[go: up one dir, main page]

JPH0912818A - Fluororesin composition and heat-shrinking tube - Google Patents

Fluororesin composition and heat-shrinking tube

Info

Publication number
JPH0912818A
JPH0912818A JP18112995A JP18112995A JPH0912818A JP H0912818 A JPH0912818 A JP H0912818A JP 18112995 A JP18112995 A JP 18112995A JP 18112995 A JP18112995 A JP 18112995A JP H0912818 A JPH0912818 A JP H0912818A
Authority
JP
Japan
Prior art keywords
fluorine
tetrafluoroethylene
weight
copolymer
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18112995A
Other languages
Japanese (ja)
Inventor
Kiyoto Suzuki
清人 鈴木
Yutaka Miura
裕 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Electric Co Ltd
Original Assignee
Nissei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Electric Co Ltd filed Critical Nissei Electric Co Ltd
Priority to JP18112995A priority Critical patent/JPH0912818A/en
Publication of JPH0912818A publication Critical patent/JPH0912818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PURPOSE: To obtain a fluororesin composition being capable of a light color formulation and giving a molding having excellent heat resistance and mechanical strengths, a low hardness and easy bendability and to provide a heat- shrinking tube made therefrom. CONSTITUTION: This fluororesin composition is obtained by mixing 100 pts.wt. tetrafluoroethylene/propylene copolymer with above 50 to 400 pts.wt. thermoplastic fluorocopolymer having a compositional ratio among vinylidene fluoride, hexafluoro-propylene and tetrafluoroethylene within the region of a quadrangle defined by four points (10:35:55), (10:15:75), (55:5:40) and (55:15:30) in the triangular diagrame. In order to realize a light color formulation, it is desirable that the number-average molecular weight of the tetrafluoroethylene/propylene copolymer is 100,000 or above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は含フッ素樹脂組成物に関
し、特に、低硬度で180℃前後の高温での使用に耐え
る耐熱性を有し、機械的強度及び絶縁性に優れ、明色配
合が可能な電線用被覆材、電気絶縁チューブ、熱収縮性
チューブ等に利用できる含フッ素樹脂組成物に関し、特
に熱収縮性チューブ用組成物として有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorine-containing resin composition, and in particular, it has low hardness and heat resistance to withstand use at a high temperature of about 180 ° C., has excellent mechanical strength and insulation properties, and has a bright color compounding. The present invention relates to a fluorine-containing resin composition that can be used for a coating material for electric wires, an electrically insulating tube, a heat-shrinkable tube, and the like, and is particularly useful as a heat-shrinkable tube composition.

【0002】[0002]

【従来の技術】四フッ化エチレン−プロピレン系共重合
体は、耐熱性、耐油性、耐薬品性、電気絶縁性等に優れ
ているため、電気絶縁材料として用いられるようになっ
てきている。
2. Description of the Prior Art Tetrafluoroethylene-propylene copolymers have come to be used as electric insulating materials because they are excellent in heat resistance, oil resistance, chemical resistance, electric insulation and the like.

【0003】例えば、特開昭61−21114号公報に
は、フッ化ビニリデンとヘキサフルオロプロペン又はこ
れらと他のエチレン系不飽和単量体のブロック共重合体
で、エラストマー性ポリマー鎖セグメント及び非エラス
トマー性ポリマー鎖セグメントから成る含フッ素熱可塑
性エラストマーに、分子中に2個以上の、不飽和結合官
能基を持つ多官能性モノマーと亜鉛化合物あるいは鉛化
合物を添加して成るフッ素ゴム配合組成物が記載されて
おり、特開平6−9844号公報には、数平均分子量が
10万以上のテトラフルオロエチレン−プロピレン共重
合体とエチレン系ポリマーとを98:2〜80:20の
重量組成比で含む組成物100重量部に対して、フッ化
ビニリデンを含むフッ素ゴム共重合体を50重量部以下
配合してなることを特徴とする電気絶縁性組成物が記載
されている。
[0003] For example, JP-A-61-211114 discloses a block copolymer of vinylidene fluoride and hexafluoropropene or these and other ethylenically unsaturated monomers, and an elastomeric polymer chain segment and a non-elastomer. Described is a fluororubber compounding composition obtained by adding a polyfunctional monomer having two or more unsaturated bond functional groups in the molecule and a zinc compound or a lead compound to a fluorine-containing thermoplastic elastomer composed of a polymerizable polymer chain segment. JP-A-6-9844 discloses a composition containing a tetrafluoroethylene-propylene copolymer having a number average molecular weight of 100,000 or more and an ethylene-based polymer in a weight composition ratio of 98: 2 to 80:20. 50 parts by weight or less of a fluororubber copolymer containing vinylidene fluoride should be added to 100 parts by weight of the product. Electrically insulating composition, characterized is described.

【0004】しかしながら、特開昭61−21114号
公報に記載されている組成物では、含フッ素熱可塑性エ
ラストマー自体の機械的強度が低く又特開平6−984
4号公報記載の組成物では、基本的にフッ素ゴム組成物
が主体である為、機械的強度が低く、逆に機械的強度を
上げようとしてエチレン系ポリマーの比率を上げると、
耐熱性が低下するという問題がある。
However, in the composition disclosed in JP-A-61-211114, the mechanical strength of the fluorine-containing thermoplastic elastomer itself is low, and JP-A-6-984.
In the composition described in Japanese Patent Publication No. 4, since the fluororubber composition is mainly the main component, the mechanical strength is low, and conversely, if the ratio of the ethylene-based polymer is increased to increase the mechanical strength,
There is a problem that the heat resistance decreases.

【0005】また、特開平2−258324号公報に
は、テトラフルオロエチレン−プロピレン共重合体、フ
ッ化ビニリデン−ヘキサフルオロプロピレン共重合体、
フッ化ビニリデン−ヘキサフルオロプロピレン−テトラ
フルオロエチレン三元共重合体からなる含フッ素共重合
体から選ばれた少なくとも1種とフッ素系グラフト共重
合体との混合物を化学架橋して成ることを特徴とする熱
収縮性チューブが記載されているが、この混合物は、フ
ッ素系グラフト共重合体がフッ化ビニリデン六フッ化プ
ロピレン系共重合体とエチレン−クロロトリフルオロエ
チレン共重合体とのグラフト共重合体であって、本発明
の共重合体とは化学的構造を異にするだけでなく、機械
的強度には優れるが、硬度が高く、チューブ等を成形し
た際には、非常に曲げ難くなるという問題がある。
Further, JP-A-2-258324 discloses a tetrafluoroethylene-propylene copolymer, a vinylidene fluoride-hexafluoropropylene copolymer,
A mixture of at least one selected from a fluorine-containing copolymer composed of vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer and a fluorine-based graft copolymer, which is chemically crosslinked. Although a heat-shrinkable tube to be described is described, this mixture is a graft copolymer in which the fluorine-based graft copolymer is a vinylidene fluoride hexafluoropropylene-based copolymer and an ethylene-chlorotrifluoroethylene copolymer. In addition to having a chemical structure different from that of the copolymer of the present invention, it has excellent mechanical strength, but has a high hardness and is extremely difficult to bend when a tube or the like is molded. There's a problem.

【0006】更に、特開昭63−284712号公報に
は、テトラフルオロエチレン−プロピレン共重合体、エ
チレン・酢酸ビニル共重合体及びポリフッ化ビニリデン
に架橋助剤を添加した組成物を架橋させて電線の被覆に
用いることが記載され、その他、特開昭63−3134
11号公報、特開昭63−284713号公報、特公平
2−17341号公報にはテトラフルオロエチレン−プ
ロピレン共重合体と、エチレン−テトラフルオロエチレ
ン等放射線照射においてポリマーの分子量低下度合いの
小さいフッ素系樹脂との組成物を、電離性放射線を用い
て架橋せしめることが開示されている。
Further, in Japanese Patent Laid-Open No. 284712/1988, a composition obtained by adding a crosslinking aid to tetrafluoroethylene-propylene copolymer, ethylene / vinyl acetate copolymer and polyvinylidene fluoride is crosslinked to form an electric wire. It is described to be used for the coating of the above-mentioned materials, and is disclosed in JP-A-63-3134.
No. 11, JP-A-63-284713 and JP-B No. 2-17341 disclose a tetrafluoroethylene-propylene copolymer and a fluorine-based polymer such as ethylene-tetrafluoroethylene which causes a small decrease in the molecular weight of the polymer upon irradiation with radiation. It is disclosed that the composition with the resin is crosslinked using ionizing radiation.

【0007】これらの組成物においても、機械的特性を
向上させようとすると、硬度が大きくなり、前述の混合
物と同様に、チューブを成形した際には非常に曲げ難く
なるという欠点を有している。
[0007] These compositions also have the drawback that when they are attempted to improve their mechanical properties, their hardness increases and, like the above-mentioned mixture, they become very difficult to bend when the tube is molded. There is.

【0008】また、テトラフルオロエチレン−プロピレ
ン共重合体は、数平均分子量が10万以上になるとムー
ニー粘度が高くなりすぎて、押出成形が困難になるた
め、焼成により分子量を8万以下に下げて押出成形を可
能にしたものが一般に市販されている。このような分子
量調整を行ったテトラフルオロエチレン−プロピレン共
重合体は、黒色であるため、白色等の明色配合が極めて
困難であるという欠点を有している。
When the number average molecular weight of the tetrafluoroethylene-propylene copolymer is 100,000 or more, the Mooney viscosity becomes too high and extrusion molding becomes difficult. Therefore, the molecular weight is lowered to 80,000 or less by firing. Those capable of extrusion molding are generally commercially available. The tetrafluoroethylene-propylene copolymer having such a adjusted molecular weight has a drawback that it is extremely difficult to blend a bright color such as white because it is black.

【0009】例えば、かかる黒色のテトラフルオロエチ
レン−プロピレン共重合体100重量部に隠蔽力の大き
い顔料である酸化チタンを20重量部加えても、満足で
きる白色は得られない。酸化チタンを100重量部程度
加えて、はじめて満足できる白色度が得られるが、この
ように多量の酸化チタンを添加すると機械的特性が劣化
するという問題が生じてくる。
For example, even if 20 parts by weight of titanium oxide which is a pigment having a large hiding power is added to 100 parts by weight of the black tetrafluoroethylene-propylene copolymer, a satisfactory white color cannot be obtained. Satisfactory whiteness can be obtained for the first time by adding about 100 parts by weight of titanium oxide. However, addition of such a large amount of titanium oxide causes a problem that mechanical properties are deteriorated.

【0010】一方、フッ化ビニリデンと六フッ化プロピ
レンと四フッ化エチレンの組成比が10:35:55、
10:15:75、55:5:40、55:15:30
の4点で囲まれた範囲内にある含フッ素共重合体は、従
来の含フッ素エラストマー(フッ化ビニリデン、六フッ
化プロピレン、四フッ化エチレンの組成比が25:4
0:35、50:15:35、75:25:0、40:
60:0の4点で囲まれた範囲内にあるもの)とは、性
質が本質的に異なり、従来のエラストマーには、認めら
れない融点を有し、かつ、その機械的強度はエラストマ
ーの2〜3倍と高く、エラストマーのように補強材とな
る充填剤を混入したり、架橋を施したりしなくとも十分
使用できるものとして、近年注目をあびている。
On the other hand, the composition ratio of vinylidene fluoride, propylene hexafluoride and ethylene tetrafluoride is 10:35:55,
10:15:75, 55: 5: 40, 55:15:30
The fluorine-containing copolymer within the range surrounded by 4 points is a conventional fluorine-containing elastomer (vinylidene fluoride, propylene hexafluoride, tetrafluoroethylene having a composition ratio of 25: 4).
0:35, 50:15:35, 75: 25: 0, 40:
(Within the range surrounded by 4 points of 60: 0), the properties are essentially different, and the conventional elastomer has a melting point which is not recognized, and its mechanical strength is 2% of that of the elastomer. It is as high as 3 to 3 times, and has recently attracted attention as a material that can be sufficiently used without mixing a filler that serves as a reinforcing material such as an elastomer and without cross-linking.

【0011】しかしながら、この含フッ素共重合体は、
機械的特性には大変優れているものの、やはり硬度が高
くこれらで作られたチューブ等は曲げ難くかつ融点が1
10〜160℃程度と比較的低いため、耐熱性等の点で
問題がある。
However, this fluorine-containing copolymer is
Although it has excellent mechanical properties, it has high hardness and tubes made of these materials are difficult to bend and have a melting point of 1
Since it is relatively low at about 10 to 160 ° C., there is a problem in heat resistance and the like.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、かか
る従来技術の問題点を解消し、明色配合が可能であり、
耐熱性、機械的強度に優れ、しかもチューブ状等に成形
した場合、硬度が低く曲げ易い含フッ素樹脂組成物およ
び該組成物を用いた熱収縮性チューブを提供することに
ある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the problems of the prior art and to enable bright color compounding.
It is an object of the present invention to provide a fluorine-containing resin composition having excellent heat resistance and mechanical strength, which has low hardness and is easily bent when formed into a tubular shape, and a heat-shrinkable tube using the composition.

【0013】[0013]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく種々検討を重ねた結果、四フッ化エチレン−
プロピレン系共重合体と特定の組成比のフッ化ビニリデ
ン−六フッ化プロピレン−四フッ化エチレン共重合体と
を混合することを着想し、本発明を完成するに至った。
Means for Solving the Problems As a result of various studies to achieve the above object, the present inventor has found that tetrafluoroethylene-
The present invention has been completed based on the idea of mixing a propylene-based copolymer and a vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer having a specific composition ratio.

【0014】即ち、本発明は、四フッ化エチレン−プロ
ピレン系共重合体100重量部に対して、フッ化ビニリ
デンと六フッ化プロピレンと四フッ化エチレンの組成比
が10:35:55、10:15:75、55:5:4
0、55:15:30の4点で囲まれた範囲内にある含
フッ素熱可塑性共重合体を50重量部を超え400重量
部以下配合した含フッ素樹脂組成物であり、更には、上
記組成物に更に30重量部以下のエチレン系ポリマーを
配合したフッ素樹脂組成物および該組成物を用いた熱収
縮性チューブである。
That is, in the present invention, the composition ratio of vinylidene fluoride, propylene hexafluoride, and tetrafluoroethylene is 10:35:55, 10 with respect to 100 parts by weight of the tetrafluoroethylene-propylene copolymer. : 15:75, 55: 5: 4
A fluorine-containing resin composition containing more than 50 parts by weight and 400 parts by weight or less of a fluorine-containing thermoplastic copolymer within a range surrounded by four points of 0, 55:15:30, and further the above composition. A fluororesin composition in which 30 parts by weight or less of an ethylene-based polymer is further blended into the product, and a heat-shrinkable tube using the composition.

【0015】本発明で用いられる四フッ化エチレン−プ
ロピレン系共重合体は、明色配合が必要とされない場合
には、数平均分子量に特に制限は無いが、明色配合を必
要とする場合には数平均分子量10万以上の高分子量の
共重合体を用いるのが好ましい。
The tetrafluoroethylene-propylene-based copolymer used in the present invention is not particularly limited in the number average molecular weight when light-colored compounding is not required, but when light-colored compounding is required. It is preferable to use a high molecular weight copolymer having a number average molecular weight of 100,000 or more.

【0016】また、本発明で用いられるフッ化ビニリデ
ン、六フッ化プロピレン、四フッ化エチレンからなる含
フッ素熱可塑性共重合体は、それらの組成比が図1に示
すように10:35:55、10:15:75、55:
5:40、55:15:30の4点で囲まれる範囲内に
あり、従来のフッ化ビニリデン−六フッ化プロピレン−
四フッ化エチレン含フッ素エラストマーとは、組成比が
異なり、融点の有無においてもまったく異なるポリマー
である。
The composition of the fluorine-containing thermoplastic copolymer of vinylidene fluoride, propylene hexafluoride and tetrafluoroethylene used in the present invention is 10:35:55 as shown in FIG. 10:15:75, 55:
It is within the range surrounded by 4 points of 5:40 and 55:15:30, and is a conventional vinylidene fluoride-propylene hexafluoride-
The ethylene tetrafluoride-containing elastomer is a polymer having a different composition ratio and having completely different melting points.

【0017】ちなみに従来の含フッ素エラストマーは、
図1に示すように上記組成比が25:40:35、5
0:15:35、75:25:0、40:60:0の4
点で囲まれた範囲内にあり、基本的に融点を有していな
い。本発明で用いられる含フッ素熱可塑性共重合体とし
ては、THVポリマー〔3M社製〕を好ましく用いるこ
とができる。
Incidentally, the conventional fluorine-containing elastomer is
As shown in FIG. 1, the composition ratio is 25:40:35, 5
4 of 0:15:35, 75: 25: 0, 40: 60: 0
It is within the range surrounded by dots and basically has no melting point. As the fluorine-containing thermoplastic copolymer used in the present invention, THV polymer [manufactured by 3M] can be preferably used.

【0018】本発明の含フッ素樹脂組成物においては、
上記四フッ化エチレン−プロピレン系共重合体100重
量部に対して、上記含フッ素熱可塑性共重合体を50重
量部を超え400重量部以下配合することが必要であ
る。含フッ素熱可塑性共重合体の配合量が50重量部以
下であると、熱収縮チューブに加工する際、膨張加工し
た時に径の保持力が弱くなる、逆に400重量部を超え
ると、硬度が高くなったり耐熱性が低下するといった問
題が発生する。
In the fluorine-containing resin composition of the present invention,
It is necessary to add more than 50 parts by weight and 400 parts by weight or less of the above fluorine-containing thermoplastic copolymer to 100 parts by weight of the tetrafluoroethylene-propylene-based copolymer. When the blending amount of the fluorinated thermoplastic copolymer is 50 parts by weight or less, when the heat-shrinkable tube is processed, the diameter retention becomes weak when expanded, and conversely, when it exceeds 400 parts by weight, the hardness is increased. Problems such as high temperature and low heat resistance occur.

【0019】更に好ましい配合量の範囲は55〜150
重量部である。また、加硫物の硬度を下げるには、一般
に、二元又は三元系フッ素ゴムを30重量部以下添加す
るのが好ましい。
A more preferable range of blending amount is 55 to 150.
Parts by weight. In order to reduce the hardness of the vulcanized product, it is generally preferable to add 30 parts by weight or less of binary or ternary fluororubber.

【0020】更に、明色配合を行うために、数平均分子
量が10万以上の四フッ化エチレン−プロピレン共重合
体を用いる場合は、一般にコンパウンドのムーニー粘度
が高く、押出成形時にコンパウンドが粉状になる等、非
常に加工性に乏しいため、エチレン系ポリマーを混入し
てコンパウンド粘度を低下させるのが好ましい。
Further, when a tetrafluoroethylene-propylene copolymer having a number average molecular weight of 100,000 or more is used for light-colored compounding, the Mooney viscosity of the compound is generally high and the compound is powdery at the time of extrusion molding. Therefore, it is preferable to mix an ethylene polymer to reduce the compound viscosity.

【0021】本発明で用いられるエチレン系ポリマーと
しては、例えば、エチレン、プロピレン、ブデン、オク
テン、ジシクロペンタジエン、エチリデンノルボルネ
ン、等のオレフィン類の単独重合体又は共重合体を挙げ
ることができ、共重合体の例としては、上記ポリオレフ
ィン類と酢酸ビニル、エチルアクリレート、アクリル酸
メチル、メタクリル酸エチル等との共重合体を挙げられ
る。特に、融点が100℃以下であるエチレン−酢酸ビ
ニル共重合体が用いられる。このエチレン系ポリマー
は、コンパウンドのスコーチを避けながら、コンパウン
ドの粘度を下げる目的で用いられるものであり、通常、
融点がないか、あるいは融点が100℃以下のものが好
ましい。
Examples of the ethylene polymer used in the present invention include homopolymers or copolymers of olefins such as ethylene, propylene, butene, octene, dicyclopentadiene and ethylidene norbornene. Examples of polymers include copolymers of the above polyolefins with vinyl acetate, ethyl acrylate, methyl acrylate, ethyl methacrylate, and the like. In particular, an ethylene-vinyl acetate copolymer having a melting point of 100 ° C. or lower is used. This ethylene-based polymer is used for the purpose of lowering the viscosity of the compound while avoiding the scorch of the compound.
Those having no melting point or having a melting point of 100 ° C. or lower are preferable.

【0022】エチレン系ポリマーの配合量は、四フッ化
エチレン−プロピレン系共重合体100重量部に対し
て、30重量部以下である。エチレン系ポリマーは、四
フッ化エチレン−プロピレン系共重合体の数平均分子量
10万以下の場合は、特に配合しなくとも成形に問題は
無いが、数平均分子量が10万を超えるような共重合体
に対しては、エチレン系ポリマーを配合することで、分
子量に関係なく加工性が向上する。但し配合量が重量部
を超えると、エチレン系ポリマーの熱劣化が急激に進行
し、実用上180℃の使用に耐える耐熱性が得られなく
なる。
The amount of the ethylene polymer blended is 30 parts by weight or less based on 100 parts by weight of the tetrafluoroethylene-propylene copolymer. When the ethylene polymer has a number average molecular weight of 100,000 or less of a tetrafluoroethylene-propylene copolymer, there is no problem in molding even if it is not blended, but a copolymer having a number average molecular weight of more than 100,000 is used. By incorporating an ethylene polymer into the coalescence, the processability is improved regardless of the molecular weight. However, if the blending amount exceeds parts by weight, the heat deterioration of the ethylene-based polymer rapidly progresses, and heat resistance that can withstand use at 180 ° C. cannot be obtained practically.

【0023】本発明の含フッ素樹脂組成物は、一般に化
学架橋又は電離性放射線を用いて架橋される。電離性放
射線としては、X線、γ線、陽子線、重陽子線、中性子
線、α線、β線などを挙げることができるが、好ましく
は、γ線、又はβ線を用いる。また、化学架橋は一般に
成形温度を落として行えば可能であるが、加硫時間が非
常に長くなり、成形性も悪いので、一般に電離性放射線
による架橋を行うのが好ましい。
The fluorine-containing resin composition of the present invention is generally crosslinked by using chemical crosslinking or ionizing radiation. Examples of the ionizing radiation include X rays, γ rays, proton rays, deuteron rays, neutron rays, α rays, and β rays, but γ rays or β rays are preferably used. Further, chemical crosslinking can generally be performed by lowering the molding temperature, but since vulcanization time becomes very long and moldability is poor, it is generally preferable to carry out crosslinking by ionizing radiation.

【0024】更に、架橋度の向上を達成するために架橋
助剤を用いるのが好ましい。架橋助剤としては、アリル
型化合物、イオウ、有機アミン類、マレイミド類、メタ
クリレート類、ジビニル化合物、ポリブタジエン等が挙
げられるが、トリアリルイソシアヌレート及びトリアリ
ルシアヌレートに代表されるアリル型化合物が最も好ま
しく、その配合量は架橋度の向上と効果の飽和の両面か
ら通常2〜10重量部、好ましくは3〜5重量部であ
る。
Further, it is preferable to use a crosslinking aid in order to achieve the improvement of the degree of crosslinking. Examples of the cross-linking aid include allyl-type compounds, sulfur, organic amines, maleimides, methacrylates, divinyl compounds, polybutadiene and the like, but allyl-type compounds represented by triallyl isocyanurate and triallyl cyanurate are the most preferable. Preferably, the blending amount thereof is usually 2 to 10 parts by weight, preferably 3 to 5 parts by weight, from the viewpoint of both improvement of crosslinking degree and saturation of effect.

【0025】また、押出成形時における架橋助剤と前記
樹脂及びゴムの成分とを混練し易くするために、無機充
填剤を用いる。無機充填剤としては、タルク、クレー、
無水珪酸、炭酸カルシウム、珪酸カルシウム等が挙げら
れるが、無水珪酸、炭酸カルシウム、珪酸カルシウム、
タルクは、多量に配合しても引張特性をあまり低下させ
ないので好ましい。
Further, an inorganic filler is used in order to facilitate the kneading of the crosslinking aid and the components of the resin and rubber at the time of extrusion molding. As the inorganic filler, talc, clay,
Examples thereof include anhydrous silicic acid, calcium carbonate, calcium silicate, etc., but anhydrous silicic acid, calcium carbonate, calcium silicate,
Talc is preferred because it does not significantly deteriorate the tensile properties even if it is blended in a large amount.

【0026】特に1〜3μmの範囲の粒径の炭酸カルシ
ウム又はタルクは、押出成形時発泡の発生を抑制し、チ
ューブ成形時のチューブのヘタリ防止や内面タック性の
改善に効果があり、通常10〜50重量部、好ましくは
20〜30重量部である。
Particularly, calcium carbonate or talc having a particle diameter in the range of 1 to 3 μm is effective in suppressing the occurrence of foaming during extrusion molding, preventing the settling of the tube during tube molding, and improving the inner surface tackiness. -50 parts by weight, preferably 20-30 parts by weight.

【0027】更に、上記成分以外に架橋効率を上げるた
めの希土類酸化物の添加、安定剤、顔料、酸化防止剤、
滑剤等の添加剤を種々配合することができる。
Further, in addition to the above-mentioned components, addition of rare earth oxides for improving the crosslinking efficiency, stabilizers, pigments, antioxidants,
Various additives such as lubricants can be blended.

【0028】[0028]

【実施例】以下、実施例1〜9及び比較例1〜10によ
り、本発明を更に詳細に説明する。練り上がり総量の組
成物の体積が2.4リットルになるように、比重に応じ
て総重量を決め、表1、2に示した材料をその配合比に
従って、160℃に予熱した3リットル加圧型ニーダー
に仕込んだ。加圧ぶたをおろし、一対の回転羽根の一方
の回転数を29rpm、他方の回転数を43rpmにし
て混練を開始した。始め、ポリマーのみで2分間混練
し、次いで、すべての配合剤を投入し、5分間混練し
た。その後、混練物を排出し、ロールミルにてシート状
に形を整えた。
EXAMPLES The present invention will be described in more detail with reference to Examples 1 to 9 and Comparative Examples 1 to 10. The total weight was determined according to the specific gravity so that the total volume of the kneaded composition would be 2.4 liters, and the materials shown in Tables 1 and 2 were preheated to 160 ° C. according to the compounding ratio, and the pressure was 3 liters. I put it in a kneader. The pressure lid was lowered, one rotation speed of the pair of rotary blades was set to 29 rpm, and the other rotation speed was set to 43 rpm to start kneading. First, the polymer alone was kneaded for 2 minutes, then all the compounding ingredients were added and kneaded for 5 minutes. Then, the kneaded product was discharged, and the sheet was shaped by a roll mill.

【0029】この混練物を、ダイス温度180℃、ヘッ
ド温度180℃、シリンダー1温度170℃、シリンダ
ー2温度130℃に設定した40mm押出機(L/D=
22)を用い、内径2.5mm、肉厚0.5mmのチュ
ーブ状に押出成形した。
This kneaded product was a 40 mm extruder (L / D = 80 ° C., head temperature 180 ° C., cylinder 1 temperature 170 ° C., cylinder 2 temperature 130 ° C.
22) was used to extrude a tube having an inner diameter of 2.5 mm and a wall thickness of 0.5 mm.

【0030】次いで、保有能力100万キュリーのCo
60線源を用い、100KGyのγ線を照射し、架橋せし
めた。
Next, Co with a holding capacity of 1 million Curie
A 60- ray source was used to irradiate 100 KGy of γ-rays for crosslinking.

【0031】更に、この架橋チューブを内径6.0φの
ステンレスパイプ内に挿入し、架橋チューブの両端をス
テンレスパイプから出し、その片端を封じ、更にもう一
方の端を空気圧縮機より導かれた導入パイプと連結す
る。140℃オーブン内にステンスパイプを15分間放
置した後、架橋チューブ内部に5kgf/cm2 の空気
圧を導入し、架橋チューブを膨張せしめ、只ちに水中に
ステンレスチューブとともに入れ形状固定を行い、熱収
縮チューブを形成した。
Further, the crosslinked tube was inserted into a stainless pipe having an inner diameter of 6.0φ, both ends of the crosslinked tube were taken out from the stainless pipe, one end thereof was sealed, and the other end was introduced by an air compressor. Connect with a pipe. After leaving the stainless steel pipe in an oven at 140 ° C for 15 minutes, introduce an air pressure of 5 kgf / cm 2 into the cross-linking tube to expand the cross-linking tube and then put it in water together with a stainless steel tube to fix the shape. A shrink tube was formed.

【0032】なお、比較例1、2においてはニーダー温
度を80℃にして混練し、押出温度を80℃とし、比較
例3ではニーダー混練を行わず、ペレットをそのまま1
80℃にて押出成形した。又、比較例4、5において
は、ニーダー温度、押出温度ともに250℃とし、比較
例6では180℃にてニーダー混練を行い、110℃に
てロールミルで架橋剤を投入した後、押出温度を140
℃とし、押出後6kg/cm2 の蒸気缶中に30分放置
し、架橋せしめた。
In Comparative Examples 1 and 2, kneading was performed at a kneader temperature of 80 ° C. and extrusion temperature was 80 ° C. In Comparative Example 3, kneader kneading was not performed, and pellets were used as they were.
It was extruded at 80 ° C. Further, in Comparative Examples 4 and 5, both the kneader temperature and the extrusion temperature were 250 ° C., and in Comparative Example 6, the kneader kneading was performed at 180 ° C., and the cross-linking agent was added at 110 ° C. by a roll mill, and then the extrusion temperature was 140 ° C.
The temperature was adjusted to 0 ° C., and after extrusion, it was left in a steam can of 6 kg / cm 2 for 30 minutes to crosslink.

【0033】また、熱収縮チューブ加工時の加工温度に
ついては組成物に配合する樹脂成分に対し、樹脂分の融
点より約20℃高い温度にて加工した。正確には比較例
1:60℃、比較例2:105℃、比較例3:140
℃、比較例4:240℃、比較例5:250℃、比較例
6:185℃、比較例7:180℃であった。
The processing temperature for processing the heat-shrinkable tube was about 20 ° C. higher than the melting point of the resin component with respect to the resin component blended in the composition. To be precise, Comparative Example 1: 60 ° C., Comparative Example 2: 105 ° C., Comparative Example 3: 140
C., Comparative Example 4: 240 ° C., Comparative Example 5: 250 ° C., Comparative Example 6: 185 ° C., Comparative Example 7: 180 ° C.

【0034】上記のようにして、架橋せしめたチューブ
について、抗張力、伸び率、耐熱性、硬度及び熱収縮加
工後の保存中の寸法安定性を測定した。これらの測定方
法は次の通りである。但し抗張力、伸び率、耐熱性、硬
度については熱収縮チューブを上記熱収縮チューブの加
工時の加工温度のオーブン中に10分間放置してチュー
ブを収縮させた後、試験を行った。
The cross-linked tube was measured for tensile strength, elongation, heat resistance, hardness and dimensional stability during storage after heat-shrink processing as described above. These measuring methods are as follows. However, with respect to tensile strength, elongation, heat resistance, and hardness, the heat-shrinkable tube was allowed to stand in an oven at the processing temperature for processing the heat-shrinkable tube for 10 minutes to shrink the tube, and then tested.

【0035】(1)初期抗張力、初期伸び率は、JIS
C 3005(絶縁体の引張り試験)に従い、チュー
ブ形状にて測定を行った。ここで初期抗張力1.3kg
/mm2 以上、初期伸び率200%以上が一般要求値で
ある。
(1) The initial tensile strength and the initial elongation are JIS
According to C 3005 (Insulator tensile test), the tube shape was measured. Initial tensile strength 1.3kg
/ Mm 2 or more and an initial elongation rate of 200% or more are generally required values.

【0036】(2)老化後抗張力、伸び残率は、架橋チ
ューブを220℃で96時間熱老化させた後、JIS
C 3005(絶縁体の引っ張り試験)により、抗張力
及び伸びを測定し、初期抗張力及び伸び率に対する百分
率で表した。
(2) The tensile strength and residual elongation after aging were measured according to JIS after the crosslinked tube was heat aged at 220 ° C. for 96 hours.
Tensile strength and elongation were measured by C3005 (insulator tensile test) and expressed as a percentage of the initial tensile strength and elongation.

【0037】(3)硬度は、JIS K 6253に従
い、架橋チューブを縦方向に引き裂き、このような試験
片を3枚積み重ねマイクロ試験片を作成し、ウォーレス
式硬さ試験機を用いて、IRHDを直読して測定した。
85以下が一般要求値である。
(3) Regarding the hardness, according to JIS K 6253, the crosslinked tube was torn in the longitudinal direction, three such test pieces were stacked to prepare a micro test piece, and IRHD was measured using a Wallace hardness tester. It was directly read and measured.
Below 85 is a general requirement value.

【0038】(4)熱収縮チューブの保存中の寸法安定
性については、JIS C 2133(保存中の寸法安
定性)に準拠し、熱収縮チューブの加工直後の内径を測
定し、このチューブを40℃のオーブン中に336時間
放置した後、再度チューブ内径を測定し、この内径の変
化率を次式の百分率で表した。90%以上が一般要求値
である。
(4) Regarding the dimensional stability of the heat-shrinkable tube during storage, the inner diameter of the heat-shrinkable tube immediately after processing was measured according to JIS C 2133 (Dimensional stability during storage). After leaving it in an oven at ℃ for 336 hours, the inner diameter of the tube was measured again, and the change rate of this inner diameter was expressed as a percentage of the following equation. 90% or more is a general requirement value.

【数1】 (Equation 1)

【0039】結果は、表1及び表2に示す通りであっ
た。
The results are shown in Tables 1 and 2.

【表1】 [Table 1]

【表2】 表1、2に示した結果から明らかな様に実施例1〜9
は、初期強さ、伸び、耐熱性に優れ、また硬度がウォー
レス式硬さ試験機タイプAデュロメーター硬度で最大で
も85以下と従来のものに比べ、非常に曲げ易く、軟質
塩化ビニル程度の硬さに保つことができ、更に熱収縮加
工後の保存中の寸法安定性も良好であった。また、数平
均分子量が10万の四フッ化エチレン−プロピレン共重
合体を用いた実施例2および4〜9では、白色の明色配
合を行うことができた。
[Table 2] As is clear from the results shown in Tables 1 and 2, Examples 1 to 9
Is excellent in initial strength, elongation, heat resistance, and has a hardness of 85 or less at the maximum in the Wallace hardness tester type A durometer hardness, which is much easier to bend than conventional ones and has a hardness similar to that of soft vinyl chloride. The dimensional stability during storage after heat shrink processing was also good. Further, in Examples 2 and 4 to 9 in which the tetrafluoroethylene-propylene copolymer having a number average molecular weight of 100,000 was used, white bright color blending could be performed.

【0040】一方、含フッ素熱可塑性共重合体を配合し
ない場合(比較例1)初期抗張力および保存中の寸法安
定性の値が低く、また配合量が少なすぎる場合(比較例
8、9)では保存中の寸法安定性の値が低かった。更
に、含フッ素熱可塑性共重合体の代わりに通常のフッ化
ビニリデン系の三元系含フッ素エラストマーを配合して
も、初期抗張力の上昇及び保存中の寸法安定性が低い値
であった(比較例2)。特に比較例1および2では結晶
性ポリマーがほとんどないため、熱収縮をほとんど起こ
さず、熱収縮チューブとしては、使用不可能である。
On the other hand, when the fluorine-containing thermoplastic copolymer is not compounded (Comparative Example 1), initial tensile strength and dimensional stability during storage are low, and when the compounding amount is too small (Comparative Examples 8 and 9). The value of dimensional stability during storage was low. Furthermore, even when a usual vinylidene fluoride-based ternary fluorine-containing elastomer was blended in place of the fluorine-containing thermoplastic copolymer, the initial tensile strength was increased and the dimensional stability during storage was low (comparison). Example 2). Especially in Comparative Examples 1 and 2, since there is almost no crystalline polymer, heat shrinkage hardly occurs, and it cannot be used as a heat shrink tube.

【0041】含フッ素熱可塑性共重合体のみの場合(比
較例3)や、エチレン−テトラフルオロエチレン共重合
体(比較例5)、セフラルソフト型の含フッ素熱可塑性
エラストマー(比較例6)を配合した場合、及び必要量
以上に含フッ素熱可塑性共重合体を配合した場合(比較
例10)は硬度が上昇してしまい非常に曲げ難くなる。
In the case of only the fluorine-containing thermoplastic copolymer (Comparative Example 3), the ethylene-tetrafluoroethylene copolymer (Comparative Example 5), and the Cefralsoft type fluorine-containing thermoplastic elastomer (Comparative Example 6) were blended. In this case, and in the case where the fluorine-containing thermoplastic copolymer was blended in an amount more than necessary (Comparative Example 10), the hardness increased and it became very difficult to bend.

【0042】更に、またポリフッ化ビニリデンを配合し
た場合(比較例7)は硬度が大きくなると共に耐熱性も
低下する。ダイエルサーモプラスチック型の含フッ素熱
可塑性エラストマー(比較例4)を配合した場合、初期
抗張力も保存中の寸法安定性も低い値となる。
Furthermore, when polyvinylidene fluoride is blended (Comparative Example 7), the hardness is increased and the heat resistance is lowered. When a Daiel thermoplastic type fluorine-containing thermoplastic elastomer (Comparative Example 4) is blended, both initial tensile strength and dimensional stability during storage are low.

【0043】[0043]

【発明の効果】本発明の含フッ素樹脂組成物によれば明
色配合が可能であり、耐熱性、機械的強度に優れ、しか
も硬度が低く曲げ易い成型品を得ることができ、特に熱
収縮チューブ用配合として用いる場合には、保存中の寸
法安定性も良好であり優れた熱収縮チューブを得ること
ができる。
EFFECTS OF THE INVENTION According to the fluorine-containing resin composition of the present invention, it is possible to obtain a bright color compound, and it is possible to obtain a molded product which is excellent in heat resistance and mechanical strength and has low hardness and is easy to bend. When used as a tube formulation, the dimensional stability during storage is good, and an excellent heat-shrinkable tube can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で使用する含フッ素熱可塑性エラストマ
ーの組成比及び従来の含フッ素エラストマーの組成比を
示す三元組成図である。
FIG. 1 is a ternary composition diagram showing the composition ratio of a fluorine-containing thermoplastic elastomer used in the present invention and the composition ratio of a conventional fluorine-containing elastomer.

【符号の説明】 VDF フッ化ビニリデン HFP 六フッ化プロピレン TFE 四フッ化エチレン[Explanation of symbols] VDF Vinylidene fluoride HFP Hexafluoropropylene TFE Tetrafluoroethylene

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 四フッ化エチレン−プロピレン系共重合
体100重量部に対して、フッ化ビニリデンと六フッ化
プロピレンと四フッ化エチレンの組成比が10:35:
55、10:15:75、55:5:40、55:1
5:30の4点で囲まれた範囲内にある含フッ素熱可塑
性共重合体を50重量部を超え400重量部以下配合し
たことを特徴とする含フッ素樹脂組成物。
1. A composition ratio of vinylidene fluoride, propylene hexafluoride, and tetrafluoroethylene to 10 parts by weight of 100 parts by weight of a tetrafluoroethylene-propylene copolymer is 10:35:
55, 10:15:75, 55: 5: 40, 55: 1
A fluorine-containing resin composition, characterized by blending more than 50 parts by weight and 400 parts by weight or less of a fluorine-containing thermoplastic copolymer within a range surrounded by 4 points of 5:30.
【請求項2】 四フッ化エチレン−プロピレン系共重合
体の数平均分子量が10万以上である請求項1記載の含
フッ素樹脂組成物。
2. The fluorine-containing resin composition according to claim 1, wherein the tetrafluoroethylene-propylene-based copolymer has a number average molecular weight of 100,000 or more.
【請求項3】 更に30重量部以下のエチレン系ポリマ
ーを含有する請求項2記載の含フッ素樹脂組成物。
3. The fluorine-containing resin composition according to claim 2, which further contains 30 parts by weight or less of an ethylene polymer.
【請求項4】 請求項1、2又は3記載の含フッ素樹脂
組成物を用いたことを特徴とする含フッ素熱収縮性チュ
ーブ。
4. A fluorine-containing heat-shrinkable tube comprising the fluorine-containing resin composition according to claim 1, 2 or 3.
JP18112995A 1995-06-23 1995-06-23 Fluororesin composition and heat-shrinking tube Pending JPH0912818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18112995A JPH0912818A (en) 1995-06-23 1995-06-23 Fluororesin composition and heat-shrinking tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18112995A JPH0912818A (en) 1995-06-23 1995-06-23 Fluororesin composition and heat-shrinking tube

Publications (1)

Publication Number Publication Date
JPH0912818A true JPH0912818A (en) 1997-01-14

Family

ID=16095384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18112995A Pending JPH0912818A (en) 1995-06-23 1995-06-23 Fluororesin composition and heat-shrinking tube

Country Status (1)

Country Link
JP (1) JPH0912818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190050A1 (en) * 2015-05-27 2016-12-01 日本バルカー工業株式会社 Thermoplastic fluorine resin composition and method for producing cross-linked body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190050A1 (en) * 2015-05-27 2016-12-01 日本バルカー工業株式会社 Thermoplastic fluorine resin composition and method for producing cross-linked body
JP2016222752A (en) * 2015-05-27 2016-12-28 日本バルカー工業株式会社 Thermoplastic fluorine resin composition and manufacturing method of crosslinked body
KR20180012782A (en) * 2015-05-27 2018-02-06 닛폰 바루카 고교 가부시키가이샤 Thermoplastic fluorine resin composition and method for producing cross-linked body
TWI718147B (en) * 2015-05-27 2021-02-11 日商華爾卡股份有限公司 Thermoplastic fluororesin composition and method for producing crosslinked body

Similar Documents

Publication Publication Date Title
JP5078048B2 (en) Curable composition of chlorinated polyolefin elastomer
JP2836819B2 (en) Fluoropolymer composition
JPH0931285A (en) Heat shrinkable tube and composition thereof
JPH0578539A (en) Fluorine-containing elastomer composition for irradiation cross-linking
JPH03212441A (en) Fluororesin composition
JPH07126468A (en) Fluororesin composition, insulated wire and heat shrinkable tube made from the same
JPH0912818A (en) Fluororesin composition and heat-shrinking tube
JPH09176425A (en) Fluororesin composition
JPH08302136A (en) Fluororesin composition
JPH09176426A (en) Fluororesin composition
JP4070006B2 (en) Fluorine-containing elastomer composition
JPH08302137A (en) Fluororesin composition
JPH0812767A (en) Heat-shrinkable electrical insulation tube
JP3812064B2 (en) Fluorine-containing elastomer composition
JP3134534B2 (en) Fluoro rubber vulcanizing composition and vulcanized fluoro rubber
JP2852524B2 (en) Fluorine-containing elastomer composition
JP2531747B2 (en) Rubber composition
JPS59100141A (en) Method for manufacturing fluororesin crosslinked molded product
JPH0959469A (en) Fluororesin composition
JPS58219250A (en) Vinyl chloride resin composition
JP2947599B2 (en) Heat shrink tubing
JPH0722968B2 (en) Heat shrink tube
JP2531746B2 (en) Rubber composition
JP2821688B2 (en) Fluorine-containing elastomer composition
JPH07205285A (en) Heat shrinkable tube and manufacturing method thereof