[go: up one dir, main page]

JPH09159752A - System for automatically detecting moving target - Google Patents

System for automatically detecting moving target

Info

Publication number
JPH09159752A
JPH09159752A JP7346444A JP34644495A JPH09159752A JP H09159752 A JPH09159752 A JP H09159752A JP 7346444 A JP7346444 A JP 7346444A JP 34644495 A JP34644495 A JP 34644495A JP H09159752 A JPH09159752 A JP H09159752A
Authority
JP
Japan
Prior art keywords
signal
target
moving target
doppler frequency
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7346444A
Other languages
Japanese (ja)
Other versions
JP2685041B2 (en
Inventor
Toshimitsu Yanagimoto
利光 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7346444A priority Critical patent/JP2685041B2/en
Publication of JPH09159752A publication Critical patent/JPH09159752A/en
Application granted granted Critical
Publication of JP2685041B2 publication Critical patent/JP2685041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the erroneous alarm issuing ratio of a system for automatically detecting moving target and to improve the detection ratio of the system when the system automatically detects a moving target. SOLUTION: A frequency analyzing section 1 analyzes the frequency of input signals received from an underwater moving target, calculates the frequency component and spectral level of the signals, and outputs the calculated results to an time-change-not- requiring reflected wave eliminating section 2 and the section 2 outputs the signals to a spectral level threshold processing section 3 after eliminating a reverberation component. The section 3 performs a threshold process with the spectral level threshold corresponding to a background noise level and outputs the processed results to a signal length threshold processing section 4. The section 4 discriminates whether the input signals are the same received signal divided by the spectral level threshold process. A Doppler frequency variation threshold processing section 5 calculates the Doppler frequency variation of the input signal and performs a threshold process on the input signal by using a Doppler frequency variation threshold indicating the upper limit of the Doppler frequency by the real moving target and an azimuth threshold processing section 6 integrates the scattered azimuths and directions of an input signal group and outputs the integrated results as a moving target signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は移動目標の自動検出
方式に関し、特に音波あるいは電磁波の送信パルスによ
る目標からの反射波データを利用し、移動目標を自動検
出する移動目標の自動検出方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moving target automatic detection method, and more particularly to a moving target automatic detection method for automatically detecting a moving target using reflected wave data from the target by a transmission pulse of a sound wave or an electromagnetic wave.

【0002】[0002]

【従来の技術】従来、この種の移動目標の自動検出方式
は、水中であればパルス状音波を送信し、空中であれば
パルス状電波を送信し、目標から反射して戻ってきた受
信信号の含むドップラ周波数の偏移を検出するために周
波数分析を行って周波数成分およびスペクトルレベルを
求め、これと周波数分析後の受信信号の背景雑音レベル
から求めた閾値とを比較して、閾値を超えるスペクトル
レベルを有する受信信号を移動目標の信号として検出し
ていた。
2. Description of the Related Art Conventionally, this type of automatic detection method of a moving target transmits a pulsed sound wave in water, a pulsed radio wave in the air, and a received signal reflected back from the target. In order to detect the shift of the Doppler frequency including, frequency analysis is performed to obtain the frequency component and spectrum level, and this is compared with the threshold obtained from the background noise level of the received signal after frequency analysis, and the threshold is exceeded. A received signal having a spectral level is detected as a moving target signal.

【0003】このような自動検出方式における目標検出
は、偽の信号を真の信号と判断する割合の誤警報率(fa
lse alarm rate)を増加させずに検出率の向上を図るこ
とが重要な課題の一つとなっており、以下に記述するよ
うな従来技術が知られている。
In the target detection in such an automatic detection system, the false alarm rate (fa) of the rate at which a false signal is judged to be a true signal is determined.
It is one of the important issues to improve the detection rate without increasing the lse alarm rate), and the prior arts described below are known.

【0004】例えば、特開平4−52584号公報に開
示されるように、誤警報率を低減すべく、その原因とな
る不要反射波成分としての送信残響成分を除去する技術
が用いられている。
For example, as disclosed in Japanese Unexamined Patent Publication No. 4-52584, there is used a technique of removing a transmission reverberation component as an unnecessary reflected wave component causing the false alarm rate in order to reduce the false alarm rate.

【0005】図7は、従来の移動目標の自動検出方式に
おける残響除去部の構成例を示すブロック図である。速
度検出回路101において自分の速度を検出する。次
に、パルス信号の送信周波数と、自分の速度とに基づい
て帯域阻止フィルタ制御回路102において残響のスペ
クトラムを抑圧する適応型フィルタ特性を構成するフィ
ルタ係数を算出し、可変帯域阻止フィルタ103に出力
する。
FIG. 7 is a block diagram showing a configuration example of a dereverberation unit in the conventional moving target automatic detection method. The speed detection circuit 101 detects its own speed. Next, based on the transmission frequency of the pulse signal and its own speed, the band stop filter control circuit 102 calculates a filter coefficient that constitutes an adaptive filter characteristic for suppressing the reverberation spectrum, and outputs it to the variable band stop filter 103. To do.

【0006】かくして、目標信号と残響信号とが混在し
ている受信信号は、可変帯域阻止フィルタ103にて残
響が阻止され、検波回路104を経てゲート回路105
にて、背景雑音に基づいて設定する閾値(threshold,ス
レッショルド)を超えるか否かを判定するスペクトルレ
ベル閾値処理により残響を抑圧した目標信号が抽出され
る。
Thus, the reverberation of the received signal in which the target signal and the reverberation signal are mixed is blocked by the variable band stop filter 103, and passes through the detection circuit 104 and the gate circuit 105.
At, a target signal in which reverberation is suppressed is extracted by spectrum level threshold processing that determines whether or not a threshold value (threshold) set based on background noise is exceeded.

【0007】このように、自己の速力と入力信号レベル
の変化に対しては考慮が払われて残響除去が確保されて
いるが、この処理後に引き続き通常利用される周波数分
析手法としてのFFT(Fast Fourier Transform,高速
フーリェ変換)処理においては、送信周波数以外の高調
波周波数を伴うドップラ周波数のスペクトルレベルの対
応そのものについては特に考慮されていない。
As described above, although consideration is given to the change of the input signal level and the speed of oneself, dereverberation is ensured. However, after this processing, FFT (Fast) as a frequency analysis method that is normally used subsequently is performed. In the Fourier Transform (Fast Fourier Transform) processing, the correspondence of the spectral level of the Doppler frequency with harmonic frequencies other than the transmission frequency is not particularly considered.

【0008】この高調波周波数のスペクトルレベルは送
信信号波形と密接に関係し、例えば矩形波の場合は送信
周波数のスペクトルに比してなだらかにレベルが下が
り、且つ両者とも時間(距離)方向にレベルダウンする
特性を示す。
The spectrum level of the harmonic frequency is closely related to the transmission signal waveform. For example, in the case of a rectangular wave, the level is gently lowered as compared with the spectrum of the transmission frequency, and both are level in the time (distance) direction. It shows the characteristic of going down.

【0009】また、送信周波数近傍の残響除去を行う従
来技術として、送信周波数を中心としてある設定した範
囲の受信信号を全て残響として閾値処理を行う技術も用
いられている。
Further, as a conventional technique for removing reverberation in the vicinity of the transmission frequency, there is also used a technique for performing threshold processing with all received signals in a certain set range around the transmission frequency as reverberation.

【0010】また、特開昭56−127685号公報に
開示されているように、海面残響を原因とする誤警報を
低減する技術も用いられている。
Further, as disclosed in Japanese Patent Laid-Open No. 56-127685, there is also used a technique for reducing false alarms caused by sea surface reverberation.

【0011】図8は、従来の海面残響除去の動作の説明
図である。8b2の如き目標信号レベルを対象とする遠
距離における探知は、相対的に残響レベルが低く目標信
号のみの検出が可能であるが、近距離になるに従って、
特にサイドローブ等による海面残響レベルが8aの如く
増大し、海面反射による誤警報が生起してくる。
FIG. 8 is an explanatory view of the conventional operation of removing the reverberation from the sea surface. For detection at a long distance targeting the target signal level such as 8b2, the reverberation level is relatively low and only the target signal can be detected.
In particular, the sea surface reverberation level due to side lobes and the like increases as in 8a, causing false alarms due to sea surface reflection.

【0012】このような海面反射の誤警報を除去するた
めに、初探知時においては初探知時のレベル閾値8cに
示す如く、送信後の受信信号レベルを、また2回目以降
の探知においては目標信号直前の受信信号レベルを閾値
とし、このような閾値を超えた信号を目標信号として出
力する。これらの処理により、海面反射の残響を除去し
ている。
In order to eliminate such a false alarm of sea surface reflection, at the time of initial detection, the level of the received signal after transmission is set as shown in the level threshold value 8c at the time of initial detection, and at the second and subsequent detections, the target signal level is set. The received signal level immediately before the signal is used as a threshold, and a signal exceeding such a threshold is output as a target signal. By these processes, the reverberation of the sea surface reflection is removed.

【0013】また、移動目標の方位算出に関しては、特
開平5−302970号公報に開示されているように、
信号レベルか否かを判定する信号レベルを超える受信信
号群の受信方位の平均値を算出して、目標の方位とする
技術も用いられている。
Regarding the calculation of the direction of the moving target, as disclosed in Japanese Patent Laid-Open No. 5-302970,
There is also used a technique of calculating an average value of the reception azimuths of a reception signal group that exceeds the signal level for determining whether or not the signal level is the target azimuth.

【0014】[0014]

【発明が解決しようとする課題】上述した従来の移動目
標の検出方式における誤警報率改善手法は、特開平4−
52584号公報に示す残響除去方式は、自己の速力及
び入力信号レベルの変化に対しては考慮が払われている
が、周波数分析手法として通常利用されているFFT処
理結果の、送信周波数以外の高調波周波数を含むドップ
ラ周波数の高調波スペクトルレベルの影響については何
等、考慮が払われていない。
A method for improving the false alarm rate in the above-described conventional moving target detection method is disclosed in Japanese Patent Laid-Open No. 4-206.
The dereverberation method disclosed in Japanese Patent No. 52584 considers the speed of itself and the change of the input signal level, but the harmonics other than the transmission frequency of the FFT processing result usually used as a frequency analysis method. No consideration is given to the influence of the harmonic spectrum level of the Doppler frequency including the wave frequency.

【0015】従って、この従来の残響除去方式では、上
述した送信周波数以外の高調波スペクトルの時間的変化
に関しては考慮がなされていないため、近距離における
不要な高調波スペクトルによる誤警報を除去しようとし
て残響除去帯域を広くとろうとすると、遠距離の目標が
この除去帯域に入ってしまって目標の未検出をもたら
す。
Therefore, in this conventional dereverberation system, since no consideration is given to the temporal change of the harmonic spectrum other than the above-mentioned transmission frequency, it is attempted to eliminate the false alarm due to the unnecessary harmonic spectrum at a short distance. Attempts to widen the dereverberation band will cause distant targets to enter this rejection band, resulting in undetected target.

【0016】また、このような遠距離での目標未検出を
防ぐべく、かかる除去帯域を狭く設定すると、近距離で
の不要な高調波スペクトルが目標として誤検出されてし
まい、誤警報率の増加につながることとなる。
Further, if such a removal band is set to be narrow in order to prevent such non-detection of a target at a long distance, an unnecessary harmonic spectrum at a short distance is erroneously detected as a target, resulting in an increase in false alarm rate. Will lead to.

【0017】また、特開昭56−127685号公報に
よる信号検出方式は、探信間にあって検出信号の含むド
ップラ周波数の相関をとることや、海面残響を自動検出
して海面残響に基づき適応的に信号検出における判定閾
値を算出することにより検出率の向上と誤警報率の低減
とをはかることができるものとしているが、この検出方
式によれば、入力データの入力ごとに閾値をかけ、単純
に閾値を超えた信号を目標としているため、閾値を超え
るものは雑音を含みすべて目標として検出されてしま
い、誤警報率の増大につながることが避けられない。
The signal detection method disclosed in Japanese Patent Laid-Open No. 56-127685 is to adaptively detect the sea surface reverberation by automatically correlating the Doppler frequency contained in the detected signal during the detection. Although it is supposed that the detection rate can be improved and the false alarm rate can be reduced by calculating the determination threshold value in signal detection, this detection method simply applies a threshold value to each input of input data and simply Since the signal exceeding the threshold is targeted, all signals exceeding the threshold are detected as targets including noise, which inevitably leads to an increase in false alarm rate.

【0018】また、特開平5−302970号公報によ
る検出目標の方位算出方法に関して言えば、個々の信号
検出方位の平均値をとる方法では、海底及び海面からの
反射波等、方位方向に広がる雑音も目標として検出され
てしまい誤警報率の増加につながることが避けられな
い。
Regarding the method of calculating the azimuth of the detection target according to Japanese Patent Laid-Open No. 5-302970, in the method of taking the average value of the individual signal detection azimuths, noise spreading in the azimuth direction such as reflected waves from the sea bottom and the sea surface. Is also detected as a target, which inevitably leads to an increase in false alarm rate.

【0019】さらに、これらの従来技術は、いずれもド
ップラ周波数の変動量に基づく影響については着目して
いないため、ドップラ周波数の変動量が大きく、明らか
に移動目標からの受信信号ではないと判断できる信号で
さえも目標信号として抽出してしまう可能性がある。
Further, since none of these prior arts pay attention to the influence based on the fluctuation amount of the Doppler frequency, the fluctuation amount of the Doppler frequency is large, and it can be determined that the received signal is not clearly from the moving target. Even a signal may be extracted as a target signal.

【0020】本発明の目的は上述した問題点を解決し、
水中もしくは空中にパルス信号を送信して得られる受信
信号から移動目標を自動検出する場合に、受信信号に施
す周波数分析結果に対して、送信周波数を中心として近
距離では広く且つ遠距離になるほど狭くなるような帯域
にて不要反射波成分を除去し、不要反射波成分を除去し
た受信信号から算出した信号判定閾値を超える信号の時
間的連続性に着目して移動目標を検出し、検出信号の時
間的なドップラ周波数変動量から真の移動目標か否かを
判定し、かくして出力された受信信号を受けて、検出信
号の方位方向の広がりから移動目標か否かを判定するこ
とにより、誤警報率を著しく改善した移動目標の自動検
出方式を提供することにある。
The object of the present invention is to solve the above-mentioned problems,
When a moving target is automatically detected from a received signal obtained by transmitting a pulse signal in water or in the air, the frequency analysis result applied to the received signal is wide at a short distance around the transmission frequency and narrower at a longer distance. The unnecessary reflected wave component is removed in such a band, and the moving target is detected by focusing on the temporal continuity of the signal that exceeds the signal determination threshold calculated from the received signal from which the unnecessary reflected wave component is removed, A false alarm is generated by determining whether the target is a true moving target from the amount of temporal Doppler frequency fluctuation, receiving the output signal thus output, and determining whether the target is a moving target based on the azimuth direction spread of the detection signal. An object of the present invention is to provide an automatic detection method of a moving target with a significantly improved rate.

【0021】[0021]

【課題を解決するための手段】本発明は、上述した目的
を達成するために、次の手段構成を有する。即ち、移動
目標の自動検出方式に関する本発明の第1の構成は、水
中あるいは空中に音波あるいは電磁波のパルス信号を送
信して得られる入力受信信号を処理して移動目標を自動
検出することを特徴とする移動目標の自動検出方式であ
って、下記に示す(イ)ないし(ヘ)の各構成を備え
る。 (イ)前記パルス信号を送信して得られる入力受信信号
に周波数分析を施して周波数成分ごとのスペクトルレベ
ルを検出する周波数分析部 (ロ)前記周波数分析部の周波数分析結果を入力し、帯
域幅が送信周波数を中心として近距離では広く遠距離に
なるほど狭くなるように時間と対応して変化させた除去
帯域に通して不要反射波成分を除去した受信信号を出力
する時間可変不要反射波除去処理部 (ハ)前記時間可変不要反射波除去処理部の出力する受
信信号の背景雑音レベルに基づいて設定したスペクトル
レベル閾値を超える受信信号を抽出するスペクトルレベ
ル閾値処理部 (ニ)前記スペクトルレベル閾値処理部の出力を受け、
各周波数成分ごとに時間軸上で連続して入力する信号を
同一の移動目標による受信信号と判断し、この受信信号
の時間軸上における信号開始時刻と信号終了時刻とに基
づいて受信信号の信号長を算出し信号長算出信号として
出力する信号長算出部と、この信号長算出部の出力する
信号長算出信号の後部に、移動目標までの距離及び環境
条件に起因して生起する多重伝搬や雑音によってもたら
される目標信号の見掛け上の分断を考慮してあらかじめ
設定した信号長距離ゲートを設け、この信号長距離ゲー
ト内に含まれる他の信号は同一の受信信号であると見做
して前記信号長距離ゲートを設定した1つの信号に統合
する信号統合部と、この信号統合部で統合された信号の
うち移動目標の想定長及び信号処理による伸長化を考慮
してあらかじめ設定した最大値と最小値とによって設定
される信号長範囲に含まれているものを目標候補信号と
して抽出する信号長判定部とを備える信号長閾値処理部 (ホ)前記信号長閾値処理部の出力する目標候補信号の
含むドップラ周波数の変動量を算出するドップラ周波数
変動量算出部と、このドップラ周波数変動量算出部で算
出したドップラ周波数の変動量が、想定する移動目標の
運動諸元を勘案してあらかじめ設定したドップラ周波数
変動量閾値としてのドップラ周波数上限を超えない前記
目標候補信号を目標信号として出力するドップラ周波数
変動量判定部とを備えるドップラ周波数変動量閾値処理
部 (ヘ)前記ドップラ周波数変動量閾値処理部の出力する
目標信号の検出方位に連続性が認められ、且つ検出位置
が、あらかじめ設定した変動幅に含まれる信号を同一目
標からの受信信号と判断して統合する目標方位統合部
と、この目標方位統合部の統合した目標信号の方位方向
の広がりが、想定する移動目標の運動諸元を勘案してあ
らかじめ設定した方位範囲閾値を超えないものを移動目
標信号として送出する方位閾値処理部とを備えた方位閾
値処理部
In order to achieve the above-mentioned object, the present invention has the following means configuration. That is, the first configuration of the present invention regarding the automatic detection method of the moving target is characterized in that the moving target is automatically detected by processing the input reception signal obtained by transmitting the pulse signal of the sound wave or the electromagnetic wave into the water or the air. A method of automatically detecting a moving target, which comprises the following configurations (a) to (f). (A) A frequency analysis unit for performing frequency analysis on an input reception signal obtained by transmitting the pulse signal to detect a spectrum level for each frequency component. (B) Inputting the frequency analysis result of the frequency analysis unit and inputting a bandwidth. Is a time-variable unnecessary reflected wave elimination process that outputs the received signal from which the unnecessary reflected wave component is eliminated through the elimination band that is changed corresponding to time so that it is wide at a short distance and narrow at a long distance from the transmission frequency. Unit (c) a spectrum level threshold processing unit for extracting a received signal exceeding a spectrum level threshold set based on the background noise level of the received signal output from the time variable unnecessary reflected wave removal processing unit (d) the spectrum level threshold process Received the output of the department,
Signals that are continuously input on the time axis for each frequency component are judged to be received signals by the same moving target, and the signal of the received signal is based on the signal start time and signal end time of this received signal on the time axis. A signal length calculation unit that calculates the length and outputs it as a signal length calculation signal, and a rear part of the signal length calculation signal that is output by this signal length calculation unit include multiple propagation that occurs due to the distance to the moving target and the environmental conditions. A signal long-distance gate set in advance in consideration of the apparent division of the target signal caused by noise is provided, and the other signals included in the signal long-distance gate are regarded as the same received signal, and The signal integration unit that integrates the signal long-distance gate into one set signal and the signal integration unit that has been set in advance in consideration of the assumed length of the moving target and the extension by the signal processing among the signals integrated by the signal integration unit. Signal length threshold processing unit including a signal length determination unit that extracts, as a target candidate signal, a signal included in the signal length range set by the maximum value and the minimum value (e) Output of the signal length threshold processing unit The Doppler frequency fluctuation amount calculation unit that calculates the fluctuation amount of the Doppler frequency included in the target candidate signal, and the fluctuation amount of the Doppler frequency calculated by this Doppler frequency fluctuation amount calculation unit, take into consideration the motion parameters of the assumed moving target. Doppler frequency fluctuation amount threshold value processing unit including a Doppler frequency fluctuation amount determination unit that outputs the target candidate signal as a target signal that does not exceed the Doppler frequency fluctuation upper limit as a Doppler frequency fluctuation amount threshold value that has been preset (f) The Doppler frequency fluctuation Continuity is recognized in the detection direction of the target signal output from the quantity threshold processing unit, and the detection position is within the preset fluctuation range. The target azimuth unifying unit that judges the included signals as received signals from the same target and integrates them, and the azimuth direction spread of the target signal integrated by this target azimuth unifying unit, take into consideration the motion parameters of the assumed moving target. Azimuth threshold processing unit that sends as the movement target signal a signal that does not exceed the preset azimuth range threshold value

【0022】また、本発明の第2の構成は、前記第1の
構成において、前記周波数分析部による受信信号の周波
数分析を高速フーリェ変換処理に基づいて行うものとし
た構成を有するものである。
A second configuration of the present invention is the same as the first configuration, except that the frequency analysis of the received signal by the frequency analysis unit is performed based on a high-speed Fourier transform process.

【0023】また、本発明の第3の構成は、前記第1ま
たは第2の構成において、前記時間可変不要反射波除去
処理部の除去対象を、音波のパルス信号送信に伴って発
生する残響とした構成を有するものである。
Further, in a third configuration of the present invention, in the first or second configuration, the removal target of the time variable unnecessary reflected wave removal processing unit is a reverberation caused by transmission of a pulse signal of a sound wave. It has the configuration described above.

【0024】また、本発明の第4の構成は、前記第1ま
たは第2の構成において、前記時間可変不要反射波除去
処理部の除去対象を、電磁波のパルス信号送信に伴って
発生するクラッタとした構成を有するものである。
Further, in a fourth configuration of the present invention, in the first or second configuration, the removal target of the time variable unnecessary reflected wave removal processing unit is a clutter generated by the pulse signal transmission of the electromagnetic wave. It has the configuration described above.

【0025】[0025]

【発明の実施の形態】パルス信号を送信して得られる入
力受信信号をFFT等の周波数分析手法により周波数分
析し、その分析結果の背景雑音レベルに基づいて設定す
る信号判定基準としてのスペクトルレベル閾値を超える
か否かにより目標信号を抽出する場合の最も重要な課題
として検出率を高めるための誤警報率の低減がある。
BEST MODE FOR CARRYING OUT THE INVENTION A spectrum level threshold value as a signal determination standard which is obtained by frequency-analyzing an input reception signal obtained by transmitting a pulse signal by a frequency analysis method such as FFT and setting based on the background noise level of the analysis result. Reduction of the false alarm rate for increasing the detection rate is the most important issue in extracting the target signal depending on whether or not the value exceeds.

【0026】この誤警報率とは、真(true)ならざる偽
(false)の信号を真の目標信号と判定して誤警報する率
であって、この偽の信号の主たる因は不要反射波の混入
にある。この不要反射波とは、音波のパルス信号を利用
する水中では主として海面および海底からの反射による
残響(reveberation)と呼ばれるものであり、電磁波の
パルス信号を利用する空中ではクラッタ(clutter)と呼
ばれるもので、呼称は異なるものの残響性は極めて類似
する。
The false alarm rate is a rate at which a false signal that is not true is judged as a true target signal and a false alarm is issued. The main cause of the false signal is an unnecessary reflected wave. Is mixed in. This unnecessary reflected wave is called reverberation due to reflection from the sea surface and the bottom of the sea mainly in water using pulse signals of sound waves, and is called clutter in the air using pulse signals of electromagnetic waves. The reverberation is very similar though the names are different.

【0027】音波の場合を例とすると、特にサイドロー
ブの影響が強調される送信源近傍の海面反射による残響
成分に起因するもの、目標までの距離及び環境条件によ
って支配される伝搬条件で生起する多重伝搬や雑音によ
ってもたらされる移動目標からの受信信号の見掛け上の
分散化と、想定する移動目標の長さ及び信号処理段階で
の受信信号の伸長化とに起因するもの、受信信号のFF
Tを利用する周波数分析結果に含まれるドップラ周波数
の高調波成分に起因するもの、また海底及び海面からの
反射波等のもたらす方位方向に広がる雑音に起因するも
のなどが挙げられる。
Taking the case of a sound wave as an example, it is caused by a reverberation component due to sea surface reflection near the transmission source where the influence of side lobes is emphasized, a propagation condition governed by the distance to the target and environmental conditions. Due to the apparent dispersion of the received signal from the moving target caused by multiple propagation and noise, the assumed length of the moving target and the extension of the received signal at the signal processing stage, the FF of the received signal
Examples include those caused by harmonic components of the Doppler frequency included in the frequency analysis result using T, and those caused by noise spread in the azimuth direction caused by reflected waves from the seabed and the sea surface.

【0028】また、電磁波の場合には、送信源近傍の構
造物等による固定目標クラッタや天候の影響するウェザ
クラッタなどがあり、さらに伝搬経路の影響、ドップラ
周波数変動の影響、クラッタのもたらす方位方向のばら
つきなども音波の場合と略同様に考慮すべき条件であ
る。
In the case of electromagnetic waves, there are fixed target clutter due to structures near the transmission source, weather clutter affected by weather, etc., and further, influence of propagation path, influence of Doppler frequency fluctuation, and azimuth direction caused by clutter. Variations and the like are conditions that should be taken into consideration in the same manner as in the case of sound waves.

【0029】本発明は、これら誤警報の劣化を招く諸要
因を排除して誤警報率の改善を図ることを目的とし、近
距離と遠距離に対応して受信信号の含む残響等の不要反
射波成分の抑圧を図る時間可変不要反射波除去処理部
と、この不要反射波除去処理を行った受信信号に対して
スペクトル成分の時間連続性に基づく移動目標受信信号
の判断を行って信号長を算出したうえ、移動目標までの
距離及び環境条件に基づいて生起する多重反射や雑音に
よる見掛け上の受信信号の分散を統合化し、さらに移動
目標の長さ及び信号処理による受信信号の伸長(elonga
tion)を考慮して設定した最大・最小値で信号長を判定
して目標候補信号を決定する信号長閾値処理部と、この
ようにして決定された目標候補信号からドップラ周波数
の高調波成分の影響を排除して目標信号を決定するドッ
プラ周波数変動量閾値処理部と、こうして決定された目
標信号からさらに方位方向の分散化影響を排除して真の
移動目標信号を得る方位閾値処理部6とを備えることを
実施の形態としている。
The present invention is intended to improve the false alarm rate by eliminating various factors that cause the deterioration of false alarms, and unnecessary reflection such as reverberation contained in a received signal corresponding to a short distance and a long distance. A time-variable unnecessary reflected wave removal processing unit that suppresses the wave component, and a moving target received signal is determined based on the time continuity of the spectrum component with respect to the received signal on which the unnecessary reflected wave removal processing is performed, and the signal length is After the calculation, the apparent dispersion of the received signal due to multiple reflections and noise that occur based on the distance to the moving target and the environmental conditions is integrated, and further the length of the moving target and the expansion of the received signal by signal processing (elonga
signal length threshold processing unit that determines the target candidate signal by determining the signal length based on the maximum and minimum values set in consideration of A Doppler frequency fluctuation amount threshold value processing unit that determines the target signal by eliminating the influence, and an azimuth threshold processing unit 6 that further eliminates the azimuth direction decentralization influence from the target signal determined in this way to obtain a true moving target signal. Is provided as an embodiment.

【0030】[0030]

【実施例】次に、本発明について図面を参照して説明す
る。図1は、本発明の一実施例の構成を示すブロック図
であり、且つ音波によるパルス信号を送出し、水中の移
動目標を検出する場合を例としている。図1を参照する
と、本発明の実施例は、入力受信信号の周波数分析を行
う周波数分析部1と、受信信号の不要反射波成分として
の残響除去処理を行う時間可変不要反射波除去処理部2
と、背景雑音に基づいて設定する閾値を超えるスペクト
ルを抽出するスペクトルレベル閾値処理部3と、正しい
信号長を有する受信信号を選択する信号長閾値処理部4
と、受信信号のドップラ周波数による影響を排除するド
ップラ周波数変動量閾値処理部5と、受信信号の方位方
向の分散の影響を排除する方位閾値処理部6とから構成
される。
Next, the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention, and also exemplifies a case of transmitting a pulse signal by a sound wave to detect a moving target in water. Referring to FIG. 1, in the embodiment of the present invention, a frequency analysis unit 1 that performs a frequency analysis of an input reception signal and a time variable unnecessary reflection wave removal processing unit 2 that performs a dereverberation process as an unnecessary reflection wave component of the reception signal.
A spectrum level threshold processing unit 3 for extracting a spectrum exceeding a threshold value set based on background noise, and a signal length threshold processing unit 4 for selecting a received signal having a correct signal length.
A Doppler frequency fluctuation amount threshold processing unit 5 that eliminates the influence of the received signal due to the Doppler frequency, and an azimuth threshold processing unit 6 that eliminates the influence of the dispersion of the received signal in the azimuth direction.

【0031】また、信号長閾値処理部4は、信号長を算
出する信号長算出部41と、伝搬条件や信号処理で伸長
した受信信号の統一化を行う信号統合部42と、信号長
を判定する信号長判定部43とから構成される。
The signal length threshold processing unit 4 also determines a signal length, a signal length calculating unit 41 for calculating a signal length, a signal integrating unit 42 for unifying received signals expanded by propagation conditions and signal processing. And a signal length determination unit 43 that operates.

【0032】ドップラ周波数変動量閾値処理部5は、ド
ップラ周波数の変動量を算出するドップラ周波数変動量
算出部51と、ドップラ周波数変動量の妥当性を判定す
るドップラ周波数変動量判定部52とから構成される。
また、方位閾値処理部6は、同一の受信信号の方位方向
の分散を統合する方位統合部61と、受信信号の真の方
位を判定する方位判定部62とから構成される。
The Doppler frequency fluctuation amount threshold processing unit 5 is composed of a Doppler frequency fluctuation amount calculation unit 51 for calculating the Doppler frequency fluctuation amount and a Doppler frequency fluctuation amount judgment unit 52 for judging the validity of the Doppler frequency fluctuation amount. To be done.
The azimuth threshold processing unit 6 includes an azimuth unifying unit 61 that unifies the azimuth direction variances of the same received signal and an azimuth judging unit 62 that judges the true azimuth of the received signal.

【0033】図2は、図1の時間可変不要反射波除去処
理部2の動作の説明図である。図3は、図1のスペクト
ルレベル閾値処理部3の動作の説明図である。図4は、
図1の信号長閾値処理部4の動作の説明図である。図5
は、図1のドップラ周波数変動量閾値処理部5の動作の
説明図である。図6は、図1の方位閾値処理部6の動作
の説明図である。
FIG. 2 is an explanatory diagram of the operation of the time variable unnecessary reflected wave elimination processing section 2 of FIG. FIG. 3 is an explanatory diagram of the operation of the spectrum level threshold processing unit 3 of FIG. FIG.
It is explanatory drawing of operation | movement of the signal length threshold value process part 4 of FIG. FIG.
FIG. 3 is an explanatory diagram of an operation of the Doppler frequency fluctuation amount threshold value processing unit 5 in FIG. 1. FIG. 6 is an explanatory diagram of the operation of the azimuth threshold processing unit 6 of FIG.

【0034】以下に、図2ないし図6を併せ参照しつ
つ、本実施例の動作について説明する。水中あるいは空
中、本実施例では水中にある移動目標を検出するため
に、音波によるパルス信号を送信し、入力受信信号が周
波数分析部1に入力されてくる。
The operation of this embodiment will be described below with reference to FIGS. In the present embodiment, in order to detect a moving target in water or in the air, a pulse signal of a sound wave is transmitted, and an input reception signal is input to the frequency analysis unit 1.

【0035】周波数分析部1は、入力した受信信号をF
FT処理で周波数分析し、受信信号の周波数及びスペク
トルレベルを算出し、時間可変不要反射波除去処理部2
に出力する。
The frequency analyzer 1 uses the received signal F
Frequency analysis is performed by FT processing, the frequency and spectrum level of the received signal are calculated, and the time variable unnecessary reflected wave removal processing unit 2
Output to

【0036】時間可変不要反射波除去処理部2は、入力
した受信信号から不要反射波成分としての残響成分を除
去するため、送信周波数を中心に残響成分を除去する帯
域を近距離では広く、遠距離になるほど狭くなるような
時間と共に残響除去帯域が変化する時間可変残響除去処
理を行い、残響を除去した受信信号をスペクトルレベル
閾値処理部3に出力する。このことは、特に近距離ほど
レベルが高く影響力の大きいサイドローブによる送信源
近傍残響の効果的抑圧を意図して行われるものである。
The time-variable unnecessary reflection wave removal processing unit 2 removes the reverberation component as the unnecessary reflection wave component from the input received signal. Therefore, the band for removing the reverberation component centering on the transmission frequency is wide at a short distance, and far away. Time-variable dereverberation processing in which the dereverberation band changes with time such that the distance becomes narrower is performed, and the received signal from which reverberation has been removed is output to the spectrum level threshold processing unit 3. This is intended to effectively suppress the reverberation in the vicinity of the transmission source due to the side lobe, which has a higher level and a greater influence at a closer distance.

【0037】図2にて説明すると、2つの受信信号2a
及び受信信号2bがあるとすると、残響除去帯域2cに
含まれる近距離の受信信号2aが削除され、残響除去帯
域2c外にある受信信号2bが出力される。スペクトル
レベル閾値処理部3は、残響が除去された受信信号から
背景雑音レベルを算出し、この背景雑音レベルに基づい
て受信信号判定の閾値を定めこれをスペクトルレベル閾
値とする。そして、このスペクトルレベル閾値を超える
受信信号を目標候補信号として抽出し、信号長閾値処理
部4に出力する。
Referring to FIG. 2, two received signals 2a are shown.
If there is a received signal 2b, the short-distance received signal 2a included in the dereverberation band 2c is deleted, and the received signal 2b outside the dereverberation band 2c is output. The spectrum level threshold processing unit 3 calculates a background noise level from the received signal from which reverberation has been removed, sets a threshold for receiving signal determination based on this background noise level, and sets this as a spectrum level threshold. Then, the received signal exceeding the spectrum level threshold is extracted as a target candidate signal and output to the signal length threshold processing unit 4.

【0038】図3にて説明すると、受信信号3a及び受
信信号3bのうちスペクトルレベル閾値3c未満の受信
信号3aが削除され、スペクトルレベル閾値3cを超え
るレベルの受信信号3bが出力される。
Referring to FIG. 3, the reception signal 3a having a spectrum level threshold value less than 3c is deleted from the reception signals 3a and 3b, and the reception signal 3b having a level exceeding the spectrum level threshold value 3c is output.

【0039】信号長閾値処理部4の信号長算出部41
は、入力したスペクトルレベル閾値を超える受信信号を
対象とし、図4の受信信号4bに示す如く各周波数成分
ごとに受信信号が時間軸上で連続して入ってきた場合に
は、同一の移動目標からの信号と判断し、その信号の開
始時刻t1と終了時刻t2とから受信信号の信号長を算
出し、信号統合部42に出力する。
The signal length calculation unit 41 of the signal length threshold processing unit 4
Is for a received signal exceeding the input spectrum level threshold, and when the received signal continuously enters on the time axis for each frequency component as shown in the received signal 4b of FIG. The signal length of the received signal is calculated from the start time t1 and the end time t2 of the signal and output to the signal integration unit 42.

【0040】信号統合部42は、目標までの距離及び環
境条件に起因する多重伝搬や雑音等によりスペクトルレ
ベル閾値処理の結果の目標信号が複数に分断して分散さ
れている可能性を考慮し、分断されているとすればそれ
らを一つの信号として統合することを目的として、図4
に示す如く、あらかじめ記憶してある信号長距離ゲート
4hを受信信号4a,4c,4f等の終了位置から時間
軸上に設定し、この信号長距離ゲート4h内に含まれて
いる信号群を、元来信号長距離ゲート4hを設定した受
信信号から派生した同一のものとして統合し、統合した
ものを対象として信号長を再算出して信号長判定部43
に出力する。
The signal integration unit 42 considers the possibility that the target signal resulting from the spectrum level threshold processing is divided into a plurality of pieces and dispersed due to multiple propagation, noise, etc. due to the distance to the target and environmental conditions, If they are divided, they are integrated into one signal as shown in FIG.
As shown in, the previously stored signal long distance gate 4h is set on the time axis from the end position of the received signals 4a, 4c, 4f, etc., and the signal group included in this signal long distance gate 4h is Originally, the signal long distance gate 4h is integrated as the same one derived from the set received signal, the signal length is recalculated for the integrated one, and the signal length determination unit 43
Output to

【0041】信号長判定部43は、想定する移動目標の
長さ、信号処理における受信信号の伸長から推定される
移動目標による受信信号の信号長の最大値と最小値とを
あらかじめ記憶しており、その値を最大値閾値及び最小
値閾値とし、その範囲内に含まれる信号長を有する受信
信号を目標候補信号として抽出し、ドップラ周波数変動
量閾値処理部5に出力する。
The signal length determination unit 43 stores in advance the assumed length of the moving target, the maximum value and the minimum value of the signal length of the received signal by the moving target estimated from the expansion of the received signal in the signal processing. , That value is set as the maximum threshold value and the minimum threshold value, and the received signal having the signal length included in the range is extracted as the target candidate signal and output to the Doppler frequency fluctuation amount threshold processing unit 5.

【0042】図4にて説明すると、受信信号4a,受信
信号4b及び受信信号4cのうち、信号長最小値閾値4
d未満である受信信号4aと、信号長最大値閾値4eよ
り長い受信信号4cとが削除され、両閾値の範囲内にあ
る受信信号4bのみが出力されることとなる。
Referring to FIG. 4, among the received signals 4a, 4b and 4c, the minimum signal length threshold value 4
The received signal 4a that is less than d and the received signal 4c that is longer than the maximum signal length threshold 4e are deleted, and only the received signal 4b that is within the range of both thresholds is output.

【0043】また、信号長算出信号としての受信信号4
fに設定された信号長距離ゲート4h内に含まれる受信
信号4gは受信信号4fと同一のものとして受信信号4
fに一本化統合される。
The received signal 4 as a signal length calculation signal
The received signal 4g included in the signal long distance gate 4h set to f is the same as the received signal 4f
integrated into f.

【0044】ドップラ周波数変動量閾値処理部5のドッ
プラ周波数変動量算出部51は、入力した目標信号区間
のドップラ周波数の変動量を算出し、ドップラ周波数変
動量判定部52に出力する。
The Doppler frequency fluctuation amount calculation unit 51 of the Doppler frequency fluctuation amount threshold processing unit 5 calculates the fluctuation amount of the Doppler frequency in the input target signal section and outputs it to the Doppler frequency fluctuation amount determination unit 52.

【0045】ドップラ周波数変動量判定部52は、想定
する移動目標の運動諸元等に基づいて移動目標のドップ
ラ周波数変動量の最大値をあらかじめ記憶しており、送
信信号が目標に当たっている間に目標が移動した状態で
発生するドップラ周波数変動量を考慮し、ドップラ周波
数変動量最大値以下のドップラ周波数変動量を持つ受信
信号のみを真の移動目標による目標信号として出力す
る。
The Doppler frequency fluctuation amount determining unit 52 stores in advance the maximum value of the Doppler frequency fluctuation amount of the moving target on the basis of the motion data of the assumed moving target, and the like while the transmission signal is hitting the target. Considering the amount of Doppler frequency fluctuation that occurs when the robot moves, only the received signal with the amount of Doppler frequency fluctuation less than the maximum value of the amount of Doppler frequency fluctuation is output as the target signal by the true moving target.

【0046】図5にて説明すると、受信信号5a及び同
5bのうち、ドップラ周波数変動量最大値5cを超えて
いるドップラ周波数変動量5dを含む受信信号5aが削
除され、ドップラ周波数変動量最大値5c以下のドップ
ラ周波数変動量5eを含む受信信号5bのみが目標信号
として出力される。
Referring to FIG. 5, of the received signals 5a and 5b, the received signal 5a including the Doppler frequency fluctuation amount 5d exceeding the Doppler frequency fluctuation amount maximum value 5c is deleted, and the Doppler frequency fluctuation amount maximum value is deleted. Only the received signal 5b including the Doppler frequency fluctuation amount 5e of 5c or less is output as the target signal.

【0047】方位閾値処理部6の方位統合部61は、入
力した目標信号の検出方位に連続性が認められ、且つ、
受信するチャネルの違いにより発生する検出位置のずれ
を補正するために、あらかじめ記憶している検出位置変
動幅に入っている信号は1つの信号として統合し方位判
定部62に出力する。方位判定部62は、あらかじめ記
憶している方位範囲閾値以下の信号のみを移動目標信号
として出力する。
The azimuth integrating unit 61 of the azimuth threshold processing unit 6 recognizes continuity in the detected azimuth of the input target signal, and
In order to correct the deviation of the detection position caused by the difference in the received channels, the signals within the detection position fluctuation width stored in advance are integrated as one signal and output to the azimuth determination unit 62. The azimuth determining unit 62 outputs only a signal that is equal to or less than the azimuth range threshold value that is stored in advance as the movement target signal.

【0048】図6にて説明すると、受信信号6a、同6
b及び同6cは、検出方位が連続しており、且つ、方位
範囲閾値6d内及び検出位置変動幅6e内のいずれにも
入っているので同一目標による受信信号と判断され、こ
れら信号は統合される。
Referring to FIG. 6, the received signals 6a and 6
In b and 6c, the detected azimuths are continuous, and since they are both in the azimuth range threshold 6d and the detected position fluctuation range 6e, they are judged to be received signals by the same target, and these signals are integrated. It

【0049】また、受信信号6f、同6g、同6h、同
6i及び同6jは、検出方位自体は連続し且つ、検出位
置変動幅6e内に入ってはいるが、方位範囲閾値6d以
上なので移動目標による受信信号ではないと判断し、こ
れら受信信号6f,6g,6h,6i,6jは削除され
る。
Further, the received signals 6f, 6g, 6h, 6i and 6j are continuous because the detected azimuth is continuous and is within the detected position fluctuation width 6e, but the received range 6d is greater than the azimuth range threshold 6d. It is determined that the received signals are not the received signals by the target, and these received signals 6f, 6g, 6h, 6i, 6j are deleted.

【0050】また、受信信号6k及び同6lは、検出方
位は連続しているものの検出位置変動幅6eを超えるの
で相異なる移動目標からの受信信号として判断されて削
除され、また受信信号6m及び同6nは、検出位置変動
幅6e内に入るが、方位的に連続した検出ではないの
で、これも相異なる移動目標からの受信信号と判断され
て削除される。
Further, the received signals 6k and 6l are judged to be received signals from different moving targets and deleted because the detected azimuths are continuous but exceed the detected position fluctuation width 6e, and the received signals 6k and 6l are also deleted. 6n falls within the detection position fluctuation range 6e, but since it is not azimuthally continuous detection, this is also judged to be a received signal from a different moving target and is deleted.

【0051】こうして、著しく誤警報率を改善した移動
目標の自動検出を確保することができる。尚、上述した
実施例では、水中に存在する移動目標を音波によるパル
ス信号の送信で自動検出する場合を対象とした場合につ
いて説明したが、水中に存在する移動目標を電磁波によ
るパルス信号の送信で自動検出する場合も、残響に代え
て残響に対応する各種クラッタを対象とし、同様に実施
しうることは明らかである。
In this way, it is possible to ensure automatic detection of a moving target with a significantly improved false alarm rate. In the above-described embodiment, the case where the moving target existing in water is automatically detected by transmitting the pulse signal by the sound wave has been described, but the moving target existing in the water is transmitted by the pulse signal by the electromagnetic wave. Even in the case of automatic detection, it is obvious that various clutters corresponding to reverberation can be targeted instead of reverberation and can be similarly performed.

【0052】[0052]

【発明の効果】以上説明したように、本発明は移動目標
を自動検出する場合に、従来の技術に加えて、受信信号
に含む残響などの不要反射波を除去し、信号長及びドッ
プラ周波数変動量並びに方位方向の信号分散に着目して
真の目標信号を検出するように構成し、且つ、元来は同
一の信号の統合処理を付加して移動目標を検出すること
により、移動目標の検出における著しい誤警報率の低減
と、検出率の向上とを確保できる効果を有する。
As described above, according to the present invention, in the case of automatically detecting a moving target, in addition to the conventional technique, unnecessary reflected waves such as reverberation contained in the received signal are removed, and the signal length and the Doppler frequency change. Detecting a moving target by focusing on the amount and the signal dispersion in the azimuth direction to detect the true target signal, and by adding the integration processing of the same signal originally to detect the moving target. In this case, it is possible to secure a remarkable reduction in false alarm rate and an improvement in detection rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【図2】図1の時間可変不要反射波除去処理部2の動作
の説明図である。
FIG. 2 is an explanatory diagram of an operation of a time variable unnecessary reflected wave removal processing unit 2 of FIG.

【図3】図1のスペクトルレベル閾値処理部3の動作の
説明図である。
3 is an explanatory diagram of an operation of a spectrum level threshold processing unit 3 of FIG.

【図4】図1の信号長閾値処理部4の動作の説明図であ
る。
4 is an explanatory diagram of an operation of a signal length threshold processing unit 4 in FIG.

【図5】図1のドップラ周波数変動量閾値処理部5の動
作の説明図である。
5 is an explanatory diagram of an operation of a Doppler frequency fluctuation amount threshold value processing unit 5 in FIG.

【図6】図1の方位閾値処理部6の動作の説明図であ
る。
FIG. 6 is an explanatory diagram of an operation of the azimuth threshold processing unit 6 in FIG.

【図7】従来の移動目標の自動検出方式における残響除
去部の構成例を示すブロック図である。
FIG. 7 is a block diagram showing a configuration example of a dereverberation unit in a conventional moving target automatic detection method.

【図8】従来の海面残響除去動作の説明図である。FIG. 8 is an explanatory diagram of a conventional sea surface dereverberation operation.

【符号の説明】[Explanation of symbols]

1 周波数分析部 2 時間可変不要反射波除去処理部 3 スペクトルレベル閾値処理部 4 信号長閾値処理部 5 ドップラ周波数変動量閾値処理部 6 方位閾値処理部 41 信号長算出部 42 信号統合部 43 信号長判定部 51 ドップラ周波数変動量算出部 52 ドップラ周波数変動量判定部 61 方位統合部 62 方位判定部 1 frequency analysis unit 2 time variable unnecessary reflected wave removal processing unit 3 spectrum level threshold processing unit 4 signal length threshold processing unit 5 Doppler frequency fluctuation amount threshold processing unit 6 azimuth threshold processing unit 41 signal length calculation unit 42 signal integration unit 43 signal length Judgment unit 51 Doppler frequency fluctuation amount calculation unit 52 Doppler frequency fluctuation amount judgment unit 61 Direction integration unit 62 Direction judgment unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 次の各構成を備え、水中あるいは空中に
音波あるいは電磁波のパルス信号を送信して得られる入
力受信信号を処理して移動目標を自動検出することを特
徴とする移動目標の自動検出方式。 (イ)前記パルス信号を送信して得られる入力受信信号
に周波数分析を施して周波数成分ごとのスペクトルレベ
ルを検出する周波数分析部 (ロ)前記周波数分析部の周波数分析結果を入力し、帯
域幅が送信周波数を中心として近距離では広く遠距離に
なるほど狭くなるように時間と対応して変化させた除去
帯域に通して不要反射波成分を除去した受信信号を出力
する時間可変不要反射波除去処理部 (ハ)前記時間可変不要反射波除去処理部の出力する受
信信号の背景雑音レベルに基づいて設定したスペクトル
レベル閾値を超える受信信号を抽出するスペクトルレベ
ル閾値処理部 (ニ)前記スペクトルレベル閾値処理部の出力を受け、
各周波数成分ごとに時間軸上で連続して入力する信号を
同一の移動目標による受信信号と判断し、この受信信号
の時間軸上における信号開始時刻と信号終了時刻とに基
づいて受信信号の信号長を算出し信号長算出信号として
出力する信号長算出部と、この信号長算出部の出力する
信号長算出信号の後部に、移動目標までの距離及び環境
条件に起因して生起する多重伝搬や雑音によってもたら
される目標信号の見掛け上の分断を考慮してあらかじめ
設定した信号長距離ゲートを設け、この信号長距離ゲー
ト内に含まれる他の信号は同一の受信信号であると見做
して前記信号長距離ゲートを設定した1つの信号に統合
する信号統合部と、この信号統合部で統合された信号の
うち移動目標の想定長及び信号処理による伸長化を考慮
してあらかじめ設定した最大値と最小値とによって設定
される信号長範囲に含まれているものを目標候補信号と
して抽出する信号長判定部とを備える信号長閾値処理部 (ホ)前記信号長閾値処理部の出力する目標候補信号の
含むドップラ周波数の変動量を算出するドップラ周波数
変動量算出部と、このドップラ周波数変動量算出部で算
出したドップラ周波数の変動量が、想定する移動目標の
運動諸元を勘案してあらかじめ設定したドップラ周波数
変動量閾値としてのドップラ周波数上限を超えない前記
目標候補信号を目標信号として出力するドップラ周波数
変動量判定部とを備えるドップラ周波数変動量閾値処理
部 (ヘ)前記ドップラ周波数変動量閾値処理部の出力する
目標信号の検出方位に連続性が認められ、且つ検出位置
が、あらかじめ設定した変動幅に含まれる信号を同一目
標からの受信信号と判断して統合する目標方位統合部
と、この目標方位統合部の統合した目標信号の方位方向
の広がりが、想定する移動目標の運動諸元を勘案してあ
らかじめ設定した方位範囲閾値を超えないものを移動目
標信号として送出する方位閾値処理部とを備えた方位閾
値処理部
1. An automatic moving target, comprising the following configurations, wherein an input received signal obtained by transmitting a pulse signal of a sound wave or an electromagnetic wave into water or air is processed to automatically detect the moving target. Detection method. (A) A frequency analysis unit for performing frequency analysis on an input reception signal obtained by transmitting the pulse signal to detect a spectrum level for each frequency component. (B) Inputting the frequency analysis result of the frequency analysis unit and inputting a bandwidth. Is a time-variable unnecessary reflected wave elimination process that outputs the received signal from which the unnecessary reflected wave component is eliminated through the elimination band that is changed corresponding to time so that it is wide at a short distance and narrow at a long distance from the transmission frequency. Unit (c) a spectrum level threshold processing unit for extracting a received signal exceeding a spectrum level threshold set based on the background noise level of the received signal output from the time variable unnecessary reflected wave removal processing unit (d) the spectrum level threshold process Received the output of the department,
Signals that are continuously input on the time axis for each frequency component are judged to be received signals by the same moving target, and the signal of the received signal is based on the signal start time and signal end time of this received signal on the time axis. A signal length calculation unit that calculates the length and outputs it as a signal length calculation signal, and a rear part of the signal length calculation signal that is output by this signal length calculation unit include multiple propagation that occurs due to the distance to the moving target and the environmental conditions. A signal long-distance gate set in advance in consideration of the apparent division of the target signal caused by noise is provided, and the other signals included in the signal long-distance gate are regarded as the same received signal, and The signal integration unit that integrates the signal long-distance gate into one set signal and the signal integration unit that has been set in advance in consideration of the assumed length of the moving target and the extension by the signal processing among the signals integrated by the signal integration unit. Signal length threshold processing unit including a signal length determination unit that extracts, as a target candidate signal, a signal included in the signal length range set by the maximum value and the minimum value (e) Output of the signal length threshold processing unit The Doppler frequency fluctuation amount calculation unit that calculates the fluctuation amount of the Doppler frequency included in the target candidate signal, and the fluctuation amount of the Doppler frequency calculated by this Doppler frequency fluctuation amount calculation unit, take into consideration the motion parameters of the assumed moving target. Doppler frequency fluctuation amount threshold value processing unit including a Doppler frequency fluctuation amount determination unit that outputs the target candidate signal as a target signal that does not exceed the Doppler frequency fluctuation upper limit as a Doppler frequency fluctuation amount threshold value that has been preset (f) The Doppler frequency fluctuation Continuity is recognized in the detection direction of the target signal output from the quantity threshold processing unit, and the detection position is within the preset fluctuation range. The target azimuth unifying unit that judges the included signals as received signals from the same target and integrates them, and the azimuth direction spread of the target signal integrated by this target azimuth unifying unit, take into consideration the motion parameters of the assumed moving target. Azimuth threshold processing unit that sends as the movement target signal a signal that does not exceed the preset azimuth range threshold value
【請求項2】 前記周波数分析部による受信信号の周波
数分析を高速フーリェ変換処理に基づいて行うものとし
たことを特徴とする請求項1記載の移動目標の自動検出
方式。
2. The automatic detection method of a moving target according to claim 1, wherein the frequency analysis of the received signal by the frequency analysis unit is performed based on a high-speed Fourier transform process.
【請求項3】 前記時間可変不要反射波除去処理部の除
去対象を、音波のパルス信号送信に伴って発生する残響
とした構成を有することを特徴とする請求項1または2
記載の移動目標の自動検出方式。
3. The removal target of the time variable unnecessary reflected wave removal processing unit is configured to be reverberation generated by transmission of a pulse signal of a sound wave.
The automatic detection method of the moving target described.
【請求項4】 前記時間可変不要反射波除去処理部の除
去対象を、電磁波のパルス信号送信に伴って発生するク
ラッタとした構成を有することを特徴とする請求項1ま
たは2記載の移動目標の自動検出方式。
4. The moving target according to claim 1, wherein the removal target of the time-variable unnecessary reflected wave removal processing unit is a clutter generated by the pulse signal transmission of an electromagnetic wave. Automatic detection method.
JP7346444A 1995-12-12 1995-12-12 Automatic detection method of moving target Expired - Fee Related JP2685041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7346444A JP2685041B2 (en) 1995-12-12 1995-12-12 Automatic detection method of moving target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7346444A JP2685041B2 (en) 1995-12-12 1995-12-12 Automatic detection method of moving target

Publications (2)

Publication Number Publication Date
JPH09159752A true JPH09159752A (en) 1997-06-20
JP2685041B2 JP2685041B2 (en) 1997-12-03

Family

ID=18383475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7346444A Expired - Fee Related JP2685041B2 (en) 1995-12-12 1995-12-12 Automatic detection method of moving target

Country Status (1)

Country Link
JP (1) JP2685041B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778748A1 (en) * 1998-05-15 1999-11-19 Thomson Marconi Sonar Sas Detection of undersea moving objects using an active sonar utilizing the Doppler effect
CN103954960A (en) * 2014-04-18 2014-07-30 西安电子科技大学 Airborne early warning radar moving target detecting method based on clutter ridge guiding vector
WO2014129445A1 (en) * 2013-02-22 2014-08-28 株式会社村田製作所 Ultrasonic distance measuring device, ultrasonic sensor module used in same, person sensing device using same, and program applied in same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778748A1 (en) * 1998-05-15 1999-11-19 Thomson Marconi Sonar Sas Detection of undersea moving objects using an active sonar utilizing the Doppler effect
WO1999060418A1 (en) * 1998-05-15 1999-11-25 Thomson Marconi Sonar S.A.S. Method for detecting mobile objects with active sonar
WO2014129445A1 (en) * 2013-02-22 2014-08-28 株式会社村田製作所 Ultrasonic distance measuring device, ultrasonic sensor module used in same, person sensing device using same, and program applied in same
CN103954960A (en) * 2014-04-18 2014-07-30 西安电子科技大学 Airborne early warning radar moving target detecting method based on clutter ridge guiding vector

Also Published As

Publication number Publication date
JP2685041B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
KR102311559B1 (en) Method for processing an echo signal of an ultrasonic transducer
CN113009420B (en) Processing method, system and storage medium for slice forwarding interference signals
JP4670446B2 (en) Radar signal processing apparatus and CFAR processing method used therefor
CA2422355C (en) Adaptive control of the detection threshold of a binary integrator
JP2685041B2 (en) Automatic detection method of moving target
JP2826494B2 (en) Target signal detection method and device
CN115494461B (en) Pulse-to-pulse type interference time-frequency domain suppression method based on Viterbi algorithm
JP2006292476A (en) Radar signal processor and doppler weather radar
JP2014035235A (en) Pulse detection device
JPH0862325A (en) Moving target detecting device
JP3594000B2 (en) Radar apparatus and operation control method thereof
JP2770814B2 (en) Active sonar device
KR100200680B1 (en) Stationary and slow moving object detection device and method
KR100987981B1 (en) Apparatus and method for distinguishing between activity signal and transition noise
KR101977813B1 (en) Underwater Near Object Detection Method using Circular Sensor Array
JPH07280918A (en) Apparatus for suppressing jamming waves
CN113138372B (en) Radar target detection method based on improved M/N detector in multipath environment
JP2875118B2 (en) Ultrasonic detector
JP6541179B2 (en) Signal processor
JP2007315951A (en) Pulse radar device
KR102557452B1 (en) Apparatus and method for classifying true target in doppler domain using energy value, and pulse doppler radar using the same
JP3214481B2 (en) Target detection device and target detection method
KR101916170B1 (en) Radar system and taget detecting method thereof
CN112748413A (en) Radar signal processing method
JPH03191890A (en) Frequency modulation type radar apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees