JPH09134883A - Equipment for continuously manufacturing semiconductor device - Google Patents
Equipment for continuously manufacturing semiconductor deviceInfo
- Publication number
- JPH09134883A JPH09134883A JP7314688A JP31468895A JPH09134883A JP H09134883 A JPH09134883 A JP H09134883A JP 7314688 A JP7314688 A JP 7314688A JP 31468895 A JP31468895 A JP 31468895A JP H09134883 A JPH09134883 A JP H09134883A
- Authority
- JP
- Japan
- Prior art keywords
- film forming
- gas
- gas gate
- substrate
- continuously
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 110
- 238000000926 separation method Methods 0.000 claims abstract description 38
- 238000001816 cooling Methods 0.000 claims description 16
- 239000007789 gas Substances 0.000 abstract description 154
- 230000015572 biosynthetic process Effects 0.000 abstract description 9
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 238000007664 blowing Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 85
- 238000010438 heat treatment Methods 0.000 description 7
- 238000004804 winding Methods 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 238000009751 slip forming Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 101150065537 SUS4 gene Proteins 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 244000144985 peep Species 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、大面積の半導体素
子の連続的製造装置に係り、特に光起電力素子等の積層
薄膜素子を帯状基板上に連続的に形成する装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for continuously manufacturing large-area semiconductor elements, and more particularly to an apparatus for continuously forming laminated thin film elements such as photovoltaic elements on a strip substrate.
【0002】[0002]
【従来の技術】従来、基板上に光起電力素子等に用いる
半導体素子を連続的に形成する方法として、各々の半導
体素子の層形成用の独立した成膜室を設け、該成膜室に
て各々の半導体層の形成を行う方法が提案されている。
例えば、米国特許第4,400,409号明細書には、
ロール・ツー・ロール方式を採用した連続プラズマCV
D法が開示されている。この方法によれば、複数のグロ
ー放電領域を設け、所望の幅で十分に長い帯状の基板を
基板が前記グロー放電領域を順次通過する経路に沿って
配置し、前記グロー放電領域において必要とされる導電
型の半導体接合を有する素子を連続的に形成することが
できることが開示されている。また、特開平5−102
049号公報にはロール・ツー・ロール方式による半導
体素子の製造において改良されたガスゲートについて開
示されている。該公報にはスリット状の分離通路内のス
リット高を連続的あるいは非連続的に変化させることに
より、前記分離通路内のガスの流れを制御することで隣
り合う成膜室のガス混入、拡散を防ぐことが開示されて
いる。2. Description of the Related Art Conventionally, as a method of continuously forming semiconductor elements used for photovoltaic elements etc. on a substrate, an independent film forming chamber for forming layers of each semiconductor element is provided, and the film forming chamber is provided in the film forming chamber. There has been proposed a method of forming each semiconductor layer.
For example, in U.S. Pat. No. 4,400,409,
Continuous plasma CV adopting roll-to-roll system
Method D is disclosed. According to this method, a plurality of glow discharge regions are provided, and a strip-shaped substrate having a desired width and sufficiently long is arranged along a path through which the substrate sequentially passes through the glow discharge regions, and the glow discharge regions are required in the glow discharge regions. It is disclosed that an element having a conductive type semiconductor junction can be continuously formed. In addition, JP-A-5-102
Japanese Patent No. 049 discloses an improved gas gate in the manufacture of a semiconductor device by a roll-to-roll method. In this publication, the slit height in a slit-shaped separation passage is continuously or discontinuously changed to control the gas flow in the separation passage to prevent gas mixture and diffusion in adjacent film forming chambers. It is disclosed to prevent.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、該公報
ではドーパントが隣りのチャンバーに拡散しないように
ドーパントの入っている方のガスゲートのスリットの幅
を狭めることが開示されてはいるが、次に述べるような
ロール・ツー・ロール方式による半導体素子の作成に関
する問題点、つまり、更なるコストダウンや特性のアッ
プ等の問題点に関しては何ら開示されていない。すなわ
ち、ロール・ツー・ロール方式による半導体素子の作
成、特にアモルファスシリコン太陽電池の作成には、更
なるコストダウンや特性のアップ等が望まれている。ア
モルファスシリコン太陽電池の層構成は、太陽光の幅広
いスペクトルを効率よく電気に変えるため、Si/Si
Ge/SiGeのトリプルセルが提案されている。この
ような多層からなる半導体素子をつくる場合、各ガスゲ
ートの性能を満足しつつそのコンパクト化を図らなけれ
ば、装置が非常に長いものになってしまい、装置の巨大
化によるコストアップを招くこととなる。However, although the publication discloses that the width of the slit of the gas gate containing the dopant is narrowed so that the dopant does not diffuse into the adjacent chamber, it will be described below. There is no disclosure regarding the problems relating to the production of the semiconductor element by the roll-to-roll method, that is, the problems such as the further cost reduction and the improvement of the characteristics. That is, further reduction in cost, improvement in characteristics, and the like are desired in the production of semiconductor elements by the roll-to-roll method, particularly in the production of amorphous silicon solar cells. The layer structure of an amorphous silicon solar cell uses Si / Si to efficiently convert a wide spectrum of sunlight into electricity.
A Ge / SiGe triple cell has been proposed. When making a semiconductor element consisting of such multiple layers, if the performance of each gas gate is not satisfied and the gas gate is not made compact, the device will become very long, and the cost will increase due to the enlargement of the device. Become.
【0004】また特性のアップのためにSiGeのよう
な合金をデバイスに用いる場合には、生産性、特性面か
ら周波数の高い、例えばマイクロ波CVD法が適してい
る。こうした高周波とマイクロ波の放電のように周波数
の違うCVD法を組み合わした場合、その放電に適した
圧力も大きく違ってくる。この場合、この2つのチャン
バーをガスゲートでつないだ場合、圧力の高い方から低
い方ヘガスが流出し、成膜ガスが混合し、ひどい場合に
は所望圧力を維持できないといった問題点を生じる。こ
の問題を解決するためにはガスゲートを長くすればよい
が、それにより装置が大きなものとなるため、それをコ
ンパクト化するための工夫が必要となる。また、特性の
アップをはかる検討を続けた結果、各層の適切な基板温
度が相違することも明らかとなった。特にi層を作成し
た後のp層作成は、その適切な温度条件としてはi層温
度に対して非常に低くすることが必要となる。When an alloy such as SiGe is used in a device for improving the characteristics, a microwave CVD method having a high frequency is suitable in terms of productivity and characteristics. When the CVD methods having different frequencies such as high frequency and microwave discharge are combined, the pressure suitable for the discharge also greatly differs. In this case, when these two chambers are connected by a gas gate, the gas flows out from the higher pressure side to the lower pressure side, the film forming gases are mixed, and in a severe case, a desired pressure cannot be maintained. In order to solve this problem, it is sufficient to lengthen the gas gate, but this makes the device large, and it is necessary to devise a device for making it compact. In addition, as a result of continuing studies to improve the characteristics, it was revealed that the appropriate substrate temperature of each layer is different. In particular, when the p-layer is formed after the i-layer is formed, it is necessary to make the temperature of the i-layer extremely low as an appropriate temperature condition.
【0005】また、一方では、コストダウンから基板の
搬送速度を上げていくことも必要である。この場合基板
温度が高い放電箱から基板温度が低い放電箱へ移る時、
短いガスゲートを通過する間に充分に温度をさげること
も要求されるようになってきた。また、生産量アップ
(コストダウン)のために、基板の幅を更に広げる検討
が行われるようになってきた。放電箱ごとに加熱され温
度の勾配があると、基板の局部的な熱膨張により撓みが
生ずる。このため、この撓んだ基板がガスゲートを通過
する際に狭いガスゲート内で壁に接触し、基板の表面に
こすれ傷が生ずるといった問題点も生ずることとなる。
こうした幅の広い基板で、しかも搬送速度が早く温度が
高いままガスゲートに入ってくる場合は、この擦れ傷は
大きな問題となり、従来のガスゲートではスリット高を
広げ、ガスゲートの長さを伸ばすことでしか対応するこ
とができなかった。そこで、本発明は、上記従来技術に
おける課題を解決し、ガスゲートの改良により装置のコ
ンパクト化を図ると共に、温度の異なる成膜室へのガス
の混入拡散を防ぎ、成膜に適した圧力を確保して、生産
性の高い半導体素子の連続的製造装置を提供するように
したものである。On the other hand, it is also necessary to increase the substrate transfer speed in order to reduce the cost. In this case, when moving from the discharge box with high substrate temperature to the discharge box with low substrate temperature,
It has also become necessary to reduce the temperature sufficiently while passing through a short gas gate. Further, in order to increase the production amount (cost reduction), it has been studied to further widen the width of the substrate. When each of the discharge boxes is heated and has a temperature gradient, the substrate is locally thermally expanded to cause bending. As a result, when the bent substrate passes through the gas gate, it comes into contact with the wall in the narrow gas gate, causing a problem that the surface of the substrate is scratched.
When such a wide substrate is used, and when it comes into the gas gate while the transport speed is high and the temperature is high, this scratch is a big problem.In the conventional gas gate, the slit height can be widened and the gas gate length can be extended. I could not respond. Therefore, the present invention solves the above-mentioned problems in the prior art, aims at downsizing the apparatus by improving the gas gate, prevents the gas from diffusing into the film forming chambers at different temperatures, and secures a pressure suitable for film forming. Thus, a continuous manufacturing apparatus for semiconductor devices with high productivity is provided.
【0006】[0006]
【課題を解決するための手段】本発明は、上記課題を解
決するため、帯状基板をその長手方向に連続的に搬送さ
せながらスリット状の分離通路を有するガスゲートで接
続された成膜圧力の異なる複数の成膜室を通過させ前記
帯状基板上に半導体素子を連続的に形成する半導体素子
の連続的製造装置において、前記成膜圧力の異なる成膜
室を接続するガスゲートの開口面を、前記帯状基板の移
動する長手方向に対して、段階的または連続的にガスゲ
ート入口側が大きく出口側が小さくなるように形成する
と共に、前記ガスゲートへ流す分離用ガスの吹き出し口
を成膜圧力の大きい成膜室側に設けたことを特徴とす
る。本発明においては、前記ガスゲートが冷却機構を備
え、また、その冷却機構は、ガスゲートの内部に設けら
た冷却手段を前記帯状基板の裏面に接触させて、前記ガ
スゲート及び前記帯状基板を冷却するように構成するこ
とができる。In order to solve the above-mentioned problems, the present invention has different film forming pressures connected by a gas gate having slit-shaped separation passages while continuously transporting a strip-shaped substrate in its longitudinal direction. In a continuous semiconductor device manufacturing apparatus for continuously forming semiconductor elements on the belt-shaped substrate by passing through a plurality of film-forming chambers, an opening surface of a gas gate that connects the film-forming chambers having different film-forming pressures is formed into the belt-like shape. The gas gate inlet side is formed so that the gas gate inlet side is large and the gas outlet side is small with respect to the longitudinal direction in which the substrate moves. It is characterized by being provided in. In the present invention, the gas gate includes a cooling mechanism, and the cooling mechanism cools the gas gate and the strip-shaped substrate by bringing a cooling means provided inside the gas gate into contact with the back surface of the strip-shaped substrate. Can be configured to.
【0007】[0007]
【発明の実施の形態】本発明は、上記のようにロール・
ツー・ロール方式による半導体素子の連続的製造装置に
おいて、成膜圧力の異なる成膜室を接続するガスゲート
の開口面を、前記帯状基板の移動する長手方向に対し
て、段階的または連続的にガスゲート入口側が大きく出
口側が小さくなるように形成することにより、加熱によ
って生じた帯状基板の波打ちや反りにより、基板表面が
ガスゲートを通過する際に狭いガスゲート内壁に接触す
ることが防止され、ガスゲート内部で帯状基板表面上に
傷を付けることがなく半導体素子を堆積することができ
る。また、ガスゲートへ流す分離用ガスの吹き出し口を
成膜圧力の大きい成膜室寄りに設けることにより、隣り
合う成膜室間の成膜ガスの混入拡散を阻止することが可
能となる。BEST MODE FOR CARRYING OUT THE INVENTION The present invention, as described above,
In an apparatus for continuously manufacturing semiconductor devices by a two-roll method, an opening surface of a gas gate that connects film forming chambers with different film forming pressures is stepwise or continuously in the longitudinal direction in which the strip substrate moves. By forming it so that the inlet side is large and the outlet side is small, it is possible to prevent the substrate surface from coming into contact with the narrow inner wall of the gas gate when passing through the gas gate due to the waviness and warpage of the belt-shaped substrate caused by heating. Semiconductor elements can be deposited on the surface of the substrate without scratching. Further, by providing the outlet of the separation gas flowing to the gas gate near the film forming chamber where the film forming pressure is high, it is possible to prevent the film forming gas from mixing and diffusing between the adjacent film forming chambers.
【0008】以下、本発明を図面に基づいて説明する。
図3は、本発明による半導体素子の連続的製造装置の1
例を示す模式図である。図において、302、304は
高周波プラズマCVD法による成膜室、303はマイク
ロ波プラズマCVD法による成膜室、301、305は
帯状基板の供給室及び巻き取り室である。それぞれの成
膜室は、ガスゲート306によって接続されている。3
07は、帯状基板であり、供給室から巻き取り室に搬送
されるまでは、3つの成膜室を通過して、その表面に3
層の機能性堆積膜、例えばPIN構造の太陽電池用半導
体膜が形成される。302〜304の各成膜室には、基
板を加熱するヒーター309、不図示のガス供給手段か
ら供給される成膜ガスを成膜室に導入するガス導入管3
10、不図示の排気手段による成膜室を排気する排気管
311、成膜室内の成膜ガスにエネルギーを与えて放電
を生起するマイクロ波電力を供給するマイクロ波導波管
313と、高周波を印加するカソード312が設けら
れ、プラズマCVD法による膜堆積がそれぞれ行われ
る。The present invention will be described below with reference to the drawings.
FIG. 3 shows a continuous manufacturing apparatus for semiconductor devices according to the present invention.
It is a schematic diagram which shows an example. In the figure, 302 and 304 are film forming chambers by a high frequency plasma CVD method, 303 is a film forming chamber by a microwave plasma CVD method, and 301 and 305 are supply chambers and winding chambers for a strip-shaped substrate. The film forming chambers are connected by a gas gate 306. 3
Reference numeral 07 denotes a belt-shaped substrate, which passes through the three film forming chambers until the film is conveyed from the supply chamber to the winding chamber, and the surface of the substrate 3
A functionally deposited film of layers, for example a PIN-structured semiconductor film for solar cells, is formed. In each of the film forming chambers 302 to 304, a heater 309 for heating the substrate and a gas introducing pipe 3 for introducing a film forming gas supplied from a gas supply means (not shown) into the film forming chamber
10, an exhaust pipe 311 for exhausting the film forming chamber by an exhaust means (not shown), a microwave waveguide 313 for supplying microwave power to the film forming gas in the film forming chamber to generate electric discharge, and a high frequency is applied. A cathode 312 is provided to perform film deposition by the plasma CVD method.
【0009】ガスゲート306には、分離用ガス導入管
314から分離用ガスが導入され、帯状基板供給室30
1と成膜室302の間、成膜室304と帯状基板巻き取
り室305の間は、スリット状の分離通路内のスリット
高が帯状基板の長手方向に対して、分離ガス導入口を中
心に双方共同じに設定し、マイクロ波を用いた成膜室3
03の両隣りに位置するガスゲート306については、
スリット状の分離通路内のスリット高が帯状基板の長手
方向に対しガスゲート306を中心に帯状基板のガスゲ
ート入口側が、ガスゲート出口側よりも大きくなる様に
設定し、分離ガス導入口は、成膜室内の圧力の高い30
2、304側に設け、隣り合う成膜室間の成膜ガスの混
入拡散を阻止するものである。316は圧力計、315
は供給室及び巻き取り室の排気を行う排気管、308は
帯状基板を保護する保護紙である。The separation gas is introduced into the gas gate 306 from the separation gas introduction pipe 314, and the strip-shaped substrate supply chamber 30
1 between the film-forming chamber 302 and the film-forming chamber 304 between the film-forming chamber 304 and the strip-shaped substrate winding chamber 305, the slit height in the slit-shaped separation passage is centered on the separation gas inlet with respect to the longitudinal direction of the strip-shaped substrate. Both chambers are set to the same and microwave deposition chamber 3 is used.
Regarding the gas gates 306 located on both sides of 03,
The slit height in the slit-shaped separation passage is set so that the gas gate inlet side of the strip-shaped substrate is larger than the gas gate outlet side around the gas gate 306 with respect to the longitudinal direction of the strip-shaped substrate, and the separation gas inlet is formed in the film formation chamber. High pressure of 30
It is provided on the side of 2, 304 to prevent the film forming gas from admixing and diffusing between the adjacent film forming chambers. 316 is a pressure gauge, 315
Is an exhaust pipe for exhausting the supply chamber and the winding chamber, and 308 is a protective paper for protecting the belt-shaped substrate.
【0010】次に本発明のガスゲートについて説明す
る。本発明のガスゲートは、ガスゲートのスリット状の
分離通路のスリット高が帯状基板のガスゲート入口側
が、ガスゲート出口側よりも大きくなる様に設定されて
いる。ガスゲート入口側を高くする事で、加熱によって
生じた帯状基板の波打ちや反りでガスゲート内部で帯状
基板表面上に傷を付ける事なく、半導体素子を堆積する
事が出来る。また、分離通路内でコンダクタンスを変え
る事により、ガスゲートの分離ガス導入管から導入する
分離用ガスの流れを制御し、ガスゲートにより連通した
成膜室の相互のガスの混入拡散を最小限にする事ができ
る。ガスゲートのスリット高の変化は、帯状基板の長手
方向に対して、2段またはそれ以上でも良く、更に傾斜
であっても良い。Next, the gas gate of the present invention will be described. In the gas gate of the present invention, the slit height of the slit-shaped separation passage of the gas gate is set so that the gas gate inlet side of the strip-shaped substrate is larger than the gas gate outlet side. By raising the gas gate inlet side, semiconductor elements can be deposited without damaging the band-shaped substrate surface inside the gas gate due to the corrugation or warpage of the band-shaped substrate generated by heating. In addition, by changing the conductance in the separation passage, the flow of the separation gas introduced from the separation gas introduction pipe of the gas gate can be controlled to minimize the mixing and diffusion of gas in the film formation chambers that are connected by the gas gate. You can The change in the slit height of the gas gate may be two steps or more, and may be inclined with respect to the longitudinal direction of the strip substrate.
【0011】その一例として図1、2に示したものが挙
げられる。図1、2は、本発明の製造装置のガスゲート
断面図の一例を示す模式図である。スリット状の分離通
路内のスリット高が帯状基板の長手方向に対して、ガス
ゲートの中心から帯状基板のガスゲート入口側105、
205が、ガスゲート出口側106、206よりも大き
くなる様に設定してある。帯状基板101、202は裏
面側よりマグネット103、203の磁力によりガスゲ
ート構成部材107、207に支持される。本発明の特
徴である分離通路内のスリット高の変化は階段的でもよ
く連続的でも良い。また階段的に変化する場合、2段階
でもよく3、4段階等複数でも良い。本発明におけるガ
スゲート構成部材としては、成膜に適した温度に加熱さ
れた帯状基板と長時間接触しても熱変形や摩耗の少ない
ものとしてアルミナ等のセラミックス、石英等のガラ
ス、或は、これらの複合材等が挙げられる。また、ガス
ゲート構成部材の形状としては、表面は基本的には平面
形状であるが、基板裏面のガスの流れを安定化するため
に基板長手方向に溝を設けても良い。また、基板とガス
ゲート構成部材との密着性を高め、基板に少々の波打ち
や反りがあっても基板が、開口断面調節部材から浮き上
りにくくするにはSUS430製綱等の強磁性体の帯状
基板を使用することが効果的である。As an example thereof, the one shown in FIGS. 1 and 2 are schematic views showing an example of a gas gate cross-sectional view of the manufacturing apparatus of the present invention. The slit height in the slit-shaped separation passage is the gas gate inlet side 105 of the strip substrate from the center of the gas gate with respect to the longitudinal direction of the strip substrate,
205 is set to be larger than the gas gate outlet sides 106 and 206. The strip substrates 101 and 202 are supported by the gas gate constituent members 107 and 207 from the back side by the magnetic force of the magnets 103 and 203. The slit height change in the separation passage, which is a feature of the present invention, may be stepwise or continuous. In the case of a stepwise change, the number of steps may be two, three, four or more. As the gas gate constituent member in the present invention, ceramics such as alumina, glass such as quartz, or these, which are less likely to be thermally deformed or worn even if the belt-shaped substrate heated to a temperature suitable for film formation is in contact for a long time, And the like. As for the shape of the gas gate constituent member, the surface is basically flat, but a groove may be provided in the substrate longitudinal direction in order to stabilize the gas flow on the back surface of the substrate. Further, in order to enhance the adhesion between the substrate and the gas gate constituent member and prevent the substrate from being lifted up from the opening cross-section adjusting member even if the substrate is slightly wavy or warped, a ferromagnetic strip-shaped substrate such as SUS430 rope. It is effective to use.
【0012】本発明に用いられるローラーは円筒形状が
好ましく、ガスゲートのスリット状の分離通路の帯状基
板の裏面側に、その回転軸が帯状基板の搬送方向と垂直
かつガスゲート壁面とほぼ水平になる向きに、ローラー
表面がガスゲート壁面から僅かに(0.1〜5mm程
度)出る位置に配置することが好ましい。スリット状の
分離通路の間隙は通常1〜10mm程度である。ローラ
ーは帯状基板を支持し、搬送を円滑にしうる数だけ備え
る事が好ましい。従って、基板の大きさ、重量、材質、
及びガスゲートの構造等により適宜設定するが、通常、
搬送方向に5〜50列/m程度配置すれば良い。ローラ
ーの径は特に規定はないが、通常、5〜50mm程度で
よい。The roller used in the present invention preferably has a cylindrical shape, and the direction of rotation of the roller is perpendicular to the conveying direction of the strip-shaped substrate and substantially horizontal to the wall surface of the gas gate on the back side of the strip-shaped substrate of the slit-shaped separation passage of the gas gate. In addition, it is preferable to dispose the roller surface at a position slightly (about 0.1 to 5 mm) protruding from the wall surface of the gas gate. The gap between the slit-shaped separation passages is usually about 1 to 10 mm. It is preferable that the number of rollers that support the belt-shaped substrate be such that the number of rollers is such that transportation can be facilitated. Therefore, the size, weight, material of the substrate,
It is set appropriately depending on the structure of the gas gate, etc.
It may be arranged about 5 to 50 rows / m in the carrying direction. Although the diameter of the roller is not particularly specified, it is usually about 5 to 50 mm.
【0013】本発明で用いられる分離用ガスとしては、
H2,He,Arなどのガスが挙げられる。分離用ガス
としてのガス分離機能だけを考えるならば、衝突断面積
が大きく平均自由工程の小さなガスが望ましい。前記の
ガスの中では、成膜室内でのグロー放電への影響を無視
できる場合にArが最適である。成膜室内で形成される
半導体薄膜中に含まれるH2の量が多い場合にはH2が最
適である。また、成膜室内でのグロー放電および成膜室
内で形成される半導体薄膜の双方に影響を与えたくない
場合にはHeが最適である。As the separation gas used in the present invention,
Examples of the gas include H2, He, Ar and the like. Considering only the gas separation function as the separation gas, a gas having a large collision cross section and a small mean free path is desirable. Among the above gases, Ar is optimal when the influence on the glow discharge in the film formation chamber can be neglected. When the amount of H2 contained in the semiconductor thin film formed in the film forming chamber is large, H2 is optimal. He is optimal when it is not desired to affect both the glow discharge in the film formation chamber and the semiconductor thin film formed in the film formation chamber.
【0014】次に実験例及び実施例等により本発明を具
体的に説明する。Next, the present invention will be specifically described with reference to experimental examples and examples.
【0015】(実験例1)図3の装置を用いて帯状基板
として幅356mm、厚さ0.12mmの材質SUS4
30BAよりなる帯状基板をセットして、テンションを
はり、ランプヒーターにより加熱を行い、基板の変形を
横に取りつけた覗き穴から目視により評価した。基板温
度300℃に加熱した場合にマグローラー直下で約3m
m程度の反りが観測された。また、この基板の反り量は
温度を上げれば上げる程大きくなった。また、基板とし
て「幅356mm、厚さ0.12mmの材質SUS43
0BAよりなる帯状基板」と「幅356mm、厚さ0.
12mmの材質SUS430BA上にAg4500ÅZ
nOを1μm蒸着した帯状基板」を比べた場合、後者の
ほうが基板の反りが大きかった。(Experimental Example 1) A material SUS4 having a width of 356 mm and a thickness of 0.12 mm was used as a belt-shaped substrate using the apparatus shown in FIG.
A band-shaped substrate made of 30BA was set, tension was applied, heating was performed with a lamp heater, and the deformation of the substrate was visually evaluated through a peep hole attached to the side. Approximately 3m directly under the mag roller when heated to a substrate temperature of 300 ℃
A warp of about m was observed. Further, the warp amount of this substrate became larger as the temperature was raised. In addition, as the substrate, a material SUS43 having a width of 356 mm and a thickness of 0.12 mm is used.
"Band-shaped substrate made of 0BA" and "width 356 mm, thickness 0.
Ag4500ÅZ on 12mm material SUS430BA
When the “band-shaped substrate on which nO was vapor-deposited by 1 μm” was compared, the latter was more warped.
【0016】(実験例2)図3に示す装置を用いて、幅
357mm、厚さ0.12mmの材質SUS430BA
からなる帯状基板を搬送速度を変えて移動し、放電をた
ててガスゲート内で温度がどの程度まで下がるか測定を
行った。温度を測定した点を図7に示す。帯状基板の幅
方向には中央でのみ測定した。高圧側は1Torr、低
圧側は10mTorrに維持し図中704の分離用ガス
導入管からはH21000sccmを流した。ガスゲー
トの条件(冷却手段ありなし)、および搬送速度を変え
た条件で熱電対により帯状基板の裏面から接触により温
度を測定し、その結果を表1に示した。Experimental Example 2 Using the apparatus shown in FIG. 3, a material SUS430BA having a width of 357 mm and a thickness of 0.12 mm.
The strip-shaped substrate made of was moved while changing the transport speed, and discharge was made to measure how much the temperature dropped in the gas gate. The points where the temperature was measured are shown in FIG. The width direction of the strip substrate was measured only at the center. The high pressure side was maintained at 1 Torr and the low pressure side was maintained at 10 mTorr, and H21000 sccm was flown from the separation gas introduction pipe 704 in the figure. The temperature was measured by contacting from the back surface of the strip-shaped substrate with a thermocouple under the conditions of the gas gate (with or without cooling means) and the conditions of changing the transport speed, and the results are shown in Table 1.
【表1】 本発明のガスゲートで実験をおこなったためガスゲート
によるこすれ傷はいずれもないが表1に示すとおり、ガ
スゲートのなかでも帯状基板の温度はまだ高く、実験例
1の結果と合わせて考えればガスゲート内でも基板の反
りがおこっていることがわかる。ガスゲート内の基板温
度は搬送速度が早いほど高く、ガスゲートの外部冷却、
ローラーによる接触冷却はそれぞれ実際に基板温度を下
げる効果があることが分かった。[Table 1] Since the experiment was conducted with the gas gate of the present invention, there are no scratches due to the gas gate, but as shown in Table 1, the temperature of the strip-shaped substrate is still high among the gas gates, and in consideration of the results of Experimental Example 1, the substrate is also in the gas gate. It can be seen that the warp has occurred. The substrate temperature in the gas gate is higher when the transfer speed is faster,
It was found that the contact cooling by the rollers has the effect of actually lowering the substrate temperature.
【0017】[0017]
[実施例1]図3に示した本発明を用いた太陽電池製造
装置により、以下に示す操作によって帯状基板上にPI
N型アモルファス太陽電池を形成した。まず幅356m
m長さ400mm厚さ0.12mmの帯状基板307を
基板巻き出し室301から巻き出され302〜304の
3つの成膜室を通過して基板巻き取り室305で巻き取
られるようにセットした。各成膜室間はガスゲート30
6で接続されている。成膜室302−303間は図1に
示すタイプのガスゲートを用い入口側スリット高5m
m、出口側スリット高2mmで分離用ガス導入管10
4,314の位置がスリット入口から100mmとし
た。成膜室303−304間は図2に示すタイプのガス
ゲートを用い入口側スリット高5mm、出口側スリット
高2mmで分離用ガス導入管204,314の位置がス
リット出口から100mmとした。また、成膜室301
−302間および304−305間はスリット高が入口
側から出口側まで5mm一定で分離用ガス導入管314
の位置がスリット部分の中央となるタイプのガスゲート
を用いた。また各ガスゲート306のスリット部分の長
さは400mmとしている。[Example 1] With the solar cell manufacturing apparatus using the present invention shown in Fig. 3, PI was formed on a strip substrate by the following operation.
An N-type amorphous solar cell was formed. First, width 356m
A strip-shaped substrate 307 having a length of 400 mm and a thickness of 0.12 mm was set to be unwound from the substrate unwinding chamber 301, passed through the three film forming chambers 302 to 304, and wound in the substrate winding chamber 305. Gas gate 30 between each deposition chamber
6 are connected. A gas gate of the type shown in FIG. 1 is used between the film forming chambers 302 and 303, and the entrance side slit height is 5 m.
m, outlet side slit height 2 mm, separation gas introduction pipe 10
The positions of 4, 314 were set to 100 mm from the slit entrance. A gas gate of the type shown in FIG. 2 was used between the film forming chambers 303 and 304, and the inlet side slit height was 5 mm and the outlet side slit height was 2 mm, and the positions of the separation gas introduction pipes 204 and 314 were 100 mm from the slit outlet. In addition, the film formation chamber 301
Between -302 and 304-305, the slit height is constant at 5 mm from the inlet side to the outlet side, and the separation gas introduction pipe 314 is provided.
A gas gate of the type in which the position of is the center of the slit portion was used. The length of the slit portion of each gas gate 306 is 400 mm.
【0018】次に各成膜室をそれぞれ排気管311,3
15で充分に排気した後、引き続き排気しながら各成膜
室ヘガス導入管310からそれぞれの成膜ガスを導入
し、圧力計316を確認しつつ排気量を調整して成膜室
301,302,304,305を1Torr、成膜室
303を10mTorrに調整した。ガスゲート306
のスリットには分離用ガスとしてH2を上下のガス導入
管314から各々1000sccm導入した。加熱ヒー
ター309で帯状基板307を裏面から、成膜室30
2,303,304でそれぞれ290℃,300℃,7
0℃まで加熱し、高周波電極312から高周波電力、マ
イクロ波導波管313からマイクロ波電力をそれぞれ導
入し、各成膜室内にグロー放電を生起し帯状基板を一定
速度で搬送して帯状基板上にn、i、p型のアモルファ
ス膜を連続的に形成した。Next, the respective film forming chambers are connected to exhaust pipes 311 and 3 respectively.
After sufficiently exhausting at 15, the respective film forming gases are introduced into the respective film forming chambers through the gas introducing pipes 310 while continuously exhausting, and while confirming the pressure gauge 316, the evacuation amount is adjusted and the film forming chambers 301, 302, The film forming chamber 303 was adjusted to 1 Torr and the film forming chamber 303 was adjusted to 10 mTorr. Gas gate 306
H2 as a separation gas was introduced into the slits of 1000 sccm from the upper and lower gas introduction pipes 314, respectively. The heater 309 is used to remove the strip-shaped substrate 307 from the back side in the film forming chamber 30.
2,303,304 at 290 ℃, 300 ℃, 7
After heating to 0 ° C., high-frequency power is introduced from the high-frequency electrode 312 and microwave power is introduced from the microwave waveguide 313, and glow discharge is generated in each film forming chamber to convey the strip-shaped substrate at a constant speed and move it onto the strip-shaped substrate. An n, i, p type amorphous film was continuously formed.
【0019】本発明を用いた太陽電池製造装置にて上記
方法で得られたアモルファスシリコン膜を堆積した帯状
基板をロール・ツー・ロールから取り出し、120mm
×356mmの大きさに切り離し真空蒸着処理装置に入
れ、真空蒸着法によりITO透明電極を堆積し太陽電池
を作製した。得られた太陽電池は各成膜室を完全に分離
する3室分離型の堆積膜形成装置で作製した太陽電池と
同等の良好な光電変換効率を示し、膜厚方向の不純物分
布を二次イオン質量分析法(SIMS)を用いて測定し
たところn層のP原子、p層のB原子のi層への混入は
認められず、成膜圧力の大きく異なる隣り合う成膜室の
成膜ガスが本発明のガスゲートにより完全に分離されて
いることが確認できた。また、ロール・ツー・ロール装
置から取り出した時、帯状基体のアモルファス膜堆積面
に擦れ傷等は全く無く作製した太陽電池に傷による欠陥
は全く認められなかった。The band-shaped substrate on which the amorphous silicon film obtained by the above method is deposited is taken out from the roll-to-roll by the solar cell manufacturing apparatus using the present invention and 120 mm.
It was cut into a size of 356 mm and placed in a vacuum evaporation treatment apparatus, and an ITO transparent electrode was deposited by a vacuum evaporation method to prepare a solar cell. The obtained solar cell exhibits good photoelectric conversion efficiency equivalent to that of a solar cell manufactured by a three-chamber separation type deposition film forming apparatus that completely separates each film forming chamber, and the impurity distribution in the film thickness direction is determined by the secondary ion. As a result of measurement using mass spectrometry (SIMS), no P atom in the n-layer and B atom in the p-layer were found to be mixed in the i-layer. It was confirmed that the gas gate of the present invention separated completely. Further, when taken out from the roll-to-roll apparatus, there was no scratch or the like on the surface of the strip-shaped substrate on which the amorphous film was deposited, and no defect due to scratches was found in the fabricated solar cell.
【0020】[実施例2]図4に示した本発明を用いた
太陽電池製造装置により、以下に示す操作によって帯状
基板上にPIN型アモルファス太陽電池を形成した。ま
ず幅356mm、長さ400mm、厚さ0.12mmの
帯状基板407を基板巻き出し室401から巻き出され
402〜404の3つの成膜室を通過して基板巻き取り
室405で巻き取られるようにセットした。各成膜室間
はガスゲート406で接続されている。成膜室402−
403間のガスゲートは入口側スリット高5mmから出
口側スリット高2mmまでスリット高が連続的に変化
し、分離用ガス導入管414の位置がスリット入口から
100mmとした。成膜室403−404間のガスゲー
トは入口側スリット高5mmから出口側スリット高2m
mまでスリット高が連続的に変化し、分離用ガス導入管
414の位置がスリット出口から100mmとした。ま
た、成膜室401−402間および404−405間は
スリット高が入口側から出口側まで5mm一定のタイプ
のガスゲートを用いた。また各ガスゲート406のスリ
ット部分の長さは400mmとしている。以下、実施例
1と同様に太陽電池を作製した。得られた太陽電池は実
施例1と同様に良好な光電変換効率を示し、擦れ傷欠陥
等は全く認められなかった。[Example 2] A PIN type amorphous solar cell was formed on a belt-shaped substrate by the following operation by the solar cell manufacturing apparatus using the present invention shown in FIG. First, a strip-shaped substrate 407 having a width of 356 mm, a length of 400 mm, and a thickness of 0.12 mm is unwound from the substrate unwinding chamber 401, passes through the three film forming chambers 402 to 404, and is wound in the substrate winding chamber 405. Set to. A gas gate 406 connects between the film forming chambers. Film forming chamber 402-
In the gas gate between 403, the slit height was continuously changed from the entrance slit height 5 mm to the exit slit height 2 mm, and the position of the separation gas introduction pipe 414 was set to 100 mm from the slit entrance. The gas gate between the film forming chambers 403-404 has a slit height of 5 mm on the inlet side to a slit height of 2 m on the outlet side.
The slit height continuously changed to m, and the position of the separation gas introduction pipe 414 was set to 100 mm from the slit outlet. Further, between the film forming chambers 401-402 and 404-405, a gas gate of a type having a constant slit height of 5 mm from the inlet side to the outlet side was used. The length of the slit portion of each gas gate 406 is 400 mm. Hereinafter, a solar cell was prepared in the same manner as in Example 1. The obtained solar cell showed good photoelectric conversion efficiency as in Example 1, and no scratch defect or the like was observed.
【0021】[実施例3]図3に示した本発明を用いた
太陽電池製造装置により、以下に示す操作によって帯状
基板上にPIN型アモルファス太陽電池を形成した。ま
ず幅356mm、長さ400mm、厚さ0.12mmの
帯状基板307を基板巻き出し室301から巻き出され
302〜304の3つの成膜室を通過して基板巻き取り
室305で巻き取られるようにセットした。各成膜室間
はガスゲート306で接続されている。成膜室302−
303間は図5に示すタイプのガスゲートで、ガスゲー
ト構成部材507の外部に冷却水路508を配置し、そ
の内部に冷却水を流しガスゲート306および帯状基板
307,501を冷却している。図において505はガ
スゲート入口側であり、506はガスゲート出口側であ
る。また、入口側スリット高5mm、出口側スリット高
2mmで分離用ガス導入管504,314の位置がスリ
ット入口から100mmとした。成膜室303−304
間は図5とほぼ同様で分離用ガス導入管314の位置が
スリット出口から100mmとなるタイプのガスゲート
を用いた。また、成膜室301−302間および304
−305間はスリット高が入口側から出口側まで5mm
一定で分離用ガス導入管314の位置がスリット部分の
中央となるタイプのガスゲートを用いた。また各ガスゲ
ート306のスリット部分の長さは400mmとしてい
る。Example 3 A PIN type amorphous solar cell was formed on a belt-shaped substrate by the following operation using the solar cell manufacturing apparatus using the present invention shown in FIG. First, a strip substrate 307 having a width of 356 mm, a length of 400 mm, and a thickness of 0.12 mm is unwound from the substrate unwinding chamber 301, passes through the three film forming chambers 302 to 304, and is wound up in the substrate winding chamber 305. Set to. A gas gate 306 connects between the film forming chambers. Deposition chamber 302-
A portion between 303 is a gas gate of the type shown in FIG. 5, a cooling water passage 508 is arranged outside the gas gate constituting member 507, and cooling water is caused to flow inside to cool the gas gate 306 and the strip-shaped substrates 307, 501. In the figure, 505 is the gas gate inlet side, and 506 is the gas gate outlet side. Further, the height of the slit on the inlet side was 5 mm and the height of the slit on the outlet side was 2 mm, and the positions of the gas introducing pipes 504 and 314 for separation were 100 mm from the slit inlet. Film forming chamber 303-304
The space is almost the same as in FIG. 5, and a gas gate of a type in which the position of the separation gas introduction pipe 314 is 100 mm from the slit outlet is used. Further, between the film forming chambers 301-302 and 304
Between -305, the slit height is 5mm from the inlet side to the outlet side.
A gas gate of a type in which the position of the separation gas introduction pipe 314 was constant and the center of the slit portion was used. The length of the slit portion of each gas gate 306 is 400 mm.
【0022】次に各成膜室をそれぞれ排気管311,3
15で充分に排気した後、引き続き排気しながら各成膜
室ヘガス導入管310からそれぞれの成膜ガスを導入
し、圧力計316を確認しつつ排気量を調整して成膜室
301,302,304,305を1Torr、成膜室
303を10mTorrに調整した。ガスゲート306
のスリットには分離用ガスとしてH2を上下のガス導入
管314から各々1000sccm導入した。加熱ヒー
ター309で帯状基板307を裏面から、成膜室30
2,303,304でそれぞれ290℃,310℃,7
0℃まで加熱し、高周波電極312から高周波電力、マ
イクロ波導波管313からマイクロ波電力をそれぞれ導
入し、各成膜室内にグロー放電を生起し帯状基板を一定
速度で搬送して帯状基板上にn、i、p型のアモルファ
ス膜を連続的に形成した。以下、実施例1と同様に太陽
電池を作製した。得られた太陽電池は実施例1と同様に
良好な光電変換効率を示し、擦れ傷および欠陥等は全く
認められなかった。Next, the film forming chambers are exhausted to exhaust pipes 311 and 3 respectively.
After sufficiently exhausting at 15, the respective film forming gases are introduced into the respective film forming chambers through the gas introducing pipes 310 while continuously exhausting, and while confirming the pressure gauge 316, the evacuation amount is adjusted and the film forming chambers 301, 302, The film forming chamber 303 was adjusted to 1 Torr and the film forming chamber 303 was adjusted to 10 mTorr. Gas gate 306
H2 as a separation gas was introduced into the slits of 1000 sccm from the upper and lower gas introduction pipes 314, respectively. The heater 309 is used to remove the strip-shaped substrate 307 from the back side in the film forming chamber 30.
2,303,304 at 290 ℃, 310 ℃, 7 respectively
After heating to 0 ° C., high-frequency power is introduced from the high-frequency electrode 312 and microwave power is introduced from the microwave waveguide 313, and glow discharge is generated in each film forming chamber to convey the strip-shaped substrate at a constant speed and move it onto the strip-shaped substrate. An n, i, p type amorphous film was continuously formed. Hereinafter, a solar cell was prepared in the same manner as in Example 1. The obtained solar cell showed good photoelectric conversion efficiency as in Example 1, and no scratches or defects were observed.
【0023】[実施例4]実施例3と同様で、ガスゲー
トの冷却手段としては、図6に示すように冷却水路60
8をローラー602内部に配置しその内部に冷却水を流
しガスゲート306および帯状基板307,601を冷
却するようにしてもよい。図において、605はガスゲ
ート入口側であり、606はガスゲート出口側である。
そして図6に示した冷却手段を用い実施例3と同様に太
陽電池を作製した場合でも、同様の効果が得られた。こ
の場合、前の放電箱での帯状基板の温度を30℃更に上
げた場合、冷却手段がない場合は帯状基板の端にこすれ
傷がついたのに対して、図6に示す装置では傷がつかな
かった。[Fourth Embodiment] Similar to the third embodiment, the cooling means for the gas gate is a cooling water passage 60 as shown in FIG.
8 may be arranged inside the roller 602 and cooling water may be caused to flow inside the roller 602 to cool the gas gate 306 and the belt-shaped substrates 307 and 601. In the figure, 605 is the gas gate inlet side, and 606 is the gas gate outlet side.
Even when a solar cell was manufactured in the same manner as in Example 3 using the cooling means shown in FIG. 6, the same effect was obtained. In this case, when the temperature of the strip-shaped substrate in the previous discharge box was further raised by 30 ° C., the edge of the strip-shaped substrate was scratched and scratched without the cooling means, whereas the device shown in FIG. I didn't.
【0024】[0024]
【発明の効果】本発明は、以上のように、半導体素子の
連続的製造装置において、成膜圧力の異なる成膜室を接
続するガスゲートの開口面を、前記帯状基板の移動する
長手方向に対して、段階的または連続的にガスゲート入
口側が大きく出口側が小さくなるように形成すると共
に、前記ガスゲートへ流す分離用ガスの吹き出し口を成
膜圧力の大きい成膜室側に設けことにより、加熱によっ
て生じた帯状基板の波打ちや反りにより、ガスゲート内
部で帯状基板表面上に傷を付けることがなく、また、隣
り合う成膜室間への成膜ガスの混入拡散を阻止すること
ができ、装置のコンパクト化が図れると共に、成膜に適
した圧力を確保して、生産性の高い半導体素子の連続的
製造装置を実現することができる。また、本発明は、ガ
スゲート及び前記帯状基板を冷却する冷却機構を設ける
ことにより、また、それをガスゲートの内部に設けらた
冷却手段を前記帯状基板の裏面に接触させて、前記ガス
ゲート及び前記帯状基板を冷却するように構成すること
により、温度の高い成膜室から温度の低い成膜室への帯
状基板の移動に際して、その温度を適正にコントロール
して所望特性の積層半導体膜の形成が可能となる。As described above, according to the present invention, in the continuous semiconductor device manufacturing apparatus, the opening surface of the gas gate for connecting the film forming chambers having different film forming pressures with respect to the longitudinal direction in which the strip-shaped substrate moves. Then, it is formed stepwise or continuously so that the gas gate inlet side is large and the outlet side is small, and the separation gas blown out to the gas gate is provided on the film forming chamber side where the film forming pressure is large. The surface of the strip-shaped substrate is not scratched inside the gas gate due to the corrugation and warpage of the strip-shaped substrate, and the film-forming gas can be prevented from mixing and diffusing between the adjacent film-forming chambers. In addition, the pressure suitable for film formation can be secured, and a continuous semiconductor device manufacturing apparatus with high productivity can be realized. Further, the present invention provides a cooling mechanism for cooling the gas gate and the strip-shaped substrate, and a cooling means provided inside the gas gate is brought into contact with the back surface of the strip-shaped substrate to provide the gas gate and the strip-shaped substrate. By configuring to cool the substrate, it is possible to form a laminated semiconductor film with desired characteristics by appropriately controlling the temperature when moving the strip-shaped substrate from the high temperature film forming chamber to the low temperature film forming chamber. Becomes
【図1】本発明のガスゲートで、入口側が高圧成膜室で
出口側が低圧成膜室となる場合の概略図である。FIG. 1 is a schematic view of a gas gate of the present invention in which a high pressure film forming chamber is provided on the inlet side and a low pressure film forming chamber is provided on the outlet side.
【図2】本発明のガスゲートで、入口側が低圧成膜室で
出口側が高圧成膜室となる場合の概略図である。FIG. 2 is a schematic view of the gas gate of the present invention in which the inlet side is a low pressure film forming chamber and the outlet side is a high pressure film forming chamber.
【図3】本発明の実施例1で用いたロール・ツー・ロー
ルの太陽電池製造装置である。FIG. 3 is a roll-to-roll solar cell manufacturing apparatus used in Example 1 of the present invention.
【図4】本発明の実施例2で用いたロール・ツー・ロー
ルの太陽電池製造装置である。FIG. 4 is a roll-to-roll solar cell manufacturing apparatus used in Example 2 of the present invention.
【図5】本発明の実施例3で用いた冷却型ガスゲートで
ある。FIG. 5 is a cooling type gas gate used in Example 3 of the present invention.
【図6】本発明の実施例4で用いた冷却型ガスゲートで
ある。FIG. 6 is a cooling type gas gate used in Example 4 of the present invention.
【図7】本発明の実験例2で熱電対接触による温度測定
した場所を示すための図である。FIG. 7 is a diagram showing a location where a temperature was measured by contact with a thermocouple in Experimental Example 2 of the present invention.
101,201,501,601,307 407,701・・・・帯状基板 102,202,502,602,702・・・・ロー
ラー 103,203,503,603,703・・・・マグ
ネット 104,204,504,604,314 414,704・・・・分離用ガス導入管 105,205,505,605 705・・・・ガスゲート入口側スリット 106,206,506,606 706・・・・ガスゲート出口側スリット 107,207,507,607 707・・・・ガスゲート構成部材 508,608・・・・冷却水路 302,303,304,401,403,404・・
・・成膜室 301,401・・・・帯状基板の巻き出し室 305,405・・・・帯状基板の巻き取り室 306,406・・・・ガスゲート 308,408・・・・保護紙 309,409・・・・加熱ヒーター 310,410・・・・ガス導入管 311,315,411,415・・・・排気管 312,412・・・・高周波電極 313,413・・・・マイクロ波導波管 316,416・・・・圧力計101, 201, 501, 601, 307 407, 701 ... Strip-shaped substrates 102, 202, 502, 602, 702 ... Rollers 103, 203, 503, 603, 703 ... Magnets 104, 204, 504, 604, 314 414, 704 ... Separation gas introduction pipe 105, 205, 505, 605 705 ... Gas gate inlet side slit 106, 206, 506, 606 706 ... Gas gate outlet side slit 107 , 207, 507, 607 707 ... Gas gate constituent members 508, 608 ... Cooling water channels 302, 303, 304, 401, 403, 404 ...
.. Deposition chambers 301, 401 ... Roll-out chambers for strip substrates 305, 405 ... Roll-up chambers for strip substrates 306, 406 ... Gas gates 308, 408 ... Protective paper 309 409 ... Heating heater 310, 410 ... Gas introduction pipe 311, 315, 411, 415 ... Exhaust pipe 312, 412 ... High frequency electrode 313, 413 ... Microwave waveguide 316, 416 ... Pressure gauge
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉野 豪人 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 越前 裕 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 保野 篤司 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 金井 正博 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Goto Yoshino 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Hiroshi Echizen 3-30-2 Shimomaruko, Ota-ku, Tokyo Kya Non-Incorporated (72) Inventor Atsushi Hono 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Masahiro Kanai 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.
Claims (3)
させながらスリット状の分離通路を有するガスゲートで
接続された成膜圧力の異なる複数の成膜室を通過させ前
記帯状基板上に半導体素子を連続的に形成する半導体素
子の連続的製造装置において、前記成膜圧力の異なる成
膜室を接続するガスゲートの開口面を、前記帯状基板の
移動する長手方向に対して、段階的または連続的にガス
ゲート入口側が大きく出口側が小さくなるように形成す
ると共に、前記ガスゲートへ流す分離用ガスの吹き出し
口を成膜圧力の大きい成膜室側に設けたことを特徴とす
る半導体素子の連続的製造装置。1. A semiconductor device is formed on the belt-shaped substrate while passing the belt-shaped substrate continuously through a plurality of film-forming chambers having different film-forming pressures connected by a gas gate having a slit-shaped separation passage while continuously conveying the belt-shaped substrate. In a continuous manufacturing apparatus of semiconductor devices for continuously forming a film, the opening surface of the gas gate connecting the film forming chambers having different film forming pressures is stepwise or continuous with respect to the moving longitudinal direction of the strip-shaped substrate. A continuous manufacturing apparatus for semiconductor devices, characterized in that the gas gate is formed so that the inlet side is large and the outlet side is small, and a separation gas outlet for flowing to the gas gate is provided on the film forming chamber side where the film forming pressure is large. .
ることを特徴とする第1項記載の半導体素子の連続的製
造装置。2. The apparatus for continuously manufacturing semiconductor devices according to claim 1, wherein the gas gate is provided with a cooling mechanism.
けらた冷却手段を前記帯状基板の裏面に接触させて、前
記ガスゲート及び前記帯状基板を冷却するように構成さ
れていることを特徴とする請求項2に記載の半導体素子
の連続的製造装置。3. The cooling mechanism is configured to cool the gas gate and the strip-shaped substrate by bringing a cooling means provided inside the gas gate into contact with the back surface of the strip-shaped substrate. An apparatus for continuously manufacturing a semiconductor device according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7314688A JPH09134883A (en) | 1995-11-08 | 1995-11-08 | Equipment for continuously manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7314688A JPH09134883A (en) | 1995-11-08 | 1995-11-08 | Equipment for continuously manufacturing semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09134883A true JPH09134883A (en) | 1997-05-20 |
Family
ID=18056360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7314688A Pending JPH09134883A (en) | 1995-11-08 | 1995-11-08 | Equipment for continuously manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09134883A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007119911A (en) * | 2005-09-27 | 2007-05-17 | Semiconductor Energy Lab Co Ltd | Film deposition apparatus, film deposition method, and photoelectric converter manufacturing method |
US8192545B2 (en) | 2005-09-27 | 2012-06-05 | Semiconductor Energy Laboratory Co., Ltd. | Film formation apparatus, method for forming film, and method for manufacturing photoelectric conversion device |
-
1995
- 1995-11-08 JP JP7314688A patent/JPH09134883A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007119911A (en) * | 2005-09-27 | 2007-05-17 | Semiconductor Energy Lab Co Ltd | Film deposition apparatus, film deposition method, and photoelectric converter manufacturing method |
US8192545B2 (en) | 2005-09-27 | 2012-06-05 | Semiconductor Energy Laboratory Co., Ltd. | Film formation apparatus, method for forming film, and method for manufacturing photoelectric conversion device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2975151B2 (en) | Continuous production equipment for semiconductor devices | |
JPH0429559Y2 (en) | ||
US5919310A (en) | Continuously film-forming apparatus provided with improved gas gate means | |
JPS58199571A (en) | Gas gate for photovoltaic device manufacturing equipment | |
JP3591977B2 (en) | Film deposition method and film deposition apparatus using microwave plasma CVD | |
JPH1084124A (en) | Photovoltaic element and method and apparatus for manufacturing the same | |
TWI504778B (en) | Thin film deposition apparatus and method for the same | |
JPH0927459A (en) | Processing equipment for semiconductor device | |
JP3659512B2 (en) | Photovoltaic element, method for forming the same, and apparatus for forming the same | |
JP3870014B2 (en) | Vacuum processing apparatus and vacuum processing method | |
JPH09134883A (en) | Equipment for continuously manufacturing semiconductor device | |
JP2771363B2 (en) | Continuous production equipment for functional deposited films | |
JP2891808B2 (en) | Apparatus and method for continuously manufacturing semiconductor elements | |
JP2690380B2 (en) | Method for continuous formation of functionally deposited film | |
JPH06232429A (en) | Photovoltaic element, and method and equipment for forming same | |
JP3181121B2 (en) | Deposition film formation method | |
JPH06260669A (en) | Semiconductor device continuous processing equipment | |
JP2005123492A (en) | Substrate processing apparatus and substrate processing method | |
JP3169243B2 (en) | Continuous formation method of deposited film | |
JP3007233B2 (en) | Apparatus for continuously producing functional deposited film and method for continuously producing functional deposited film | |
JPH0547970B2 (en) | ||
JP3658165B2 (en) | Continuous production equipment for photoelectric conversion elements | |
JPH0817695A (en) | Manufacturing device for semiconductor element | |
JP2880321B2 (en) | Semiconductor film manufacturing apparatus and roller used in the apparatus | |
JPH0499313A (en) | Amorphous silicon thin film and its manufacture |