic, and is represented by the curve 15 in FIG.

【0042】この様にして求めたDC及びACレマネン
ス特性の縦軸を残留磁化量で規格化し、DCレマネンス
特性は−1から1まで、ACレマネンスは0から1まで
の値に変換する。そして、ある磁界強度の時の両レマネ
ンスの値をACレマネンスを横軸に、DCレマネンスを
縦軸にし、プロットしたものをヘンケルプロットとい
い、図4のようになる。
The ordinates of the DC and AC remanence characteristics thus obtained are normalized by the residual magnetization amount, and the DC remanence characteristic is converted to a value of -1 to 1 and the AC remanence is converted to a value of 0 to 1. The values of both remanences at a certain magnetic field strength are plotted with the AC remanence on the horizontal axis and the DC remanence on the vertical axis, which is called a Henkel plot, and is as shown in FIG.

【0043】このヘンケルプロットにDC=1−2*A
Cとなる直線17を引き、この直線とヘンケルプロット
の差を横軸を印加磁界にしてプロットし直したものをデ
ルタMプロットといい、図5に示す。従ってデルタMプ
ロットは−2から2までの間の値をとる。図4の19を
このデルタMでプロットすると図5中の21となり、図
4の18は図5の20となる。
DC = 1-2 * A in this Henkel plot
A straight line 17 that is C is drawn, and the difference between this straight line and the Henkel plot is plotted again with the horizontal axis being the applied magnetic field, which is called a delta M plot and is shown in FIG. Therefore, the Delta M plot takes values between -2 and 2. When 19 in FIG. 4 is plotted by this delta M, it becomes 21 in FIG. 5, and 18 in FIG. 4 becomes 20 in FIG.

【0044】ヘンケルプロットの意味は媒体内部の粒子
間相互作用の程度を表しており、図4中の直線17上に
プロットがくれば、粒子間相互作用はなく、直線より上
側にあれば(例えば18)、正の相互作用、直線より下
にあれば(例えば19)負の相互作用があると判断でき
る。これを、より顕著に読み取れるのがデルタMプロッ
トであり、0であれば粒子間相互作用がなく、正負の方
向にでるピークによってその方向と強さを判断できる。
The meaning of the Henkel plot represents the degree of interparticle interaction inside the medium. If the plot is on the straight line 17 in FIG. 4, there is no interparticle interaction and if it is above the straight line (for example, 18), positive interaction, and if it is below the straight line (for example, 19), it can be judged that there is a negative interaction. This can be read more prominently in the Delta M plot, and if it is 0, there is no interparticle interaction, and the direction and strength can be judged from the peaks in the positive and negative directions.

【0045】このデルタMプロットを各サンプルについ
て調べ、そのピーク値を調べた。また、これらのサンプ
ルの消去特性とO/W特性とノイズ特性を調べた。消去
特性およびO/W特性は実施例1と同じ方法で行った。
ノイズ特性は実施例1で用いたシリンダー系で、10M
Hzの周波数の単一信号を記録し、再生波形をスペクト
ルアナライザーで観測した時の信号から1MHz離れた
点でのノイズレベルを比較した。デルタMプロットによ
るピーク値、消去特性、O/W特性およびノイズ特性の
結果を、サンプルTC−3を0dBとして表6に示す。
This Delta M plot was examined for each sample and its peak value was examined. In addition, the erasing characteristics, O / W characteristics, and noise characteristics of these samples were examined. The erasing characteristics and the O / W characteristics were the same as in Example 1.
The noise characteristics of the cylinder system used in Example 1 is 10M.
A single signal with a frequency of Hz was recorded, and the noise level at a point 1 MHz away from the signal when the reproduced waveform was observed with a spectrum analyzer was compared. The results of the peak value, the erase characteristic, the O / W characteristic, and the noise characteristic by the Delta M plot are shown in Table 6 with the sample TC-3 set to 0 dB.

【0046】[0046]

【表6】 [Table 6]

【0047】表6の結果より、角形比0.80以上で角
形保磁力0.7以上でも、デルタMプロットのピーク値
が0.5を越えると、消去特性も悪くなり、またノイズ
特性も悪化するのが判る。
From the results shown in Table 6, even if the squareness ratio is 0.80 or more and the square coercive force is 0.7 or more, when the peak value of the Delta M plot exceeds 0.5, the erasing characteristic and the noise characteristic are deteriorated. I can see it.

【0048】[0048]

【実施例3】実施サンプルとして、磁性上層に非磁性下
層を加えた2層構造のサンプルを作成した。下層は粒径
0.06μmのベンガラを、表7の組成で塗料化した。
Example 3 As a practical sample, a sample having a two-layer structure in which a non-magnetic lower layer was added to a magnetic upper layer was prepared. As the lower layer, red iron oxide having a particle size of 0.06 μm was coated with the composition shown in Table 7.

【0049】[0049]

【表7】 [Table 7]

【0050】まず、これらの材料のうち、ベンガラおよ
び樹脂系バインダー全量とメチルエチルケトン、トルエ
ン、シクロヘキサノンの混合溶液(混合比率は3:3:
1)30重量部を連続ニーダーで混練した。その後、こ
の混練物と残りの混合溶剤をサンドミル中で2時間分散
し、最終塗料とした。
First, among these materials, a mixed solution of red iron oxide and the total amount of the resinous binder and methyl ethyl ketone, toluene, and cyclohexanone (mixing ratio 3: 3:
1) 30 parts by weight were kneaded with a continuous kneader. Then, this kneaded material and the remaining mixed solvent were dispersed in a sand mill for 2 hours to obtain a final coating material.

【0051】この下層塗料と実施例1の塗料aを厚さ1
0μmのPET上に乾燥時の膜厚で上層が0.2、0.
5、0.8μm、下層が1.8μmになるように塗布し
た。この時、塗膜が乾燥する前に十分に長手方向に配向
させた。サンプルはカレンダー処理及び60℃、24時
間の条件で硬化処理を施した後、非磁性支持体の磁性層
と反対の面に、カーボンブラックを主体とするバックコ
ート層を0.7μmの厚さで設け、1/4インチ幅にス
リットした。
This lower layer paint and the paint a of Example 1 were applied to a thickness of 1
The thickness of the upper layer was 0.2, 0.
5, 0.8 μm, and the lower layer was 1.8 μm. At this time, the coating film was sufficiently oriented in the longitudinal direction before being dried. The sample was calendered and cured at 60 ° C. for 24 hours, and then a back coat layer mainly composed of carbon black was formed to a thickness of 0.7 μm on the surface of the non-magnetic support opposite to the magnetic layer. It was provided and slit to a quarter inch width.

【0052】このサンプルをTD−1、−2、−3とし
サンプルTA−4と比較した。各テープの磁気特性を表
8に示す。
This sample was designated as TD-1, -2, -3 and compared with sample TA-4. Table 8 shows the magnetic characteristics of each tape.

【0053】[0053]

【表8】 [Table 8]

【0054】これらのテープは保磁力、飽和磁束密度、
角形比、角形保磁力、デルタMプロットのピーク値とほ
ぼ同じ特性を示し、テープ構造のみが異なる。これらの
テープの波長0.5μmでの出力特性、ノイズ特性、消
去率、およびO/W特性を調べた。また、消去率の測定
時に1kHzの信号を記録した後、60℃、80%の環
境に100時間放置し、その後消去特性を調べた結果を
放置後の消去特性として調べた。これらの結果をサンプ
ルTA−4を0dBとして表9に示す。
These tapes have coercive force, saturation magnetic flux density,
It exhibits almost the same characteristics as the squareness ratio, the square coercive force, and the peak value of the Delta M plot, and only the tape structure is different. The output characteristics, noise characteristics, erasure rate, and O / W characteristics of these tapes at a wavelength of 0.5 μm were examined. Moreover, after recording a signal of 1 kHz at the time of measuring the erasing rate, the erasing property was left for 100 hours in an environment of 60 ° C. and 80%, and then the erasing property was examined. The results are shown in Table 9 assuming that the sample TA-4 is 0 dB.

【0055】[0055]

【表9】 [Table 9]

【0056】表9から明らかな通り、本発明の磁気特性
を有する磁性層を0.5μm以下の厚さにすることによ
り、電磁変換特性、ノイズ特性、消去特性が優れるばか
りでなく、環境中に100時間放置後の消去特性も低く
することができる。これは粒子間相互作用が小さく、ま
た保磁力の分布もシャープなため、熱による磁化の浸透
が少ない。さらにそのうえ磁性層を薄くすることで浸透
する領域自体が少ないために環境放置後の消去率も悪化
しないためである。
As is clear from Table 9, by making the thickness of the magnetic layer having the magnetic characteristics of the present invention 0.5 μm or less, not only the electromagnetic conversion characteristics, the noise characteristics and the erasing characteristics are excellent, but also in the environment. The erasing property after leaving for 100 hours can also be lowered. This is because the interaction between particles is small and the coercive force distribution is sharp, so that the penetration of magnetization by heat is small. Furthermore, by thinning the magnetic layer, the area itself that penetrates is small, and therefore the erasing rate after being left in the environment does not deteriorate.

【0057】[0057]

【実施例4】実施例3の磁性粉の代わりに表10に示す
磁性粉を用いて、同様にサンプルテープTFを作成し
た。このサンプルの特性を表11に示す。
Example 4 A magnetic tape shown in Table 10 was used in place of the magnetic powder of Example 3 to prepare a sample tape TF in the same manner. The characteristics of this sample are shown in Table 11.

【0058】[0058]

【表10】 [Table 10]

【0059】[0059]

【表11】 [Table 11]

【0060】このサンプルは保磁力が2050エルステ
ッドあり、角形比、角形保磁力、デルタMプロットのピ
ーク値は本発明の条件を満たしている。このテープに対
して、ギャップ部に1.5T(テスラ)の飽和磁束密度
を持つFe−Tr−N系の金属を挟み込んだMIGヘッ
ドと、1.7Tの飽和磁束密度をもつFeを挟み込んだ
MIGヘッドで記録波長0.5μmと30μmでの入出力
特性を調べた。ギャップ部の金属層の厚みは3μmであ
る。これらの結果を図6に示す。波長30μmの場合は
1.5Tのヘッドを用いた場合22も1.7Tのヘッド
を用いた場合23も記録減磁は生じていない。しかし、
波長が0.5μmの場合、1.5Tの飽和磁束密度をも
つヘッドに対する入出力特性24は記録減磁を生じてい
ないのに対して、1.7Tの飽和磁束密度を持つヘッド
に対する入出力特性25は明確な記録減磁を生じてい
る。これより、本実施例の構成のように、角形比、角形
保磁力、デルタMプロットを本発明の条件を満たし、さ
らに保磁力を2000エスルテッド以上とし、その媒体
に飽和磁束密度が1.5T以下の材料をギャップ部に有
するヘッドを用いて記録再生を行うことで周波数によっ
て、記録電流を変化させる必要の無い定電流記録のでき
るテープ・ヘッドの組み合わせを実現できることが確認
できた。
This sample has a coercive force of 2050 Oersted, and the squareness ratio, the square coercive force, and the peak value of the Delta M plot satisfy the conditions of the present invention. With respect to this tape, an MIG head in which a Fe-Tr-N-based metal having a saturation magnetic flux density of 1.5 T (Tesla) is sandwiched in the gap portion and an MIG in which Fe having a saturation magnetic flux density of 1.7 T is sandwiched The head was used to examine the input / output characteristics at recording wavelengths of 0.5 μm and 30 μm. The thickness of the metal layer in the gap is 3 μm. These results are shown in FIG. In the case of the wavelength of 30 μm, the recording demagnetization did not occur in both the case 22 using the 1.5T head and the case 23 using the 1.7T head. But,
When the wavelength is 0.5 μm, the input / output characteristic 24 with respect to the head having the saturation magnetic flux density of 1.5T does not cause the recording demagnetization, whereas the input / output characteristic with respect to the head having the saturation magnetic flux density of 1.7T. No. 25 has a clear recording demagnetization. From this, as in the configuration of this example, the squareness ratio, the square coercive force, and the Delta M plot satisfy the conditions of the present invention, the coercive force is 2000 eslutted or more, and the saturation magnetic flux density is 1.5 T or less in the medium. It was confirmed that by performing recording / reproducing using a head having the material of (1) in the gap portion, it is possible to realize a tape / head combination capable of constant current recording without the need to change the recording current depending on the frequency.

【0061】[0061]

【実施例5】実施例4のサンプルTD−1にさらに斜め
配向を加えたテープをサンプルTGとした。これは上層
の磁性層を塗布後未乾燥のうちに媒体面内から膜面垂直
方向に向かって、約30度の方向に磁界を印加し、配向
するまで作成した。このサンプルTGとサンプルTFの
孤立再生波形を調べた。サンプルTGは孤立再生波形の
前衛部がブロードに歪んでおり、蒸着テープと非常に近
い歪特性を得ることができた。また、実施例4で使用し
た1.5Tのヘッドを用いて入出力特性を調べると、実
施例4のサンプルTFと同様に記録減磁は生じなかっ
た。さらに、このサンプルの波長0.5μmでの出力、
ノイズ、消去特性、O/W特性、また60℃80%環境
中に100時間放置した後の消去特性を表12に示す。
Example 5 A tape obtained by further obliquely orienting the sample TD-1 of Example 4 was used as a sample TG. This was prepared by applying a magnetic field in the direction perpendicular to the film surface from the inside of the medium in a direction of about 30 degrees while the film was not dried after coating the upper magnetic layer until the orientation was achieved. The isolated reproduced waveforms of the sample TG and the sample TF were examined. In the sample TG, the avant-garde portion of the isolated reproduction waveform was broadly distorted, and distortion characteristics very close to those of the vapor deposition tape could be obtained. When the input / output characteristics were examined using the 1.5T head used in Example 4, recording demagnetization did not occur as in the sample TF of Example 4. Furthermore, the output of this sample at a wavelength of 0.5 μm,
Table 12 shows the noise, the erasing characteristics, the O / W characteristics, and the erasing characteristics after being left in an environment of 60 ° C. and 80% for 100 hours.

【0062】[0062]

【表12】 [Table 12]

【0063】この結果より短波長の出力は斜め配向を施
すことでさらに向上し、消去特性とO/W特性がサンプ
ルTFよりさらに向上しているのがわかる。なお以上の
実施例では、本発明に用いることのできる磁性粉の材
質、非磁性支持体、バインダー、また、カーボン、研磨
剤等の添加剤は、一般に公知とされているものを使うこ
とができ、例えば、特開平5−73883号公報に開示
されている材料などを使用できる。
From this result, it can be seen that the output of short wavelength is further improved by the oblique orientation, and the erasing characteristics and the O / W characteristics are further improved as compared with the sample TF. In the above examples, as the material of the magnetic powder, the non-magnetic support, the binder, and the additives such as carbon and abrasive which can be used in the present invention, those generally known can be used. For example, the materials disclosed in JP-A-5-73883 can be used.

【0064】[0064]

【発明の効果】以上のように本発明によれば、消去特性
及びO/W特性がよく、しかも高出力で低ノイズの磁気
記録媒体を提供できる。また、磁性層の厚みを0.5μ
m以下にすることによって、高温高湿度中に放置後の消
去特性も悪化しない。さらに、保磁力を2000エルス
テッド以上にし、1.5T以下の飽和磁束密度を有する
ヘッドと組み合わせることで、記録電流に周波数依存性
のない、デジタル記録に適した媒体を提供できる。
As described above, according to the present invention, it is possible to provide a magnetic recording medium having good erasing characteristics and O / W characteristics, high output and low noise. In addition, the thickness of the magnetic layer is 0.5μ.
By setting the thickness to m or less, the erasing property after being left in high temperature and high humidity does not deteriorate. Furthermore, by setting the coercive force to 2000 oersted or more and combining with a head having a saturation magnetic flux density of 1.5 T or less, it is possible to provide a medium suitable for digital recording, which has no frequency dependence on the recording current.

【図面の簡単な説明】[Brief description of the drawings]

【図1】角形保磁力の測定方法を示す図。FIG. 1 is a diagram showing a method of measuring a square coercive force.

【図2】DCレマネンスを説明する図。FIG. 2 is a diagram illustrating DC remanence.

【図3】ACレマネンスを説明する図。FIG. 3 is a diagram illustrating AC remanence.

【図4】ヘンケルプロットを説明する図。FIG. 4 is a diagram illustrating a Henkel plot.

【図5】デルタMプロットを説明する図。FIG. 5 is a diagram illustrating a Delta M plot.

【図6】本発明の一実施例のサンプルテープの特性の異
なるヘッドを用いた場合の波長30μmと0.5μmにお
ける入出力特性を示す図。
FIG. 6 is a diagram showing input / output characteristics at wavelengths of 30 μm and 0.5 μm when heads having different characteristics of the sample tape of one embodiment of the present invention are used.

【符号の説明】[Explanation of symbols]

1 BHループ上で保磁力を示す点 2 保磁力の点での接線 3 BHループ上で残留磁束密度を示す点 4 残留磁束密度から2の接線までの距離を示す磁界強
度 5 MHループ上の最大磁化を示す点 6 DCレマネンスを測定する磁界 7 印加磁界6の時のDCレマネンス 8 次の測定磁界 9 DCレマネンス特性を示す曲線 10 消磁状態 11 ACレマネンスを測定する磁界 12 印加磁界11の時のACレマネンス 13 初期磁化曲線 14 次の測定磁界 15 ACレマネンス特性を示す曲線 17 Henkelプロット上でDC=1−2*ACと
なる直線 18 正の相互作用がある場合の例 19 負の相互作用がある場合の例 20 18に対応するデルタMプロット 21 19に対応するデルタMプロット 22 波長30μmで1.5Tのヘッドを用いた時の入
出力特性 23 波長30μmで1.7Tのヘッドを用いた時の入
出力特性 24 波長0.5μmで1.5Tのヘッドを用いた時の
入出力特性 23 波長0.5μmで1.7Tのヘッドを用いた時の
入出力特性
1 Point showing coercive force on BH loop 2 Tangent at point of coercive force 3 Point showing residual magnetic flux density on BH loop 4 Magnetic field strength showing distance from residual magnetic flux density to tangent 2 5 Maximum on MH loop Point indicating magnetization 6 Magnetic field for measuring DC remanence 7 DC remanence at applied magnetic field 8 8th measured magnetic field 9 Curve showing DC remanence characteristics 10 Demagnetized state 11 AC magnetic field for measuring remanence 12 AC at applied magnetic field 11 Remanence 13 Initial magnetization curve 14 Next measured magnetic field 15 AC Curve showing the remanence characteristics 17 Straight line where DC = 1-2 * AC on Henkel plot 18 Example of positive interaction 19 Case of negative interaction Example 20 Delta M plot corresponding to 18 21 Delta M plot corresponding to 19 22 Using a 1.5T head at a wavelength of 30 μm Input / output characteristics when using a 1.7T head at a wavelength of 30 μm 23 Input / output characteristics when using a 1.5T head at a wavelength of 0.5 μm 23 Input / output characteristics at a wavelength of 0.5 μm Input / output characteristics when using a 7T head

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 非磁性支持体上に磁性粉体を結合剤と共
に塗布することによって作成される磁気記録媒体であっ
て、媒体の角形比が0.80以上であることを特徴とす
る磁気記録媒体。
1. A magnetic recording medium prepared by coating magnetic powder with a binder on a non-magnetic support, wherein the squareness ratio of the medium is 0.80 or more. Medium.
【請求項2】 媒体の角形保磁力が0.7以上である請
求項1に記載の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the square coercive force of the medium is 0.7 or more.
【請求項3】 磁気記録媒体のデーシー デマグネティ
ゼーション レマネンス(dc demagnetisation remanen
ce、以下「dcレマネンス特性」)と、アイソマル レ
マネンス(isothermal remanence、以下「acレマネン
ス特性」)から得られるデルタMプロットの最大値が、
0.5以下である請求項1に記載の磁気記録媒体。
3. A dc demagnetization remanen of a magnetic recording medium.
ce, hereinafter “dc remanence characteristic”) and the maximum value of the Delta M plot obtained from isoma remanence (hereinafter “ac remanence characteristic”),
The magnetic recording medium according to claim 1, which is 0.5 or less.
【請求項4】 非磁性支持体上の磁性層の厚さが0.5
μm以下である請求項1に記載の磁気記録媒体。
4. The thickness of the magnetic layer on the non-magnetic support is 0.5.
The magnetic recording medium according to claim 1, which has a thickness of not more than μm.
【請求項5】 非磁性支持体上に厚さ0.5μm以下の
磁性層を有し、媒体の保磁力が2000エルステッド以
上あり、かつ角形保磁力が0.7以上であり、さらにd
cレマネンス特性とacレマネンス特性から得られるデ
ルタMプロットの最大値が0.5以下であり、さらにこ
の磁性層は媒体の面内方向から垂直方向に向う斜めの方
向に配向する請求項1に記載の磁気記録媒体。
5. A magnetic layer having a thickness of 0.5 μm or less on a non-magnetic support, the coercive force of the medium is 2000 oersteds or more, and the rectangular coercive force is 0.7 or more, and d
The maximum value of the delta M plot obtained from the c remanence characteristic and the ac remanence characteristic is 0.5 or less, and further, the magnetic layer is oriented in an oblique direction from the in-plane direction of the medium to the vertical direction. Magnetic recording medium.
【請求項6】 非磁性支持体上に厚さ0.5μm以下の
磁性層を有し、媒体の保磁力が2000エルステッド以
上あり、かつ角形保磁力が0.7以上であり、さらにd
cレマネンス特性とacレマネンス特性から得られるデ
ルタMプロットの最大値が0.5以下である磁気記録媒
体と、ギャップ部に1.5T以下の飽和磁束密度を持つ
部材を含むヘッドを組み合わせて磁気記録を行うことを
特徴とする磁気記録方法。
6. A magnetic layer having a thickness of 0.5 μm or less on a non-magnetic support, the medium has a coercive force of 2000 oersteds or more, and a rectangular coercive force of 0.7 or more, and d
Magnetic recording by combining a c-remanence characteristic and a magnetic recording medium having a maximum Delta M plot of 0.5 or less obtained from the ac remanence characteristic with a head including a member having a saturation magnetic flux density of 1.5 T or less in the gap portion A magnetic recording method comprising:
JP32417095A 1995-12-13 1995-12-13 Magnetic recording medium and magnetic recording method using the same Pending JPH09161259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32417095A JPH09161259A (en) 1995-12-13 1995-12-13 Magnetic recording medium and magnetic recording method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32417095A JPH09161259A (en) 1995-12-13 1995-12-13 Magnetic recording medium and magnetic recording method using the same

Publications (1)

Publication Number Publication Date
JPH09161259A true JPH09161259A (en) 1997-06-20

Family

ID=18162887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32417095A Pending JPH09161259A (en) 1995-12-13 1995-12-13 Magnetic recording medium and magnetic recording method using the same

Country Status (1)

Country Link
JP (1) JPH09161259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013025853A (en) * 2011-07-25 2013-02-04 Fujifilm Corp Magnetic tape and magnetic recorder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013025853A (en) * 2011-07-25 2013-02-04 Fujifilm Corp Magnetic tape and magnetic recorder
US8841009B2 (en) 2011-07-25 2014-09-23 Fujifilm Corporation Magnetic tape and magnetic recording device

Similar Documents

Publication Publication Date Title
JP2006092672A (en) Magnetic tape
JP2644322B2 (en) Magnetic recording media
US4239637A (en) Magnetic material for recording media
JPH09161259A (en) Magnetic recording medium and magnetic recording method using the same
JPH0798834A (en) Magnetic recording medium
JP2632943B2 (en) Magnetic recording media
JP2000030238A (en) Magnetic recording medium, magnetic powder and magnetic recording medium in which transfer magnetic field is recorded
JPH0349025A (en) magnetic recording medium
JP2814527B2 (en) Magnetic recording media
JPS6173206A (en) Magnetic recording and reproducing system
JP3057528B2 (en) Obliquely oriented magnetic recording media
JPH0349024A (en) magnetic recording medium
JPH0773445A (en) Magnetic recording medium and recording method
JPS6194228A (en) Magnetic recording medium
JPS61123021A (en) Magnetic recording medium
JPS6194226A (en) Magnetic recording medium
JPH0562161A (en) Magnetic recording medium and its manufacture
JPS61123022A (en) Magnetic recording medium
JPH0562152A (en) Magnetic tape
JPH06279712A (en) Production of magnetic coating material and magnetic recording medium
JPH0684163A (en) Magnetic recording medium
JPS61123020A (en) Magnetic recording medium
JPS6194225A (en) Magnetic recording medium
JPS6196517A (en) Magnetic recording medium
JPH06338042A (en) Magnetic recording medium and its production