[go: up one dir, main page]

JPH09159329A - Heat pump type air-conditioning apparatus - Google Patents

Heat pump type air-conditioning apparatus

Info

Publication number
JPH09159329A
JPH09159329A JP7346736A JP34673695A JPH09159329A JP H09159329 A JPH09159329 A JP H09159329A JP 7346736 A JP7346736 A JP 7346736A JP 34673695 A JP34673695 A JP 34673695A JP H09159329 A JPH09159329 A JP H09159329A
Authority
JP
Japan
Prior art keywords
heat exchanger
compressor
refrigerant
outdoor heat
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7346736A
Other languages
Japanese (ja)
Inventor
Shinichi Furukawa
晋一 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyotomi Kogyo Co Ltd
Toyotomi Co Ltd
Original Assignee
Toyotomi Kogyo Co Ltd
Toyotomi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyotomi Kogyo Co Ltd, Toyotomi Co Ltd filed Critical Toyotomi Kogyo Co Ltd
Priority to JP7346736A priority Critical patent/JPH09159329A/en
Publication of JPH09159329A publication Critical patent/JPH09159329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable ice to be removed at the outdoor heat exchanger produced during the heating operation of a cooling-heating air conditioner. SOLUTION: Refrigerant heated to high temperature under pressure by a compressor 1 is fed to an outdoor heat exchanger 5 or an indoor heat exchanger 3 by switching by a four-way valve 2 to effect the cooling or heating of the operation. A temperature sensor 7 for detecting freeze at the outdoor heat exchanger 5 is attached to the two heat exchangers 3, 5 or to the refrigerant piping 6 in a setup to effect defrosting by switching of the four-way valve 2 during heating operation. A bypass pipe 8 is connected one end to a point between the outdoor heat exchanger 5 and a capillary tube 4 and the other end to a point between the outdoor heat exchanger 5 and the suction side of the compressor 1, an opening-closing valve 9 is attached to the bypass pipe 8, and a pressure sensor 10 is attached to the suction side of the compressor 1. When the pressure sensor 10 has detected unusually low pressure, the opening- closing valve 9 is opened and the refrigerant having passed through the outdoor heat exchanger 5 is forced back into the compressor 1 to normalize its operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は冷暖房エアコンの暖房
運転中に室外熱交換器が凍結した時の除霜運転に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defrosting operation when an outdoor heat exchanger is frozen during a heating operation of a cooling and heating air conditioner.

【0002】[0002]

【従来の技術】圧縮機で加圧して高温となった冷媒を四
方弁によって室外熱交換器と室内熱交換器に切換えして
供給し、室内熱交換器は直接高温冷媒が送られて暖房運
転を行い、また、室外熱交換器とキャピラリーを経由し
て冷媒が送られて冷房運転を行うものである。
2. Description of the Related Art A refrigerant that has been heated to a high temperature by a compressor is switched to an outdoor heat exchanger and an indoor heat exchanger by a four-way valve and supplied, and the indoor heat exchanger is directly fed with a high temperature refrigerant to perform heating operation. In addition, the refrigerant is sent through the outdoor heat exchanger and the capillary to perform the cooling operation.

【0003】そして、暖房運転中は高温高圧となった冷
媒が室内熱交換器で放熱して液化し、高圧で液体となっ
た冷媒はキャピラリーで減圧後に室外熱交換器に送られ
る。該室外熱交換器には低温度の室外空気が吹き付けら
れており、この低温空気を更に低温にしながら冷媒が気
化し、この気化した冷媒は再び圧縮機に送られて加圧す
ることを繰返している。
During the heating operation, the high temperature and high pressure refrigerant radiates heat in the indoor heat exchanger and is liquefied. The high pressure liquid refrigerant is decompressed by the capillary and sent to the outdoor heat exchanger. Low-temperature outdoor air is blown to the outdoor heat exchanger, the refrigerant is vaporized while further lowering the temperature of the low-temperature air, and the vaporized refrigerant is sent again to the compressor to be pressurized. .

【0004】室外熱交換器を通過する室外空気に含まれ
る水蒸気は、冷却されると液化して水滴が室外熱交換器
に付着し、室外空気が低温の時は付着した水が霜となり
氷に成長するものである。この状態になると室外熱交換
器は空気の通過がさえぎられ、熱交換が効果的にできな
いから、室外熱交換器に送られた冷媒は正常時のように
気化せず、温度・圧力が低い状態で圧縮機に戻され、冷
凍サイクルは期待した運転ができなくなる。
The water vapor contained in the outdoor air passing through the outdoor heat exchanger is liquefied when cooled, and water droplets adhere to the outdoor heat exchanger. When the outdoor air has a low temperature, the adhered water becomes frost and becomes ice. It grows. In this state, the passage of air in the outdoor heat exchanger is blocked, and heat exchange cannot be effectively performed.Therefore, the refrigerant sent to the outdoor heat exchanger does not vaporize as in the normal state, and the temperature and pressure are low. Then it is returned to the compressor and the refrigeration cycle cannot operate as expected.

【0005】このように暖房運転中に室外熱交換器が凍
結すると、正常時と比べて冷媒配管路の冷媒の温度や圧
力が低下するものであり、温度センサによって室外熱交
換器の凍結が検出できる。この為、暖房運転中に冷媒の
温度異常が発生した時には、四方弁を切換えして圧縮機
から吐出する高温・高圧の冷媒を凍結した室外熱交換器
に送り、除霜運転を行うことで再び暖房運転を行うこと
ができる。
When the outdoor heat exchanger freezes during the heating operation as described above, the temperature and pressure of the refrigerant in the refrigerant pipe line are lower than in the normal state, and the temperature sensor detects the freezing of the outdoor heat exchanger. it can. Therefore, when a refrigerant temperature abnormality occurs during the heating operation, the four-way valve is switched to send the high temperature / high pressure refrigerant discharged from the compressor to the frozen outdoor heat exchanger, and the defrosting operation is performed again. Heating operation can be performed.

【0006】[0006]

【発明が解決しようとする課題】ところで、除霜運転中
は室内側熱交換器が冷却されるので、室内ファンの運転
を止めて熱交換が行われにくくして、室内空気の温度低
下が起きないようにしている。しかし、真冬の室外空気
の温度は低く、圧縮機が加圧して高温となった冷媒は、
室外熱交換器に付着した霜を溶かしながらキャピラリー
を経て室内熱交換器へ送られるから、室内熱交換器の入
口側ですでに冷媒の温度はかなり低くなっており、室内
熱交換器に触れた室内空気に含まれる水蒸気が、室内熱
交換器の表面で凍結することがある。
By the way, since the indoor heat exchanger is cooled during the defrosting operation, the operation of the indoor fan is stopped to make it difficult to perform heat exchange, and the temperature of the indoor air drops. I try not to. However, the temperature of outdoor air in the middle of winter is low, and the refrigerant pressurized by the compressor to reach a high temperature
Since the frost adhering to the outdoor heat exchanger is melted and sent to the indoor heat exchanger through the capillary, the temperature of the refrigerant has already become quite low at the inlet side of the indoor heat exchanger, and the indoor heat exchanger was touched. Water vapor contained in indoor air may freeze on the surface of the indoor heat exchanger.

【0007】また、このように室内熱交換器が凍結する
状態では圧縮機に送られる冷媒が完全なガス体になら
ず、湿り状態であったり液がまじる状態であり、ガス体
になっていない冷媒にとって冷媒配管は大きな流路抵抗
であって、圧縮機が作動する時に吸入側の圧力が低くな
るものである。また、圧縮機の能力は変化しないから、
吐出側の圧力も低くなって冷凍サイクル全体の圧力が低
下し、キャピラリーまでの室外機の冷媒配管に液状の冷
媒がたまり、室内熱交換器から圧縮機の吸入側に冷媒が
不足し、この現象は圧縮機の潤滑油の不足となって圧縮
機の故障が起きやすくなるものであった。
When the indoor heat exchanger freezes in this way, the refrigerant sent to the compressor does not become a complete gas body, but is in a wet state or a state in which the liquid is mixed and is not a gas body. The refrigerant pipe has a large flow resistance for the refrigerant, and the pressure on the suction side becomes low when the compressor operates. Also, because the capacity of the compressor does not change,
The pressure on the discharge side also decreases and the pressure on the entire refrigeration cycle decreases, and liquid refrigerant accumulates in the refrigerant pipe of the outdoor unit up to the capillary, causing a shortage of refrigerant from the indoor heat exchanger to the suction side of the compressor. Was likely to run out of compressor oil due to lack of lubricating oil.

【0008】[0008]

【課題を解決するための手段】この発明は上記の課題を
解決するもので、圧縮機1と、四方弁2と、室内熱交換
器3と、キャピラリー4と、室外熱交換器5とを冷媒配
管6によって連結する冷凍サイクルを構成し、両熱交換
器3・5もしくは冷媒配管6に凍結検出用の温度センサ
7を設け、暖房運転時に室外熱交換器5の凍結を温度セ
ンサ7が検出して四方弁2を切換え、一時的な冷房運転
によって除霜する空気調和装置において、室外熱交換器
5とキャピラリー4とを接続する冷媒配管6を分岐して
圧縮機1の吸入側と連絡するバイパス管8を設け、該バ
イパス管8には開閉弁9を取付け、かつ、圧縮機1の吸
入側の冷媒配管6に圧力センサ10を取付け、該圧力セ
ンサ10は温度センサ7の信号による暖房時の除霜運転
中に低圧力を検出すると開閉弁9を開路とするものであ
る。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems, and includes a compressor 1, a four-way valve 2, an indoor heat exchanger 3, a capillary 4, and an outdoor heat exchanger 5 as a refrigerant. A refrigeration cycle connected by the pipe 6 is configured, and a temperature sensor 7 for detecting freezing is provided in both the heat exchangers 3 and 5 or the refrigerant pipe 6, and the temperature sensor 7 detects the freezing of the outdoor heat exchanger 5 during heating operation. In the air conditioner that switches the four-way valve 2 to defrost by the temporary cooling operation, the bypass connecting the refrigerant pipe 6 that connects the outdoor heat exchanger 5 and the capillary 4 to the suction side of the compressor 1 A pipe 8 is provided, an opening / closing valve 9 is attached to the bypass pipe 8, and a pressure sensor 10 is attached to the refrigerant pipe 6 on the suction side of the compressor 1. The pressure sensor 10 is used for heating by a signal from the temperature sensor 7. Low pressure detected during defrosting operation That as the on-off valve 9 intended to open.

【0009】[0009]

【作用】四方弁2を切換えして暖房運転中に、温度セン
サ7が通常の暖房運転中の冷媒温度よりも低い温度を検
出すると、室外熱交換器5が凍結したと判断して、四方
弁2を一時的に冷房運転に切換える。この為、圧縮機1
で圧縮された高温高圧の冷媒は凍結した室外熱交換器5
に送られ、表面に付着した霜を溶かすことができる。そ
して、室外温度が低い時には、霜を溶かすことで冷却し
た冷媒が低い温度のままキャピラリー4で減圧して室内
熱交換器3に送られて気化し、室内熱交換器3を冷却す
ることになる。
When the temperature sensor 7 detects a temperature lower than the refrigerant temperature during the normal heating operation by switching the four-way valve 2 and heating operation, it is determined that the outdoor heat exchanger 5 has frozen, and the four-way valve 2 is temporarily switched to cooling operation. Therefore, the compressor 1
The high-temperature and high-pressure refrigerant compressed by is the frozen outdoor heat exchanger 5
Can be melted to remove the frost attached to the surface. Then, when the outdoor temperature is low, the refrigerant cooled by melting frost is depressurized by the capillary 4 while being kept at a low temperature and sent to the indoor heat exchanger 3 to be vaporized and cool the indoor heat exchanger 3. .

【0010】暖房された室内は室外空気よりも絶対湿度
が高くなっており、冷却された室内熱交換器3付近の空
気が室内熱交換器3に触れると水蒸気が液化するもので
あり、室外空気温度が低い時には室内熱交換器3で凍結
が発生する。この状態になると室外熱交換器5で液化し
た冷媒はガス化できず液状もしくは液まじりで圧縮機1
に戻ろうとするが、流路抵抗が大きくなって冷媒の戻り
量は激減し、圧縮機1のトラブルの原因となる。
The heated room has a higher absolute humidity than the outdoor air, and when the cooled air near the indoor heat exchanger 3 comes into contact with the indoor heat exchanger 3, water vapor is liquefied. When the temperature is low, freezing occurs in the indoor heat exchanger 3. In this state, the refrigerant liquefied in the outdoor heat exchanger 5 cannot be gasified and becomes liquid or liquid-mixed in the compressor 1
However, the flow path resistance increases and the amount of refrigerant returned decreases drastically, causing troubles in the compressor 1.

【0011】この発明は、キャピラリー4と室外熱交換
器5の間の冷媒配管6を分岐してバイパス管8を圧縮機
1の吸入側に接続し、圧縮機1の吸入側が異常負圧とな
った時に圧力センサ10がバイパス管8の開閉弁9を開
くもので、キャピラリー4で減圧する前の冷媒を直接圧
縮機1に戻すことで、圧縮機1へ冷媒とコンプレッサオ
イルが戻り、圧縮機1の吐出側の冷媒の温度と圧力を高
めて安定した運転を可能にしている。
According to the present invention, the refrigerant pipe 6 between the capillary 4 and the outdoor heat exchanger 5 is branched to connect the bypass pipe 8 to the suction side of the compressor 1, and the suction side of the compressor 1 becomes an abnormal negative pressure. At this time, the pressure sensor 10 opens the on-off valve 9 of the bypass pipe 8. By directly returning the refrigerant that has not been depressurized by the capillary 4 to the compressor 1, the refrigerant and the compressor oil return to the compressor 1, and the compressor 1 The temperature and pressure of the refrigerant on the discharge side are increased to enable stable operation.

【0012】[0012]

【実施例】図に示す空気調和装置の配管図によってこの
発明の実施例を説明すると、1は圧縮機、2は圧縮機1
の吐出側と吸入側とが接続された四方弁、3は室内空気
を空気調和するための室内熱交換器、5は室外に設置し
て空気調和するための処理空気が流れる室外熱交換器で
あり、室内熱交換器3と室外熱交換器5との間に冷媒の
圧力を減圧するキャピラリー4が設置され、両熱交換器
3・5の他側が四方弁2と接続している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the piping diagram of an air conditioner shown in the figure. 1 is a compressor, 2 is a compressor 1
Is a four-way valve in which the discharge side and the suction side are connected, 3 is an indoor heat exchanger for air conditioning the indoor air, and 5 is an outdoor heat exchanger that is installed outdoors and through which process air for air conditioning flows. The capillary 4 for reducing the pressure of the refrigerant is installed between the indoor heat exchanger 3 and the outdoor heat exchanger 5, and the other side of both the heat exchangers 3 and 5 is connected to the four-way valve 2.

【0013】6は上記圧縮機1・四方弁2・室外熱交換
器5・キャピラリー4・室内熱交換器3に冷媒を流して
循環させる冷媒配管であり、圧縮機1で高圧高温に圧縮
された冷媒は、暖房運転時に冷媒配管6を通って四方弁
2によって室内熱交換器3に送られ、室内空気と熱交換
して液化する。そして、高圧で液体の冷媒はキャピラリ
ー4で減圧して室外熱交換器5に送られて気化し、四方
弁2を介して圧縮機1へ戻される。この時室外空気が冷
たく湿度が高い時には、水蒸気が室外熱交換器5によっ
て結露する。
Reference numeral 6 denotes a refrigerant pipe for circulating a refrigerant through the compressor 1, the four-way valve 2, the outdoor heat exchanger 5, the capillary 4, and the indoor heat exchanger 3 and is compressed to a high pressure and high temperature by the compressor 1. During the heating operation, the refrigerant is sent to the indoor heat exchanger 3 by the four-way valve 2 through the refrigerant pipe 6 and exchanges heat with the indoor air to be liquefied. Then, the high-pressure liquid refrigerant is depressurized by the capillary 4, sent to the outdoor heat exchanger 5, vaporized, and returned to the compressor 1 via the four-way valve 2. At this time, when the outdoor air is cold and has high humidity, water vapor is condensed by the outdoor heat exchanger 5.

【0014】暖房運転時の室外空気の温度は低いから、
結露してできる水は霜となり氷に成長するもので、室外
熱交換器5は熱交換効率を悪化させて、期待した暖房運
転ができなくなる。7は室外熱交換器5の凍結を検出す
る温度センサであり、図に示す実施例では室内熱交換器
3の出口側で、キャピラリー4へ向う冷媒配管6に取付
けてある。
Since the temperature of the outdoor air during the heating operation is low,
The water formed by dew condensation becomes frost and grows into ice, and the outdoor heat exchanger 5 deteriorates the heat exchange efficiency, and the expected heating operation cannot be performed. Reference numeral 7 is a temperature sensor for detecting the freezing of the outdoor heat exchanger 5, and in the embodiment shown in the figure, it is attached to the refrigerant pipe 6 facing the capillary 4 on the outlet side of the indoor heat exchanger 3.

【0015】即ち、暖房運転時に室外熱交換器5が凍結
すると冷媒は湿り状態で圧縮機1に戻されるから、ガス
状冷媒の量が少なく加圧後の冷媒の圧力・温度が低くな
る。また、圧力・温度が低い冷媒は室内熱交換器3内で
完全に液化が完了して放熱済みであるから、出口側の冷
媒温度が正常運転時よりも低くなり、温度センサ7によ
って室外熱交換器5の凍結が検出できる。
That is, when the outdoor heat exchanger 5 freezes during the heating operation, the refrigerant is returned to the compressor 1 in a wet state, so that the amount of the gaseous refrigerant is small and the pressure / temperature of the refrigerant after pressurization becomes low. Further, since the refrigerant having a low pressure and temperature is completely liquefied in the indoor heat exchanger 3 and the heat has been radiated, the temperature of the refrigerant on the outlet side becomes lower than that in the normal operation, and the temperature sensor 7 causes the outdoor heat exchange. Freezing of the container 5 can be detected.

【0016】温度センサ7が室外熱交換器5の凍結を検
出すると、暖房運転中にもかかわらず、四方弁2を切換
えして一時的に冷房運転による除霜を行う。この為、圧
縮機1で圧縮して高温高圧となった冷媒は室外熱交換器
5に送られるので、冷媒の持つ熱エネルギーによって室
外熱交換器5に付着した氷が溶かされる。
When the temperature sensor 7 detects the freezing of the outdoor heat exchanger 5, the four-way valve 2 is switched to temporarily perform defrosting by the cooling operation even during the heating operation. Therefore, the refrigerant that has been compressed by the compressor 1 and has become high temperature and high pressure is sent to the outdoor heat exchanger 5, so that the ice energy adhering to the outdoor heat exchanger 5 is melted by the thermal energy of the refrigerant.

【0017】そして、時間制御または温度センサ7によ
る冷媒温度の上昇を検出によって除霜運転を中止し、四
方弁2を切換えして再び暖房運転を開始する。
Then, the defrosting operation is stopped by detecting the rise in the refrigerant temperature by the time control or the temperature sensor 7, the four-way valve 2 is switched, and the heating operation is restarted.

【0018】ところで、室外空気が低温の時には、除霜
運転中に室外熱交換器3に対向する送風機を停止してい
ても、冷たい室外空気は室外熱交換器5内に侵入して冷
媒温度を低下させており、キャピラリー4を通過した冷
媒は圧力・温度が正常値より低くなっている。この為、
室内熱交換器3内で冷媒が気化熱を奪ってガス化する
時、室内空気が急冷して空気中の水蒸気が室内熱交換器
3の表面で凍結するトラブルになるものであった。この
時は室内・外熱交換器3・5の両方が凍結しており、空
気調和装置は完全に使用不可となる重大トラブルになる
ものであった。
By the way, when the outdoor air is at a low temperature, even if the blower facing the outdoor heat exchanger 3 is stopped during the defrosting operation, the cold outdoor air enters the outdoor heat exchanger 5 to reduce the refrigerant temperature. The pressure and temperature of the refrigerant passing through the capillary 4 are lower than normal values. Because of this,
When the refrigerant takes heat of vaporization in the indoor heat exchanger 3 to be gasified, the indoor air is rapidly cooled and water vapor in the air freezes on the surface of the indoor heat exchanger 3. At this time, both the indoor and outdoor heat exchangers 3 and 5 were frozen, and the air conditioner became a serious problem that completely disabled it.

【0019】8はキャピラリー4と室外熱交換器5とを
接続する冷媒配管6を分岐したバイパス管であり、該バ
イパス管8の他部は圧縮機1の吸入側に接続している。
9はバイパス管8に取付けた開閉弁、10は圧縮機1の
吸入側の冷媒配管6に取付けした圧力センサである。
Reference numeral 8 denotes a bypass pipe which branches a refrigerant pipe 6 which connects the capillary 4 and the outdoor heat exchanger 5, and the other part of the bypass pipe 8 is connected to the suction side of the compressor 1.
Reference numeral 9 is an opening / closing valve attached to the bypass pipe 8, and 10 is a pressure sensor attached to the refrigerant pipe 6 on the suction side of the compressor 1.

【0020】暖房運転時の室外熱交換器5の除霜運転中
に室内熱交換器3の凍結が発生すれば、室外熱交換器5
で液化した冷媒は、室内熱交換器3内で気化することが
できず、また、冷媒配管6内の液まじりの冷媒は流路抵
抗が大の為に圧縮機1へ戻りにくく、更に、戻ってきた
冷媒のガス成分が普段よりも少ないから、ガスを圧縮す
る圧縮機1は充分な量の冷媒を圧縮できず、圧縮機1の
吸入側は大きな負圧となり、また吐出側の圧力も通常時
程上がらず、冷凍サイクルは全体的に低温低圧になるも
のである。
If freezing of the indoor heat exchanger 3 occurs during the defrosting operation of the outdoor heat exchanger 5 during the heating operation, the outdoor heat exchanger 5
The refrigerant liquefied in 1. cannot be vaporized in the indoor heat exchanger 3, and the liquid refrigerant in the refrigerant pipe 6 is difficult to return to the compressor 1 due to the large flow path resistance. Since the refrigerant has less gas component than usual, the compressor 1 that compresses the gas cannot compress a sufficient amount of refrigerant, the suction side of the compressor 1 becomes a large negative pressure, and the pressure on the discharge side is also normal. The refrigeration cycle generally goes to low temperature and low pressure in a short time.

【0021】圧縮機1にとって吸入する冷媒が少ないこ
とは内部を潤滑する為のコンプレッサオイルが戻ってこ
ないことを意味し、圧縮機1が突然ロックして使用不能
となる非常事態を発生させることがあった。
The fact that the refrigerant sucked into the compressor 1 is small means that the compressor oil for lubricating the inside does not return, which may cause an emergency situation where the compressor 1 suddenly locks and becomes unusable. there were.

【0022】この発明では圧力センサ10が圧縮機1の
吸入側の異常負圧を検出すればバイパス管8の開閉弁9
を開くから、室外熱交換器5で液化した冷媒の一部は直
接バイパス管8から圧縮機1の吸入側に戻るものであ
る。
In the present invention, if the pressure sensor 10 detects an abnormal negative pressure on the suction side of the compressor 1, the open / close valve 9 of the bypass pipe 8
Therefore, a part of the refrigerant liquefied in the outdoor heat exchanger 5 directly returns from the bypass pipe 8 to the suction side of the compressor 1.

【0023】従って、室内熱交換器3から圧縮機1へ向
う液まじりの冷媒と、バイパス管8から送られる液状の
冷媒によって、圧縮機1に付属するガス状冷媒を分離す
るアキュームレータ1a内には常に所定量の液冷媒が存
在し、かつ、圧縮機1からの発熱を受けて冷媒は気化し
て圧縮機に吸入されるから、圧縮機1のコンプレッサー
オイルの不足は完全に解消した。
Therefore, in the accumulator 1a for separating the gaseous refrigerant attached to the compressor 1 by the liquid refrigerant flowing from the indoor heat exchanger 3 to the compressor 1 and the liquid refrigerant sent from the bypass pipe 8. Since there is always a predetermined amount of liquid refrigerant, and the refrigerant is vaporized by receiving heat from the compressor 1 and is sucked into the compressor, the shortage of compressor oil in the compressor 1 has been completely eliminated.

【0024】また、バイパス管8を経由して、冷却され
ない高圧の冷媒が圧縮機1に戻ることによって、圧縮機
1の入り口側及び出口側の圧力が高くなり、効率よく室
外熱交換器5の除霜が行われるようになった。そして、
圧縮機1の吸入側へ充分冷媒が送られて圧力が設定圧以
上となれば、圧力センサ10が開閉弁9を閉ざして正常
な室外熱交換器5の除霜運転に戻る。
Further, since the high-pressure refrigerant that is not cooled returns to the compressor 1 via the bypass pipe 8, the pressure on the inlet side and the outlet side of the compressor 1 becomes high, and the efficiency of the outdoor heat exchanger 5 is increased. Defrosting has started. And
When the refrigerant is sufficiently sent to the suction side of the compressor 1 and the pressure becomes equal to or higher than the set pressure, the pressure sensor 10 closes the open / close valve 9 and returns to the normal defrosting operation of the outdoor heat exchanger 5.

【0025】尚、室外熱交換器5の除霜が完了すれば、
キャピラリー4を通過後の冷媒温度が上昇し、温度セン
サ7によって四方弁2の切換えを行い、暖房運転を開始
するが、この時、室内熱交換器3が凍結していても、高
温の冷媒によって直ちに溶けるので、暖房運転の立上り
が少し遅れるものの重大なトラブルにはならない。
When the defrosting of the outdoor heat exchanger 5 is completed,
The temperature of the refrigerant after passing through the capillary 4 rises, the four-way valve 2 is switched by the temperature sensor 7, and the heating operation is started. At this time, even if the indoor heat exchanger 3 is frozen, the temperature of the refrigerant is increased by the high temperature refrigerant. Since it melts immediately, the start-up of heating operation is delayed a little, but it does not cause serious trouble.

【0026】[0026]

【発明の効果】上記したようにこの発明はキャピラリー
4と室外熱交換器5の間の冷媒配管6を分岐して圧縮機
1の吸入側と接続するバイパス管8を設け、かつ、バイ
パス管8には開閉弁9を取付け、更に、圧縮機1の吸入
側に圧力センサ10を設けており、圧縮機1の吸入側が
異常負圧となった時に圧力センサ10がバイパス管8の
開閉弁9を開くもので、キャピラリー4で減圧する前の
冷媒を直接圧縮機1に戻すことができるようになった。
As described above, according to the present invention, the bypass pipe 8 for connecting the refrigerant pipe 6 between the capillary 4 and the outdoor heat exchanger 5 to the suction side of the compressor 1 is provided, and the bypass pipe 8 is provided. An on-off valve 9 is attached to the compressor 1, and a pressure sensor 10 is provided on the suction side of the compressor 1. When the suction side of the compressor 1 becomes an abnormal negative pressure, the pressure sensor 10 opens the on-off valve 9 of the bypass pipe 8. With the open type, the refrigerant before being decompressed by the capillary 4 can be directly returned to the compressor 1.

【0027】この為、室外熱交換器5の除霜運転中に室
内熱交換器3が凍結し、冷媒の気化が充分行なわれない
ので室内熱交換器3から圧縮機1に冷媒が戻りにくくな
っても、圧縮機1へはバイパス管8から冷媒と一緒にコ
ンプレッサオイルが戻り、圧縮機1のコンプレッサーオ
イルが不足して、ロックするトラブルは完全に発生しな
くなったものである。
Therefore, the indoor heat exchanger 3 is frozen during the defrosting operation of the outdoor heat exchanger 5, and the refrigerant is not sufficiently vaporized, so that the refrigerant is less likely to return from the indoor heat exchanger 3 to the compressor 1. However, the compressor oil returns to the compressor 1 from the bypass pipe 8 together with the refrigerant, and the compressor oil of the compressor 1 is insufficient, so that the locking trouble is completely eliminated.

【0028】更に、バイパス管8から圧縮機1に戻る冷
媒はキャピラリー4で減圧する前の高温高圧の冷媒であ
るから、圧縮機1の吸入側の温度と圧力が高くなり、吐
出側の冷媒の温度と圧力も高くなるので、除霜運転中の
室外熱交換機5の氷は速やかに溶け、短時間で除霜が完
了して暖房運転に切り換わるものである。
Further, since the refrigerant returning from the bypass pipe 8 to the compressor 1 is a high-temperature and high-pressure refrigerant before being decompressed by the capillary 4, the temperature and pressure on the suction side of the compressor 1 become high and the refrigerant on the discharge side becomes Since the temperature and the pressure also increase, the ice in the outdoor heat exchanger 5 during the defrosting operation is quickly melted, and the defrosting is completed in a short time to switch to the heating operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明となる空気調和装置の実施例を示す配
管図である。
FIG. 1 is a piping diagram showing an embodiment of an air conditioner according to the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室内熱交換器 4 キャピラリー 5 室外熱交換器 6 冷媒配管 7 温度センサ 8 バイパス管 9 開閉弁 10 圧力センサ 1 Compressor 2 Four-way valve 3 Indoor heat exchanger 4 Capillary 5 Outdoor heat exchanger 6 Refrigerant pipe 7 Temperature sensor 8 Bypass pipe 9 Open / close valve 10 Pressure sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機1と、四方弁2と、室内熱交換器
3と、キャピラリー4と、室外熱交換器5とを冷媒配管
6によって連結する冷凍サイクルを構成し、両熱交換器
3・5もしくは冷媒配管6に凍結検出用の温度センサ7
を設け、暖房運転時に室外熱交換器5の凍結を温度セン
サ7が検出して四方弁2を切換え、一時的な冷房運転に
よって除霜する空気調和装置において、 室外熱交換器5とキャピラリー4とを接続する冷媒配管
6を分岐して圧縮機1の吸入側と連絡するバイパス管8
を設け、該バイパス管8には開閉弁9を取付け、かつ、
圧縮機1の吸入側の冷媒配管6に圧力センサ10を取付
け、該圧力センサ10は温度センサ7の信号による暖房
時の除霜運転中に低圧力を検出すると、開閉弁9を開路
とすることを特徴とするヒートポンプ式空気調和装置。
1. A refrigeration cycle in which a compressor 1, a four-way valve 2, an indoor heat exchanger 3, a capillary 4, and an outdoor heat exchanger 5 are connected by a refrigerant pipe 6, and both heat exchangers 3 are formed. .5 or refrigerant pipe 6 with temperature sensor 7 for detecting freezing
In the air conditioner in which the temperature sensor 7 detects the freezing of the outdoor heat exchanger 5 during the heating operation and switches the four-way valve 2 to defrost by the temporary cooling operation, the outdoor heat exchanger 5 and the capillary 4 are provided. Bypass pipe 8 that branches the refrigerant pipe 6 that connects the
Is provided, an opening / closing valve 9 is attached to the bypass pipe 8, and
A pressure sensor 10 is attached to the refrigerant pipe 6 on the suction side of the compressor 1, and when the pressure sensor 10 detects a low pressure during a defrosting operation during heating according to a signal from the temperature sensor 7, the open / close valve 9 is opened. A heat pump type air conditioner.
JP7346736A 1995-12-12 1995-12-12 Heat pump type air-conditioning apparatus Pending JPH09159329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7346736A JPH09159329A (en) 1995-12-12 1995-12-12 Heat pump type air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7346736A JPH09159329A (en) 1995-12-12 1995-12-12 Heat pump type air-conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH09159329A true JPH09159329A (en) 1997-06-20

Family

ID=18385472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7346736A Pending JPH09159329A (en) 1995-12-12 1995-12-12 Heat pump type air-conditioning apparatus

Country Status (1)

Country Link
JP (1) JPH09159329A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084186A1 (en) * 2001-04-11 2002-10-24 Meyong Hyek Yun Continuous heating type air conditioning system
CN103090507A (en) * 2013-01-19 2013-05-08 德州亚太集团有限公司 Defrosting control method of air cooled heat pump air conditioning unit
CN104344618A (en) * 2013-07-30 2015-02-11 广东美的暖通设备有限公司 Intelligent defrosting air conditioning system and control method thereof
EP3073211A1 (en) 2015-03-25 2016-09-28 Toshiba Carrier Corporation Refrigeration cycle equipment
WO2017057860A1 (en) * 2015-09-30 2017-04-06 엘지전자 주식회사 Air conditioner and control method therefor
CN106766332A (en) * 2016-12-20 2017-05-31 珠海格力电器股份有限公司 Air conditioning system unit and air conditioning system
CN111503818A (en) * 2020-04-29 2020-08-07 广东美的制冷设备有限公司 Control method of air conditioning system and air conditioning system
CN111623568A (en) * 2020-04-28 2020-09-04 珠海格力电器股份有限公司 Refrigerating unit and control method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084186A1 (en) * 2001-04-11 2002-10-24 Meyong Hyek Yun Continuous heating type air conditioning system
CN103090507A (en) * 2013-01-19 2013-05-08 德州亚太集团有限公司 Defrosting control method of air cooled heat pump air conditioning unit
CN104344618A (en) * 2013-07-30 2015-02-11 广东美的暖通设备有限公司 Intelligent defrosting air conditioning system and control method thereof
CN104344618B (en) * 2013-07-30 2017-02-08 广东美的暖通设备有限公司 Intelligent defrosting air conditioning system and control method thereof
EP3073211A1 (en) 2015-03-25 2016-09-28 Toshiba Carrier Corporation Refrigeration cycle equipment
JP2016180564A (en) * 2015-03-25 2016-10-13 東芝キヤリア株式会社 Refrigeration cycle apparatus
WO2017057860A1 (en) * 2015-09-30 2017-04-06 엘지전자 주식회사 Air conditioner and control method therefor
US10533787B2 (en) 2015-09-30 2020-01-14 Lg Electronics Inc. Air conditioner and control method therefor
CN106766332A (en) * 2016-12-20 2017-05-31 珠海格力电器股份有限公司 Air conditioning system unit and air conditioning system
CN106766332B (en) * 2016-12-20 2023-05-30 珠海格力电器股份有限公司 Air conditioning system unit and air conditioning system
CN111623568A (en) * 2020-04-28 2020-09-04 珠海格力电器股份有限公司 Refrigerating unit and control method thereof
CN111503818A (en) * 2020-04-29 2020-08-07 广东美的制冷设备有限公司 Control method of air conditioning system and air conditioning system
CN111503818B (en) * 2020-04-29 2021-12-21 广东美的制冷设备有限公司 Control method of air conditioning system and air conditioning system

Similar Documents

Publication Publication Date Title
CN102725597B (en) Container refrigeration apparatus
KR100821728B1 (en) Air conditioning system
EP2530411B1 (en) Refrigeration cycle equipment
US6609390B1 (en) Two-refrigerant refrigerating device
JP3882056B2 (en) Refrigeration air conditioner
CN117469835A (en) Refrigerating and defrosting system
JP7034227B1 (en) Air conditioner and management device
CN106705515A (en) Air conditioner system and air conditioner
JPH09159329A (en) Heat pump type air-conditioning apparatus
CN2439641Y (en) Low temp. and low moisture type equipment for constant temp. and constant moisture
JP4622901B2 (en) Air conditioner
JP2002188873A (en) Refrigerating equipment of air conditioner
JP3866799B2 (en) Ice heat storage device
CN105841292A (en) Multi-split air conditioner system and liquid supplement control method thereof
KR20160060524A (en) A heat hump system having a defrost device
JPS5826511B2 (en) Defrosting device for refrigerators
KR101100009B1 (en) Air conditioning system
CN219243956U (en) Air conditioner
CN221505302U (en) Refrigerating and defrosting system
JPH09318229A (en) Refrigerating device
CN218955278U (en) Drainage assembly and refrigeration equipment
CN219640471U (en) Heat exchange assembly and refrigeration equipment
JP3063746B2 (en) Refrigeration equipment
CN212870024U (en) Air conditioner
KR100643689B1 (en) Heat pump air conditioner