[go: up one dir, main page]

JPH09138820A - Process designing system - Google Patents

Process designing system

Info

Publication number
JPH09138820A
JPH09138820A JP29700895A JP29700895A JPH09138820A JP H09138820 A JPH09138820 A JP H09138820A JP 29700895 A JP29700895 A JP 29700895A JP 29700895 A JP29700895 A JP 29700895A JP H09138820 A JPH09138820 A JP H09138820A
Authority
JP
Japan
Prior art keywords
work
production
equipment
worker
workers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29700895A
Other languages
Japanese (ja)
Inventor
Kenjirou Okazaki
権二郎 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP29700895A priority Critical patent/JPH09138820A/en
Publication of JPH09138820A publication Critical patent/JPH09138820A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Control By Computers (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Multi-Process Working Machines And Systems (AREA)
  • General Factory Administration (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To speedily design a process with the distribution of operators corresponding to an actual producing process and with optimum equipment constitution. SOLUTION: An operation distribution part 10 distributes each operation process at each equipment and each operator based on the total number of production obtained by a production planning part 8, the arranging constitution of the equipments and the operators set by an arrangement designing part 9 and each operator's grade of operation skill which is set in advance. A process evaluation part 11 executes the simulation of the process set by the operation distribution part 10 and estimates the operating state of the process to process- evaluate the process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術の分野】本発明は、作業者が生産設
備を扱う製造工程における設備及び作業者の作業工程を
設計する工程設計システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process design system for designing equipment in a manufacturing process in which a worker handles production equipment and a work process of the worker.

【0002】[0002]

【従来の技術】近年、製造工程設計評価装置のようなシ
ミュレーションモデルを作成し、製造工程の設計評価を
行うことが製品の製造工程で重要になってきている。
2. Description of the Related Art In recent years, it has become important in the manufacturing process of products to create a simulation model such as a manufacturing process design evaluation apparatus and perform design evaluation of the manufacturing process.

【0003】一般にこの種の工程設計評価装置において
は、例えば、特開平4―19056号公報にも開示され
ているように、図7に示すような構成の工程設計評価装
置が用いられている。
Generally, in this type of process design evaluation apparatus, as disclosed in, for example, Japanese Patent Application Laid-Open No. 4-19056, a process design evaluation apparatus having a configuration as shown in FIG. 7 is used.

【0004】この工程設計評価装置は、生産能力を精度
高く定量的に算出するために、需要変動に対応した各生
産品種の数量や納期等を管理するとともに、需要変動に
対応した全生産品種の総生産数の見積りを行う生産計画
部38と、前記生産計画部8で求められた総生産数を得
るための設備数及び作業者数を求め、かつ、これら設備
及び作業者の配置構成を設定する配置設計部39と、前
記生産計画部38で求められた総生産数と前記配置設計
部39で求められた前記設備及び前記作業者の配置構成
とに基づいてこれら設備及び作業者における各作業手順
を求めて工程を編成する工程編成部40と、この工程編
成部40で求められた図8乃至図10に示す各工程A乃
至Cの工程編成のシミュレーションを実行して、前記工
程の可動率等を求めて工程評価を行う工程評価部41で
構成されるのが普通である。
In order to calculate the production capacity with high accuracy and quantitatively, this process design evaluation device manages the quantity and delivery date of each product type corresponding to the demand fluctuation, and at the same time, manages all the product types corresponding to the demand fluctuation. A production planning unit 38 for estimating the total production quantity, and the number of equipments and the number of workers for obtaining the total production quantity obtained by the production planning unit 8 and setting the arrangement configuration of these equipments and workers. Based on the layout designing unit 39, the total number of productions obtained by the production planning unit 38, and the arrangement configuration of the equipment and the worker obtained by the arrangement designing unit 39 A process knitting unit 40 for knitting a process in accordance with a procedure, and a simulation of the process knitting of each process A to C shown in FIGS. And so on It is usually be composed of process evaluation unit 41 for process evaluation Te.

【0005】尚、図7に示す工程設計評価装置は、上述
した各要素の他に、全体の制御を行うCPU(中央処理
装置)やメモリからなる主制御部51を具備し、この主
制御部51には入力部52を介してキーボード53が接
続されるとともに出力部54を介してCRTディスプレ
イ55及びプリンタ56が接続されている。
The process design evaluation apparatus shown in FIG. 7 includes, in addition to the above-mentioned elements, a main control unit 51 including a CPU (central processing unit) and a memory for controlling the whole, and this main control unit. A keyboard 53 is connected to 51 via an input unit 52, and a CRT display 55 and a printer 56 are connected via an output unit 54.

【0006】上述のような構成の工程設計評価装置によ
れば、製造工程の可動率等を求めて工程評価を行うこと
ができる。
According to the process design evaluation apparatus having the above-described structure, the process evaluation can be performed by obtaining the mobility of the manufacturing process.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
工程設計評価装置は、生産計画部38で求められた総生
産数と前記配置設計部39で求められた前記設備及び前
記作業者の配置構成とに基づいてこれら設備及び作業者
における各作業手順を設計する際、効率的に作業者に作
業手類を設定する手段がなく、むやみやたらに工程のシ
ミュレーションを行わなければならず、長い時間をかけ
て工程設計しなければならないという課題を有してい
る。
However, in the conventional process design evaluation apparatus, the total production quantity obtained by the production planning section 38 and the arrangement configuration of the equipment and the workers obtained by the arrangement design section 39 are set. When designing each work procedure for these equipments and workers based on the above, there is no means to efficiently set the worker's work category, and it is necessary to simulate the process unnecessarily and it takes a long time. There is a problem that the process must be designed by using

【0008】即ち、例えば、図8に示すように、工程A
に設備61乃至63を、工程Bに設備64、65を、工
程Cに設備66乃至68を設定し、設備61乃至63の
作業結果を設備64、65により並列処理し、さらに、
設備64、65の作業結果を設備66乃至68により並
列処理したり、図9に示すように、工程Aの設備61、
62の作業結果を設備64により処理し、工程Aの設備
62の作業結果を設備65により並列処理し、さらに、
工程Bの設備64の作業結果を設備66、67により処
理し、工程Bの設備65の作業結果を設備68により処
理するようにしたり、さらに、図10に示すように、工
程Cに設備69を付加し、工程A乃至工程Cの各設備を
1対1の対応状態にする煩雑な工程設計が行われる。
尚、図8中、29、30は作業者である。
That is, for example, as shown in FIG.
The equipments 61 to 63 are set in step B, the equipments 64 and 65 are set in step B, the equipments 66 to 68 are set in step C, the work results of the equipments 61 to 63 are processed in parallel by the equipments 64 and 65,
The work results of the equipments 64 and 65 are processed in parallel by the equipments 66 to 68, and as shown in FIG.
The work result of 62 is processed by the equipment 64, the work result of the equipment 62 of the process A is processed in parallel by the equipment 65, and
The work result of the equipment 64 of the process B is processed by the equipments 66 and 67, and the work result of the equipment 65 of the process B is processed by the equipment 68. Further, as shown in FIG. In addition, a complicated process design is performed in which each facility of the processes A to C is brought into a one-to-one correspondence state.
In FIG. 8, 29 and 30 are workers.

【0009】更に、個々の作業者は、得意、不得意とい
った作業分野を有しており、場合によっては、ある作業
者に習熟度の低い作業を分配してしまうという課題も有
している。
Further, each worker has a work field such as his or her weakness, and in some cases, there is also a problem that a work with a low proficiency level is distributed to a certain worker.

【0010】そこで、本発明は、上述した課題を解決す
るためになされたものであり、その目的とするところ
は、実際の製造工程に対応した作業者配分で、かつ、最
適な設備構成となるような工程設計を迅速に行うことが
できる工程設計システムを提供することにある。
Therefore, the present invention has been made in order to solve the above-mentioned problems, and its purpose is to allocate workers according to an actual manufacturing process and to obtain an optimum equipment configuration. An object of the present invention is to provide a process design system capable of quickly performing such process design.

【0011】[0011]

【課題を解決するための手段】請求項1記載の工程設計
システムは、需要変動に対応した各生産品種別の数量や
納期等を管理するとともに、需要変動に対応した前記全
生産品種の総生産数の見積りを行う生産計画手段と、こ
の生産計画手段で求められた総生産数を得るための設備
数及び作業者数を求めかつこれら設備及び作業者の配置
構成を設定する配置設計手段と、前記生産計画手段で求
められた総生産数と、前記配置設計手段で求められた前
記設備及び前記作業者の配置構成と、予め設定した各作
業者別の作業習熟値とに基づいて、前記各設備及び各作
業者における各作業工程を設定する作業分配手段と、こ
の作業分配手段で設定した工程のシミュレーションを実
行し前記工程の稼働状態を推定して前記工程の工程評価
を行う工程評価手段と、を備えたことを特徴とするもの
である。
A process design system according to claim 1 manages the quantity, delivery date, etc. of each product type corresponding to demand fluctuations, and also the total production of all the product types corresponding to demand fluctuations. A production planning means for estimating the number of products, and a layout design means for obtaining the number of facilities and the number of workers for obtaining the total production number obtained by the production planning means and setting the layout configuration of these facilities and workers, Based on the total production number obtained by the production planning means, the arrangement configuration of the equipment and the workers obtained by the arrangement designing means, and a preset work proficiency value for each worker, A work distribution means for setting each work process in the equipment and each worker, and a process evaluation tool for performing a simulation of the process set by the work distribution means to estimate the operation state of the process to evaluate the process of the process. When, it is characterized in that it comprises a.

【0012】請求項2記載の工程設計システムは、需要
変動に対応した各生産品種別の数量や納期等を管理する
とともに、需要変動に対応した前記全生産品種の総生産
数の見積りを行う生産計画手段と、この生産計画手段で
求められた総生産数を得るための設備数及び作業者数を
求めかつこれら設備及び作業者の配置構成を設定する配
置設計手段と、前記生産針画手段で求められた総生産数
と、前記配置設計手段で求められた前記設備及び前記作
業者の配置構成と、予め設定した各作業者別の作業習熟
値とに基づいて、前記各設備及び各作業者における各作
業工程を設定する作業分配手段と、この作業分配手段で
設定した工程のシミュレーションを実行し前記工程の稼
働率、リードタイム、仕掛り、生産数、手待ち時間等の
情報から前記工程の稼働状態を推定して前記工程の工程
評価を行う工程評価手段とを備えたことを特徴とするも
のである。
According to a second aspect of the present invention, the process design system manages the quantity and delivery date of each product type corresponding to the demand fluctuation, and estimates the total production number of all the product types corresponding to the demand fluctuation. The planning means, the layout designing means for obtaining the number of equipments and the number of workers for obtaining the total production number obtained by the production planning means, and setting the layout configuration of these equipments and workers, and the production drawing means. Based on the obtained total production number, the arrangement configuration of the equipment and the operator obtained by the arrangement designing means, and the preset work proficiency value of each operator, each equipment and each worker In the work distribution means for setting each work process in step 1, and a simulation of the process set by the work distribution means is executed, and the process is performed from the information such as the operation rate of the process, lead time, work in progress, the number of production, waiting time It is characterized in that a step evaluation means for performing a process evaluation of the process to estimate the health.

【0013】請求項3記載の工程設計システムは、請求
項1又は2記載の工程設計システムにおいて、前記作業
分配手段による各作業者別の作業習熟値を利用するする
前記各作業者に対する各作業工程の設定は、各設備作業
毎に作業習熟値が低い作業を優先して設定することを特
徴とする請求項1又は2記載の工程設計システム。
A process design system according to a third aspect is the process design system according to the first or second aspect, in which each work process for each worker uses the work proficiency value for each worker by the work distribution means. The process design system according to claim 1 or 2, wherein the setting is performed by giving priority to a work having a low work proficiency value for each facility work.

【0014】請求項1記載の工程設計システムにおい
て、作業分配手段は、生産計画手段で求められた総生産
数と配置設計手段で設定された設備及び作業者の配置構
成と、予め設定した各作業者別の作業習熟値とに基づい
て、前記各設備及び各作業者における各作業工程を分配
する。
In the process design system according to claim 1, the work distribution means includes the total number of productions obtained by the production planning means, the equipment and worker layout configuration set by the layout design means, and each preset work. Based on the work proficiency value for each person, each work process in each of the equipment and each worker is distributed.

【0015】工程評価手段は、前記作業分配手段で設定
した各作業工程の編成のシミュレーションを実行し、そ
れらの稼働状態を推定して、この稼働状態により工程評
価を行う。これにより、実際の製造工程に対応した作業
者配分で、かつ、最適な設備構成となるような工程設計
を迅速に行うことができる。
The process evaluation means executes a simulation of the organization of each work process set by the work distribution means, estimates their operating states, and evaluates the process based on this operating state. As a result, it is possible to quickly perform a process design that provides an optimal equipment configuration with worker distribution corresponding to the actual manufacturing process.

【0016】請求項2記載の工程設計システムにおいて
は、編成した作業工程のシミュレーションによる稼働
率、リードタイム、仕掛り、生産数、手待ち時間等の情
報から前記工程の稼働状態を推定して、この稼働状態に
より工程評価を行う。これにより、請求項1記載の発明
と同様、実際の製造工程に対応した作業者配分で、か
つ、最適な設備構成となるような工程設計を迅速に行う
ことができる。
In the process design system according to the second aspect, the operating state of the process is estimated from information such as the operating rate, the lead time, the work in progress, the number of products produced, and the waiting time by simulation of the organized work process, Process evaluation is performed based on this operating state. As a result, as in the case of the first aspect of the invention, it is possible to quickly perform a process design that allocates workers corresponding to an actual manufacturing process and has an optimum equipment configuration.

【0017】請求項3記載の工程設計システムにおいて
は、請求項1又は2記載の工程設計システムにおいて、
前記作業分配手段による各作業者別の作業習熟値を利用
するする前記各作業者に対する各作業工程の設定は、各
設備作業毎に作業習熟値が低い作業を優先して設定する
ものであるから、各作業者の作業習熟の程度に応じて適
切な作業配分を行うことができる。
In the process design system according to claim 3, in the process design system according to claim 1 or 2,
The setting of each work process for each worker that uses the work proficiency value for each worker by the work distribution means is to prioritize the work with a low work proficiency value for each facility work. , Appropriate work distribution can be performed according to the degree of work proficiency of each worker.

【0018】[0018]

【発明の実施の形態】以下に、本発明の実施の形態を図
1乃至図6を参照して詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to FIGS.

【0019】図1は本発明の実施の形態の工程設計シス
テムの構成を示すものであり、この工程設計システム
は、全体の動作制御を行う主制御部1を有している。
FIG. 1 shows the configuration of a process design system according to an embodiment of the present invention. This process design system has a main control section 1 for controlling the overall operation.

【0020】この主制御部1は、CPU(中央処理装
置)やメモリからなるものであり、この主制御部1に
は、入力部2を介してキーボード3が接続されていると
ともに、出力部4を介してCRTディスプレイ5及びプ
リンタ6が接続されている。また、主制御部1には、各
種情報を記憶するメモリ7が接続されている。
The main control unit 1 comprises a CPU (central processing unit) and a memory. The main control unit 1 is connected to a keyboard 3 via an input unit 2 and an output unit 4. The CRT display 5 and the printer 6 are connected via the. A memory 7 that stores various kinds of information is connected to the main controller 1.

【0021】さらに、主制御部1には、生産計画手段と
しての生産計画部8、配置設計手段としての配置設計部
9、作業分配手段としての作業分配部10及び工程評価
手段としての工程評価部11が接続されている。尚、こ
れら各要素は図示の関係上主制御部1と別に示してい
る。
Further, the main control unit 1 includes a production planning unit 8 as a production planning unit, a layout designing unit 9 as a layout designing unit, a work distributing unit 10 as a work distributing unit, and a process evaluating unit as a process evaluating unit. 11 is connected. Incidentally, these respective elements are shown separately from the main control section 1 for the sake of illustration.

【0022】前記主制御部1には、生産計画部部8、配
置設計部9、作業分配部10及び工程評価部11の各機
能を発揮させる制御プログラムが組み込まれている。
The main control unit 1 has a built-in control program that causes each function of the production planning unit 8, the layout designing unit 9, the work distributing unit 10, and the process evaluating unit 11.

【0023】前記生産計画部8は、需要変動に対応した
各生産品種の数量や納期等を管理するとともに、需要変
動に対応した全生産品種の総生産数の見積りを行う機能
を有している。
The production planning unit 8 has a function of managing the quantity and delivery date of each product type corresponding to the demand fluctuation, and estimating the total production number of all the product types corresponding to the demand fluctuation. .

【0024】前記配置設計部9は、生産計画部8で求め
た総生産数を達成するための設備数及び作業者数と、こ
れら設備及び作業者の配置構成を求める機能を有してい
る。
The layout designing unit 9 has a function of finding the number of facilities and the number of workers for achieving the total number of productions obtained by the production planning unit 8 and the layout configuration of these facilities and workers.

【0025】前記作業分配部10は、生産計画部8で求
められた総生産数と配置設計部9で求められた設備及び
作業者の配置構成と、予めメモリ7に記憶している各作
業者別の作業習熟値とに基づいて、これら設備及び作業
者における各作業手順(作業工程)を求めて製造すべき
製品の製造工程を編成する機能を有している。
The work distribution unit 10 includes the total number of products obtained by the production planning unit 8 and the arrangement configuration of equipment and workers obtained by the arrangement designing unit 9 and each worker stored in the memory 7 in advance. It has a function of organizing a manufacturing process of a product to be manufactured by obtaining each work procedure (work process) of these facilities and workers based on another work proficiency value.

【0026】前記工程評価部11は、作業分配部10で
求められた例えば図3に示すような製造工程のシミレー
ションを実行して製造工程の可動率等を求めて工程評価
を行う機能を有している。
The process evaluation unit 11 has a function of performing the simulation of the manufacturing process obtained by the work distribution unit 10 as shown in FIG. doing.

【0027】次に、上述した工程設計システムの作用を
説明する。まず、予め各生産品種、生産品種の需要に応
じた数量、各生産品種毎の納期、材料の手配期日等の設
計情報及び前記作業習熟値の情報をキーボード3のキー
操作によって入力し、これらを主制御部1の指令によっ
てメモリ7に記憶させる。
Next, the operation of the above process design system will be described. First, design information such as each product type, quantity according to the demand of the product type, delivery date for each product type, material arrangement deadline, etc., and information on the work proficiency value are input by the key operation of the keyboard 3, and these are input. It is stored in the memory 7 according to a command from the main control unit 1.

【0028】前記作業習熟値の情報は、図2に示すよう
に、作業者イ、口、ハといった作業者毎に全ての各設備
を扱うための作業における作業習熟ランク情報(O印が
習熟度の高いもの、×印が未習熟のもの)を示すもので
ある。
As shown in FIG. 2, the information of the work proficiency value is work proficiency rank information (O is a proficiency level) in the work for handling all the respective facilities for each worker such as worker a, mouth and ha. Higher grades, x marks are unfamiliar ones).

【0029】そして、前記各設計情報がメモリ7に記憶
されると、主制御部1は生産計画部8の機能を実行す
る。この生産計画部8は、例えば各生産品種毎にその数
量、納期、材料の手配期日等をCRTディスプレイ5に
表示させ、かつ、これら設計情報から全生産品種の総生
産数の見積りを求める。
When the design information is stored in the memory 7, the main controller 1 executes the function of the production planning unit 8. The production planning unit 8 causes the CRT display 5 to display, for example, the quantity, delivery date, material arrangement deadline, etc. for each production type, and obtains an estimate of the total number of productions of all production types from these design information.

【0030】次に、主制御部1は、配置設計部9に機能
の実行を指令する。配置設計部9は、前記生産計画部8
で求められた全生産品種の総生産数から、工作機械等の
設備台数と作業員の人数を求める。この場合、製造工程
が図3に示すような工程A、B、Cで構成されるもので
あれば、配置設計部9は、全生産品種の総生産数を工程
A、B、Cで達成させる設備台数(例えば8台)及び作
業員数(例えば2人)を求め、次にこれら設備及び作業
員の配置を設定する。
Next, the main control section 1 commands the layout design section 9 to execute the function. The layout designing unit 9 uses the production planning unit 8
Calculate the total number of machine tools, etc. and the number of workers from the total production of all product types obtained in. In this case, if the manufacturing process is composed of the processes A, B, and C as shown in FIG. 3, the layout designing unit 9 achieves the total number of products of all products in the processes A, B, and C. The number of equipment (for example, 8 units) and the number of workers (for example, 2 people) are obtained, and then the arrangement of these facilities and workers is set.

【0031】これら設備及び作業員の配置は、例えば図
3に示すように、工程Aに3台の設備21、22、23
を配置するとともに、工程Bに2台の設備24、25を
配置し、工程Cに3台の設備26、27、28を配置す
るものである。また、作業者については、工程Aの設備
23に作業者29を配置し、工程Cの設備28に作業者
30を配置するものである。
The arrangement of these equipments and workers is, for example, as shown in FIG. 3, three equipments 21, 22, 23 in the process A.
In addition to arranging, the two facilities 24 and 25 are arranged in the process B, and the three facilities 26, 27 and 28 are arranged in the process C. Further, regarding the worker, the worker 29 is arranged in the equipment 23 of the process A, and the worker 30 is arranged in the equipment 28 of the process C.

【0032】そして、配置設計部9は、各設備間での被
製造製品の移動距離、例えば、設備21と設備24、2
5との距離やこれら設備24、25と各設備26、2
7、28との間の距離を設定するとともに、各設備間で
の被製造製品の搬送経路及びその搬送頻度を設定する。
Then, the layout designing unit 9 moves the moving distance of the product to be manufactured between the facilities, for example, the facilities 21 and 24, 2.
5 and the equipment 24, 25 and each equipment 26, 2
The distance between the equipment 7 and the equipment 28 is set, and the conveyance route of the product to be manufactured and the conveyance frequency thereof are set between the facilities.

【0033】次に、主制御部1が作業分配部10に機能
の実行の指令を発すると、メモリ7から前記作業習熟値
の情報が作業分配部10に送られ、作業分配部10は作
業習熟値の情報を基に図3に示すように配置された各設
備21乃至28に対する作業の分配及びその作業手順を
設定する。この場合の設定方法は、各設備21乃至28
の設備作業毎に、図2に示すO印(丸印)が少ないもの
から各作業者に作業分配が行われる。
Next, when the main control unit 1 issues a command to the work distribution unit 10 to execute the function, the information on the work learning value is sent from the memory 7 to the work distribution unit 10, and the work distribution unit 10 learns the work. Based on the value information, work distribution and work procedures for the respective facilities 21 to 28 arranged as shown in FIG. 3 are set. The setting method in this case is as follows.
For each equipment work, the work is distributed to each worker from the one having the smallest O mark (circle mark) shown in FIG.

【0034】例えば、図2の例で示すと、設備作業A乃
至Eのうち、設備作業A、B、Dについては、O印が1
個しかなく、各作業者イ、ロ、ハ全員で見ると習熟度が
低い。
For example, in the example shown in FIG. 2, of the equipment works A to E, the equipment works A, B and D have an O mark of 1.
There is only one, and the level of proficiency is low when all the workers a, b, and c see it.

【0035】このため、作業分配部10は、O印が1個
しかない設備作業A、B、Dを各々優先して各作業者に
分配し、次に、O印が2個の設備作業Eを作業者イ又は
ロニ分配し、最後に、O印が多い設備作業Cを残余の作
業者に分配する。
Therefore, the work distribution unit 10 gives priority to each of the equipment works A, B, and D having only one O mark and distributes them to each worker, and then the equipment work E having two O marks. Is distributed to the workers a or Roni, and finally, the equipment work C having many O marks is distributed to the remaining workers.

【0036】これら一連の作業分配が作業分配部10に
より行われ、作業者全員の作業手順が設定される。これ
により、前記工程A、B、Cからなる製造工程の編成が
行われ、主制御部1は機能の実行の指令を発する。
This series of work distribution is performed by the work distribution unit 10 and the work procedure for all workers is set. As a result, the production process including the processes A, B, and C is organized, and the main control unit 1 issues a command to execute the function.

【0037】工程評価部11は主制御部1の指令を基
に、作業分配部10により編成された製造工程のシミュ
レーションを実行して、この製造工程の稼働率、リード
タイム、位掛り、生産数、手持ち時間等を求める。
The process evaluation unit 11 executes the simulation of the manufacturing process organized by the work distribution unit 10 based on the command of the main control unit 1, and the operating rate, lead time, rank, and the number of production of this manufacturing process. , Ask for handheld time etc.

【0038】そして、工程評価部11は、これらリード
タイム、仕掛り、生産数、手持ち時間等から編成された
製造工程の評価値1を求める。次に、工程評価部11
は、求めた評価値1と製造工程で求められている所定の
値との比較を行う(ステップS1、S2)。評価値1が
この所定の値より低ければ、主制御部1は、生産計画部
8、配置設計部9及び作業分配部10に対して、再び指
令を発して、設備台数や作業員数、設備構成の変更、各
設備21乃至28及び各作業員等が変更設定を行う(ス
テップS3)。
Then, the process evaluation unit 11 obtains the evaluation value 1 of the manufacturing process organized from the lead time, the work in progress, the number of productions, the handheld time and the like. Next, the process evaluation unit 11
Compares the obtained evaluation value 1 with a predetermined value obtained in the manufacturing process (steps S1 and S2). If the evaluation value 1 is lower than the predetermined value, the main control unit 1 issues a command again to the production planning unit 8, the layout designing unit 9, and the work distribution unit 10 to notify the number of equipments, the number of workers, and the equipment configuration. Change, each of the facilities 21 to 28, each worker, and the like perform change setting (step S3).

【0039】この変更設定の結果により、図5に示すよ
うに、設備21乃至23による作業結果を設備24、2
5により並列的に処理するような編成替えが行われる。
そして、このような編成替えをした後の製造工程のシミ
ュレーションが工程評価部11により行われ、この製造
工程の評価値2が求められる(ステップS4)。
Based on the result of this change setting, as shown in FIG.
By means of 5, the composition change is performed so as to be processed in parallel.
Then, the simulation of the manufacturing process after such knitting is performed by the process evaluation unit 11, and the evaluation value 2 of this manufacturing process is obtained (step S4).

【0040】次に、工程評価部11は、求めた評価値2
と製造工程で求められている所定の値との比較を行う
(ステップS5)。工程評価部11のシミュレーション
により求められた評価値5が所定の値よりも低ければ、
上述したステップS3の処理が繰り返される。
Next, the process evaluation section 11 determines the obtained evaluation value 2
And a predetermined value obtained in the manufacturing process are compared (step S5). If the evaluation value 5 obtained by the simulation of the process evaluation unit 11 is lower than a predetermined value,
The process of step S3 described above is repeated.

【0041】このような処理がN回(Nは正の整数)繰
り返され、製造工程の評価値Nが求められる(ステップ
S6)。この評価値Nは、所定値と比較され(ステップ
S7)、評価値Nが所定値よりも高ければ、この場合の
製造工程がが需要に対応した最適な工程として決定され
る(ステップS8)。
Such processing is repeated N times (N is a positive integer) to obtain the evaluation value N of the manufacturing process (step S6). The evaluation value N is compared with a predetermined value (step S7), and if the evaluation value N is higher than the predetermined value, the manufacturing process in this case is determined as the optimum process corresponding to the demand (step S8).

【0042】尚、前記工程A、B、Cでの工程編成とし
ては、需要変動に応じて図6に示すように工程Bに対し
て設備29を付加し、工程A、B、Cの各設備21乃至
23、設備24、25、29、設備26乃至28を1対
1に対応させた製造工程が編成されることもある。
As the process organization in the processes A, B, and C, equipment 29 is added to the process B as shown in FIG. 6 according to the demand fluctuation, and each equipment of the processes A, B, and C is added. 21 to 23, facilities 24, 25, 29, and facilities 26 to 28 may be organized in a one-to-one correspondence.

【0043】以上説明した工程設計システムによれば、
需要変動に対応した各生産品種の数量や納期等を管理す
るとともに、需要変動に対応した全生産品種の総生産数
の見積りを求め、この総生産数を得るための設備数及び
作業者数を求め、設備及び作業書の配置構成を設定し、
これら設備及び作業者における作業分配及び各作業手順
を実際の製造工程に近い精度の高いものを求めるために
作業習熟値の情報に沿って設定を行って製造工程を編成
し、編成した製造工程のシミュレーションを実行して評
価値を求めるようにしたものである。
According to the process design system described above,
In addition to managing the quantity and delivery date of each product type that responds to demand fluctuations, obtain an estimate of the total production number of all product types that respond to demand fluctuations, and determine the number of equipment and the number of workers to obtain this total production number. Set the arrangement of equipment and work manuals
In order to obtain work distribution and each work procedure among these facilities and workers that is close to the actual manufacturing process and with high accuracy, the manufacturing process is organized according to the information of the work familiarity value, and the manufacturing process is organized. The simulation is executed to obtain the evaluation value.

【0044】従って、従来の工程編成装置より需要変動
に応じた製造工程をより明確かつ迅速に編成することが
でき、このとき、頻度が高い設備の増設や作業員の増減
等に直ちに対応することができる。さらに、需要が変動
しても各工程A、B、Cにおける設備台数や作業員数の
変更を最小限にとどめることができる。
Therefore, it is possible to more clearly and swiftly organize the manufacturing process according to the demand fluctuation than the conventional process knitting apparatus, and at this time, immediately respond to the frequent addition of equipment and the increase or decrease of the number of workers. You can Further, even if the demand fluctuates, it is possible to minimize the change in the number of facilities and the number of workers in each process A, B, and C.

【0045】尚、本発明は上記実施の形態に限定される
ものでなく、その要旨を逸脱しない範囲で適宜変更が可
能である。
The present invention is not limited to the above-mentioned embodiments, but can be modified as appropriate without departing from the spirit of the invention.

【0046】[0046]

【発明の効果】請求項1記載の発明によれば、実際の製
造工程に対応した作業者配分で、かつ、最適な設備構成
となるような工程設計を迅速に行うことができる工程設
計システムを提供することができる。
According to the first aspect of the present invention, there is provided a process design system capable of swiftly designing a process that allocates workers corresponding to an actual manufacturing process and has an optimum equipment configuration. Can be provided.

【0047】請求項2記載の発明によれば、作業工程の
シミュレーションによる稼働率、リードタイム、仕掛
り、生産数、手待ち時間等の情報を利用して請求項1記
載の発明と同様、実際の製造工程に対応した作業者配分
で、かつ、最適な設備構成となるような工程設計を迅速
に行うことができる工程設計システムを提供することが
できる。
According to the second aspect of the present invention, the information such as the operating rate, the lead time, the work in progress, the number of products produced, the waiting time for the work, etc. is utilized in the same manner as the first aspect of the invention. It is possible to provide a process design system capable of swiftly designing a process in which workers are distributed according to the manufacturing process and an optimum equipment configuration is obtained.

【0048】請求項3記載の発明によれば、各作業者の
作業習熟の程度に応じて適切な作業配分を行うことがで
きる工程設計システムを提供することができる。
According to the third aspect of the present invention, it is possible to provide a process design system capable of performing appropriate work distribution according to the degree of work proficiency of each worker.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の工程設計システムの構成
を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a process design system according to an embodiment of the present invention.

【図2】本発明の実施の形態における作業者別の作業習
熟値の情報を示す説明図である。
FIG. 2 is an explanatory diagram showing information on a work proficiency value for each worker according to the embodiment of the present invention.

【図3】本発明の実施の形態における作業工程の編成例
を示すブロック図である。
FIG. 3 is a block diagram showing an example of organization of work processes in the embodiment of the present invention.

【図4】本発明の実施の形態における評価手順を示すフ
ローチャートである。
FIG. 4 is a flowchart showing an evaluation procedure in the embodiment of the present invention.

【図5】本発明の実施の形態における作業工程の他の編
成例を示すブロック図である。
FIG. 5 is a block diagram showing another example of organization of work processes in the embodiment of the present invention.

【図6】本発明の実施の形態における作業工程のさらに
他の編成例を示すブロック図である。
FIG. 6 is a block diagram showing still another example of organization of work processes in the embodiment of the present invention.

【図7】従来の工程設計装置の構成を示すブロック図で
ある。
FIG. 7 is a block diagram showing a configuration of a conventional process design device.

【図8】従来の工程設計装置で編成された製造工程の模
式図である。
FIG. 8 is a schematic diagram of a manufacturing process organized by a conventional process design device.

【図9】従来の工程設計装置で編成された製造工程の模
式図である。
FIG. 9 is a schematic view of a manufacturing process organized by a conventional process design device.

【図10】従来の工程設計装置で編成された製造工程の
模式図である。
FIG. 10 is a schematic diagram of a manufacturing process organized by a conventional process design device.

【符号の説明】[Explanation of symbols]

1 主制御部 2 入力部 3 キーボード 4 出力部 5 CRTディスプレイ 7 メモリ 8 生産計画部 9 配置設計部 10 作業分配部 11 工程評価部 21乃至28 設備 1 Main Control Section 2 Input Section 3 Keyboard 4 Output Section 5 CRT Display 7 Memory 8 Production Planning Section 9 Layout Design Section 10 Work Distribution Section 11 Process Evaluation Section 21 to 28 Equipment

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // G05B 15/02 G06F 15/60 636A 0360−3H G05B 15/02 Z ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // G05B 15/02 G06F 15/60 636A 0360-3H G05B 15/02 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 需要変動に対応した各生産品種別の数量
や納期等を管理するとともに、需要変動に対応した前記
全生産品種の総生産数の見積りを行う生産計画手段と、 この生産計画手段で求められた総生産数を得るための設
備数及び作業者数を求めかつこれら設備及び作業者の配
置構成を設定する配置設計手段と、 前記生産計画手段で求められた総生産数と、前記配置設
計手段で求められた前記設備及び前記作業者の配置構成
と、予め設定した各作業者別の作業習熟値とに基づい
て、前記各設備及び各作業者における各作業工程を設定
する作業分配手段と、 この作業分配手段で設定した工程のシミュレーションを
実行し前記工程の稼働状態を推定して前記工程の工程評
価を行う工程評価手段と、 を備えたことを特徴とする工程設計システム。
1. A production planning means for managing the quantity, delivery date, etc. of each production type corresponding to demand fluctuations, and estimating the total production quantity of all the production types corresponding to demand fluctuations, and this production planning means. In the layout design means for determining the number of equipment and the number of workers to obtain the total production number obtained in, and setting the layout configuration of these equipment and workers, the total production number obtained in the production planning means, and Work distribution for setting each work process in each equipment and each worker based on the arrangement configuration of the equipment and the worker obtained by the layout designing means and the preset work proficiency value for each worker Means, and process evaluation means for executing the simulation of the process set by the work distributing means, estimating the operating state of the process, and performing the process evaluation of the process, the process design system comprising:
【請求項2】 需要変動に対応した各生産品種別の数量
や納期等を管理するとともに、需要変動に対応した前記
全生産品種の総生産数の見積りを行う生産計画手段と、 この生産計画手段で求められた総生産数を得るための設
備数及び作業者数を求めかつこれら設備及び作業者の配
置構成を設定する配置設計手段と、 前記生産針画手段で求められた総生産数と、前記配置設
計手段で求められた前記設備及び前記作業者の配置構成
と、予め設定した各作業者別の作業習熟値とに基づい
て、前記各設備及び各作業者における各作業工程を設定
する作業分配手段と、 この作業分配手段で設定した工程のシミュレーションを
実行し前記工程の稼働率、リードタイム、仕掛り、生産
数、手待ち時間等の情報から前記工程の稼働状態を推定
して前記工程の工程評価を行う工程評価手段と、 を備えたことを特徴とする工程設計システム。
2. A production planning means for managing the quantity, delivery date, etc. of each production type corresponding to demand fluctuations and estimating the total production quantity of all the production types corresponding to demand fluctuations, and this production planning means. In the layout design means for determining the number of equipment and the number of workers to obtain the total production number obtained in, and setting the arrangement configuration of these equipment and workers, and the total production number obtained by the production sketching means, Work for setting each work process in each equipment and each worker based on the layout configuration of the equipment and the worker obtained by the layout designing unit and the preset work proficiency value for each worker A process for simulating the process set by the distribution unit and the work distribution unit is performed, and the operating state of the process is estimated by estimating the operating state of the process from information such as the operating rate of the process, lead time, work in progress, the number of production, waiting time for the process. Work of A process design system comprising: a process evaluation means for performing a process evaluation.
【請求項3】 前記作業分配手段による各作業者別の作
業習熟値を利用するする前記各作業者に対する各作業工
程の設定は、各設備作業毎に作業習熟値が低い作業を優
先して設定することを特徴とする請求項1又は2記載の
工程設計システム。
3. The setting of each work process for each worker using the work learning value for each worker by the work distributing means is set by giving priority to a work having a low work learning value for each facility work. The process design system according to claim 1 or 2, wherein
JP29700895A 1995-11-15 1995-11-15 Process designing system Withdrawn JPH09138820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29700895A JPH09138820A (en) 1995-11-15 1995-11-15 Process designing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29700895A JPH09138820A (en) 1995-11-15 1995-11-15 Process designing system

Publications (1)

Publication Number Publication Date
JPH09138820A true JPH09138820A (en) 1997-05-27

Family

ID=17841060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29700895A Withdrawn JPH09138820A (en) 1995-11-15 1995-11-15 Process designing system

Country Status (1)

Country Link
JP (1) JPH09138820A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11232339A (en) * 1998-02-18 1999-08-27 Pfu Ltd Printed board unit production system
JP2000101291A (en) * 1998-09-17 2000-04-07 Pfu Ltd Parts supply management system in printed circuit board unit production
JP2003117743A (en) * 2001-10-04 2003-04-23 Mitsubishi Electric Corp Material conveying device, material conveying method and material conveying program
JP2003162313A (en) * 2001-11-26 2003-06-06 Kawasaki Heavy Ind Ltd Production system planning method and production system planning device
JP2003167615A (en) * 2001-11-30 2003-06-13 Toyota Motor Corp Production planning apparatus and method
JP2005025496A (en) * 2003-07-02 2005-01-27 Neotech Co Ltd Cleaning management system, cleaning management method, and cleaning management program
WO2012114623A1 (en) * 2011-02-23 2012-08-30 株式会社日立製作所 Work plan creation device and work plan creation method
WO2022113255A1 (en) * 2020-11-27 2022-06-02 株式会社Fuji Substrate production simulation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11232339A (en) * 1998-02-18 1999-08-27 Pfu Ltd Printed board unit production system
JP2000101291A (en) * 1998-09-17 2000-04-07 Pfu Ltd Parts supply management system in printed circuit board unit production
JP2003117743A (en) * 2001-10-04 2003-04-23 Mitsubishi Electric Corp Material conveying device, material conveying method and material conveying program
JP2003162313A (en) * 2001-11-26 2003-06-06 Kawasaki Heavy Ind Ltd Production system planning method and production system planning device
JP2003167615A (en) * 2001-11-30 2003-06-13 Toyota Motor Corp Production planning apparatus and method
JP2005025496A (en) * 2003-07-02 2005-01-27 Neotech Co Ltd Cleaning management system, cleaning management method, and cleaning management program
WO2012114623A1 (en) * 2011-02-23 2012-08-30 株式会社日立製作所 Work plan creation device and work plan creation method
WO2022113255A1 (en) * 2020-11-27 2022-06-02 株式会社Fuji Substrate production simulation method

Similar Documents

Publication Publication Date Title
Ferguson et al. A computer aided decision system
JPH01166202A (en) Automatic production release system
EP0660210A2 (en) Methods and apparatus for the testing, monitoring and improvement of manufacturing process effectiveness
Das et al. Investigations into the impact of flexibility on manufacturing performance
Abdul-Hamid et al. An analytic hierarchy process approach to the choice of manufacturing plant layout
JP2003015723A (en) Work distribution planning support system using visual display screen
JPH09138820A (en) Process designing system
CN112654943A (en) Manufacturing system design assistance device
JP2000172758A (en) Worker arrangement determination system
JP6664564B1 (en) Information technology utilization evaluation device, information technology utilization evaluation system and information technology utilization evaluation method
JP2555880B2 (en) Manufacturing planning device
JPH1071543A (en) Managing method of production line
JPH02130678A (en) Manufacture plan preparing device
JPH09260231A (en) Production control system and its equipment
JP2003015724A (en) Computer to calculate working time group from used parts group
JPH08229779A (en) Production line configuration evaluation apparatus and method for constructing production line using this apparatus
JPH04347769A (en) Process management device
JP2000112504A (en) System for optimizing parameter of production factory and its medium for calculation
JPH05225207A (en) Computer display production control board
JP2861948B2 (en) Manufacturing shop control method and equipment
JPH0916069A (en) Process planning method and apparatus
JP7474152B2 (en) Production Planning System
JPH04184602A (en) Production planning system and production planning method
JPH02236359A (en) Construction schedule planning and process management system
Nof Theory and practice in decision support for manufacturing control

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204