[go: up one dir, main page]

JPH09157054A - Circuit board - Google Patents

Circuit board

Info

Publication number
JPH09157054A
JPH09157054A JP7319369A JP31936995A JPH09157054A JP H09157054 A JPH09157054 A JP H09157054A JP 7319369 A JP7319369 A JP 7319369A JP 31936995 A JP31936995 A JP 31936995A JP H09157054 A JPH09157054 A JP H09157054A
Authority
JP
Japan
Prior art keywords
circuit board
silicon nitride
sintered body
nitride sintered
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7319369A
Other languages
Japanese (ja)
Other versions
JP3629783B2 (en
Inventor
Toichi Takagi
東一 高城
Takeharu Nagata
剛春 永田
Akira Miyai
明 宮井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP31936995A priority Critical patent/JP3629783B2/en
Publication of JPH09157054A publication Critical patent/JPH09157054A/en
Application granted granted Critical
Publication of JP3629783B2 publication Critical patent/JP3629783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon nitride-based circuit board which is excellent in both of thermal conductivity and strength and is excellent in productivity without requiring a special sintering operation. SOLUTION: This circuit board is formed by disposing a metallic circuit board via a joint layer on a silicon nitride sintered compact. This silicon nitride sintered compact contains an Ma component and/or Ca component at <=7.0wt.% in total in terms of oxide. More particularly, the number of the grain boundaries observed at the polished surface of the silicon nitride sintered compact is <=10 pieces per 10μm length of the straight line drawn in an arbitrary direction on the polished surface. Further, the Al of the impurities included in the silicon nitride sintered compact is <=0.25wt.% in terms of metal and F is <=0.3wt.% in terms of metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、窒化珪素質焼結体
と金属回路板とが接合層を介して一体に接合されている
構造の回路基板、特に高い信頼性、放熱性を要する半導
体モジュール用に好適な回路基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit board having a structure in which a silicon nitride sintered body and a metal circuit board are integrally bonded via a bonding layer, and particularly a semiconductor module requiring high reliability and heat dissipation. A circuit board suitable for use.

【0002】[0002]

【従来の技術】従来から各種電子機器の構成部品とし
て、アルミナ(Al2 O3 )、窒化アルミニウム(Al
N)、酸化ベリリウム(BeO)などのセラミックス焼
結体基板表面に導電層としての銅(Cu)回路板等を一
体に接合したセラミックス回路基板が広く使用されてい
る。
2. Description of the Related Art Conventionally, alumina (Al2 O3), aluminum nitride (Al
N), beryllium oxide (BeO), and other ceramics sintered body substrates in which a copper (Cu) circuit board as a conductive layer is integrally joined to the surface of the ceramics sintered body substrate are widely used.

【0003】これらのセラミックス回路基板は、熱伝導
性および電気伝導性に優れた銅等の金属により回路板を
形成しているため、回路動作の遅延が減少するとともに
回路配線の寿命も向上するし、半田等の接合材料に対す
る濡れ性が向上し、セラミックス焼結体表面に半導体素
子(ICチップ)や電極板を高い接合強度で接合するこ
とができ、その結果、半導体素子からの発熱の放散性や
素子の動作信頼性を良好に保つことができ、更にセラミ
ックス基板の裏面にも銅等の金属板を接合することによ
り、セラミックス基板の応力緩和および反り(熱変形)
防止の目的も達成できるという利点を有している。
In these ceramics circuit boards, the circuit board is made of a metal such as copper having excellent thermal conductivity and electrical conductivity, so that the delay of the circuit operation is reduced and the life of the circuit wiring is improved. , Wettability to a bonding material such as solder is improved, and a semiconductor element (IC chip) or an electrode plate can be bonded to the surface of the ceramic sintered body with high bonding strength. As a result, heat dissipation from the semiconductor element is dissipated. And the operation reliability of the element can be kept good, and stress relaxation and warpage (thermal deformation) of the ceramic substrate can be achieved by bonding a metal plate such as copper to the back surface of the ceramic substrate.
It has the advantage that the preventive purpose can also be achieved.

【0004】しかし、上記セラミックス回路基板のう
ち、Al2 O3 基板を使用した回路基板においては、A
l2 O3 の熱伝導率が低いために良好な放熱性が得られ
ず、半導体素子の高密度集積化および高出力化に伴う放
熱対策に充分対応できない問題点があった。また、Be
O基板を使用した回路基板については、BeOは酸化物
系のセラミックスの中では最も熱伝導率が高い放熱性に
優れた材料であるが、その毒性のため製造上および取扱
い上の難点が多い。
However, among the above-mentioned ceramic circuit boards, the circuit board using an Al2 O3 board is
Since the thermal conductivity of l2 O3 is low, good heat dissipation cannot be obtained, and there has been a problem that it is not possible to sufficiently cope with heat dissipation measures associated with high-density integration and high output of semiconductor elements. Also, Be
Regarding the circuit board using the O substrate, BeO is the material having the highest heat conductivity and excellent heat dissipation property among the oxide-based ceramics, but due to its toxicity, there are many difficulties in manufacturing and handling.

【0005】AlN基板を使用した回路基板は、熱伝導
率が高く充分な放熱性が得られるが、AlN基板自体の
強度が低いため、実使用下での繰り返して作用する熱負
荷によってクラックが生じ易く、いわゆる耐熱サイクル
性が小さいという問題点があり、その結果、使用中に繰
り返し作用する熱負荷によって金属回路板がAlN基板
より剥離して放熱性が急減したり、クラックが発生して
耐電圧特性が低下するなど電子機器の動作信頼性が低下
する問題点があった。加えて、AlN基板を使用した回
路基板は、その構造強度をある程度確保するためにはA
lN基板の厚さを大きく設定する必要があり、高密度実
装化に対する障害となっているとともに、AlN基板の
厚さが大きいが故に回路基板が撓みにくいので、例えば
実装用ボードにねじ止めする場合にAlN基板に作用す
る曲げ応力によってAlN基板が容易に割れてしまうと
いう問題点もあった。
A circuit board using an AlN substrate has a high thermal conductivity and a sufficient heat dissipation property, but since the AlN substrate itself has a low strength, cracks occur due to repeated thermal loads in actual use. However, there is a problem that the so-called heat resistance cycle is small, and as a result, the metal circuit board is peeled off from the AlN board due to repeated heat loads during use, the heat dissipation is sharply reduced, or cracks occur and the withstand voltage is increased. There is a problem that the operation reliability of the electronic device is deteriorated such as deterioration of characteristics. In addition, the circuit board using the AlN substrate requires A in order to secure its structural strength to some extent.
It is necessary to set the thickness of the 1N substrate to be large, which is an obstacle to high-density mounting, and the circuit board is difficult to bend due to the large thickness of the AlN substrate. In addition, there is a problem that the AlN substrate is easily cracked by the bending stress acting on the AlN substrate.

【0006】これらの問題点を解決する目的で高熱伝導
性窒化珪素焼結体を用いたセラミックス銅回路基板が提
案されている。即ち、所定量の希土類元素の酸化物に、
窒化アルミニウム及び/またはアルミナを加えた焼結助
剤を用い、焼結時の液相が凝固する温度までの冷却速度
を毎時100℃以下で徐冷するという特殊な焼結条件に
よって、粒界相中の結晶化合物相の粒界相全体に対する
面積比を20%以上にすることで熱伝導率60W/(m
・K)以上の高熱伝導性窒化珪素焼結体が得られるとい
うものである(特開平6−135771号公報参照)。
そして、特開平6−216481号公報には、前記高熱
伝導性窒化珪素焼結体と予め回路を形成した銅回路板と
を活性金属を含有する接合材をもちいて一体に接合した
セラミックス銅回路基板が優れた放熱性、耐熱サイクル
性および接合強度を有し、半導体パワーモジュール用部
品として好適である旨が開示されている。
For the purpose of solving these problems, a ceramics copper circuit board using a high thermal conductivity silicon nitride sintered body has been proposed. That is, a predetermined amount of rare earth element oxide,
By using a sintering aid to which aluminum nitride and / or alumina is added, the grain boundary phase is changed by a special sintering condition that the cooling rate up to the temperature at which the liquid phase solidifies during sintering is gradually cooled at 100 ° C. or less per hour. By setting the area ratio of the crystal compound phase in the entire grain boundary phase to 20% or more, the thermal conductivity is 60 W / (m
-K) or more of the high thermal conductivity silicon nitride sintered body can be obtained (see Japanese Patent Laid-Open No. 6-135771).
Further, in Japanese Unexamined Patent Publication (Kokai) No. 6-216481, a ceramics copper circuit board in which the high thermal conductivity silicon nitride sintered body and a copper circuit board on which a circuit is formed in advance are integrally bonded using a bonding material containing an active metal. Discloses that it has excellent heat dissipation, heat cycle resistance and bonding strength, and is suitable as a component for a semiconductor power module.

【0007】[0007]

【発明が解決しようとする課題】しかし、特開平6−1
35771号公報開示の窒化珪素焼結体については、そ
の製造に際し徐冷という特殊な操作を必要とするので、
生産性が低いという欠点がある。また、回路基板につい
ては、接合強度や耐熱サイクル性のさらなる向上が求め
られているし、回路基板からモジュールを製造する際の
ハンダ付け等の加熱処理に耐え得るようにより耐熱衝撃
性が高いことが望まれている。本発明は上記の課題を解
決するためになされたものであり、通常の焼結条件で製
造できて生産性に優れ、しかも窒化珪素焼結体中の特定
の成分の存在により接合強度、耐熱サイクル性、耐熱衝
撃性に優れた半導体モジュール用部品として好適な回路
基板を提供することを目的とする。
However, Japanese Patent Application Laid-Open No.
Since the silicon nitride sintered body disclosed in Japanese Patent No. 357771 requires a special operation called gradual cooling during its production,
It has the disadvantage of low productivity. Further, regarding circuit boards, further improvement in bonding strength and thermal cycle resistance is required, and high thermal shock resistance is required in order to withstand heat treatment such as soldering when manufacturing modules from circuit boards. Is desired. The present invention has been made in order to solve the above problems, and can be manufactured under normal sintering conditions and is excellent in productivity, and moreover, due to the presence of specific components in the silicon nitride sintered body, the bonding strength and the heat resistance cycle It is an object of the present invention to provide a circuit board suitable as a semiconductor module component that is excellent in heat resistance and thermal shock resistance.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記目的を
達成するため、窒化珪素焼結体を製造するための種々の
焼結助剤を検討するとともに、その窒化珪素焼結体に活
性金属成分を含有するろう材を用いて銅等の金属回路板
を接合することでいろいろな回路基板を作製し、それら
の放熱性、金属回路板の窒化珪素焼結体との接合強度、
耐熱サイクル性、耐熱衝撃性および撓み量等を比較検討
した。その結果、Mg成分及び/またはCa成分を7重
量%以下含有する窒化珪素焼結体と金属回路板とが接合
層を介して接合されている構造の回路基板が、接合強
度、耐熱サイクル性、耐熱衝撃性、更に放熱性に優れて
いることを見いだし、本発明に至ったものである。
In order to achieve the above object, the inventors of the present invention have investigated various sintering aids for producing a silicon nitride sintered body and have an activity on the silicon nitride sintered body. Various circuit boards are made by joining metal circuit boards such as copper using a brazing material containing a metal component, and their heat dissipation, bonding strength of the metal circuit board to the silicon nitride sintered body,
Thermal cycle resistance, thermal shock resistance, and flexure amount were compared and examined. As a result, a circuit board having a structure in which a silicon nitride sintered body containing 7% by weight or less of Mg component and / or Ca component and a metal circuit board are bonded via a bonding layer has a bonding strength, heat cycle resistance, The present invention has been completed by discovering that it has excellent thermal shock resistance and heat dissipation.

【0009】本発明は、窒化珪素焼結体に接合層を介し
て金属回路板が配設されている回路基板であって、前記
窒化珪素焼結体がMg成分及び/またはCa成分をそれ
らの酸化物換算で合計量7.0重量%以下含むことを特
徴とする回路基板であり、特に、前記窒化珪素焼結体の
研磨面に観察される粒界の数が、任意の方向に引いた直
線の長さ10μm当たり10個以下であること、更に、
前記窒化珪素焼結体中に含まれる不純物について、Al
が金属換算で0.25重量%以下、Feが金属換算で
0.3重量%以下であることを特徴とする前記の回路基
板である。
The present invention is a circuit board in which a metal circuit board is arranged on a silicon nitride sintered body with a bonding layer interposed therebetween, wherein the silicon nitride sintered body contains Mg component and / or Ca component. A circuit board characterized by containing a total amount of 7.0% by weight or less in terms of oxide, and in particular, the number of grain boundaries observed on the polished surface of the silicon nitride sintered body was drawn in an arbitrary direction. The number of straight lines is 10 or less per 10 μm, and further,
Regarding impurities contained in the silicon nitride sintered body, Al
Is 0.25 wt% or less in terms of metal, and Fe is 0.3 wt% or less in terms of metal.

【0010】また、本発明は、前記窒化珪素焼結体の室
温での三点曲げ強度が600MPa以上、熱伝導率が6
0W/(m・K)以上であることを特徴とする前記回路
基板である。
Further, according to the present invention, the silicon nitride sintered body has a three-point bending strength of 600 MPa or more at room temperature and a thermal conductivity of 6 or more.
The circuit board is characterized in that it is 0 W / (m · K) or more.

【0011】更に、本発明は、前記金属回路板が酸素含
有量が50ppm以下の銅であることを特徴とする上記
の回路基板であり、前記接合層中に活性金属成分と窒化
珪素焼結体との反応層を含み、その反応層の厚みが2μ
m以下であることを特徴とする回路基板である。
Further, the present invention is the above-mentioned circuit board, wherein the metal circuit board is copper having an oxygen content of 50 ppm or less, wherein the active metal component and the silicon nitride sintered body are contained in the bonding layer. Including the reaction layer with, the thickness of the reaction layer is 2μ
It is a circuit board characterized by being m or less.

【0012】[0012]

【発明の実施の形態】まず、本発明になる回路基板に用
いられる窒化珪素焼結体について以下説明する。回路基
板に用いる窒化珪素焼結体は、高熱伝導、高強度、低気
孔率である必要があるが、窒化珪素は高融点であり、高
い分解圧を有するので、希土類元素の酸化物を焼結助剤
として用いたり、高圧の窒素雰囲気下で焼結するなどの
工夫がなされてきた。本発明者らは、Mg成分及び/ま
たはCa成分の酸化物またはそれらの前駆物質を焼結助
剤に用いること、従来以上に不純物を制限すること、ま
た焼結条件を詳細に制御することにより、熱伝導性と強
度がともに優れ、回路基板用に最適な窒化珪素焼結体が
容易に、しかも生産性良く得られるという知見を得て、
本発明に至ったものである。
BEST MODE FOR CARRYING OUT THE INVENTION First, a silicon nitride sintered body used for a circuit board according to the present invention will be described below. The silicon nitride sintered body used for the circuit board needs to have high thermal conductivity, high strength, and low porosity, but since silicon nitride has a high melting point and a high decomposition pressure, it is possible to sinter rare earth element oxides. Various measures have been taken, such as using it as an auxiliary agent and sintering it in a high-pressure nitrogen atmosphere. The inventors of the present invention have made it possible to use oxides of Mg and / or Ca components or their precursors as sintering aids, limit impurities more than ever, and control sintering conditions in detail. Based on the finding that a silicon nitride sintered body that is excellent in both thermal conductivity and strength and that is optimal for circuit boards can be easily obtained with high productivity,
This has led to the present invention.

【0013】本発明において、窒化珪素焼結体はMg成
分及び/またはCa成分を含有する。窒化珪素焼結体の
焼結助剤としては、従来より希土類元素の酸化物やアル
ミナ等も知られているが、本発明者らの検討によれば、
前記希土類元素の酸化物やアルミナでは、通常の焼結条
件では得られる窒化珪素焼結体の熱伝導率が低く満足で
きないし、熱伝導性に優れる窒化珪素焼結体を得ようと
すると焼結に高温、長時間を要し生産性が低下する。こ
れに対して、本発明のMg成分及び/またはCa成分を
焼結助剤とする場合には、比較的容易に熱伝導性と強度
とがともに優れる窒化珪素焼結体を比較的低温で短時間
の焼結で、従って生産性高く得ることができる。この効
果は、Mg成分或いはCa成分のそれぞれを単独で用い
ても得ることができるし、両者を混合して用いても同様
に得ることができる。
In the present invention, the silicon nitride sintered body contains a Mg component and / or a Ca component. As a sintering aid for a silicon nitride sintered body, oxides of rare earth elements, alumina, and the like have been conventionally known, but according to the studies by the present inventors,
With the rare earth element oxides and alumina, the thermal conductivity of the silicon nitride sintered body obtained under normal sintering conditions is low and unsatisfactory, and when a silicon nitride sintered body having excellent thermal conductivity is obtained, it is sintered. It requires a high temperature and a long time, resulting in reduced productivity. On the other hand, when the Mg component and / or the Ca component of the present invention is used as a sintering aid, a silicon nitride sintered body having both excellent thermal conductivity and strength is relatively easily prepared at a relatively low temperature. It can be obtained with time sintering, and thus with high productivity. This effect can be obtained by using each of the Mg component or the Ca component alone, or can be similarly obtained by using both of them in combination.

【0014】本発明の窒化珪素焼結体は、Mg成分及び
/またはCa成分をそれらの酸化物換算したときの合計
量で7.0重量%以下含有する。この理由は、7.0重
量%を越える場合には回路基板を得ようとするときに金
属回路板との接合特性が充分でなくなる場合があるから
である。その下限値については特に制限はないが、あま
りにも少なくなると焼結助剤としての上記効果が不足す
るので0.5重量%程度が好ましい。特に、前記合計量
が2.0重量%以上5.0重量%以下の場合に、焼結助
剤としての効果が充分に発揮され、しかも得られる窒化
珪素焼結体と金属回路板との接合特性が優れ、一層好ま
しい。
The silicon nitride sintered body of the present invention contains the Mg component and / or the Ca component in a total amount of 7.0% by weight or less in terms of their oxides. The reason for this is that if it exceeds 7.0% by weight, the joining characteristics with the metal circuit board may not be sufficient when a circuit board is to be obtained. The lower limit value is not particularly limited, but if it is too small, the above effect as a sintering aid is insufficient, so about 0.5% by weight is preferable. In particular, when the total amount is 2.0% by weight or more and 5.0% by weight or less, the effect as a sintering aid is sufficiently exhibited, and the obtained silicon nitride sintered body is bonded to the metal circuit board. The characteristics are excellent and more preferable.

【0015】本発明では、Mg成分及び/またはCa成
分がそれらの酸化物換算して7重量%以下含まれるとい
う要件を満たせば、後述の不純物を除き、通常の窒化珪
素の焼結に用いられる希土類元素やその他の元素を含む
ことができる。例えば、希土類元素としては、Y、L
a、Sc、Pr、Ce、Nd、Sm、Dy、Gdなどが
挙げられるし、その他の元素としては、例えばZr、T
i、Hfなどが挙げられる。
In the present invention, if the requirement that the Mg component and / or the Ca component is contained in an amount of 7% by weight or less in terms of their oxides is satisfied, it is used for usual sintering of silicon nitride except for the impurities described later. It can contain rare earth elements and other elements. For example, as rare earth elements, Y, L
a, Sc, Pr, Ce, Nd, Sm, Dy, Gd, etc., and other elements include, for example, Zr, T
i, Hf and the like.

【0016】また、本発明において、窒化珪素焼結体の
研磨面に観察される粒界の数が、任意の方向に引いた直
線の長さ10μm当たり10個以下の組織を有すること
を特徴とする。上記の組織(微構造)を有する窒化珪素
焼結体は、熱伝導性に優れるので放熱性に優れた回路基
板が容易に得られる。また、理由は不明であるが、上記
の微構造を有する窒化珪素焼結体は、金属回路板との接
合性にも優れ、好ましい。ここで、研磨面並びに前記研
磨面上に引かれる直線はどのように選択しても構わな
い。
Further, in the present invention, the number of grain boundaries observed on the polished surface of the silicon nitride sintered body has a structure of 10 or less per 10 μm of a straight line drawn in an arbitrary direction. To do. Since the silicon nitride sintered body having the above structure (microstructure) has excellent thermal conductivity, a circuit board excellent in heat dissipation can be easily obtained. Further, although the reason is unknown, the silicon nitride sintered body having the above-mentioned microstructure is preferable because it is excellent in bondability with a metal circuit board. Here, the polishing surface and the straight line drawn on the polishing surface may be selected in any manner.

【0017】更に、窒化珪素焼結体中に含まれる不純物
について、Alが金属換算で0.25重量%以下、しか
もFeが金属換算で0.3重量%以下である。特にAl
が金属換算で0.15重量%以下、Feが金属換算で
0.2重量%以下であることが好ましい。この理由は定
かでないが、本発明者らがMg成分及び/またはCa成
分を含む窒化珪素焼結体について実験的に見いだしたも
ので、AlおよびFeの存在量が多くなるとそれに応じ
て窒化珪素焼結体の熱伝導率が小さくなり、Alが金属
換算で0.25重量%以下、しかもFeが金属換算で
0.3重量%以下の場合に高い熱伝導率を有する窒化珪
素焼結体が得られることを見いだしたものである。そし
て、窒化珪素焼結体の熱伝導率は、Alを金属換算で
0.25重量%以下、Feを金属換算で0.3重量%以
下にまで制限する時、40W/(m・K)以上の熱伝導
率を有する窒化珪素焼結体を容易に、安定して得ること
ができるし、更に、Alが金属換算で0.15重量%以
下、Feが金属換算で0.2重量%以下にまで制限する
時には、50W/(m・K)以上の熱伝導率を有する窒
化珪素焼結体を得ることができる。更に、上記不純物を
制限することに加え、前述の微構造を有する窒化珪素焼
結体は、60W/(m・K)以上の優れた熱伝導性を有
するので、特に好ましい。
Further, with respect to impurities contained in the silicon nitride sintered body, Al is 0.25% by weight or less in terms of metal and Fe is 0.3% by weight or less in terms of metal. Especially Al
Is preferably 0.15 wt% or less in terms of metal, and Fe is 0.2 wt% or less in terms of metal. The reason for this is not clear, but the present inventors have experimentally found a silicon nitride sintered body containing a Mg component and / or a Ca component. When the abundances of Al and Fe increase, silicon nitride firing is correspondingly performed. A silicon nitride sintered body having a high thermal conductivity is obtained when the thermal conductivity of the bonded body becomes small and Al is 0.25 wt% or less in terms of metal and Fe is 0.3 wt% or less in terms of metal. It is something that was discovered. The thermal conductivity of the silicon nitride sintered body is 40 W / (m · K) or more when Al is limited to 0.25 wt% or less in terms of metal and Fe is 0.3 wt% or less in terms of metal. It is possible to easily and stably obtain a silicon nitride sintered body having a thermal conductivity of, and further, Al is 0.15 wt% or less in terms of metal and Fe is 0.2 wt% or less in terms of metal. When limited to, a silicon nitride sintered body having a thermal conductivity of 50 W / (m · K) or more can be obtained. Further, in addition to limiting the above impurities, the silicon nitride sintered body having the above-mentioned microstructure has an excellent thermal conductivity of 60 W / (m · K) or more, and is therefore particularly preferable.

【0018】なお、熱伝導率に影響を与える不純物とし
て、前記Al、Feが挙げられるが、他に、Na、K等
のアルカリ金属は得られた窒化珪素焼結体を回路基板に
用いるとき電気的特性を劣化させるので、またLi,B
e,Mn,Ga等も焼結体の熱伝導率を低下させるの
で、好ましいものでない。これらの不純物元素について
は、その窒化珪素焼結体での含有量は合計で0.3重量
%以下、好ましくは0.2重量%以下に抑制されていれ
ば充分である。
As the impurities that affect the thermal conductivity, the above-mentioned Al and Fe can be mentioned. In addition to the above, alkali metals such as Na and K are used when the obtained silicon nitride sintered body is used as a circuit board. Since it deteriorates the optical characteristics, Li, B
Since e, Mn, Ga, etc. also lower the thermal conductivity of the sintered body, they are not preferable. It is sufficient that the content of these impurity elements in the silicon nitride sintered body is suppressed to 0.3% by weight or less, preferably 0.2% by weight or less in total.

【0019】また、本発明の窒化珪素焼結体は、室温で
の三点曲げ強度が600MPa以上であり、しかも熱伝
導率が60W/(m・K)以上であることが好ましい。
室温での三点曲げ強度が600MPa以上あれば実使用
下で繰り返し受ける温度変化や機械的衝撃に対しても充
分に耐え得るし、しかも熱伝導率が60W/(m・K)
以上であれば、比較的大きな作動電力を有する半導体素
子を搭載しても、長期に渡って信頼して用いることがで
きる利点を有する。
The silicon nitride sintered body of the present invention preferably has a three-point bending strength of 600 MPa or more at room temperature and a thermal conductivity of 60 W / (m · K) or more.
If the three-point bending strength at room temperature is 600 MPa or more, it can withstand the temperature changes and mechanical shocks that are repeatedly received in actual use, and has a thermal conductivity of 60 W / (mK).
If it is above, even if it mounts the semiconductor element which has comparatively large operating power, it has the advantage that it can be used reliably over a long period of time.

【0020】次に上記窒化珪素焼結体を得る方法につい
て、例示して説明する。原料の窒化珪素粉末としては、
従来から知られている構造材料用の窒化珪素粉末を用い
ることができるが、焼結性、得られる焼結体の強度およ
び熱伝導率を考慮して、AlおよびFe、更に前述のN
a、K等のアルカリ金属及びLi、Be、Mn、Ga等
の不純物量が少ないものが選択される。即ち、焼結体に
したときにAlを金属換算で0.25重量%以下、さら
に好ましくは0.15重量%以下含有し、しかもFeを
金属換算で0.3重量%以下、さらに好ましくは0.2
重量%以下となるような純度の窒化珪素粉末が選択され
る。前記Li,Be,Na,K,Mn,Gaなどの不純
物元素についてその含有量は合計で0.3重量%以下、
好ましくは0.2重量%以下に抑制されることが望まし
い。
Next, a method for obtaining the above-mentioned silicon nitride sintered body will be described as an example. As the raw material silicon nitride powder,
Conventionally known silicon nitride powders for structural materials can be used, but in view of sinterability, strength and thermal conductivity of the obtained sintered body, Al and Fe, and further the aforementioned N
Alkali metals such as a and K and those containing a small amount of impurities such as Li, Be, Mn, and Ga are selected. That is, when it is made into a sintered body, it contains Al in an amount of 0.25% by weight or less, more preferably 0.15% by weight or less in terms of metal, and Fe is 0.3% by weight or less in terms of metal, more preferably 0%. .2
A silicon nitride powder having a purity of not more than wt% is selected. The total content of impurity elements such as Li, Be, Na, K, Mn, and Ga is 0.3% by weight or less,
It is desirable that the content be suppressed to 0.2% by weight or less.

【0021】更に、市販されている構造材料用窒化珪素
原料粉末中の酸素含有量は一般に0.5〜2.5重量%
程度のものがほとんどであるが、本発明では、前記酸素
含有量程度の窒化珪素粉末ならば何等問題なく用いるこ
とができるし、前記酸素含有量の範囲外の窒化珪素粉末
の使用を制限するものでもない。
Further, the oxygen content in the commercially available silicon nitride raw material powder for structural materials is generally 0.5 to 2.5% by weight.
In the present invention, a silicon nitride powder having the above oxygen content can be used without any problems, and the use of silicon nitride powder outside the above oxygen content range is restricted in the present invention. not.

【0022】また、原料の窒化珪素粉末の鉱物相につい
ては、一般にα相率が高い方が緻密化しやすく高密度の
焼結体を得やすい傾向があり好ましいが、本発明では得
られる焼結体の研磨面に観察される粒界の数が、任意の
方向に引いた直線の長さ10μm当たり10個以下の組
織が得られればよく、特に限定されない。
Regarding the mineral phase of the raw material silicon nitride powder, it is generally preferable that the α phase ratio is high because it tends to be densified and a high-density sintered body is likely to be obtained, but the sintered body obtained in the present invention is preferable. The number of grain boundaries observed on the polished surface is not particularly limited as long as a structure is obtained in which the number of grain boundaries is 10 or less per 10 μm of a straight line drawn in an arbitrary direction.

【0023】原料の窒化珪素粉末の平均粒径は、焼結性
が高く、緻密で高強度の焼結体が得やすいという理由
で、3.0μm以下、好ましくは1.5μm以下、更に好
ましくは0.8μm以下程度の微細なものが良い。尚、
粉末の粒径分布は50μm以上の粗大粒子が存在すると
強度の低下を招き好ましくないので、全粒子が50μm
未満の粒径であることが望ましい。
The average particle size of the raw material silicon nitride powder is 3.0 μm or less, preferably 1.5 μm or less, and more preferably, because the sintered body has a high sinterability and a dense and high-strength sintered body is easily obtained. A fine one with a size of 0.8 μm or less is preferable. still,
The presence of coarse particles of 50 μm or more in the particle size distribution of the powder causes a decrease in strength, which is not preferable.
A particle size of less than is desirable.

【0024】本発明においては、前記窒化珪素粉末を焼
結して得られる窒化珪素焼結体中にMg成分及び/また
はCa成分をそれらの酸化物換算で7重量%以下含有さ
せるために、前記窒化珪素粉末にMg及び/またはCa
の酸化物、もしくは焼結操作によって、これらの酸化物
となる前駆物質を単独、または2種以上を組み合せて添
加することができる。Mg、Caの酸化物のみを窒化珪
素粉末に配合した場合は、窒化珪素粉末中に含まれるシ
リカ(SiO2 )と反応して助剤相を形成する。従っ
て、他の配合形態としてフォルステライト(Mg2 Si
O4 )やステアタイト(MgSiO3 )を選択すること
もできる。これらの配合量は得られる窒化珪素焼結体中
のMg、Caの成分が酸化物換算で上記範囲内に入るよ
うに設定される。尚、前記のMg及び/またはCaの酸
化物若しくはこれらの酸化物になる前駆物質を粉末状で
配合する場合、粒径が小さく、窒化珪素粉末との混合に
際し分散し易い粉末が好ましい。
In the present invention, the silicon nitride sintered body obtained by sintering the silicon nitride powder contains 7% by weight or less of Mg component and / or Ca component in terms of oxides thereof. Mg and / or Ca in the silicon nitride powder
These oxides or the precursors to be these oxides can be added alone or in combination of two or more by the sintering operation. When only the oxides of Mg and Ca are blended in the silicon nitride powder, they react with silica (SiO2) contained in the silicon nitride powder to form an auxiliary phase. Therefore, as another compounding form, forsterite (Mg2Si
O4) or steatite (MgSiO3) can also be selected. The blending amount of these is set so that the components of Mg and Ca in the obtained silicon nitride sintered body fall within the above range in terms of oxide. When the oxides of Mg and / or Ca or the precursors to form these oxides are mixed in a powder form, a powder having a small particle size and easily dispersed when mixed with a silicon nitride powder is preferable.

【0025】また、Y,La,Sc,Pr,Ce,N
d,Sm,Dy,Ho,Gdなどの希土類元素の酸化物
もしくは焼結操作によりこれらの酸化物となる物質を単
独または2種以上を含んでいてもよい。とりわけ酸化イ
ットリウム(Y2 O3 )及び酸化セリウム(CeO2 )
は、焼結操作において窒化珪素原料粉末と反応して液相
を生成し、焼結促進剤として機能するので好ましい。し
かし、前記希土類元素の酸化物の窒化珪素焼結体中の含
有量は、酸化物換算で15重量%以下の範囲が好まし
い。15重量%を超える過量となると、必要以上の粒界
相が生成し、かえって熱伝導率や強度が低下するためで
ある。
Further, Y, La, Sc, Pr, Ce, N
An oxide of a rare earth element such as d, Sm, Dy, Ho, Gd or a substance that becomes an oxide of these by a sintering operation may be contained alone or in combination of two or more. In particular yttrium oxide (Y2 O3) and cerium oxide (CeO2)
Is preferable because it reacts with the silicon nitride raw material powder in the sintering operation to generate a liquid phase and functions as a sintering accelerator. However, the content of the oxide of the rare earth element in the silicon nitride sintered body is preferably 15% by weight or less in terms of oxide. This is because if the amount exceeds 15% by weight, an excessive amount of grain boundary phase is generated, and the thermal conductivity and strength are rather reduced.

【0026】前記窒化珪素粉末にMg及び/またはCa
の酸化物、若しくは前記の酸化物になる前駆物質を所定
量加え、また必要に応じて前記希土類元素の酸化物を加
え、更に必要に応じて有機質バインダー等を加えて混合
して原料混合体を得た後、前記原料混合体を成形して所
定形状の成形体を得て、更に焼結することで、前記窒化
珪素焼結体を得ることができる。
Mg and / or Ca is added to the silicon nitride powder.
Oxide, or a predetermined amount of the precursor that becomes the above oxide, and if necessary, the oxide of the rare earth element is added, and if necessary, an organic binder or the like is added and mixed to form a raw material mixture. After obtained, the raw material mixture is molded to obtain a compact having a predetermined shape and further sintered, whereby the silicon nitride sintered body can be obtained.

【0027】前記原料混合体の成形法としては、金型プ
レス法、ドクターブレード法や押し出し成形法のような
シート成形法など汎用の成形法を用いれば良い。また、
焼結操作については、まず成形体を温度300〜800
℃で加熱して、予め添加していた有機バインダー成分を
充分に除去、脱脂するが、この際の雰囲気はバインダー
の種類などにより異なり、空気などの酸化性雰囲気また
は窒素、アルゴン、水素、炭酸ガス、炭化水素、真空な
どの非酸化性雰囲気が適用される。次に、前記の脱脂処
理された成形体を窒素ガス、アルゴンガスなどの不活性
ガス雰囲気中で1600〜2000℃の温度で所定時間
雰囲気加圧焼結を行うのが一般的である。尚、焼結温度
は使用する窒化珪素原料粉末の特性、助剤の種類と配合
量、更に窒化珪素焼結体の所望する組織によって異なる
が、窒素ガスなどによる加圧を行なわず常圧で焼結する
場合には1600〜1800℃程度の焼結温度が好まし
い。
As a molding method of the raw material mixture, a general molding method such as a die pressing method, a sheet molding method such as a doctor blade method or an extrusion molding method may be used. Also,
Regarding the sintering operation, first, the molded body is heated to a temperature of 300 to 800.
The organic binder component added in advance is sufficiently removed and degreased by heating at ℃, but the atmosphere at this time varies depending on the type of binder, etc., and it is an oxidizing atmosphere such as air or nitrogen, argon, hydrogen, carbon dioxide gas. , Non-oxidizing atmospheres such as hydrocarbons and vacuum are applied. Next, the degreased compact is generally subjected to atmospheric pressure sintering at a temperature of 1600 to 2000 ° C. for a predetermined time in an atmosphere of an inert gas such as nitrogen gas or argon gas. The sintering temperature varies depending on the characteristics of the silicon nitride raw material powder used, the type and blending amount of the auxiliaries, and the desired structure of the silicon nitride sintered body. When binding, a sintering temperature of about 1600 to 1800 ° C. is preferable.

【0028】上記の操作により得られた窒化珪素焼結体
は、必要に応じて機械加工、表面の研磨を施されて、回
路基板に供することができる。尚、回路基板用途につい
て、前記焼結体の厚みは0.1〜1.0mmが実用的で
あるが、この範囲以外のものであっても使用することが
できる。
The silicon nitride sintered body obtained by the above operation can be subjected to mechanical processing and surface polishing, if necessary, and can be provided for a circuit board. Regarding the circuit board application, the thickness of the sintered body is practically 0.1 to 1.0 mm, but it can be used even if it is out of this range.

【0029】本発明に用いる金属回路板の材質として
は、無酸素銅、タフピッチ銅、リン酸銅等の銅を用いる
のが一般的であるが、その他の金属、例えばタングステ
ン、モリブデン、鉄、ニッケル、コバルト等の高融点の
金属やこれらの合金等のいずれも用いることができる。
前記金属回路板は、予め回路を形成したものであって
も、また後処理により回路を形成される単なる平板であ
っても良いし、窒化珪素焼結体の両面の金属回路板の材
質が同一に限定される必要もない。金属回路板のうち回
路形成される部分には、前記銅のうち、とりわけ酸素含
有量が50ppm以下の無酸素銅が電気伝導率が高く、
しかも窒化珪素焼結体との接合強度も高いので好まし
い。
As the material of the metal circuit board used in the present invention, it is common to use copper such as oxygen-free copper, tough pitch copper and copper phosphate, but other metals such as tungsten, molybdenum, iron and nickel. Any of high melting point metals such as cobalt and cobalt, and alloys thereof can be used.
The metal circuit board may be one in which a circuit is formed in advance, or may be a simple flat plate on which a circuit is formed by post-treatment, and the material of the metal circuit boards on both sides of the silicon nitride sintered body is the same. It need not be limited to. Among the copper, oxygen-free copper having an oxygen content of 50 ppm or less has a high electric conductivity in the portion where the circuit is formed in the metal circuit board,
Moreover, the bonding strength with the silicon nitride sintered body is high, which is preferable.

【0030】前記金属回路板の厚みは、その要求される
機能に応じて適宜選択されるが、例えば回路を形成する
ことを目的とする場合には回路中を流れる電流、金属回
路板上に搭載される半導体部品の発生熱の大きさ等に応
じて0.2〜0.5mm程度またはそれ以上が選択され
るし、金属回路板と窒化珪素焼結体との熱膨張差に原因
するソリを防止する目的の場合には0.1〜1.0mm
程度が選択されるのが一般的である。しかし、これらに
限定されるものではない。尚、窒化珪素焼結体の一面の
みに回路が形成されている金属回路板を配し、他の一面
には全面が平板の金属回路板(放熱金属板)で覆ってい
る構造が回路基板として一般的であるが、回路形成され
た金属回路板を窒化珪素焼結体の片面のみに配し、他面
には金属回路板を配設していない構造をとることも可能
である。
The thickness of the metal circuit board is appropriately selected according to the required function. For example, when the purpose is to form a circuit, the current flowing through the circuit and the metal circuit board are mounted. 0.2 to 0.5 mm or more is selected according to the amount of heat generated by the semiconductor component, and the warpage caused by the difference in thermal expansion between the metal circuit board and the silicon nitride sintered body is eliminated. 0.1 to 1.0 mm for prevention purposes
It is common for the degree to be selected. However, it is not limited to these. A circuit board has a structure in which a metal circuit board on which a circuit is formed is arranged only on one surface of a silicon nitride sintered body, and the other surface is covered with a flat metal circuit board (heat dissipation metal plate). In general, it is also possible to adopt a structure in which a circuit-formed metal circuit board is arranged only on one surface of the silicon nitride sintered body and no metal circuit board is arranged on the other surface.

【0031】本発明の回路基板は、前記窒化珪素焼結体
と前記金属回路板とを用い、更に活性金属成分を含有す
るろう材を用いて両者を接合することで得ることができ
る。ここで、活性金属成分を含有するろう材は、接合の
操作において溶融し、その一部は窒化珪素焼結体の表面
及び金属回路板表面と反応し接合層を形成する。この接
合層は、しかし詳細に見ると、その中に窒化珪素焼結体
と活性金属成分を含むろう材中の活性金属成分との反応
層が窒化珪素焼結体の前記ろう材に接する面に形成され
ている。例えば、Tiを活性金属成分とする銅及び銀を
含むろう材を用いて銅回路板と窒化珪素焼結体とを接合
した場合の接合層は、接合層の銅回路板と接する側に銅
−銀を主成分とする合金層と、接合層の窒化珪素焼結体
と接する側には窒化チタンを主成分とする反応層とで形
成されている。前記反応層は、走査型二次電子顕微鏡に
よる観察においては二次電子の放射率が他の部分と異な
ることで、容易に識別することができる。
The circuit board of the present invention can be obtained by using the above-mentioned silicon nitride sintered body and the above-mentioned metal circuit board, and further joining them using a brazing material containing an active metal component. Here, the brazing filler metal containing the active metal component is melted in the joining operation, and a part thereof reacts with the surface of the silicon nitride sintered body and the surface of the metal circuit board to form a joining layer. However, in detail, this bonding layer is formed on the surface of the silicon nitride sintered body where the reaction layer of the silicon nitride sintered body and the active metal component in the brazing material containing the active metal component contacts the brazing material. Has been formed. For example, when a copper circuit board and a silicon nitride sintered body are joined using a brazing material containing copper and silver having Ti as an active metal component, the joining layer has a copper layer on the side of the joining layer in contact with the copper circuit board. An alloy layer containing silver as a main component and a reaction layer containing titanium nitride as a main component are formed on the side of the bonding layer that contacts the silicon nitride sintered body. The reaction layer can be easily identified because the emissivity of the secondary electrons is different from that of other portions in the observation with the scanning secondary electron microscope.

【0032】本発明の回路基板は、前述の反応層の厚み
が2μm以下であることを特徴とする。本発明者らは、
前記反応層の厚みが2μmを越える場合には、窒化珪素
焼結体と金属回路板との接合強度並びに回路基板特性、
特に耐熱サイクル性や耐熱衝撃性が低下することがあ
り、前記反応層の厚みが2μm以下であれば前記特性の
劣化がみられず好ましいことを実験的に見いだしたもの
である。特に、反応層の厚みが1μm以下の場合に前記
効果が顕著であり、好ましい。一方、反応層の厚みがさ
らに薄くなってゆくと、反応層が均一に窒化珪素焼結体
表面に存在しえなくなり、前記の効果が得られなくなっ
てしまう。本発明者らの検討によれば、その下限は0.
05μm程度である。
The circuit board of the present invention is characterized in that the above-mentioned reaction layer has a thickness of 2 μm or less. We have:
When the thickness of the reaction layer exceeds 2 μm, the bonding strength between the silicon nitride sintered body and the metal circuit board and the circuit board characteristics,
In particular, the thermal cycle resistance and the thermal shock resistance may decrease, and it is experimentally found that it is preferable that the thickness of the reaction layer is 2 μm or less, because the characteristics are not deteriorated. In particular, when the thickness of the reaction layer is 1 μm or less, the above effect is remarkable, which is preferable. On the other hand, when the thickness of the reaction layer is further reduced, the reaction layer cannot evenly exist on the surface of the silicon nitride sintered body, and the above effect cannot be obtained. According to the study by the present inventors, the lower limit is 0.
It is about 05 μm.

【0033】本発明の回路基板を得る方法について、以
下一例をもって説明する。即ち、活性金属成分を含有す
るろう材に対応する組成を有する粉末あるいは粉末混合
物にアクリル樹脂系バインダー、テレピネオールおよび
オレイン酸を添加して接合材ペーストを調製し、この接
合材ペーストをスクリーン印刷法等によって窒化珪素焼
結体表面に所定パターンで印刷する。次に印刷パターン
に沿って金属回路板を配置するとともに、この金属回路
板上に重錘を載置して金属回路板を圧着する。この金属
回路板を積層した状態で加熱炉に収容し、真空中で温度
700〜950℃で5〜30分間加熱して接合処理す
る。前記活性金属成分を含有するろう材中の活性金属成
分の含有量、加熱温度、加熱時間を調整することで、所
望の厚さの反応層を有する回路基板を得ることができ
る。
A method of obtaining the circuit board of the present invention will be described below with reference to an example. That is, an acrylic resin binder, terpineol and oleic acid are added to a powder or a powder mixture having a composition corresponding to a brazing material containing an active metal component to prepare a bonding material paste, and the bonding material paste is subjected to a screen printing method or the like. The surface of the silicon nitride sintered body is printed with a predetermined pattern. Next, a metal circuit board is arranged along the print pattern, and a weight is placed on the metal circuit board to press-bond the metal circuit board. The metal circuit boards are stacked and housed in a heating furnace, and heated in a vacuum at a temperature of 700 to 950 ° C. for 5 to 30 minutes to perform a bonding process. A circuit board having a reaction layer having a desired thickness can be obtained by adjusting the content of the active metal component in the brazing material containing the active metal component, the heating temperature, and the heating time.

【0034】また、金属回路板の回路形成を接合後に行
なう場合には、接合材ペーストを窒化珪素焼結体両面の
全面に塗布したのち、回路を形成していない全面を覆う
大きさの金属回路板を前記窒化珪素焼結体の両面に載
せ、前記条件にて接合処理する。接合処理した金属回路
板にエッチングレジストを所望の回路パターンに印刷し
た後、金属回路板をエッチング処理して除去し、回路を
形成する。
When the circuit of the metal circuit board is formed after the bonding, the bonding material paste is applied to the entire surface of both surfaces of the silicon nitride sintered body, and then the metal circuit of a size that covers the entire surface where the circuit is not formed. Plates are placed on both sides of the silicon nitride sintered body and bonded under the above conditions. An etching resist is printed on the bonded metal circuit board in a desired circuit pattern, and then the metal circuit board is etched and removed to form a circuit.

【0035】尚、本発明の活性金属成分含有ろう材中の
活性金属成分とは、Ti,Zr,Hf,Nb、Ta等の
窒化珪素焼結体との反応性の高い金属成分をいい、特に
Tiは窒化珪素焼結体と金属板との接合強度の点で優れ
ている。これらの活性金属成分は金属及びそれらの化合
物や合金の形態で接合材ペースト中に粉末として添加す
るのが一般的な方法であるが、箔の形態やその他の薄膜
形成法で金属回路板と窒化珪素焼結体の間に配置され用
いることもでき、前記活性金属成分を含む化合物や合金
の例としては、水素化チタン、Ti−Ag合金、Ti−
Cu合金、Ti−Al合金等が挙げられる。
The active metal component in the brazing filler metal containing the active metal component of the present invention refers to a metal component such as Ti, Zr, Hf, Nb, Ta having a high reactivity with the silicon nitride sintered body, and particularly, Ti is excellent in the bonding strength between the silicon nitride sintered body and the metal plate. These active metal components are generally added as powder in the bonding material paste in the form of metals and their compounds or alloys. It can also be used by being arranged between silicon sintered bodies, and examples of the compound or alloy containing the active metal component include titanium hydride, Ti-Ag alloy, Ti-.
Cu alloy, Ti-Al alloy, etc. are mentioned.

【0036】又、活性金属成分含有ろう材に含ませる活
性金属成分以外の金属成分としては、接合する金属回路
板の材質によっても異なるが、金属回路板が銅である場
合には銀成分が有効である。銀成分は、主に銅成分と反
応して低融点化合物を形成し、活性金属接合材の溶融化
を助長し、接合面を濡らす役割を果たすので重要な成分
である。金属回路板が銅或いは銅合金の場合には、金属
板から活性金属接合材中に銅成分を供給することにな
り、活性金属接合材ペースト中に予め銅を含有させた場
合と同様の効果が得られる。
As the metal component other than the active metal component contained in the active metal component-containing brazing material, the silver component is effective when the metal circuit plate is copper, although it depends on the material of the metal circuit plate to be joined. Is. The silver component is an important component because it mainly reacts with the copper component to form a low melting point compound, promotes melting of the active metal bonding material, and plays a role of wetting the bonding surface. When the metal circuit board is copper or a copper alloy, the copper component is supplied from the metal plate into the active metal bonding material, and the same effect as when the copper is contained in the active metal bonding material paste in advance is obtained. can get.

【0037】本発明を実施例をもって更に詳細に説明す
る。
The present invention will be described in more detail with reference to examples.

【0038】[0038]

【実施例】【Example】

(実施例1の窒化珪素焼結体)酸素含有量1.5重量%
で平均粒径0.8μmの窒化珪素粉末90重量%に平均
粒径1.0μmのMgO粉末3重量%と平均粒径0.8
μmのY2O3粉末7重量%とを加え、更に前記の粉末1
00重量部に対してポリビニルブチラール9重量部、ブ
チルフラレート4重量部、グリセリントリオレート1重
量部、トルエン45重量部、イソプロピルアルコール1
5重量部を加え、ボールミルを用いて混合した。次に、
上記操作で得られたスラリーを脱泡処理し、粘度を20
000cpsに調整したのちドクターブレード法により
シート状に成形した。更に、得られたシートから30m
m×80mmの板を打ち抜き、空気中500℃で脱脂し
たのち、窒素ガス圧0.9MPaで1800℃で6時間
焼結した。この操作で得られた焼結体は0.6mmの厚
みを有していた。
(Silicon Nitride Sintered Body of Example 1) Oxygen Content 1.5% by Weight
90% by weight of silicon nitride powder having an average particle size of 0.8 μm, 3% by weight of MgO powder having an average particle size of 1.0 μm, and an average particle size of 0.8
7% by weight of Y2O3 powder of μm was added, and the above powder 1 was added.
9 parts by weight of polyvinyl butyral, 4 parts by weight of butyl furarate, 1 part by weight of glycerin trioleate, 45 parts by weight of toluene, and 1 part by weight of isopropyl alcohol with respect to 00 parts by weight.
5 parts by weight were added and mixed using a ball mill. next,
The slurry obtained by the above operation is subjected to defoaming treatment to reduce the viscosity to 20.
After adjusting to 000 cps, it was formed into a sheet by the doctor blade method. Furthermore, 30m from the obtained sheet
A m × 80 mm plate was punched out, degreased in air at 500 ° C., and then sintered at 1800 ° C. for 6 hours under a nitrogen gas pressure of 0.9 MPa. The sintered body obtained by this operation had a thickness of 0.6 mm.

【0039】前記焼結体について、一部はICP分析に
より化学成分を確認するとともに、一部は表面を研磨後
アルカリエッチングして微構造を観察し、更に他の一部
について室温での三点曲げ強度、熱伝導率を測定した。
結果を表1に記載した。不純物としてAl及びFeの結
果を示したが、これら以外のLi,Be,Na,K,M
n,Gaなどの不純物はいずれも検出限界以下であっ
た。また、窒化珪素焼結体の粒界の数の測定は窒化珪素
焼結体の任意の研磨面をアルカリエッチングして粒界が
識別できるようにした後、走査型電子顕微鏡(SEM)
により延べ長さ500μmの任意の直線上の粒界の数を
測定し、直線長さ10μm当たりの粒界の数として算出
した。熱伝導率は25mm×25mmの形状に切り出し
たサンプルをレーザーフラッシュ法により室温での熱伝
導率を測定した。三点曲げ強度は幅25mmの窒化珪素
焼結体についてスパン30mmで測定したもので、その
他の条件はJIS−R1601に準じた。
Regarding the sintered body, a part of the chemical composition was confirmed by ICP analysis, and a part of the sintered body was subjected to alkali etching after polishing the surface to observe a microstructure. Bending strength and thermal conductivity were measured.
The results are shown in Table 1. The results of Al and Fe as impurities are shown, but other than these, Li, Be, Na, K, M
Impurities such as n and Ga were all below the detection limit. Further, the number of grain boundaries of the silicon nitride sintered body is measured by alkali-etching an arbitrary polished surface of the silicon nitride sintered body so that the grain boundaries can be identified, and then a scanning electron microscope (SEM) is used.
The number of grain boundaries on an arbitrary straight line having a total length of 500 μm was measured by and calculated as the number of grain boundaries per straight line length of 10 μm. The thermal conductivity of the sample cut into a shape of 25 mm × 25 mm was measured by the laser flash method at room temperature. The three-point bending strength was measured with a span of 30 mm for a silicon nitride sintered body having a width of 25 mm, and other conditions were in accordance with JIS-R1601.

【0040】(実施例2〜18及び比較例1の窒化珪素
焼結体)実施例1の方法において、窒化珪素粉末を酸素
含有量0.8〜2.1重量%で平均粒径0.6〜2.6
μmのいろいろな窒化珪素粉末を用い、平均粒径0.8
〜2.0μmのいろいろな焼結助剤粉末を用い、更に有
機バインダー(ポリビニルブチラールなど)、有機系可
塑剤及び添加剤(ブチルフタレート、グリセリントリオ
レートなど)と有機溶剤(トルエン、イソプロピルアル
コールなど)を適宜調整することにより、いろいろなス
ラリーを得た後、いずれも脱泡処理をして粘度を調整し
ドクターブレード法によりシート状に成形した。得られ
たいろいろなシートを400〜600℃で脱脂した後、
窒素ガス圧0.1〜0.9MPaで1750〜1900
℃で6時間焼結することで、実施例2〜15、及び比較
例1〜5とした。得られた窒化珪素焼結体は厚み0.3
〜0.6mmであり、それらの特性を表1に示した。
(Silicon Nitride Sintered Products of Examples 2 to 18 and Comparative Example 1) In the method of Example 1, silicon nitride powder was used with an oxygen content of 0.8 to 2.1% by weight and an average particle size of 0.6. ~ 2.6
Various silicon nitride powders with a particle size of 0.8
~ 2.0μm various sintering aid powder, organic binder (polyvinyl butyral, etc.), organic plasticizer and additives (butyl phthalate, glycerin trioleate, etc.) and organic solvent (toluene, isopropyl alcohol, etc.) After obtaining various slurries by adjusting appropriately, each was subjected to defoaming treatment to adjust the viscosity and formed into a sheet by the doctor blade method. After degreasing the various sheets obtained at 400-600 ° C,
1750 to 1900 at nitrogen gas pressure of 0.1 to 0.9 MPa
It was made into Examples 2-15 and Comparative Examples 1-5 by sintering at 6 degreeC. The obtained silicon nitride sintered body has a thickness of 0.3.
.About.0.6 mm, and their characteristics are shown in Table 1.

【0041】(実施例1〜18及び比較例1の回路基
板)銀(Ag)粉末、水素化チタン(TiH2)粉末、
アクリル樹脂系バインダーおよびオレイン酸を所定量配
合し、さらにテレピネオールを加えたものをライカイ機
で混合後、三本ロールで混練して接合材ペーストを調製
した。実施例1〜15及び比較例1〜5の窒化珪素焼結
体に、前記接合材ペーストを用いて銅回路板を次の操作
により接合した。まず、前記接合材ペーストをそれぞれ
の窒化珪素焼結体の表面にスクリーン印刷し、さらに前
記印刷パターンと同形状に予め回路形成した厚さ0.3
mmの銅回路板を配置した。更に、裏面のほぼ全面に前
記接合材ペーストをスクリーン印刷し、厚さ0.25m
mの回路が形成されていない銅回路板を配置するととも
に、前記0.3mmの厚さの銅回路板を上方にして重し
を載置して圧接した状態のまま、全体を加熱炉に収容し
10-4Torrよりも良い真空中で温度820℃で30分間
加熱して接合処理することにより、回路基板を作製し
た。尚、用いた接合材ペースト中のTiH2 とAgの重
量比率は表1に示した通りである。
(Circuit boards of Examples 1 to 18 and Comparative Example 1) Silver (Ag) powder, titanium hydride (TiH2) powder,
A predetermined amount of an acrylic resin-based binder and oleic acid were added, and terepineol was added to the mixture, which was then mixed with a liquor machine and kneaded with a three-roll mill to prepare a bonding material paste. Copper circuit boards were bonded to the silicon nitride sintered bodies of Examples 1 to 15 and Comparative Examples 1 to 5 by using the above bonding material paste by the following operation. First, the bonding material paste is screen-printed on the surface of each silicon nitride sintered body, and a circuit having a thickness of 0.3 is formed in advance in the same shape as the printed pattern.
A mm copper circuit board was placed. Further, the bonding material paste is screen-printed on almost the entire back surface to a thickness of 0.25 m.
The copper circuit board on which the circuit of m is not formed is arranged, and the whole is housed in the heating furnace with the weight placed with the copper circuit board having the thickness of 0.3 mm facing upward. Then, a circuit board was manufactured by heating and bonding at a temperature of 820 ° C. for 30 minutes in a vacuum better than 10 −4 Torr. The weight ratio of TiH2 to Ag in the bonding material paste used is as shown in Table 1.

【0042】また、回路基板をモジュールに組み上げる
工程でハンダによる接合など熱処理を必要とするが、そ
の際の耐久性を調べる目的で回路基板の耐衝撃試験を行
なった。耐衝撃試験としては、回路基板を350℃で1
0分間保持した後、室温まで急冷する方法を適用し、こ
の熱衝撃サイクルを3回行なった後の割れの発生率で示
した。割れの評価は、熱衝撃サイクル終了後、接合層の
割れによる銅回路板の窒化珪素焼結体からの剥離の有
無、またエッチングにより銅回路板および接合材層を除
去し窒化珪素焼結体に発生した微小クラックを蛍光探傷
検査により観察することで行った。また、ヒートサイク
ル試験は−40℃で30分間冷却し、室温で10分間保
持し、+125℃で30分間加熱し、室温で10分間保
持する加熱冷却操作を1サイクルとして行った。100
0回のヒートサイクル後のピール強度、三点曲げ強度の
低下の有無を評価した。途中で特性の低下が見られたも
のはそのヒートサイクル回数を示した。
In addition, heat treatment such as soldering is required in the process of assembling the circuit board into a module, and an impact resistance test of the circuit board was conducted for the purpose of investigating the durability at that time. As a shock resistance test, the circuit board should be
After holding for 0 minutes, a method of rapidly cooling to room temperature was applied, and the rate of occurrence of cracks was shown after three times of this thermal shock cycle. After the thermal shock cycle was completed, the cracks were evaluated by checking whether the copper circuit board was separated from the silicon nitride sintered body due to cracking of the bonding layer, and etching was performed to remove the copper circuit board and the bonding material layer to form a silicon nitride sintered body. It was performed by observing the generated microcracks by a fluorescent flaw detection test. In the heat cycle test, a heating / cooling operation of cooling at −40 ° C. for 30 minutes, holding at room temperature for 10 minutes, heating at + 125 ° C. for 30 minutes, and holding at room temperature for 10 minutes was performed as one cycle. 100
The presence or absence of a decrease in peel strength and three-point bending strength after 0 heat cycles was evaluated. The number of heat cycles was shown when the deterioration of the properties was observed on the way.

【0043】[0043]

【表1】 [Table 1]

【0044】表1の実施例及び比較例から明らかなよう
に、本発明の回路基板は窒化珪素焼結体中にMg成分及
び/またはCa成分をそれらの酸化物換算で7重量%以
下含むので、焼結体特性、回路基板特性のいずれもが優
れ、特に熱衝撃試験ではモジュール製造工程において全
く問題のないレベルであり、ヒートサイクル試験におい
ても実用上大変優れていることがわかる。さらに窒化珪
素焼結体の粒界の数、Al及びFeの不純物量が本発明
の範囲内であるときに、焼結体特性が優れ、それを用い
た回路基板の特性も優れることが明らかである。
As is clear from the examples and comparative examples in Table 1, the circuit board of the present invention contains the Mg component and / or the Ca component in the silicon nitride sintered body in an amount of 7% by weight or less in terms of their oxides. It can be seen that the sintered body characteristics and the circuit board characteristics are all excellent, and particularly in the thermal shock test, there is no problem in the module manufacturing process, and in the heat cycle test, it is extremely excellent in practical use. Further, when the number of grain boundaries of the silicon nitride sintered body and the amounts of impurities of Al and Fe are within the range of the present invention, it is clear that the characteristics of the sintered body are excellent and the characteristics of the circuit board using the same are also excellent. is there.

【0045】(実施例19〜36)実施例1〜18の窒
化珪素焼結体並びに接合材ペーストを用いて、以下に説
明する方法により回路基板を作製した。接合材ペースト
を窒化珪素焼結体の表裏両面の全面に塗布し、回路を形
成する表面側に厚さ0.3mmの銅回路板を、それに対
する面に厚さ0.25mmの銅回路板を配置し、回路を
形成する面を上側にしてその上に重しを載置して圧着し
た状態のまま基板全体を加熱炉に収容し、10-4Torrよ
り良い真空中で温度800〜860℃で30分間加熱処
理し接合体を製造した。次に前記接合体の上側の銅回路
板面上に、スクリーン印刷により回路パターンを、裏面
は全面にエッチングレジストを塗布後、塩化第二銅溶液
を用いてエッチング処理を行い、接合体の上側面のみに
回路を形成した。さらに、エッチング処理後に回路間な
どに残留する接合層を、フッ化水素アンモニウム(NH
4 F・HF)及び過酸化水素(H2 O2 )を含む水溶液
に浸漬することで接合層を除去し、回路基板を製造し
た。この方法で作製した回路基板の特性は、それぞれ実
施例1〜18と同じ特性を示した。この実施例19〜3
6の回路基板の作製法は、実施例1〜18に示した作製
法に比べて、生産性の向上する利点がある。
(Examples 19 to 36) Using the silicon nitride sintered bodies of Examples 1 to 18 and the bonding material paste, circuit boards were produced by the method described below. The bonding material paste is applied to the entire front and back surfaces of the silicon nitride sintered body, a copper circuit board having a thickness of 0.3 mm is provided on the surface side on which the circuit is formed, and a copper circuit board having a thickness of 0.25 mm is provided on the surface opposite to the surface. The whole substrate is placed in a heating furnace with the surface on which the circuit is formed facing upward and the weight placed on it, and in a crimped state, at a temperature of 800 to 860 ° C. in a vacuum better than 10 −4 Torr. Heat treatment was performed for 30 minutes to produce a joined body. Next, a circuit pattern is applied by screen printing on the upper copper circuit board surface of the bonded body, and an etching resist is applied to the entire back surface by an etching resist, and then an etching treatment is performed using a cupric chloride solution. Only formed the circuit. Furthermore, the bonding layer remaining between the circuits after the etching process is replaced with ammonium hydrogen fluoride (NH
The bonding layer was removed by immersing in an aqueous solution containing 4 F · HF) and hydrogen peroxide (H 2 O 2), and a circuit board was manufactured. The circuit boards manufactured by this method showed the same characteristics as those of Examples 1 to 18, respectively. Examples 19 to 3
The method of manufacturing the circuit board of No. 6 has an advantage that productivity is improved as compared with the methods of manufacturing shown in Examples 1 to 18.

【0046】(実施例37〜54)実施例1〜18の焼
結体を製造する際に適用したドクターブレード法の代わ
りに押出法により成形体を製造した以外は実施例1〜1
8と同様にして回路基板を製造した。押出法では、酸素
含有量0.8〜2.1重量%で平均粒径0.6〜2.6
μmの各種窒化珪素粉末及び平均粒径0.8〜2.0μ
mの焼結助剤粉末、有機バインダー(メチルセルロース
など)、有機系可塑剤及び添加剤(グリセリンなど)と
水を所定量、ヘンシェルミキサーを用いて混合した。得
られた混合物を真空混練機によりシート状に押出成形し
た。この製法で得られた窒化珪素焼結体を用いた回路基
板の特性はそれぞれ実施例1〜18と同じ特性を示し、
いずれも良好であった。押出法はドクターブレード法に
比べて窒化珪素焼結体の生産性が向上する利点がある。
(Examples 37 to 54) Examples 1 to 1 except that a molded body was manufactured by an extrusion method instead of the doctor blade method applied when manufacturing the sintered bodies of Examples 1 to 18.
A circuit board was manufactured in the same manner as in No. 8. In the extrusion method, the oxygen content is 0.8 to 2.1% by weight and the average particle size is 0.6 to 2.6.
Various silicon nitride powders of μm and average particle diameter 0.8 to 2.0 μ
A predetermined amount of water and a sintering aid powder of m, an organic binder (such as methyl cellulose), an organic plasticizer and an additive (such as glycerin) were mixed using a Henschel mixer. The obtained mixture was extruded into a sheet by a vacuum kneader. The characteristics of the circuit board using the silicon nitride sintered body obtained by this manufacturing method are the same as those of Examples 1 to 18,
All were good. The extrusion method has an advantage over the doctor blade method in improving the productivity of the silicon nitride sintered body.

【0047】(実施例55〜57)実施例1の窒化珪素
焼結体を用い、各種酸素含有量の銅板を用いた以外は実
施例1と同様の方法により回路基板を作製した。得られ
た回路基板の銅中の酸素含有量と熱衝撃サイクル5回後
の割れ発生率を表2に示した。表2から、酸素含有量が
80ppm程度以下が好適であり、特に50ppm以下
では熱衝撃割れが発生せず、最適であることがわかる。
(Examples 55 to 57) A circuit board was produced in the same manner as in Example 1 except that the silicon nitride sintered body of Example 1 was used and copper plates having various oxygen contents were used. Table 2 shows the oxygen content in copper of the obtained circuit board and the crack generation rate after 5 thermal shock cycles. From Table 2, it can be seen that the oxygen content is preferably about 80 ppm or less, and particularly when the oxygen content is 50 ppm or less, thermal shock cracking does not occur and is optimal.

【0048】[0048]

【表2】 [Table 2]

【0049】(実施例58〜66)実施例5の窒化珪素
焼結体を用い、接合材ペースト中のTiH2 /Agの重
量比率を3/100〜10/100、接合材ペーストの
塗布量を7〜15g/cm2 、接合温度を800〜90
0℃の種々の条件で接合することにより、窒化珪素焼結
体と活性金属成分との反応層(TiNが主相)の厚みが
種々異なる回路基板を作製した。尚、上記以外の条件は
実施例5と同様とした。これらの回路基板での反応層の
厚みと熱衝撃サイクル5回後の割れの発生率との関係を
表3に示した。尚、反応層の厚みは接合層の垂直断面を
EPMA及びSEMにより分析し、観察される反応層に
ついて、反応層と窒化珪素焼結体との界面に沿う所定長
さに接する反応層の面積と、前記所定長さから平均の反
応層の厚みを算出し、これを反応層の厚みとした。反応
層の厚みは2μm以下が好ましく、特に1.2μm以下
では熱衝撃割れが発生せず、最適であることが表3より
明らかである。
(Examples 58 to 66) Using the silicon nitride sintered body of Example 5, the weight ratio of TiH 2 / Ag in the bonding material paste was 3/100 to 10/100, and the coating amount of the bonding material paste was 7. ~ 15g / cm2, bonding temperature 800 ~ 90
By bonding under various conditions of 0 ° C., circuit boards having different thicknesses of the reaction layer (TiN is the main phase) of the silicon nitride sintered body and the active metal component were produced. The conditions other than the above were the same as in Example 5. Table 3 shows the relationship between the thickness of the reaction layer and the incidence of cracking after 5 thermal shock cycles in these circuit boards. The thickness of the reaction layer is the area of the reaction layer in contact with a predetermined length along the interface between the reaction layer and the silicon nitride sintered body, which is obtained by analyzing the vertical cross section of the bonding layer with EPMA and SEM. The average thickness of the reaction layer was calculated from the predetermined length, and this was used as the thickness of the reaction layer. It is clear from Table 3 that the thickness of the reaction layer is preferably 2 μm or less, and particularly when it is 1.2 μm or less, thermal shock cracking does not occur and is optimal.

【0050】[0050]

【表3】 [Table 3]

【0051】(実施例67〜77)実施例1で、ドクタ
ーブレードの間隙を調整し、いろいろな厚みの成形シー
トを経由することで、いろいろな厚みの窒化珪素焼結体
を得た。これらの窒化珪素焼結体を用いて表4に示す表
面の銅回路板と裏面の銅回路板(放熱銅板)の厚みを変
えた各種の回路基板を作製した。また、一部では、片面
の銅回路板を接合しない構造の回路基板を作製した。こ
の際、上記以外の条件は実施例1と同一とした。何れの
回路基板もピール強度、三点曲げ強度、ヒートサイクル
試験特性が実施例1と同様に良好であった。更に、これ
らの回路基板について熱抵抗を測定し、表4の結果を得
たが、銅回路板の厚みが0.25〜1.00mmで、窒
化珪素焼結体の厚みが0.25〜0.6mmで何等問題
なく作製できることが明瞭であるし、片面のみに銅回路
板を接合した構造の回路基板をも問題なく作製できるこ
とが明らかである。更に、これらの回路基板の熱抵抗は
いずれも1℃/W未満で優れた熱放散性を有することも
明らかである。この熱抵抗1℃/Wの値は、従来の例え
ばAlN回路基板においてAlN基板厚み0.635m
m、表面銅回路板厚み0.3mm、裏面銅回路板(放熱
銅板)厚み0.2mmの構造で達成されていた熱抵抗値
と同等である。また、熱抵抗の測定は回路基板の表面の
回路板上に底面積16×20mmのトランジスタを発熱
源として装着し、回路基板の裏面にはヒートシンクとし
て厚み3mmの銅板をハンダ付けしてモジュールに近い
状態で評価した。
(Examples 67 to 77) In Example 1, the gap between the doctor blades was adjusted and the molded sheets having various thicknesses were used to obtain silicon nitride sintered bodies having various thicknesses. Using these silicon nitride sintered bodies, various circuit boards having different thicknesses of the front surface copper circuit board and the back surface copper circuit board (heat dissipation copper plate) shown in Table 4 were produced. In addition, in part, a circuit board having a structure in which a copper circuit board on one side was not joined was manufactured. At this time, the conditions other than the above were the same as in Example 1. The peel strength, the three-point bending strength, and the heat cycle test characteristics of all the circuit boards were good as in Example 1. Further, the thermal resistance of these circuit boards was measured, and the results shown in Table 4 were obtained. The thickness of the copper circuit board was 0.25 to 1.00 mm and the thickness of the silicon nitride sintered body was 0.25 to 0. It is clear that it can be produced without any problem with a size of 0.6 mm, and it is clear that a circuit board having a structure in which a copper circuit board is bonded to only one surface can be produced without any problem. Furthermore, it is clear that the thermal resistance of these circuit boards is less than 1 ° C./W and that they have excellent heat dissipation. The value of this thermal resistance of 1 ° C./W is as follows:
m, the thickness of the front surface copper circuit board is 0.3 mm, and the thickness of the rear surface copper circuit board (heat dissipation copper plate) is 0.2 mm. Also, the thermal resistance is measured by mounting a transistor having a bottom area of 16 × 20 mm as a heat source on the circuit board on the front surface of the circuit board, and soldering a copper plate with a thickness of 3 mm on the back surface of the circuit board as a heat sink to approximate the module. The condition was evaluated.

【0052】[0052]

【表4】 [Table 4]

【0053】(実施例78、79)実施例1と同じ操作
で得た厚み0.6mmの窒化珪素焼結体にNi、或いは
表面に厚さ5μmのNiめっきが施されたFe材質の金
属回路板を用い、Ag/Cu/Ti=72/28/8重
量割合のろう材を含む接合材ペーストを用い、他は実施
例1と同じ条件で回路基板を作製した。この際、表面の
金属回路板の厚みは0.25mmで裏面の金属回路板の
厚みは0.23mmであり、両者は同一材質である。得
られた回路基板について熱抵抗の測定結果を表5に示
す。本発明の回路基板は、銅板以外にも各種材質の金属
回路板を適用できることが明らかである。
(Examples 78 and 79) A metal circuit made of Fe material in which a 0.6 mm-thick silicon nitride sintered body obtained by the same operation as in Example 1 was plated with Ni or the surface was plated with Ni to a thickness of 5 μm A circuit board was manufactured under the same conditions as in Example 1 except that a board was used and a bonding material paste containing a brazing material of Ag / Cu / Ti = 72/28/8 weight ratio was used. At this time, the thickness of the metal circuit board on the front surface is 0.25 mm and the thickness of the metal circuit board on the back surface is 0.23 mm, both of which are made of the same material. Table 5 shows the measurement results of the thermal resistance of the obtained circuit board. It is apparent that the circuit board of the present invention can be applied to metal circuit boards of various materials other than the copper plate.

【0054】[0054]

【表5】 [Table 5]

【0055】(実施例80〜83)接合材ペースト中の
ろう材の組成と接合温度を表6のようにした以外は実施
例1と同じ条件で回路基板を製造した。得られた回路基
板について、ピール強度、三点曲げ強度、ヒートサイク
ル試験を行った。その結果を表6に示すが、いろいろな
活性金属成分を含有するろう材を用いて良好な結果が得
られることが明らかである。
(Examples 80 to 83) Circuit boards were manufactured under the same conditions as in Example 1 except that the composition of the brazing material in the bonding material paste and the bonding temperature were as shown in Table 6. The obtained circuit board was subjected to peel strength, three-point bending strength and heat cycle test. The results are shown in Table 6, and it is clear that good results can be obtained by using the brazing filler metal containing various active metal components.

【0056】[0056]

【表6】 [Table 6]

【0057】[0057]

【発明の効果】本発明の回路基板は、特定の成分を含み
高熱伝導で機械的特性に優れる窒化珪素焼結体に接合層
を介して金属回路板を積層一体化された構造であるの
で、金属回路板と窒化珪素焼結体との接合強度が高く、
回路基板の曲げ強度も高い、しかも前記接合強度や曲げ
強度の経時劣化が少なく、耐熱サイクル性や耐熱衝撃性
に優れ、高い放熱性および高い信頼性と耐久性に優れた
回路基板である。
The circuit board of the present invention has a structure in which a metal circuit board is laminated and integrated through a bonding layer on a silicon nitride sintered body containing a specific component and having high thermal conductivity and excellent mechanical properties. The bonding strength between the metal circuit board and the silicon nitride sintered body is high,
The circuit board has high bending strength, less deterioration of the bonding strength and bending strength over time, excellent heat cycle resistance and thermal shock resistance, and high heat dissipation, high reliability and durability.

【0058】本発明の回路基板は、高熱伝導性の窒化珪
素焼結体を用いているので熱応力にも耐え、また金属回
路板の厚みを大きくすることで大電流用途などの高負荷
の用途に適用できる。更に、機械的特性が優れているの
で、実装ボードにねじ止めする際に大きな外力を受けた
場合においても、回路基板に割れを発生することが少な
いので、半導体素子等を搭載したモジュールを高い歩留
りで作製することができる。
Since the circuit board of the present invention uses a silicon nitride sintered body having a high thermal conductivity, it can withstand thermal stress, and by increasing the thickness of the metal circuit board, it can be used in high load applications such as large current applications. Applicable to Furthermore, because of its excellent mechanical properties, even if a large external force is applied to the mounting board when it is screwed onto it, the circuit board is less likely to crack. Can be made with.

【0059】本発明の回路基板は、従来のAlN基板お
よびAl2 O3 基板と比較して、機械的強度が極めて大
きい窒化珪素焼結体を使用しているので、回路基板全体
の強度を従来と同等の強度に設定した場合には、基板の
厚さを1/2程度に低減できるので、より高密度な実装
が可能となる。
Since the circuit board of the present invention uses a silicon nitride sintered body having an extremely large mechanical strength as compared with the conventional AlN substrate and Al2 O3 substrate, the strength of the entire circuit board is the same as the conventional one. When the strength is set to, the thickness of the substrate can be reduced to about 1/2, so that higher density mounting is possible.

【0060】本発明の回路基板は、銅板以外にも各種材
質の金属回路板を適用することができるので、金属回路
板に磁性などの機能性を持たせる特殊な回路基板を製造
することも可能であるし、合金成分を添加した銅合金等
を適用することもできる。
Since the circuit board of the present invention can be applied to metal circuit boards made of various materials in addition to the copper plate, it is possible to manufacture a special circuit board having a magnetic circuit or other functionalities. However, it is also possible to apply a copper alloy or the like to which an alloy component is added.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/14 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 23/14 C

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素焼結体に接合層を介して金属回
路板が配設されている回路基板であって、前記窒化珪素
焼結体がMg成分及び/またはCa成分をそれらの酸化
物換算で合計量7.0重量%以下含むことを特徴とする
回路基板。
1. A circuit board in which a metal circuit board is disposed on a silicon nitride sintered body via a bonding layer, wherein the silicon nitride sintered body contains Mg component and / or Ca component as oxides thereof. A circuit board comprising a total amount of 7.0% by weight or less in terms of conversion.
【請求項2】 前記窒化珪素焼結体の研磨面に観察され
る粒界の数が、任意の方向に引いた直線の長さ10μm
当たり10個以下であることを特徴とする請求項1記載
の回路基板。
2. The number of grain boundaries observed on the polished surface of the silicon nitride sintered body is 10 μm in length of a straight line drawn in an arbitrary direction.
The circuit board according to claim 1, wherein the number is 10 or less per unit.
【請求項3】 前記窒化珪素焼結体中に含まれる不純物
について、Alが金属換算で0.25重量%以下、Fe
が金属換算で0.3重量%以下であることを特徴とする
請求項2記載の回路基板。
3. Regarding impurities contained in the silicon nitride sintered body, Al is 0.25 wt% or less in terms of metal, and Fe
3. The circuit board according to claim 2, wherein the metal content is 0.3% by weight or less in terms of metal.
【請求項4】 前記窒化珪素焼結体の室温での三点曲げ
強度が600MPa以上、熱伝導率が60W/(m・
K)以上であることを特徴とする請求項2記載の回路基
板。
4. The three-point bending strength of the silicon nitride sintered body at room temperature is 600 MPa or more, and the thermal conductivity is 60 W / (m.multidot.m).
K) or more, The circuit board of Claim 2 characterized by the above-mentioned.
【請求項5】 前記金属回路板が酸素含有量が50pp
m以下の銅であることを特徴とする請求項1、請求項
2、請求項3、または請求項4記載の回路基板。
5. The metal circuit board has an oxygen content of 50 pp.
The circuit board according to claim 1, claim 2, claim 3, or claim 4, wherein the circuit board is copper having a thickness of m or less.
【請求項6】 前記接合層中に活性金属成分と窒化珪素
焼結体との反応層を含み、前記反応層の厚みが2μm以
下(0を含まず)であることを特徴とする請求項5記載
の回路基板。
6. The bonding layer includes a reaction layer of an active metal component and a silicon nitride sintered body, and the thickness of the reaction layer is 2 μm or less (not including 0). The described circuit board.
JP31936995A 1995-12-07 1995-12-07 Circuit board Expired - Lifetime JP3629783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31936995A JP3629783B2 (en) 1995-12-07 1995-12-07 Circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31936995A JP3629783B2 (en) 1995-12-07 1995-12-07 Circuit board

Publications (2)

Publication Number Publication Date
JPH09157054A true JPH09157054A (en) 1997-06-17
JP3629783B2 JP3629783B2 (en) 2005-03-16

Family

ID=18109385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31936995A Expired - Lifetime JP3629783B2 (en) 1995-12-07 1995-12-07 Circuit board

Country Status (1)

Country Link
JP (1) JP3629783B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180774A (en) * 1997-12-22 1999-07-06 Kyocera Corp Silicon nitride heat dissipation member and method of manufacturing the same
JPH11236270A (en) * 1998-02-25 1999-08-31 Kyocera Corp Silicon nitride substrate and method of manufacturing the same
JPH11310464A (en) * 1998-04-27 1999-11-09 Kyocera Corp Silicon nitride heat dissipation member and method of manufacturing the same
JP2000034172A (en) * 1998-05-12 2000-02-02 Toshiba Corp Highly thermoconductive silicon nitride sintered compact and its production
JP2000072552A (en) * 1998-08-31 2000-03-07 Kyocera Corp Silicon nitride heat dissipation member and method of manufacturing the same
JP2000114425A (en) * 1998-09-29 2000-04-21 Kyocera Corp Wiring board for power module
WO2000024692A1 (en) * 1998-10-28 2000-05-04 Sumitomo Electric Industries, Ltd. Silicon nitride composite substrate
JP2000351673A (en) * 1999-06-10 2000-12-19 Hitachi Metals Ltd High heat-conductive silicon nitride-based sintered product and its production
JP2001010864A (en) * 1999-06-23 2001-01-16 Hitachi Metals Ltd Highly heat conductive silicon nitride-based sintered compact
JP2001064080A (en) * 1999-06-23 2001-03-13 Ngk Insulators Ltd Silicon nitride sintered body and its production
JP2002356376A (en) * 2001-05-31 2002-12-13 Kyocera Corp Wiring board and method of manufacturing the same
WO2007018050A1 (en) 2005-08-11 2007-02-15 Denki Kagaku Kogyo Kabushiki Kaisha Silicon nitride substrate, silicon nitride circuit substrate using the same, and its use
JP2007197229A (en) * 2006-01-24 2007-08-09 National Institute Of Advanced Industrial & Technology High thermal conductivity silicon nitride substrate and manufacturing method thereof
JP2009179557A (en) * 1998-05-12 2009-08-13 Toshiba Corp Method of producing high thermal conductive silicon nitride sintered body
JP2012207724A (en) * 2011-03-30 2012-10-25 Hitachi Metals Ltd Rotary body
JP2015061988A (en) * 2014-12-08 2015-04-02 日立金属株式会社 Rotor
JP2015164184A (en) * 2014-01-30 2015-09-10 京セラ株式会社 Silicon nitride substrate, circuit board including the same, and electronic apparatus
JP2015232394A (en) * 2015-06-04 2015-12-24 日立金属株式会社 Rotor
JPWO2015019602A1 (en) * 2013-08-08 2017-03-02 株式会社東芝 Circuit board and semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720860B1 (en) 2013-08-29 2015-05-20 日立金属株式会社 Manufacturing method of ceramic circuit board
EP3398205B1 (en) 2015-12-28 2019-10-30 NGK Insulators, Ltd. Bonded substrate and method for manufacturing bonded substrate

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180774A (en) * 1997-12-22 1999-07-06 Kyocera Corp Silicon nitride heat dissipation member and method of manufacturing the same
JPH11236270A (en) * 1998-02-25 1999-08-31 Kyocera Corp Silicon nitride substrate and method of manufacturing the same
JPH11310464A (en) * 1998-04-27 1999-11-09 Kyocera Corp Silicon nitride heat dissipation member and method of manufacturing the same
US6242374B1 (en) 1998-05-12 2001-06-05 Kabushiki Kaisha Toshiba High thermal conductive silicon nitride sintered body and method of producing the same
JP2000034172A (en) * 1998-05-12 2000-02-02 Toshiba Corp Highly thermoconductive silicon nitride sintered compact and its production
JP2009179557A (en) * 1998-05-12 2009-08-13 Toshiba Corp Method of producing high thermal conductive silicon nitride sintered body
JP2000072552A (en) * 1998-08-31 2000-03-07 Kyocera Corp Silicon nitride heat dissipation member and method of manufacturing the same
JP2000114425A (en) * 1998-09-29 2000-04-21 Kyocera Corp Wiring board for power module
US6599637B1 (en) 1998-10-28 2003-07-29 Sumitomo Electric Industries, Ltd. Silicon nitride composite substrate
WO2000024692A1 (en) * 1998-10-28 2000-05-04 Sumitomo Electric Industries, Ltd. Silicon nitride composite substrate
JP2000351673A (en) * 1999-06-10 2000-12-19 Hitachi Metals Ltd High heat-conductive silicon nitride-based sintered product and its production
JP2001010864A (en) * 1999-06-23 2001-01-16 Hitachi Metals Ltd Highly heat conductive silicon nitride-based sintered compact
JP2001064080A (en) * 1999-06-23 2001-03-13 Ngk Insulators Ltd Silicon nitride sintered body and its production
JP2002356376A (en) * 2001-05-31 2002-12-13 Kyocera Corp Wiring board and method of manufacturing the same
EP1914213A4 (en) * 2005-08-11 2011-06-08 Denki Kagaku Kogyo Kk SILICON NITRIDE SUBSTRATE, SILICON NITRIDE CIRCUIT SUBSTRATE USING THE SAME AND USE THEREOF
EP1914213A1 (en) * 2005-08-11 2008-04-23 Denki Kagaku Kogyo Kabushiki Kaisha Silicon nitride substrate, silicon nitride circuit substrate using the same, and its use
WO2007018050A1 (en) 2005-08-11 2007-02-15 Denki Kagaku Kogyo Kabushiki Kaisha Silicon nitride substrate, silicon nitride circuit substrate using the same, and its use
US8029903B2 (en) 2005-08-11 2011-10-04 Denki Kagaku Kogyo Kabushiki Kaisha Silicon nitride substrate, silicon nitride circuit board utilizing the same, and use thereof
JP5142198B2 (en) * 2005-08-11 2013-02-13 電気化学工業株式会社 Silicon nitride substrate, silicon nitride circuit substrate using the same, and use thereof
JP2007197229A (en) * 2006-01-24 2007-08-09 National Institute Of Advanced Industrial & Technology High thermal conductivity silicon nitride substrate and manufacturing method thereof
JP2012207724A (en) * 2011-03-30 2012-10-25 Hitachi Metals Ltd Rotary body
JPWO2015019602A1 (en) * 2013-08-08 2017-03-02 株式会社東芝 Circuit board and semiconductor device
JP2015164184A (en) * 2014-01-30 2015-09-10 京セラ株式会社 Silicon nitride substrate, circuit board including the same, and electronic apparatus
JP2015061988A (en) * 2014-12-08 2015-04-02 日立金属株式会社 Rotor
JP2015232394A (en) * 2015-06-04 2015-12-24 日立金属株式会社 Rotor

Also Published As

Publication number Publication date
JP3629783B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
JP3629783B2 (en) Circuit board
EP3632879B1 (en) Ceramic circuit board and method of production
EP2727898B1 (en) Brazing filler metal, brazing filler metal paste, ceramic circuit substrate, and ceramic master circuit substrate
JP5023165B2 (en) Ceramic circuit board
US6232657B1 (en) Silicon nitride circuit board and semiconductor module
EP2377839B1 (en) Silicon nitride substrate manufacturing method
KR20130135965A (en) Ceramic circuit board
JP3115238B2 (en) Silicon nitride circuit board
WO1996029736A1 (en) Silicon nitride circuit substrate
WO2013008920A1 (en) Ceramic circuit board
EP0297511A2 (en) Connection structure between components for semiconductor apparatus
JPH1093211A (en) Silicon nitride circuit board
JP2000323618A (en) Copper circuit bonding substrate and method of manufacturing the same
JP2698780B2 (en) Silicon nitride circuit board
EP3413346A1 (en) METAL MEMBER WITH Ag UNDERLAYER, INSULATED CIRCUIT BOARD WITH Ag UNDERLAYER, SEMICONDUCTOR DEVICE, INSULATED CIRCUIT BOARD WITH HEATSINK, AND METHOD OF MANUFACTURING METAL MEMBER WITH Ag UNDERLAYER
JP2939444B2 (en) Multilayer silicon nitride circuit board
JP3193305B2 (en) Composite circuit board
JPH1067586A (en) Circuit base plate for power module and its production
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP2677748B2 (en) Ceramics copper circuit board
JP2967065B2 (en) Semiconductor module
JP2736949B2 (en) High strength aluminum nitride circuit board and method of manufacturing the same
JP4142556B2 (en) Aluminum nitride sintered body, manufacturing method and use thereof
JPH0748180A (en) Ceramic-metal conjugate
EP4378914A1 (en) Copper/ceramic bonded body and insulated circuit board

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

EXPY Cancellation because of completion of term