JPH09160049A - Liquid crystal display device and alignment layer forming method therefor - Google Patents
Liquid crystal display device and alignment layer forming method thereforInfo
- Publication number
- JPH09160049A JPH09160049A JP32462695A JP32462695A JPH09160049A JP H09160049 A JPH09160049 A JP H09160049A JP 32462695 A JP32462695 A JP 32462695A JP 32462695 A JP32462695 A JP 32462695A JP H09160049 A JPH09160049 A JP H09160049A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- alignment
- polyimide
- crystal display
- rubber component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、液晶表示素子お
よびその製造方法に関するものである。The present invention relates to a liquid crystal display device and a method for manufacturing the same.
【0002】[0002]
【従来の技術】液晶表示素子は、液晶層をはさんで対向
する一対の基板の内面にそれぞれ、前記液晶層に電界を
印加するための電極と、液晶の分子の所定の配向状態に
配向させるための配向膜とを設けたものであり、前記配
向膜は一般にポリイミドで形成され、その膜面にはラビ
ングによる配向処理が施されている。2. Description of the Related Art In a liquid crystal display element, electrodes for applying an electric field to the liquid crystal layer are aligned on the inner surfaces of a pair of substrates facing each other across the liquid crystal layer, and liquid crystal molecules are aligned in a predetermined alignment state. The alignment film is generally formed of polyimide, and the film surface is subjected to an alignment treatment by rubbing.
【0003】[0003]
【発明が解決しようとする課題】しかし、従来の液晶表
示素子は、上記ポリイミドからなる配向膜の表面粗さ
(JISで規定されている凹凸の振幅に関する中心線平
均粗さRa)が10nm〜20nmと大きく、したがっ
て、配向膜上における液晶分子の配向状態や液晶層厚
(両基板の配向膜面間の間隔)にムラがあり、また、配
向膜の複屈折位相差(配向膜の複屈折性と膜厚との積の
値)にもムラがあるため、表示にムラを生じるという問
題をもっている。However, in the conventional liquid crystal display device, the surface roughness (center line average roughness Ra concerning the amplitude of the irregularities defined by JIS) of the above-mentioned polyimide alignment film is 10 nm to 20 nm. Therefore, the alignment state of liquid crystal molecules on the alignment film and the liquid crystal layer thickness (distance between the alignment film surfaces of both substrates) are uneven, and the birefringence phase difference of the alignment film (birefringence of the alignment film is large). Since there is unevenness in the value of the product of the film thickness and the film thickness, there is a problem in that the display is uneven.
【0004】この発明は、配向膜上における液晶分子の
配向状態や液晶層厚のムラを少なくするとともに、配向
膜の複屈折位相差のムラも少なくして、ムラのない高品
質の表示を得ることができる液晶表示素子を提供すると
ともに、あわせてその製造方法を提供することを目的と
したものである。According to the present invention, the alignment state of liquid crystal molecules on the alignment film and the unevenness of the liquid crystal layer thickness are reduced, and the unevenness of the birefringence phase difference of the alignment film is also reduced to obtain a high quality display without unevenness. It is an object of the present invention to provide a liquid crystal display device that can be manufactured and also provide a manufacturing method thereof.
【0005】[0005]
【課題を解決するための手段】この発明の液晶表示素子
は、液晶層をはさんで対向する一対の基板の内面にそれ
ぞれ設ける配向膜の少なくとも一方が、ゴム成分を含有
させたポリイミドからなることを特徴とするものであ
る。In the liquid crystal display element of the present invention, at least one of the alignment films respectively provided on the inner surfaces of a pair of substrates sandwiching the liquid crystal layer and facing each other is made of a polyimide containing a rubber component. It is characterized by.
【0006】なお、前記配向膜の表面粗さが約5nm以
下であることが望ましく、また、前記ポリイミドのゴム
成分の含有量は約5重量%以下が望ましい。この液晶表
示素子によれば、配向膜の表面粗さが極く小さいため、
配向膜上における液晶分子の配向状態や液晶層厚のムラ
を少なくするとともに、配向膜の複屈折位相差のムラも
少なくして、ムラのない高品質の表示を得ることができ
る。The surface roughness of the alignment film is preferably about 5 nm or less, and the content of the rubber component of the polyimide is preferably about 5% by weight or less. According to this liquid crystal display element, since the surface roughness of the alignment film is extremely small,
It is possible to reduce the unevenness of the alignment state of liquid crystal molecules and the thickness of the liquid crystal layer on the alignment film, and to reduce the unevenness of the birefringence phase difference of the alignment film to obtain a high-quality display without unevenness.
【0007】また、この発明の液晶表示素子の製造方法
は、前記ゴム成分を含有させたポリイミドからなる配向
膜を、基板上にゴム成分を添加したポリイミド前駆体を
塗布し、その膜を50℃/分〜75℃/分の昇温速度で
200℃〜250℃に加熱してイミド化することにより
形成することを特徴とするものであり、この製造方法に
よれば、配向膜の表面粗さを約5nm以下にした上記液
晶表示素子を得ることができる。Further, in the method for manufacturing a liquid crystal display device of the present invention, an alignment film made of polyimide containing the rubber component is applied on a substrate with a polyimide precursor containing the rubber component, and the film is formed at 50 ° C. / Min to 75 ° C / min at a temperature rising rate of 200 ° C to 250 ° C for imidization, and according to this production method, the surface roughness of the alignment film is It is possible to obtain the above liquid crystal display device having a thickness of about 5 nm or less.
【0008】[0008]
【発明の実施の形態】以下、この発明の実施の形態を図
面を参照して説明する。図1は液晶表示素子の断面図で
ある。この液晶表示素子は、液晶LCの層をはさんで対
向する一対の透明基板1,2の内面にそれぞれ、液晶層
に電界を印加するための透明な電極3,4と、液晶の分
子を所定の配向状態に配向させるための配向膜5,6と
を設けたもので、前記一対の基板1,2は枠状のシール
材7を介して接合されており、液晶LCは両基板1,2
間の前記シール材7で囲まれた領域に充填されている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a liquid crystal display element. In this liquid crystal display element, transparent electrodes 3 and 4 for applying an electric field to the liquid crystal layer and a predetermined number of liquid crystal molecules are provided on the inner surfaces of a pair of transparent substrates 1 and 2 which face each other across the liquid crystal LC layer. The alignment films 5 and 6 for aligning in the alignment state are provided, and the pair of substrates 1 and 2 are bonded to each other via a frame-shaped sealing material 7.
It is filled in the area surrounded by the sealing material 7 between.
【0009】この液晶LCの分子は、両基板1,2の近
傍における配向方向を前記配向膜5,6で規制されて所
定の配向状態に配向しており、また、両基板1,2の外
面にはそれぞれ偏光板8,9が配置されており、これら
の偏光板8,9は、その光学軸(透過軸または吸収軸)
を所定の向きにして設けられている。The molecules of the liquid crystal LC are aligned in a predetermined alignment state by controlling the alignment directions in the vicinity of the substrates 1 and 2 by the alignment films 5 and 6, and also on the outer surfaces of the substrates 1 and 2. Polarizing plates 8 and 9 are respectively arranged in the optical axis, and these polarizing plates 8 and 9 have their optical axes (transmission axis or absorption axis).
Is provided in a predetermined direction.
【0010】なお、この実施例の液晶表示素子は、TN
(ツィステッドネマティック)型またはSTN(スーパ
ーツィステッドネマティック)型のものであり、上記液
晶LCは誘電異方性が正のネマティック液晶であって、
その分子は、両基板1,2間において所定のツイスト角
(TN型の場合はほぼ90°、STN型の場合は180
°〜270°)でツイスト配向している。The liquid crystal display device of this embodiment has a TN
(Twisted nematic) type or STN (super twisted nematic) type, and the liquid crystal LC is a nematic liquid crystal having positive dielectric anisotropy,
The numerator has a predetermined twist angle between the substrates 1 and 2 (approximately 90 ° for the TN type, 180 ° for the STN type).
It is twisted at an angle of 270 ° to 270 °.
【0011】また、この液晶表示素子は、単純マトリッ
クス方式のものであり、一方の基板1に設けられた透明
電極3は行方向(図1において左右方向)に沿わせて多
数本互いに平行に形成された走査電極、他方の基板2に
設けられた透明電極4は列方向(図1において紙面に垂
直な方向)に沿わせて多数本互いに平行に形成された信
号電極である。Further, this liquid crystal display element is of a simple matrix system, and a plurality of transparent electrodes 3 provided on one substrate 1 are formed in parallel with each other along the row direction (left and right direction in FIG. 1). The scanning electrodes formed as described above and the transparent electrodes 4 provided on the other substrate 2 are signal electrodes formed in parallel with each other in the column direction (direction perpendicular to the paper surface in FIG. 1).
【0012】なお、図1には示していないが、カラー画
像を表示する液晶表示素子では、両基板1,2のいずれ
か一方の内面(透明電極の上または下)に、各画素部に
それぞれ対応させて、複数のカラーフィルタ、例えば
赤、緑、青のカラーフィルタを交互に並べて形成してい
る。Although not shown in FIG. 1, in a liquid crystal display device for displaying a color image, each of the pixel portions is provided on the inner surface (above or below the transparent electrode) of one of the substrates 1 and 2. Correspondingly, a plurality of color filters, for example, red, green, and blue color filters are alternately arranged.
【0013】そして、この実施例では、上記一対の基板
1,2の内面にそれぞれ設ける配向膜5,6の両方を、
ゴム成分を含有させたポリイミドで形成し、これら配向
膜5,6の表面粗さ、つまりJISで規定されている凹
凸の振幅に関する中心線平均粗さRaを、約5nm以下
にしている。In this embodiment, both of the alignment films 5 and 6 provided on the inner surfaces of the pair of substrates 1 and 2 are
The alignment films 5 and 6 are formed of polyimide containing a rubber component, and the surface roughness of the alignment films 5 and 6, that is, the center line average roughness Ra with respect to the amplitude of the unevenness defined by JIS is set to about 5 nm or less.
【0014】すなわち、上記配向膜5,6は、例えば、
次の[化1]の構造式で表される骨格構造をもったポリ
イミド(以下、ポリイミドAという)、または、次の
[化2]の構造式で表される骨格構造をもったポリイミ
ド(以下、ポリイミドBという)に、天然ゴムまたはそ
れに近い物性の合成ゴムの成分を含有させたものであ
り、ゴム成分含有量は、いずれのポリイミドA,Bにお
いても、約3重量%〜約5重量%とされている。That is, the alignment films 5 and 6 are, for example,
A polyimide having a skeleton structure represented by the following structural formula [Chemical Formula 1] (hereinafter referred to as polyimide A), or a polyimide having a skeletal structure represented by the following structural formula [Chemical Formula 2] (hereinafter , Polyimide B) containing a component of natural rubber or a synthetic rubber having physical properties similar to that of the natural rubber. The content of the rubber component in each of the polyimides A and B is about 3% by weight to about 5% by weight. It is said that.
【0015】[0015]
【化1】 Embedded image
【0016】[0016]
【化2】 Embedded image
【0017】図2は、上記ポリイミドのゴム成分含有量
と、そのポリイミド膜(配向膜)の表面粗さRaとの関
係を示した図であり、実線は上記[化1]の構造式で表
される骨格構造をもったポリイミドAを示し、破線は上
記[化2]の構造式で表される骨格構造をもったポリイ
ミドBを示している。なお、これらのポリイミドA,B
は、いずれも、ポリイミド前駆体を後述する条件でイミ
ド化して形成したものである。FIG. 2 is a diagram showing the relationship between the rubber component content of the polyimide and the surface roughness Ra of the polyimide film (orientation film), and the solid line represents the structural formula of [Chemical Formula 1] above. Polyimide A having a skeleton structure is shown, and the broken line shows a polyimide B having a skeleton structure represented by the structural formula of [Chemical Formula 2]. In addition, these polyimides A and B
Are all formed by imidizing a polyimide precursor under the conditions described below.
【0018】この図2のように、上記ポリイミドA,B
はいずれも、ゴム成分を含有しない(含有量=0重量
%)ものは、その表面粗さRaが20nm程度とかなり
大きいが、ゴム成分を含有させたものは、その含有量が
増加するのにともなって表面粗さRaが小さくなり、ゴ
ム成分の含有量が3.0重量%以上になると、表面粗さ
Raが約5nmと極く小さくなる。As shown in FIG. 2, the polyimides A and B described above are used.
In both cases, the rubber containing no rubber component (content = 0% by weight) has a considerably large surface roughness Ra of about 20 nm, but the rubber component containing the rubber component has an increased content. Along with this, the surface roughness Ra becomes small, and when the content of the rubber component becomes 3.0% by weight or more, the surface roughness Ra becomes extremely small at about 5 nm.
【0019】なお、ゴム成分の含有量を多くしすぎる
と、ポリイミドの物性に悪影響を及ぼすようになるた
め、ゴム成分の含有量は約5重量%以下が望ましく、し
たがって、この実施例では、上記ポリイミドA,Bのい
ずれを用いる場合も、そのゴム成分の含有量を約3重量
%〜約5重量%としている。If the content of the rubber component is too large, the physical properties of the polyimide will be adversely affected. Therefore, it is desirable that the content of the rubber component be about 5% by weight or less. Regardless of whether polyimide A or B is used, the content of the rubber component is about 3% by weight to about 5% by weight.
【0020】そして、上記ポリイミドからなる配向膜
5,6は、その膜面を所定の方向にラビングして配向処
理されており、そのラビング後の屈折率位相差(配向膜
の複屈折性と膜厚との積の値)は、0.3nm±0.0
15nmである。The alignment films 5 and 6 made of the polyimide are subjected to alignment treatment by rubbing the film surface in a predetermined direction, and the refractive index phase difference after the rubbing (the birefringence of the alignment film and the film). The value of the product with the thickness) is 0.3 nm ± 0.0
It is 15 nm.
【0021】また、この実施例では、上記液晶LCに、
次の[化3]の構造式(1) で表される液晶物質が20重
量%以下、構造式(2) で表される液晶物質が25重量%
以下で、分子長軸に平行な方向の誘電率ε(平行)が1
1.5〜12.0、分子長軸に垂直な方向の誘電率ε
(垂直)が3.5〜4.0、誘電異方性Δεが8以下
の、通常のネマティック液晶に比べて極性の低い液晶材
料を用いている。In this embodiment, the liquid crystal LC is
20% by weight or less of the liquid crystal substance represented by the following structural formula (1) and 25% by weight of the liquid crystal substance represented by the structural formula (2).
Below, the dielectric constant ε (parallel) in the direction parallel to the long axis of the molecule is 1
1.5 to 12.0, dielectric constant ε in the direction perpendicular to the molecular long axis
A liquid crystal material having a (vertical) of 3.5 to 4.0 and a dielectric anisotropy Δε of 8 or less and having a polarity lower than that of a normal nematic liquid crystal is used.
【0022】[0022]
【化3】 Embedded image
【0023】上記液晶表示素子の製造方法を説明する
と、この液晶表示素子は、電極3,4を形成し、その上
に上記配向膜4,5を形成した一対の基板1,2をシー
ル材7を介して接合して液晶セルを組立て、前記シール
材7の一部をあらかじめ欠落させて形成しておいた液晶
注入口(図示せず)から真空注入法により液晶セル内に
液晶LCを注入した後、前記液晶注入口を封止し、その
後に両基板1,2の外面にそれぞれ偏光板8,9を貼り
付ける方法で製造する。A method of manufacturing the liquid crystal display element will be described. In this liquid crystal display element, a pair of substrates 1 and 2 on which electrodes 3 and 4 are formed and on which the alignment films 4 and 5 are formed, are used as a sealing material 7. A liquid crystal cell was assembled by bonding via a liquid crystal cell, and a liquid crystal LC was injected into the liquid crystal cell by a vacuum injection method from a liquid crystal injection port (not shown) formed by removing a part of the sealing material 7 in advance. After that, the liquid crystal injection port is sealed, and then the polarizing plates 8 and 9 are attached to the outer surfaces of the substrates 1 and 2, respectively.
【0024】この製造方法において、上記ゴム成分を含
有させたポリイミドからなる配向膜5,6は、基板1,
2上にゴム成分を添加したポリイミド前駆体を塗布し、
その膜を、50℃/分〜75℃/分の昇温速度で200
℃〜250℃に加熱してイミド化することにより形成
し、その後、配向膜面をラビングする。In this manufacturing method, the alignment films 5 and 6 made of polyimide containing the above-mentioned rubber component are
2 is coated with a polyimide precursor containing a rubber component,
The film is heated to 200 ° C. at a heating rate of 50 ° C./min to 75 ° C./min.
It is formed by heating at ℃ to 250 ℃ and imidized, and then the alignment film surface is rubbed.
【0025】ここで、ポリイミド前駆体に添加するゴム
成分の添加量は、前記ポリイミド前駆体をイミド化した
ときのゴム成分含有量が約3重量%〜約5重量%になる
ように選ぶ。Here, the amount of the rubber component added to the polyimide precursor is selected so that the content of the rubber component when the polyimide precursor is imidized is about 3% by weight to about 5% by weight.
【0026】このように、ゴム成分を添加したポリイミ
ド前駆体を基板1,2上に塗布して、その膜を上記の条
件(昇温速度50℃/分〜75℃/分、加熱温度200
℃〜250℃)でイミド化すると、ゴム成分を添加した
ポリイミドからなる、表面粗さRaが約5nm以下の配
向膜5,6が得られる。In this way, the polyimide precursor containing the rubber component is coated on the substrates 1 and 2, and the film is formed under the above-mentioned conditions (heating rate 50 ° C./min to 75 ° C./min, heating temperature 200).
When the film is imidized at (° C. to 250 ° C.), alignment films 5 and 6 made of polyimide with a rubber component added and having a surface roughness Ra of about 5 nm or less are obtained.
【0027】図3は、上記ゴム成分を添加したポリイミ
ド前駆体を加熱によりイミド化する際の昇温速度と、形
成されたポリイミド膜(配向膜)の表面粗さRaとの関
係を示した図であり、実線は上記[化1]の構造式で表
される骨格構造をもったポリイミドAを示し、破線は上
記[化2]の構造式で表される骨格構造をもったポリイ
ミドBを示している。FIG. 3 is a diagram showing the relationship between the rate of temperature rise when imidizing the polyimide precursor containing the rubber component by heating and the surface roughness Ra of the formed polyimide film (alignment film). And the solid line indicates the polyimide A having the skeleton structure represented by the structural formula [Chemical formula 1], and the broken line indicates the polyimide B having the skeleton structure represented by the structural formula [Chemical formula 2]. ing.
【0028】この図3のように、上記ポリイミドは、ゴ
ム成分を約3重量%〜約5重量%の含有量で含有するも
のであっても、ポリイミド前駆体をイミド化する際の昇
温速度が速いと、形成されたポリイミド膜の表面粗さR
aが大きくなるが、例えば75℃/分の昇温速度でイミ
ド化温度(200℃〜250℃)まで昇温させれば、形
成されたポリイミド膜の表面粗さRaを約5nm以下に
抑えることができる。As shown in FIG. 3, even if the polyimide contains a rubber component in an amount of about 3% by weight to about 5% by weight, the rate of temperature rise during imidization of the polyimide precursor is high. If it is fast, the surface roughness R of the formed polyimide film
Although a becomes large, if the temperature is raised to the imidization temperature (200 ° C. to 250 ° C.) at a heating rate of 75 ° C./min, the surface roughness Ra of the formed polyimide film is suppressed to about 5 nm or less. You can
【0029】なお、このポリイミド膜の表面粗さRa
は、昇温速度を遅くするのにともなって小さくなるが、
昇温速度を遅くするとイミド化能率が悪くなるため、こ
の実施例では、前記昇温速度を50℃/分〜75℃/分
に設定し、イミド化能率をあまり低下させることなく、
表面粗さRaが約5nm以下のポリイミド膜を形成して
いる。The surface roughness Ra of this polyimide film is
Becomes smaller as the heating rate is slowed,
Since the imidization efficiency deteriorates when the heating rate is slowed down, in this example, the heating rate was set to 50 ° C./min to 75 ° C./min, and the imidization efficiency was not lowered so much.
A polyimide film having a surface roughness Ra of about 5 nm or less is formed.
【0030】上記液晶表示素子によれば、上記配向膜
5,6の表面粗さが5nm以下と極く小さいため、この
配向膜5,6上における液晶分子の配向状態や液晶層厚
のムラを少なくするとともに、配向膜の複屈折位相差の
ムラも少なくして、ムラのない高品質の表示を得ること
ができる。According to the above liquid crystal display element, since the surface roughness of the alignment films 5 and 6 is as small as 5 nm or less, the alignment state of the liquid crystal molecules and the unevenness of the liquid crystal layer thickness on the alignment films 5 and 6 are not affected. In addition to reducing the number, the unevenness of the birefringence phase difference of the alignment film is also reduced, and high quality display without unevenness can be obtained.
【0031】すなわち、上記液晶表示素子においては、
液晶分子が配向膜5,6の膜面に対しある程度プレチル
トした状態で前記配向膜5,6の配向処理方向(ラビン
グ方向)に配向する。That is, in the above liquid crystal display device,
The liquid crystal molecules are aligned in the alignment treatment direction (rubbing direction) of the alignment films 5 and 6 in a state of being pretilted to the film surfaces of the alignment films 5 and 6 to some extent.
【0032】この場合、従来の液晶表示素子では、配向
膜の表面粗さRaが10nm〜20nmと大きいため、
液晶分子のプレチルト角に配向膜の表面の粗さに応じた
大きなバラつきがあるが、上記実施例の液晶表示素子で
は、配向膜5、6の表面粗さRaが約5nm以下と小さ
いため、液晶分子のプレチルト角のばらつき幅は小さ
い。In this case, in the conventional liquid crystal display element, since the surface roughness Ra of the alignment film is as large as 10 nm to 20 nm,
The pretilt angle of the liquid crystal molecules has a large variation depending on the roughness of the surface of the alignment film. However, in the liquid crystal display element of the above-described embodiment, the surface roughness Ra of the alignment films 5 and 6 is as small as about 5 nm or less, and therefore the liquid crystal The variation width of the pretilt angle of the molecule is small.
【0033】図4は、配向膜の表面粗さRaと、液晶分
子のプレチルト角との関係を示した図であり、図におい
て黒点は各表面粗さに対応するプレチルト角の最多値を
示し、その上下の線はプレチルト角のばらつき幅を示し
ている。FIG. 4 is a diagram showing the relationship between the surface roughness Ra of the alignment film and the pretilt angle of the liquid crystal molecules. In the figure, the black dots represent the maximum value of the pretilt angle corresponding to each surface roughness, The upper and lower lines show the variation width of the pretilt angle.
【0034】この図4のように、液晶分子のプレチルト
角は、配向膜の表面粗さRaが大きいほど小さくなり、
それにともなってプレチルト角のばらつき幅が増加する
が、配向膜の表面粗さRaが約5nm以下であれば、プ
レチルト角のばらつき幅は極く小さい。As shown in FIG. 4, the pretilt angle of the liquid crystal molecules becomes smaller as the surface roughness Ra of the alignment film becomes larger.
Along with this, the variation width of the pretilt angle increases, but if the surface roughness Ra of the alignment film is about 5 nm or less, the variation width of the pretilt angle is extremely small.
【0035】また、液晶分子の配向状態の安定性は、液
晶分子のプレチルト角によって左右され、安定した配向
状態を得るには、液晶分子のプレチルト角をある程度大
きくするのが望ましいが、上記実施例では、液晶LC
に、上記[化3]の構造式(1)で表される液晶物質が2
0重量%以下(通常のネマティック液晶では70重量
%)、構造式(2) で表される液晶物質が25重量%以下
の、極性の低い液晶材料を用いているため、配向膜の表
面粗さRaを約5nm以下としたときの液晶分子のプレ
チルト角が約5.5°〜6.5°と大きく、したがっ
て、安定した液晶分子の配向状態を得ることができる。Further, the stability of the alignment state of the liquid crystal molecules depends on the pretilt angle of the liquid crystal molecules, and it is desirable to increase the pretilt angle of the liquid crystal molecules to some extent in order to obtain a stable alignment state. Then, liquid crystal LC
In addition, the liquid crystal substance represented by the structural formula (1) of [Chemical Formula 3] is 2
The surface roughness of the alignment film is 0% by weight or less (70% by weight for normal nematic liquid crystal), and the liquid crystal material represented by the structural formula (2) is 25% by weight or less, which is a low-polarity liquid crystal material. When Ra is about 5 nm or less, the pretilt angle of the liquid crystal molecules is as large as about 5.5 ° to 6.5 °, so that a stable alignment state of the liquid crystal molecules can be obtained.
【0036】しかも、上記実施例の液晶表示素子は、配
向膜5、6の表面粗さRaが約5nm以下と小さいた
め、液晶層厚、つまり両基板1,2の配向膜5,6の膜
面間の間隔のムラも少なく、したがって、液晶LCの複
屈折異方性Δnと液晶層厚dとの積Δndの値を表示領
域全体にわたってほぼ均一にしすることができる。Moreover, in the liquid crystal display element of the above-mentioned embodiment, since the surface roughness Ra of the alignment films 5 and 6 is as small as about 5 nm or less, the thickness of the liquid crystal layer, that is, the alignment films 5 and 6 of both substrates 1 and 2 are formed. The unevenness of the spacing between the surfaces is small, and therefore the value of the product Δnd of the birefringence anisotropy Δn of the liquid crystal LC and the liquid crystal layer thickness d can be made substantially uniform over the entire display area.
【0037】さらに、上記実施例の液晶表示素子は、配
向膜5、6の表面粗さRaが約5nm以下と小さいた
め、前記配向膜5,6の複屈折位相差、つまり配向膜の
複屈折性と膜厚との積の値のムラも少ない。Further, in the liquid crystal display device of the above embodiment, since the surface roughness Ra of the alignment films 5 and 6 is as small as about 5 nm or less, the birefringence phase difference between the alignment films 5 and 6, that is, the birefringence of the alignment films. There is little variation in the product of the film properties and the film thickness.
【0038】図5は、配向膜の表面粗さRaと、その複
屈折位相差との関係を示した図であり、図において黒点
は各表面粗さに対応する複屈折位相差の最多値を示し、
その上下の線は複屈折位相差のばらつき幅を示してい
る。FIG. 5 is a diagram showing the relationship between the surface roughness Ra of the alignment film and the birefringence phase difference thereof. In the figure, the black dots represent the maximum value of the birefringence phase difference corresponding to each surface roughness. Shows,
The upper and lower lines indicate the width of variation in the birefringence phase difference.
【0039】この図5のように、配向膜の複屈折位相差
は、配向膜の表面粗さRaが大きいほど大きくなり、そ
れにともなって複屈折位相差のばらつき幅が増加する
が、配向膜の表面粗さRaが約5nm以下であれば、複
屈折位相差は0.3nm±0.015nmであって、そ
のばらつき幅が±0.015nmとかなり小さい。As shown in FIG. 5, the birefringence phase difference of the alignment film increases as the surface roughness Ra of the alignment film increases, and the variation width of the birefringence phase difference increases accordingly. When the surface roughness Ra is about 5 nm or less, the birefringence phase difference is 0.3 nm ± 0.015 nm, and the variation width thereof is as small as ± 0.015 nm.
【0040】このため、上記液晶表示素子によれば、配
向膜5,6上における液晶分子の配向状態や液晶層厚の
ムラを少なくするとともに、配向膜5,6の複屈折位相
差のムラも少なくして、ムラのない高品質の表示を得る
ことができる。Therefore, according to the above liquid crystal display device, the alignment state of the liquid crystal molecules on the alignment films 5 and 6 and the unevenness of the liquid crystal layer thickness are reduced, and the birefringence phase difference of the alignment films 5 and 6 is also uneven. By reducing the amount, it is possible to obtain a high-quality display without unevenness.
【0041】また、上記実施例の液晶表示素子の製造方
法によれば、ゴム成分を含有させたポリイミドからなる
配向膜5,6を、基板1,2上にゴム成分を添加したポ
リイミド前駆体を塗布し、その膜を50℃/分〜75℃
/分の昇温速度で200℃〜250℃に加熱してイミド
化することにより形成しているため、配向膜5,6の表
面粗さを約5nm以下にした上記液晶表示素子を得るこ
とができる。Further, according to the manufacturing method of the liquid crystal display element of the above-mentioned embodiment, the alignment films 5 and 6 made of polyimide containing a rubber component are formed on the substrates 1 and 2 and the polyimide precursor containing the rubber component is added. Apply and coat the film at 50 ℃ / min ~ 75 ℃
Since the film is formed by imidization by heating to 200 ° C. to 250 ° C. at a heating rate of / min, it is possible to obtain the above liquid crystal display device in which the surface roughness of the alignment films 5 and 6 is about 5 nm or less. it can.
【0042】なお、上記実施例の液晶表示素子はTN型
またはSTN型のものであるが、この発明は強誘電性液
晶または反強誘電性液晶を用いる強誘電性液晶表示素子
にも適用できる。Although the liquid crystal display element of the above embodiment is of the TN type or STN type, the present invention can be applied to a ferroelectric liquid crystal display element using a ferroelectric liquid crystal or an antiferroelectric liquid crystal.
【0043】この強誘電性液晶表示素子は、液晶層厚の
ムラが液晶分子の配向状態に大きく影響するが、この発
明によれば、液晶層厚のムラを少なくすることができる
ため、強誘電性液晶表示素子に適用したときの効果は大
である。In this ferroelectric liquid crystal display element, the unevenness of the liquid crystal layer thickness has a great influence on the alignment state of the liquid crystal molecules, but according to the present invention, the unevenness of the liquid crystal layer thickness can be reduced, so The effect when applied to a liquid crystal display element is great.
【0044】また、図1に示した液晶表示素子は単純マ
トリックス方式のものであるが、この発明は、アクティ
ブマトリックス方式や、セグメント表示方式の液晶表示
素子にも適用できることはもちろんである。Although the liquid crystal display element shown in FIG. 1 is of a simple matrix type, it goes without saying that the present invention can be applied to an active matrix type or segment display type liquid crystal display element.
【0045】さらに、上記実施例では、両基板1,2に
設ける配向膜5,6の両方を、ゴム成分を含有させたポ
リイミドからなる表面粗さが約5nm以下の配向膜とし
たが、いずれかの配向膜は通常のポリイミドで形成して
もよく、その場合でも、両方の配向膜を通常のポリイミ
ドで形成している従来の液晶表示素子に比べれば、一方
の配向膜上における液晶分子の配向状態や液晶層厚のム
ラを少なくするとともに、前記一方の配向膜の複屈折位
相差のムラも少なくして、ムラのない高品質の表示を得
ることができる。Further, in the above embodiment, both the alignment films 5 and 6 provided on both the substrates 1 and 2 are alignment films made of polyimide containing a rubber component and having a surface roughness of about 5 nm or less. Such an alignment film may be formed of a normal polyimide, and even in that case, compared with a conventional liquid crystal display element in which both alignment films are formed of a normal polyimide, the liquid crystal molecules on one alignment film It is possible to reduce the unevenness of the alignment state and the liquid crystal layer thickness and the unevenness of the birefringence retardation of the one alignment film, and to obtain a high-quality display without unevenness.
【0046】[0046]
【発明の効果】この発明の液晶表示素子によれば、少な
くとも一方の基板の配向膜の表面粗さが極く小さいた
め、配向膜上における液晶分子の配向状態や液晶層厚の
ムラを少なくするとともに、配向膜の複屈折位相差のム
ラも少なくして、ムラのない高品質の表示を得ることが
できる。According to the liquid crystal display element of the present invention, since the surface roughness of the alignment film on at least one substrate is extremely small, the alignment state of liquid crystal molecules on the alignment film and the unevenness of the liquid crystal layer thickness are reduced. At the same time, the unevenness of the birefringence phase difference of the alignment film can be reduced, and a high-quality display without unevenness can be obtained.
【0047】また、この発明の液晶表示素子の製造方法
は、前記ゴム成分を含有させたポリイミドからなる配向
膜を、基板上にゴム成分を添加したポリイミド前駆体を
塗布し、その膜を50℃/分〜75℃/分の昇温速度で
200℃〜250℃に加熱してイミド化することにより
形成することを特徴とするものであり、この製造方法に
よれば、配向膜の表面粗さを約5nm以下にした上記液
晶表示素子を得ることができる。Further, in the method for producing a liquid crystal display device of the present invention, an alignment film made of the polyimide containing the rubber component is coated on a substrate with a polyimide precursor containing the rubber component, and the film is formed at 50 ° C. / Min to 75 ° C / min at a temperature rising rate of 200 ° C to 250 ° C for imidization, and according to this production method, the surface roughness of the alignment film is It is possible to obtain the above liquid crystal display device having a thickness of about 5 nm or less.
【図1】液晶表示素子の断面図。FIG. 1 is a cross-sectional view of a liquid crystal display element.
【図2】ポリイミドのゴム成分含有量とそのポリイミド
膜(配向膜)の表面粗さとの関係を示した図。FIG. 2 is a diagram showing the relationship between the content of a rubber component of polyimide and the surface roughness of the polyimide film (alignment film).
【図3】ゴム成分を添加したポリイミド前駆体を加熱に
よりイミド化する際の昇温速度と形成されたポリイミド
膜(配向膜)の表面粗さとの関係を示した図。FIG. 3 is a view showing a relationship between a temperature rising rate when imidizing a polyimide precursor to which a rubber component is added by heating and a surface roughness of a formed polyimide film (alignment film).
【図4】配向膜の表面粗さと液晶分子のプレチルト角と
の関係を示した図。FIG. 4 is a diagram showing the relationship between the surface roughness of an alignment film and the pretilt angle of liquid crystal molecules.
【図5】配向膜の表面粗さとその複屈折位相差との関係
を示した図。FIG. 5 is a diagram showing the relationship between the surface roughness of an alignment film and its birefringence phase difference.
1,2…基板 3,4…電極 5,6…配向膜 LC…液晶 1, 2 ... Substrate 3, 4 ... Electrode 5, 6 ... Alignment film LC ... Liquid crystal
Claims (4)
面にそれぞれ設ける配向膜の少なくとも一方が、ゴム成
分を含有させたポリイミドからなることを特徴とする液
晶表示素子。1. A liquid crystal display device characterized in that at least one of alignment films provided on the inner surfaces of a pair of substrates sandwiching a liquid crystal layer therebetween is made of a polyimide containing a rubber component.
ることを特徴とする請求項1に記載の液晶表示素子。2. The liquid crystal display device according to claim 1, wherein the surface roughness of the alignment film is about 5 nm or less.
以下であることを特徴とする請求項1または2に記載の
液晶表示素子。3. The rubber component content of polyimide is about 5% by weight.
The liquid crystal display element according to claim 1 or 2, wherein:
方法であって、ゴム成分を含有させたポリイミドからな
る配向膜を、基板上にゴム成分を添加したポリイミド前
駆体を塗布し、その膜を50℃/分〜75℃/分の昇温
速度で200℃〜250℃に加熱してイミド化すること
により形成することを特徴とする配向膜の形成方法。4. A method for manufacturing a liquid crystal display element according to claim 1, wherein an alignment film made of a polyimide containing a rubber component is applied onto a substrate, and a polyimide precursor added with the rubber component is applied onto the substrate. A method for forming an alignment film, comprising forming the film by heating the film at 200 ° C. to 250 ° C. at a temperature rising rate of 50 ° C./min to 75 ° C./min to imidize the film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32462695A JPH09160049A (en) | 1995-12-13 | 1995-12-13 | Liquid crystal display device and alignment layer forming method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32462695A JPH09160049A (en) | 1995-12-13 | 1995-12-13 | Liquid crystal display device and alignment layer forming method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09160049A true JPH09160049A (en) | 1997-06-20 |
Family
ID=18167927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32462695A Pending JPH09160049A (en) | 1995-12-13 | 1995-12-13 | Liquid crystal display device and alignment layer forming method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09160049A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008075419A1 (en) * | 2006-12-20 | 2008-06-26 | Fujitsu Limited | Liquid crystal display element and electronic paper using the same |
JP2013163304A (en) * | 2012-02-10 | 2013-08-22 | Nippon Steel & Sumikin Chemical Co Ltd | Transparent flexible laminate and laminate roll |
-
1995
- 1995-12-13 JP JP32462695A patent/JPH09160049A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008075419A1 (en) * | 2006-12-20 | 2008-06-26 | Fujitsu Limited | Liquid crystal display element and electronic paper using the same |
JP2013163304A (en) * | 2012-02-10 | 2013-08-22 | Nippon Steel & Sumikin Chemical Co Ltd | Transparent flexible laminate and laminate roll |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7018687B2 (en) | Liquid crystal display device | |
JPH03209440A (en) | Liquid crystal display element | |
JP2000338489A (en) | Liquid crystal display device | |
JPH08328045A (en) | Liquid crystal display element | |
JPH09160049A (en) | Liquid crystal display device and alignment layer forming method therefor | |
JPH02208633A (en) | Liquid crystal display device | |
US20120105782A1 (en) | Liquid crystal display element | |
JPH09222604A (en) | Liquid crystal display panel | |
JPH05210101A (en) | Production of ferroelectric liquid crystal element | |
JP2662672B2 (en) | Liquid crystal display device | |
JP2605064B2 (en) | Liquid crystal display device | |
JPH0519231A (en) | Stn type liquid crystal display device | |
JPH112816A (en) | Liquid crystal display element and its manufacture | |
JP2858142B2 (en) | LCD color display | |
JPS62174723A (en) | Liquid crystal element | |
JPH05203933A (en) | Ferroelectric liquid crystal element | |
JPH0273327A (en) | Liquid crystal display element | |
JPH07181495A (en) | Ferroelectric liquid crystal element | |
JPH0990432A (en) | Liquid crystal display element and its production | |
JPH0990433A (en) | Liquid crystal display element and its production | |
JPH0348817A (en) | Liquid crystal electro-optical element | |
JP2860806B2 (en) | LCD color display | |
JPH11174451A (en) | Liquid crystal display device | |
JPH01147430A (en) | Liquid crystal display element | |
JP3062978B2 (en) | Ferroelectric liquid crystal device |