JPH0914908A - Magnetic angle sensor - Google Patents
Magnetic angle sensorInfo
- Publication number
- JPH0914908A JPH0914908A JP7160513A JP16051395A JPH0914908A JP H0914908 A JPH0914908 A JP H0914908A JP 7160513 A JP7160513 A JP 7160513A JP 16051395 A JP16051395 A JP 16051395A JP H0914908 A JPH0914908 A JP H0914908A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- angle sensor
- temperature
- gap
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 171
- 230000004907 flux Effects 0.000 claims abstract description 25
- 238000001514 detection method Methods 0.000 claims abstract description 23
- 230000035699 permeability Effects 0.000 claims description 8
- 229910000859 α-Fe Inorganic materials 0.000 claims description 8
- 230000005381 magnetic domain Effects 0.000 claims description 2
- 230000007423 decrease Effects 0.000 abstract description 12
- 239000000463 material Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 239000002907 paramagnetic material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
(57)【要約】
【構成】 被検知体(1)の相対的な角度位置に応じた
磁束を通過させて磁路を形成する磁路形成体(5a、5
b)に、少なくとも1つの検出用磁気ギャップ(6a)
を形成し、該検出用磁気ギャップ(6a)に磁束密度検
出素子(7)を配置して、更に、該検出用磁気ギャップ
(6a)と被検知体の回転軸(C)とを含む面に沿う位
置又は前記面に対称な位置において少なくとも1の付加
磁気ギャップ(6b)を形成し、該付加磁気ギャップ
(6b)内に感温磁性部材(8)を配設する。
【効果】 本発明の磁気式角度センサによれば、簡単な
構成で、温度上昇による磁束密度検出素子の出力の低下
や永久磁石の起磁力の低下を補償する。
(57) [Summary] [Structure] A magnetic path forming body (5a, 5a, 5a, 5a, 5a, 5a that forms a magnetic path by passing a magnetic flux corresponding to the relative angular position of the detected body (1).
b) at least one magnetic gap for detection (6a)
And a magnetic flux density detection element (7) is arranged in the detection magnetic gap (6a), and further on a surface including the detection magnetic gap (6a) and the rotation axis (C) of the object to be detected. At least one additional magnetic gap (6b) is formed along the position or at a position symmetrical to the plane, and the temperature-sensitive magnetic member (8) is disposed in the additional magnetic gap (6b). According to the magnetic angle sensor of the present invention, it is possible to compensate for the decrease in the output of the magnetic flux density detection element and the decrease in the magnetomotive force of the permanent magnet due to the temperature increase with a simple configuration.
Description
【0001】[0001]
【産業上の利用分野】内燃エンジンのスロットルポジシ
ョンセンサ(TPS)等の回転体の角度変位を検出する
磁気式角度センサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic angle sensor such as a throttle position sensor (TPS) for an internal combustion engine, which detects an angular displacement of a rotating body.
【0002】[0002]
【背景技術】被検知体の回転角度に比例したセンサ出力
を得る磁気式角度センサが、平成5年特許出願公表第5
05882号公報(国際出願PCT/FR91/009
73号)に開示されている。以下、上記公表公報に開示
された磁気式角度センサを図1を参照しつつ説明する。BACKGROUND ART A magnetic angle sensor that obtains a sensor output proportional to the rotation angle of a detected object is disclosed in Patent Application No. 5 of 1993.
No. 05882 (International application PCT / FR91 / 009
73). The magnetic angle sensor disclosed in the above publication will be described below with reference to FIG.
【0003】図1(a)は、当該磁気式角度センサの平
面図を示し、図1(b)は、図1(a)のB−B断面図
を示している。本図に示される磁気式角度センサにおい
ては、例えばエンジンのスロットルシャフトに連動する
被検知体である非磁性材料から成る回転シャフト1は回
転軸Cを中心に回転する。回転シャフト1の外周には円
筒若しくは円環状の磁性部材2が配置され、さらに、磁
性部材2には、環状の永久磁石3が外嵌している。磁性
部材2及び永久磁石3は、回転シャフト1に対して接着
剤等により固定されており、これらは回転シャフト1と
一体に回転運動をなし、全体として環状の回転体を形成
する。FIG. 1A is a plan view of the magnetic angle sensor, and FIG. 1B is a sectional view taken along line BB of FIG. 1A. In the magnetic angle sensor shown in this figure, for example, a rotary shaft 1 made of a non-magnetic material, which is a detected object that interlocks with a throttle shaft of an engine, rotates about a rotation axis C. A cylindrical or annular magnetic member 2 is arranged on the outer periphery of the rotary shaft 1, and an annular permanent magnet 3 is fitted on the magnetic member 2. The magnetic member 2 and the permanent magnet 3 are fixed to the rotating shaft 1 with an adhesive or the like, and these rotate integrally with the rotating shaft 1 to form an annular rotating body as a whole.
【0004】永久磁石3は、回転軸Cに対する横方向例
えば半径方向に着磁された磁区が円周方向に分布する半
円環状断面を有する2つの半円環体の永久磁石3a及び
3bが互いに連結されて構成される。そして、永久磁石
3aの磁極は外周側がN極、内周側がS極となり、永久
磁石3bは、外周側がS極、内周側がN極となっており
全体として回転軸Cをよぎる方向に磁化された環状マグ
ネットとなっている。The permanent magnet 3 has two semi-annular permanent magnets 3a and 3b having a semi-annular cross section in which magnetic domains magnetized in a lateral direction, for example, a radial direction, with respect to the rotation axis C are distributed in a circumferential direction. It is configured by being connected. The magnetic poles of the permanent magnet 3a are N poles on the outer peripheral side and S poles on the inner peripheral side, and the permanent magnets 3b are S poles on the outer peripheral side and N poles on the inner peripheral side, and are magnetized in the direction crossing the rotation axis C as a whole. It is an annular magnet.
【0005】また、ギャップ4を介して半円環状断面を
有する一対の半円環体状の磁性部材5a及び5bが永久
磁石3を囲繞している。一対の磁性部材5a及び5b
は、好ましくは均質対称形となっている。そして、磁性
部材5a及び5bの両脚端面は互いに対向して一対の磁
束密度検出用の磁気ギャップ6a及び磁気ギャップ6b
を形成している。好ましくは、磁気ギャップ6a及び6
bは、回転中心Cを通る面(センサの中心線B−B)に
沿って形成されている。A pair of semi-annular magnetic members 5a and 5b having a semi-annular cross section surrounds the permanent magnet 3 via a gap 4. A pair of magnetic members 5a and 5b
Are preferably homogeneously symmetrical. Both leg end surfaces of the magnetic members 5a and 5b are opposed to each other, and a pair of magnetic gaps 6a and 6b for magnetic flux density detection are provided.
Is formed. Preferably, the magnetic gaps 6a and 6
b is formed along a plane (center line BB of the sensor) passing through the rotation center C.
【0006】そして、磁性部材5a、5bは磁気ギャッ
プ6a,6bを含む固定磁路を形成する磁路形成体を構
成する。磁気ギャップ6aには磁束密度を検出してこれ
を表す電気信号を出力するホール素子7が配置されてい
る。尚、回転中心Cは、磁性部材5a及び5bの円弧中
心と略一致しているのが好ましい。The magnetic members 5a and 5b form a magnetic path forming body that forms a fixed magnetic path including the magnetic gaps 6a and 6b. A Hall element 7 is arranged in the magnetic gap 6a to detect the magnetic flux density and output an electric signal representing the magnetic flux density. The center of rotation C is preferably substantially coincident with the arc centers of the magnetic members 5a and 5b.
【0007】かかる構成の磁気式角度センサにおいて
は、永久磁石3aから発せられた磁束が点線S1及びS
2で示す如く磁性部材5a及び5bによって形成される
固定磁路を経由して永久磁石3bに達するのである。よ
って、回転シャフト1が回転し、回転シャフト1に担持
されて回転する磁性部材2及び永久磁石3と、磁路形成
体である磁性部材5との相対位置(角度)関係に応じて
磁気ギャップ6aの磁束密度が変化することになる。ホ
ール素子7は磁気ギャップ6a内の磁束密度に応じた電
気信号を発生し、この電気信号により、回転体即ち回転
シャフト1の回転位置(角度)を検知することができる
のである。In the magnetic type angle sensor having such a structure, the magnetic flux generated from the permanent magnet 3a has the dotted lines S1 and S.
As shown by 2, the permanent magnet 3b is reached via the fixed magnetic path formed by the magnetic members 5a and 5b. Therefore, the rotating shaft 1 rotates, and the magnetic gap 6a is generated according to the relative position (angle) relationship between the magnetic member 5 and the permanent magnet 3 which are carried by the rotating shaft 1 and rotate, and the magnetic member 5 which is the magnetic path forming body. The magnetic flux density of will change. The Hall element 7 generates an electric signal according to the magnetic flux density in the magnetic gap 6a, and the rotational position (angle) of the rotating body, that is, the rotating shaft 1 can be detected by this electric signal.
【0008】ところが、かかる磁気式角度センサにおい
ては、動作温度の上昇に伴って、ホール素子7の出力が
低下し、永久磁石3a、3bの起磁力が低下するという
問題がある。そして、このような温度上昇によるホール
素子の出力及び永久磁石の起磁力の低下は、そのままセ
ンサの検出感度を低下させ、検出精度を悪化させる原因
になる。However, in such a magnetic angle sensor, there is a problem that the output of the Hall element 7 decreases and the magnetomotive force of the permanent magnets 3a and 3b decreases as the operating temperature rises. Then, the decrease in the output of the Hall element and the magnetomotive force of the permanent magnet due to such a temperature increase directly lowers the detection sensitivity of the sensor and deteriorates the detection accuracy.
【0009】かかる問題を解決するために、図2に示さ
れるようなダイオードを用いた温度補償回路が考えられ
る。同図に示される温度補償回路においては、ホール素
子7が磁束密度を検出しこれを表す電圧VOUT1及びVOU
T2を出力する。抵抗R1及びR2からなる分圧器の分圧
出力VAは、演算増幅器OP1の正入力端子に供給され
る。演算増幅器OP1の出力端子はホール素子7のバイ
アス端子の一方に接続され、ホール素子7の他方のバイ
アス端子はダイオードD1及び抵抗R3の直列回路を経
て接地されている。ダイオードD1のカソード端子に表
われる電圧VBはホール素子7を流れるバイアス電流に
比例しており、この電圧VBは、演算増幅器OP1の入
力端子に供給されるようになっているのである。In order to solve such a problem, a temperature compensation circuit using a diode as shown in FIG. 2 can be considered. In the temperature compensating circuit shown in the same figure, the Hall element 7 detects the magnetic flux density and indicates the voltages VOUT1 and VOU which represent it.
Outputs T2. The voltage division output VA of the voltage divider composed of the resistors R1 and R2 is supplied to the positive input terminal of the operational amplifier OP1. The output terminal of the operational amplifier OP1 is connected to one of the bias terminals of the Hall element 7, and the other bias terminal of the Hall element 7 is grounded via the series circuit of the diode D1 and the resistor R3. The voltage VB appearing at the cathode terminal of the diode D1 is proportional to the bias current flowing through the Hall element 7, and this voltage VB is supplied to the input terminal of the operational amplifier OP1.
【0010】ここで、図3はダイオードD1の電流−電
圧特性の温度依存性を示すものである。図3に示すよう
に、ダイオードD1は、順方向電流IFを一定とした場
合、温度が上昇すると順方向電圧VFが低下し、一方、
温度が低下すると順方向電圧VFが上昇する特性を示
す。かかる特性によって電圧VBが変化してホール素子
7を流れるバイアス電流が変化するので温度の補償がな
されるのである。Here, FIG. 3 shows the temperature dependence of the current-voltage characteristic of the diode D1. As shown in FIG. 3, in the diode D1, when the forward current IF is constant, the forward voltage VF decreases as the temperature rises, while
The characteristic is that the forward voltage VF increases as the temperature decreases. With such a characteristic, the voltage VB changes and the bias current flowing through the Hall element 7 changes, so that the temperature is compensated.
【0011】しかしながら、上記の如きダイオードを用
いた温度補償回路では、100℃程度までは、良好な温
度補償を実現できるが、100℃以上では温度補償を良
好に行うことができないという問題がある。However, in the temperature compensation circuit using the diode as described above, good temperature compensation can be realized up to about 100 ° C., but there is a problem that good temperature compensation cannot be performed at 100 ° C. or higher.
【0012】[0012]
【発明が解決しようとする課題】上記従来技術の問題点
に鑑み、本願発明の目的とするところは、高温下におい
ても良好な温度補償特性を有して、常に、正確な被検知
体の角度位置を高精度に検出できる磁気式角度センサを
提供することにある。In view of the above problems of the prior art, it is an object of the present invention to have a good temperature compensation characteristic even at high temperature, and to always provide an accurate angle of the detected object. It is to provide a magnetic angle sensor that can detect a position with high accuracy.
【0013】[0013]
【課題を解決するための手段】本願発明の磁気式角度セ
ンサは、被検知体の回転に応動し、少なくとも1対の互
いに異なる等分磁極面を外表面に有すべく着磁された環
状マグネットと、前記環状マグネットを囲繞しかつ少な
くとも1つの検出用磁気ギャップを含む固定磁路を形成
する磁路形成体と、前記検出用磁気ギャップに配設され
た磁束密度検出手段と、からなる磁気式位置センサであ
って、前記磁路形成体は、前記検出用磁気ギャップと前
記環状マグネットの回転軸とを含む面に沿う位置又は前
記面に対称な位置において少なくとも1の付加磁気ギャ
ップを有し、前記付加磁気ギャップ内に感温磁性部材が
配設されたことを特徴とする。SUMMARY OF THE INVENTION A magnetic angle sensor according to the present invention is an annular magnet which is magnetized in response to the rotation of an object to be detected so as to have at least one pair of mutually equally divided magnetic pole surfaces on its outer surface. And a magnetic path forming body that surrounds the annular magnet and forms a fixed magnetic path that includes at least one detection magnetic gap, and a magnetic flux density detection means disposed in the detection magnetic gap. In the position sensor, the magnetic path forming body has at least one additional magnetic gap at a position along a surface including the detection magnetic gap and the rotation axis of the annular magnet or at a position symmetrical to the surface, A temperature-sensitive magnetic member is disposed in the additional magnetic gap.
【0014】[0014]
【作用】上記した構成の磁気式角度センサにおいては、
付加磁気ギャップ内に配設された感温磁性部材によっ
て、該固定磁路全体の磁気抵抗が温度に応じて変化し
て、ホール素子及び永久磁石の温度特性を補償するので
ある。In the magnetic angle sensor having the above structure,
The temperature-sensitive magnetic member arranged in the additional magnetic gap changes the magnetic resistance of the entire fixed magnetic path according to the temperature to compensate the temperature characteristics of the Hall element and the permanent magnet.
【0015】[0015]
【実施例】以下、添付図面を参照しつつ本発明による磁
気式角度センサを詳細に説明する。図4に、本発明に係
る磁気式角度センサの一実施例を示す。尚、図1と同一
符号が付してある部分は同図に示した従来例と同等な構
成の部分であり、かかる部分の説明は省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetic angle sensor according to the present invention will be described in detail below with reference to the accompanying drawings. FIG. 4 shows an embodiment of the magnetic angle sensor according to the present invention. Incidentally, the parts denoted by the same reference numerals as those in FIG. 1 are parts having the same configuration as the conventional example shown in the same figure, and the description of such parts will be omitted.
【0016】図4に示される磁気式角度センサは、磁性
部材5a、5bの両脚部端面間に形成される磁気ギャッ
プの一方例えば磁気ギャップ6aを検出用磁気ギャップ
とし、他方を付加磁気ギャップ6bとしてこれに感温磁
性部材8を配置若しくは充填した構成とする。前記した
点以外の構成は、図1に示される磁気式角度センサと同
一の構造を有する。In the magnetic angle sensor shown in FIG. 4, one of the magnetic gaps formed between the end faces of both leg portions of the magnetic members 5a and 5b, for example, the magnetic gap 6a is used as the detection magnetic gap, and the other is used as the additional magnetic gap 6b. The temperature-sensitive magnetic member 8 is arranged or filled in this. The configuration other than the points described above has the same structure as the magnetic angle sensor shown in FIG.
【0017】図4において、磁性部材5a及び5bは、
高透磁率及び低磁気ヒステリシス特性を示す軟磁性体か
らなり、例えば、アニール処理された純鉄若しくはニッ
ケル合金、焼結された鉄、又は、ニッケル鉄が用いられ
る。そして、感温磁性部材8としては、磁性部材5a及
び5bに用いられる材料よりもキュリー温度及び透磁率
が低いもの、例えばフェライト等が用いられる。In FIG. 4, the magnetic members 5a and 5b are
It is made of a soft magnetic material having a high magnetic permeability and a low magnetic hysteresis characteristic, and for example, annealed pure iron or nickel alloy, sintered iron, or nickel iron is used. As the temperature-sensitive magnetic member 8, a material having a Curie temperature and magnetic permeability lower than those of the materials used for the magnetic members 5a and 5b, such as ferrite, is used.
【0018】図5は、フェライトの飽和磁束密度の温度
依存性を示すものであり、同図に示されるようにフェラ
イトの飽和磁束密度は温度上昇に従って低下する。かか
るフェライトはキュリー温度が低く、強磁性体から常磁
性体になり易いので、透磁率の温度変化が大きい。ま
た、フェライトは、前記した如く、磁性部材5a及び5
bに用いた材料よりもキュリー点が低いため、磁性部材
5a及び5bよりも透磁率の温度依存性が大きい。FIG. 5 shows the temperature dependence of the saturation magnetic flux density of ferrite. As shown in FIG. 5, the saturation magnetic flux density of ferrite decreases as the temperature rises. Since such ferrite has a low Curie temperature and is likely to change from a ferromagnetic material to a paramagnetic material, the change in magnetic permeability with temperature is large. Further, as described above, ferrite is used for the magnetic members 5a and 5a.
Since the Curie point is lower than that of the material used for b, the magnetic permeability has a greater temperature dependency than the magnetic members 5a and 5b.
【0019】次に、感温磁性部材による温度補償の原理
を説明する。図4において、感温磁性部材8として用い
られるフェライトは低温時は透磁率が高いため磁気抵抗
が低くなり磁束を通し易い一方、高温時においては、透
磁率が低くなり磁気抵抗が高くなり磁束を通しにくい性
質を持つ。その一方、キュリー点の高い材料からなる磁
性部材5a及び5bは、温度上昇による磁気抵抗の低下
は僅かしか起こらない。よって、温度上昇に従って感温
磁性部材8側を通る磁束が低下すると、その分ホール素
子7側を通る磁束が増大することになり、温度上昇によ
るホール素子の検出出力の低下と永久磁石の起磁力の低
下を補償することになる。Next, the principle of temperature compensation by the temperature-sensitive magnetic member will be described. In FIG. 4, the ferrite used as the temperature-sensitive magnetic member 8 has a high magnetic permeability at a low temperature and thus has a low magnetic resistance and easily passes a magnetic flux. On the other hand, at a high temperature, the magnetic permeability is low and a magnetic resistance becomes high, so that a magnetic flux is generated. It has the property of being hard to pass. On the other hand, in the magnetic members 5a and 5b made of a material having a high Curie point, the magnetic resistance is slightly decreased due to the temperature rise. Therefore, when the magnetic flux passing through the temperature-sensitive magnetic member 8 side decreases as the temperature rises, the magnetic flux passing through the Hall element 7 side increases correspondingly, and the detection output of the Hall element decreases due to the temperature rise and the magnetomotive force of the permanent magnet increases. Will be compensated for the decrease.
【0020】上記した実施例に係る磁気式角度センサに
おいては、100℃以上の温度領域をも精度良く補償で
きるのである。また、本実施例においては、磁気ギャッ
プ6aおよび回転体(永久磁石3及び磁性部材2に)の
回転軸Cを含む面に沿って(センサの中心線B−B)、
磁路形成体上に形成された磁気ギャップ6bに感温磁性
部材8を配置若しくは充填した構成であるが、本発明
は、これに限定されるものではなく、図7に示すよう
に、磁路形成体の磁気ギャップ6a及び前記回転体の回
転軸Cを含む面(センサの中心線B−B)に対称な位置
に一対の磁気ギャップ6b1及び6b2を形成して、感温
磁性部材8a及び8bを夫々配置しても良いのである。In the magnetic angle sensor according to the above embodiment, the temperature range of 100 ° C. or higher can be accurately compensated. Further, in the present embodiment, along the surface including the magnetic gap 6a and the rotation axis C of the rotating body (in the permanent magnet 3 and the magnetic member 2) (sensor center line BB),
Although the temperature-sensitive magnetic member 8 is arranged or filled in the magnetic gap 6b formed on the magnetic path forming body, the present invention is not limited to this, and as shown in FIG. A pair of magnetic gaps 6b1 and 6b2 are formed at positions symmetrical with respect to the surface including the magnetic gap 6a of the forming body and the rotation axis C of the rotating body (center line BB of the sensor), and the temperature-sensitive magnetic members 8a and 8b are formed. May be arranged respectively.
【0021】尚、図4及び図6で示された実施例では、
感温磁性部材としてフェライトを用いたがこれに限定さ
れるものではなく、透磁率の温度依存性の大きな材料を
用いれば良い。また、上記実施例等では、磁束密度検出
手段としてホール素子7を用いているがこれに限定され
るものではなく、例えば磁気抵抗効果素子等の他の磁束
密度検出手段を用いても良い。In the embodiment shown in FIGS. 4 and 6,
Although ferrite is used as the temperature-sensitive magnetic member, the present invention is not limited to this, and a material having a large temperature dependency of magnetic permeability may be used. Further, in the above-described embodiments and the like, the Hall element 7 is used as the magnetic flux density detecting means, but the present invention is not limited to this, and other magnetic flux density detecting means such as a magnetoresistive effect element may be used.
【0022】本実施例に係る磁気式角度センサの具体的
応用については、回転シャフト1を例えば内燃機関のス
ロットルバルブに連結することにより、スロットルポジ
ションセンサを得ることができる。以上の実施例等に係
る磁気式角度センサは、さらに、自動工作機械、自動搬
送機械等における位置検出手段としても用いることがで
き、工場の自動化(FA)等においても好ましく適用で
きるものである。Regarding a specific application of the magnetic angle sensor according to this embodiment, a throttle position sensor can be obtained by connecting the rotary shaft 1 to a throttle valve of an internal combustion engine, for example. The magnetic angle sensor according to the above-described embodiments and the like can be further used as a position detecting means in an automatic machine tool, an automatic carrier machine, or the like, and can be preferably applied to factory automation (FA) or the like.
【0023】[0023]
【発明の効果】以上述べたように、本発明の磁気式セン
サにおいては、被検知体の相対的な角度位置に応じた磁
束を通過させて磁路を形成する磁路形成体に、少なくと
も1つの検出用磁気ギャップを形成し、該検出用磁気ギ
ャップに磁束密度検出素子を配置して、更に、該検出用
磁気ギャップと被検知体の回転軸とを含む面に沿う位置
又は前記面に対称な位置において少なくとも1の付加磁
気ギャップを形成し、該付加磁気ギャップ内に感温磁性
部材を配設した構成であるので、簡単な構成で、高温時
における磁束密度検出素子の出力の低下や永久磁石の起
磁力の低下を補正することが可能となり、常に、被検知
体の正確な角度位置を検出することができるのである。As described above, in the magnetic sensor of the present invention, at least one magnetic path forming body that forms a magnetic path by passing a magnetic flux corresponding to the relative angular position of the detected object is used. One magnetic gap for detection is formed, a magnetic flux density detection element is arranged in the magnetic gap for detection, and further, a position along the plane including the magnetic gap for detection and the rotation axis of the object to be detected or symmetrical to the plane. Since at least one additional magnetic gap is formed at a certain position and the temperature-sensitive magnetic member is disposed in the additional magnetic gap, the output of the magnetic flux density detection element at high temperature can be reduced and the temperature can be reduced permanently. It is possible to correct the decrease in the magnetomotive force of the magnet, and it is possible to always detect the accurate angular position of the detected object.
【図1】 従来の磁気式角度センサの構成を示す平面図
である。図1(a)はセンサの平面図、図1(b)は図
1(a)をB−B線から見た断面図である。FIG. 1 is a plan view showing a configuration of a conventional magnetic angle sensor. 1A is a plan view of the sensor, and FIG. 1B is a cross-sectional view of FIG. 1A taken along line BB.
【図2】 図1の磁気式角度センサの温度補償回路を示
す図である。2 is a diagram showing a temperature compensation circuit of the magnetic angle sensor of FIG. 1. FIG.
【図3】 図2の回路に用いられるダイオードの電圧−
電流特性の温度依存性を示す図である。3 is a voltage of a diode used in the circuit of FIG.
It is a figure which shows the temperature dependence of a current characteristic.
【図4】 本発明に係る磁気式角度センサの第1の実施
例を示す図であり、図4(a)はセンサの平面図、図4
(b)は図4(a)のB−B線からみた断面図である。FIG. 4 is a diagram showing a first embodiment of a magnetic angle sensor according to the present invention, FIG. 4 (a) is a plan view of the sensor, and FIG.
4B is a sectional view taken along the line BB of FIG.
【図5】 図4の感温磁性部材の飽和磁束密度の温度特
性を示す図である。5 is a diagram showing temperature characteristics of saturation magnetic flux density of the temperature-sensitive magnetic member of FIG.
【図6】 本発明に係る磁気式角度センサの第2の実施
例を示す図であり、図6(a)はセンサの平面図、図6
(b)は図6(a)のB−B線からみた断面図である。FIG. 6 is a view showing a second embodiment of the magnetic angle sensor according to the present invention, FIG. 6 (a) is a plan view of the sensor, and FIG.
6B is a sectional view taken along the line BB of FIG. 6A.
1 回転シャフト(被検知体) 2、5 磁性部材 3 永久磁石 4、6 磁気ギャプ 7 ホール素子 8 感温磁性部材 1 rotating shaft (object to be detected) 2, 5 magnetic member 3 permanent magnets 4, 6 magnetic gap 7 Hall element 8 temperature-sensitive magnetic member
Claims (8)
対の互いに異なる等分磁極面を外表面に有すべく着磁さ
れた環状マグネットと、 前記環状マグネットを囲繞しかつ少なくとも1つの検出
用磁気ギャップを含む固定磁路を形成する磁路形成体
と、 前記検出用磁気ギャップに配設された磁束密度検出手段
と、 からなる磁気式位置センサであって、 前記磁路形成体は、前記検出用磁気ギャップと前記環状
マグネットの回転軸とを含む面に沿う位置又は前記面に
対称な位置において少なくとも1の付加磁気ギャップを
有し、前記付加磁気ギャップ内に感温磁性部材が配設さ
れたことを特徴とする磁気式角度センサ。1. At least 1 in response to rotation of a detected object
An annular magnet magnetized so as to have a pair of mutually equally divided magnetic pole surfaces on the outer surface; and a magnetic path forming body that surrounds the annular magnet and forms a fixed magnetic path including at least one magnetic gap for detection. A magnetic position sensor comprising magnetic flux density detecting means disposed in the magnetic gap for detection, wherein the magnetic path forming body is a surface including the magnetic gap for detection and a rotation axis of the annular magnet. A magnetic angle sensor having at least one additional magnetic gap at a position along or along the plane, and a temperature-sensitive magnetic member disposed in the additional magnetic gap.
された磁区が円周方向に分布する半円環状断面を有する
少なくとも2つの半円環体からなることを特徴とする請
求項1記載の磁気式角度センサ。2. The annular magnet comprises at least two semi-annular members each having a semi-annular cross section in which magnetic domains magnetized in a radial direction are distributed in a circumferential direction. Magnetic angle sensor.
性半円環体からなり、前記磁性半円環体の脚部端面が互
いに対向して前記検出用及び付加磁気ギャップを形成し
ていることを特徴とする請求項3記載の磁気式角度セン
サ。3. The magnetic path forming member is composed of at least two magnetic semi-annular members, and leg end surfaces of the magnetic semi-annular members face each other to form the detection and additional magnetic gaps. The magnetic angle sensor according to claim 3, wherein
ャップ内に充填されていることを特徴とする磁気式角度
センサ。4. The magnetic angle sensor according to claim 4, wherein the temperature-sensitive magnetic member is filled in the additional magnetic gap.
あることを特徴とする請求項1記載の磁気式角度セン
サ。5. The magnetic angle sensor according to claim 1, wherein the magnetic flux density detecting means is a Hall element.
りも小なる透磁率を有することを特徴とする請求項1記
載の磁気式角度センサ。6. The magnetic angle sensor according to claim 1, wherein the temperature-sensitive magnetic member has a magnetic permeability smaller than that of the magnetic path forming member.
りも小なるキュリー温度を有することを特徴とする請求
項1記載の磁気式角度センサ。7. The magnetic angle sensor according to claim 1, wherein the temperature-sensitive magnetic member has a Curie temperature lower than that of the magnetic path forming member.
ことを特徴とする請求項1記載の磁気式角度センサ。8. The magnetic angle sensor according to claim 1, wherein the temperature-sensitive magnetic member is ferrite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7160513A JPH0914908A (en) | 1995-06-27 | 1995-06-27 | Magnetic angle sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7160513A JPH0914908A (en) | 1995-06-27 | 1995-06-27 | Magnetic angle sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0914908A true JPH0914908A (en) | 1997-01-17 |
Family
ID=15716582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7160513A Pending JPH0914908A (en) | 1995-06-27 | 1995-06-27 | Magnetic angle sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0914908A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001020250A1 (en) * | 1999-09-09 | 2001-03-22 | Mikuni Corporation | Noncontact position sensor |
JP2002206946A (en) * | 2001-01-11 | 2002-07-26 | Yazaki Corp | Rotation sensor and its manufacturing method |
WO2005040729A1 (en) * | 2003-10-24 | 2005-05-06 | Kabushiki Kaisha Yaskawa Denki | Magnetic encoder device and actuator |
WO2010026948A1 (en) * | 2008-09-03 | 2010-03-11 | アルプス電気株式会社 | Angle sensor |
-
1995
- 1995-06-27 JP JP7160513A patent/JPH0914908A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001020250A1 (en) * | 1999-09-09 | 2001-03-22 | Mikuni Corporation | Noncontact position sensor |
US6867582B2 (en) | 1999-09-09 | 2005-03-15 | Mikuni Corporation | Non-contact position sensor having specific configuration of stators and magnets |
JP2002206946A (en) * | 2001-01-11 | 2002-07-26 | Yazaki Corp | Rotation sensor and its manufacturing method |
WO2005040729A1 (en) * | 2003-10-24 | 2005-05-06 | Kabushiki Kaisha Yaskawa Denki | Magnetic encoder device and actuator |
US7586283B2 (en) | 2003-10-24 | 2009-09-08 | Kabushiki Kaisha Yaskawa Denki | Magnetic encoder device and actuator |
WO2010026948A1 (en) * | 2008-09-03 | 2010-03-11 | アルプス電気株式会社 | Angle sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5621320A (en) | Magnetoresistance type sensor device for detecting change of magnetic field | |
JPH10232242A (en) | Detector | |
JPH0835809A (en) | Magnetic position sensor by hall element | |
JP2002519645A (en) | Magnetic position detector | |
JP2004028809A (en) | Actuator | |
US6014023A (en) | High resolution magnetoresistance sensing device with accurate placement of inducing and detecting elements | |
JPH03233317A (en) | Rotation angle sensor | |
JP2002228733A (en) | Magnetism detecting device | |
JPH0914908A (en) | Magnetic angle sensor | |
JP3161962B2 (en) | Rotation angle detector | |
KR0153451B1 (en) | Magnetic bearing device | |
JP2001133210A (en) | Mon-contact type position sensor | |
JP2863432B2 (en) | Non-contact potentiometer | |
JPH08304011A (en) | Magnetic angle sensor | |
JP2002054902A (en) | Displacement detecting device | |
JP3335738B2 (en) | Magnetic position sensor | |
JPH069306Y2 (en) | Position detector | |
JPH05175483A (en) | Positional sensor | |
JPH06147816A (en) | Angle sensor | |
JPH0750664Y2 (en) | Magnetic linear scale | |
JPH081387B2 (en) | Magnetic sensor | |
JP3170806B2 (en) | Magnetoelectric converter | |
JPS61189412A (en) | Magnetic flux density change detector | |
JPH05126654A (en) | Magnetostrictive torque sensor | |
RU2378613C2 (en) | Contactless transducer of shaft angular position |