[go: up one dir, main page]

JPH09121889A - Nondestructive viability evaluation of tightly sealed and freeze-dried microorganism - Google Patents

Nondestructive viability evaluation of tightly sealed and freeze-dried microorganism

Info

Publication number
JPH09121889A
JPH09121889A JP28358995A JP28358995A JPH09121889A JP H09121889 A JPH09121889 A JP H09121889A JP 28358995 A JP28358995 A JP 28358995A JP 28358995 A JP28358995 A JP 28358995A JP H09121889 A JPH09121889 A JP H09121889A
Authority
JP
Japan
Prior art keywords
freeze
microorganism
sealed
container
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28358995A
Other languages
Japanese (ja)
Inventor
Hiroo Hamaguchi
宏夫 浜口
Eiichiro Suzuki
榮一郎 鈴木
Masaru Ishihara
勝 石原
Shigeru Yamanaka
茂 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Kanagawa Academy of Science and Technology
Original Assignee
Ajinomoto Co Inc
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc, Kanagawa Academy of Science and Technology filed Critical Ajinomoto Co Inc
Priority to JP28358995A priority Critical patent/JPH09121889A/en
Publication of JPH09121889A publication Critical patent/JPH09121889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable easy nondestructive evaluation of the viability of a microorganism which is freeze-dried and sealed in a vessel by subjecting the vessel to Raman spectroscopy with out unsealing and determining its viability based on the ratio of carbon dioxide/oxygen in the vessel. SOLUTION: A sealed vessel containing freeze-dried microorganism is placed in another vessel for Raman spectroscopy which is made of a material capable of interrupting the interfering light due to the random reflection of the sealed vessel and has an incident inlet, a transmitted light outlet and a Raman scattering light output port and/or a filter which interrupts only this interfering light or passing only the light near a detection wave length and is subjected to the Raman spectroscopy. Based on the ratio of carbon dioxide to oxygen in the gas in the sealed vessel, the viability of the microorganism is nondestructively determined in a shortened time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微生物の生存に関
する非破壊検査法、更に詳しくは、凍結乾燥して長期間
密封保存した微生物(ライオファイル微生物)を当該密
封保存容器を破壊することなく、そのまま、即ち容器ご
とラマンスペクトル分析に付し、該容器内気体の炭酸ガ
ス対酸素の比に基いて該微生物が生存しているか死滅し
ているかを判定する方法に関する。
TECHNICAL FIELD The present invention relates to a non-destructive inspection method for survival of microorganisms, more specifically, a microorganism (lyofile microorganism) freeze-dried and stored for a long period of time without destroying the sealed storage container. As it is, that is, the container is subjected to Raman spectrum analysis to determine whether the microorganism is alive or dead based on the ratio of carbon dioxide gas to oxygen in the gas in the container.

【0002】[0002]

【従来の技術】無菌状態にある医薬品アンプル中の窒素
及び酸素ガスを回転ラマンスペクトル分析法により測定
し、アンプル中のガス充填が所定通りになされているか
否かを検査する方法が知られている(GLEN F. BAILEY a
nd HERBERT A. MOORE. JR.:Journal of the Parentera
l Drug Association, 34, (2)127-133(1980))。しか
し、密封保存した凍結乾燥微生物を開封することなく、
振動ラマンスペクトル分析に付し、該微生物の生存性を
容器内気体における炭酸ガス対酸素の比に基いて判断す
る方法は知られていない。
2. Description of the Related Art A method is known in which nitrogen and oxygen gas in an aseptic drug ampoule are measured by a rotating Raman spectrum analysis method to inspect whether or not the ampoule is filled with gas in a predetermined manner. (GLEN F. BAILEY a
nd HERBERT A. MOORE. JR .: Journal of the Parentera
l Drug Association, 34 , (2) 127-133 (1980)). However, without opening the freeze-dried microorganisms that have been sealed and stored,
There is no known method for determining the viability of the microorganism based on the ratio of carbon dioxide gas to oxygen in the gas in the container, which is subjected to vibrational Raman spectrum analysis.

【0003】従来、微生物は、例えば当該微生物を凍結
乾燥し、アンプルに封入して保存している。そして、保
存中の生存を確認するためには、作製したアンプルの内
の何本かを実際に破壊していわゆる生存試験を行ない、
その結果から他の保存アンプルの生存又は死滅を推定し
ているものであって、目的のアンプルの生存又は死滅そ
のものを直接に判定しているわけではない。
Conventionally, microorganisms are stored by, for example, freeze-drying the microorganisms and enclosing them in ampoules. Then, in order to confirm the survival during storage, some of the prepared ampoules were actually destroyed to perform a so-called survival test,
The result estimates the survival or death of other stored ampoules, and does not directly determine the survival or death itself of the target ampoule.

【0004】[0004]

【発明が解決しようとする課題】前項記載の従来技術の
背景下に、本発明は、密封保存した凍結乾燥微生物を、
その容器を破壊することなしに容易に生存しているか否
かを判定することのできる方法を開発することを目的と
する。
DISCLOSURE OF THE INVENTION Under the background of the prior art described in the preceding paragraph, the present invention provides a freeze-dried microorganism that has been sealed and stored,
It is an object to develop a method capable of easily determining whether or not a container is alive without destroying the container.

【0005】[0005]

【課題を解決するための手段】本発明者は、前項記載の
目的を達成すべく鋭意研究の結果、凍結乾燥微生物を収
容した密封保存容器内の気体の組成、より具体的には該
気体における炭酸ガス対酸素の比と該微生物の生存性と
の間に相関関係があること、及び該密封保存容器内の気
体の組成は、ラマンスペクトル分析を利用すれば、容器
を破壊せずとも極めて容易に測定しうることを見出し、
このような知見に基いて本発明を完成した。
Means for Solving the Problems As a result of intensive research to achieve the object described in the preceding paragraph, the present inventor has found that the composition of gas in a hermetically-sealed storage container containing freeze-dried microorganisms, more specifically, in the gas There is a correlation between the carbon dioxide to oxygen ratio and the viability of the microorganism, and the composition of the gas in the hermetically-sealed storage container is extremely easy to use using Raman spectrum analysis without destroying the container. To find that
The present invention has been completed based on such knowledge.

【0006】すなわち、本発明は密封保存凍結乾燥微生
物をその容器を開封破壊することなくそのままラマンス
ペクトル分析に付し、容器内気体における炭酸ガス対酸
素の比に基いて該微生物の生存性を判定することを特徴
とする密封保存凍結乾燥微生物の非破壊生存判定法、及
びこのような方法の実施に適するラマンスペクトル分析
法に関する。
That is, according to the present invention, the freeze-dried microorganisms stored in a sealed container are directly subjected to Raman spectrum analysis without breaking the container, and the viability of the microorganism is judged based on the ratio of carbon dioxide gas to oxygen in the gas in the container. And a Raman spectrum analysis method suitable for carrying out such a method.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0008】本発明にいう密封保存凍結乾燥微生物の微
生物としては、酵母、細菌、放線菌、糸状菌などの微生
物を挙げることができる。
Examples of the microorganisms of the freeze-dried microorganisms that have been sealed and stored according to the present invention include microorganisms such as yeast, bacteria, actinomycetes and filamentous fungi.

【0009】密封保存凍結乾燥微生物とは、上記微生物
をライオファイルチューブにスキムミルク、グルタミン
酸ナトリウム等の保護剤と共に封入し、凍結乾燥して減
圧下又は常圧下で封管したチューブを言う。
The sealed-preserved lyophilized microorganism means a tube obtained by encapsulating the above microorganism in a lyofile tube together with a protective agent such as skim milk and sodium glutamate, lyophilized and sealed under reduced pressure or normal pressure.

【0010】本発明によれば、このよう密封保存容器
は、微生物の凍結乾燥物(ライオファイル微生物)を収
容したままラマンスペクトル分析に付されるので、その
器壁は少なくとも一部が光線が容器内気体を貫通できる
ものではなくてはならない。
According to the present invention, such a sealed storage container is subjected to Raman spectrum analysis while containing a lyophilized product of a microorganism (Liofile microorganism). It must be able to penetrate the internal gas.

【0011】また、例えば、ライオファイルチューブ入
りの凍結乾燥微生物をそのまま直接測定した場合、ガラ
スチューブやアンプルによる乱反射の影響が大き過ぎる
ときは、乱反射に由来する妨害光を遮断するために、光
源波長を透過しない金属製等の特別の形状の容器を使用
するか又はフィルターを使用するか或いは両者を併用す
ることで、このような影響を除くことができる。そのよ
うな特別な形状の容器として、例えば、図1に示す筒状
容器を挙げることができる。この容器の径は、密封保存
容器(封管)の径に応じてある範囲で可変のものとする
こともできる。
Further, for example, when the freeze-dried microorganisms contained in the lyofile tube are directly measured as they are, and the influence of the diffused reflection due to the glass tube or the ampoule is too great, the light source wavelength is used to block the interfering light derived from the diffused reflection. Such an influence can be eliminated by using a container having a special shape such as a metal that does not permeate through, a filter, or a combination of both. As a container having such a special shape, for example, a cylindrical container shown in FIG. 1 can be cited. The diameter of this container may be variable within a certain range depending on the diameter of the hermetically-sealed storage container (sealed tube).

【0012】凍結乾燥微生物を密封保存容器に収容した
ままラマンスペクトル分析に付する方法は、例えば、次
のようにして行なうことができる。
The method of subjecting the freeze-dried microorganisms to Raman spectrum analysis while keeping them in a sealed storage container can be carried out, for example, as follows.

【0013】特別の形状の容器を使用する場合は、図1
に示すように、これに凍結乾燥微生物入りの密封保存容
器を収納してラマンスペクトル分析に付する。フィルタ
ーを使用する場合は、図2に示すように、光路の適当な
位置にフィルターをおいてラマンスペクトル分析に付す
る。図2においてフィルターとしては、励起レーザー光
波長のみを除去できるフィルターを使用することができ
る。なお、Sはサンプル(試料)を、そしてIPDAは
ダイオードアレイ(intensifiedphoto
diode array)を意味する。他に、CCD
(chargecoupled device)やIC
CD(intensified CCD)なども用いる
ことができる。
If a specially shaped container is used, FIG.
As shown in, a sealed storage container containing freeze-dried microorganisms is housed in this and subjected to Raman spectrum analysis. When a filter is used, the filter is placed at an appropriate position in the optical path as shown in FIG. 2 and subjected to Raman spectrum analysis. As the filter in FIG. 2, a filter that can remove only the wavelength of the excitation laser light can be used. In addition, S is a sample (sample), and IPDA is a diode array (intensified photo).
It means a diode array). Besides, CCD
(Charge coupled device) and IC
A CD (intended CCD) or the like can also be used.

【0014】スペクトルとしては、振動スペクトル及び
回転スペクトルがあるが、本発明方法の実施において
は、そのいずれに拠ることもできる。ただし、前者の方
が、レーリー散乱光から波長的に遠いために乱反射によ
り妨害され難く、かつ低分解能の条件でも成分のスペク
トルが十分に分離して検査できる点で後者よりも優れて
いる。
The spectrum includes a vibration spectrum and a rotation spectrum, which may be used in the practice of the method of the present invention. However, the former is superior to the latter in that it is less likely to be disturbed by diffuse reflection because it is far from the Rayleigh scattered light in terms of wavelength, and that the spectrum of the component can be sufficiently separated and inspected even under the condition of low resolution.

【0015】ラマンスペクトル分析用光源としては、試
料に損傷を与えず、密封保存容器の器壁を透過するもの
であれば、その波長を問わず、例えば、Ar+ レーザー
のレーザー光で 514.5nm、 488.0nmなどの波長のも
のを使用することができる。振動スペククトルの場合、
2 、O2 及びCO2 は、それぞれ、ラマンシフトが23
31、1555及び1388cm-1(他にフェルミ共鳴により1286
cm-1にも出現)である。
As a light source for Raman spectrum analysis, as long as it does not damage the sample and transmits through the vessel wall of the hermetically-sealed storage container, regardless of its wavelength, for example, a laser beam of Ar + laser 514.5 nm, A wavelength of 488.0 nm or the like can be used. For vibration spectrum,
N 2 , O 2 and CO 2 each have a Raman shift of 23.
31, 1555 and 1388 cm -1 (1286 by Fermi resonance
It also appears in cm -1 ).

【0016】このような機器を使用してデータを採取
し、そして採取したデータの処理は、例えば、次のよう
にして行なうことができる。サンプルの凍結乾燥微生物
入り密封保存容器と同様の空の容器に空気を封入したも
のをラマンスペクトル分析に付してブランクとして測定
し、機器の補正を行なう。次に、サンプルの密封保存容
器中の窒素、酸素及び二酸化炭素をラマンスペクトル分
析に付して測定し、窒素に対する酸素の比(O2
2 )及び窒素に対する二酸化炭素の比(CO2
2 )を算出し、前者の比で後者の比を除して酸素に対
する二酸化炭素の比(CO2 /O2 )を算出する。ここ
で、それぞれの比の値は、本来、スペクトルのピークの
面積の比を求めるべきであるが、半値幅ほぼ等しい場合
においてはそのピークの高さの比を用いてもかまわない
(後掲実施例1はこれによっている)。酸素に対する二
酸化炭素の比は、比較の便宜上から空気中の酸素に対す
る二酸化炭素の比を1として、これとの比較の値(相対
値)で表わすこともできる。また、もちろん、ラマンス
ペクトル上での、ブランク値との絶対強度の比較から二
酸化炭素及び酸素の存在量そのものを定量又は半定量
し、これらの値を使用することもできる。
Data can be collected using such a device, and the collected data can be processed, for example, as follows. An empty container similar to the sealed storage container containing freeze-dried microorganisms of the sample filled with air is subjected to Raman spectrum analysis and measured as a blank, and the instrument is corrected. Next, the nitrogen, oxygen and carbon dioxide in the sealed storage container of the sample were measured by Raman spectrum analysis, and the ratio of oxygen to nitrogen (O 2 /
N 2 ) and the ratio of carbon dioxide to nitrogen (CO 2 /
N 2) was calculated, by dividing the latter ratio in the former ratio is calculated the ratio of carbon dioxide to oxygen (CO 2 / O 2). Here, for each ratio value, the ratio of the peak areas of the spectrum should be obtained originally, but if the half widths are almost equal, the ratio of the peak heights may be used (see below). Example 1 depends on this). For convenience of comparison, the ratio of carbon dioxide to oxygen can be expressed as a value (relative value) for comparison with the ratio of carbon dioxide to oxygen in the air being 1. Further, of course, it is also possible to quantitatively or semiquantitatively determine the existing amounts of carbon dioxide and oxygen based on the comparison of the absolute intensity with the blank value on the Raman spectrum and use these values.

【0017】本発明者の知見によれば、このようにラマ
ンスペクトル分析によって得られた密封容器の気体にお
ける炭酸ガス対酸素の体積比(CO2 /O2 )が大きい
ものは当該微生物が死滅しており、小さいものは生存し
ている。後掲実施例参照。因みに、これは、炭酸ガス対
酸素の比が大きいものは、保存中も微生物菌体が呼吸し
て酸素が消費され、炭酸ガス及び水が生成し、これらが
菌体の生存にとって、膜構造の変化、代謝阻害、水への
CO2 の溶解によるpH低下などの悪影響を及ぼしたも
のと推定され、一方、小さいものは、保存中の菌体によ
る呼吸がほとんどなく、そのような悪影響がなかったも
のであることによるものと推定される。
According to the knowledge of the inventor of the present invention, the microorganism is killed in the case where the volume ratio of carbon dioxide gas to oxygen (CO 2 / O 2 ) in the gas in the sealed container obtained by the Raman spectrum analysis is large. And small ones are alive. See the examples below. By the way, when the ratio of carbon dioxide gas to oxygen is large, microbial cells breathe and oxygen is consumed even during storage, carbon dioxide and water are produced, and these are factors of the membrane structure for the survival of the cells. It is presumed that adverse effects such as change, inhibition of metabolism, and pH decrease due to dissolution of CO 2 in water were exerted. On the other hand, small ones had almost no respiration by stored cells and did not have such adverse effects. It is presumed that this is due to the fact that it is a thing.

【0018】そこで、ある密封保存凍結乾燥微生物につ
いて、ラマンスペクトル分析に付して得られた炭酸ガス
対酸素の比と、これを従来法により生存試験を行なって
得られた生存状況との関係は、同様の条件で保存されて
きた他の密封保存凍結乾燥微生物にも当てはまるので、
後者の微生物については、従来法による生存試験を行な
わなくても、前者の微生物についての生存状況から推定
してその生存状況が容易に判定できるのである。
Therefore, the relationship between the ratio of carbon dioxide gas to oxygen obtained by subjecting a certain lyophilized microorganism to be preserved in a sealed state to Raman spectrum analysis and the survival condition obtained by conducting a survival test by the conventional method is as follows. , As it applies to other sealed and preserved freeze-dried microorganisms that have been preserved under similar conditions,
For the latter microorganisms, the survival status can be easily estimated by estimating from the survival status of the former microorganisms without conducting a survival test by the conventional method.

【0019】[0019]

【実施例】以下、実施例により本発明を更に説明する。The present invention will be further described with reference to the following examples.

【0020】実施例1 ライオファイルチューブ(保護剤:スキムミルク10%、
グルタミン酸ナトリウム2%)で31年間10℃で保存した
酵母12株を、それぞれ、ライオファイルチューブ入りの
まま乱反射防止用アダプター(図1の特殊形状の容器)
に収納しAr+ レーザー光を光源とするラマンスペクト
ル分析に付し、直接チューブ中のガス組成を測定した。
窒素、酸素及び二酸化炭素を測定し、空気中の窒素を基
準としてO2 /N2 及びCO2 /N2 の値からCO2
2 の値を算出した。
Example 1 Lyofile tube (protective agent: skim milk 10%,
12 yeast strains stored at 10 ° C for 31 years in sodium glutamate (2%), respectively, with an adapter for anti-diffuse reflection in a lyofile tube (container of special shape in Fig. 1)
The sample was housed in a tube and subjected to Raman spectrum analysis using Ar + laser light as a light source to directly measure the gas composition in the tube.
Nitrogen, oxygen and carbon dioxide were measured, O and nitrogen in the air as the reference 2 / N 2 and CO 2 / N 2 of the CO from the value 2 /
The value of O 2 was calculated.

【0021】その後、ガス組成を測定したライオファイ
ルチューブを無菌的に開管し、いわゆる生存試験に付し
てチューブ中の生菌数の計数を行なった。
Then, the Lyophile tube whose gas composition was measured was opened aseptically and subjected to a so-called survival test to count the number of viable bacteria in the tube.

【0022】結果を下記第1表に示す。The results are shown in Table 1 below.

【0023】[0023]

【表1】 [Table 1]

【0024】第1表から理解されるように、空気中のC
2 /O2 =0.0016との相対値が 340以上のチューブで
は、いずれも生菌が検出されず、死滅していたが、一
方、 230以下のものは生存が確認されたので、同様の条
件における保存株については、300を境界として、それ
以下を生存、そしてそれ以上を死滅とする判定を非破壊
的に行なうことが可能である。
As can be seen from Table 1, C in air
In the tubes with a relative value of O 2 / O 2 = 0.0016 of 340 or more, no viable bacteria were detected and the cells died. On the other hand, those of 230 or less were confirmed to be alive. With respect to the preserved strains in No. 3, it is possible to make a non-destructive determination that the number of surviving points is less than 300 and the number of deaths is more than 300, with 300 as the boundary.

【0025】[0025]

【発明の効果】密封保存冷凍乾燥微生物が生存している
か死滅しているかを密封保存容器を開封破壊することな
く短時間で直接判定することができる。このことから、
密封保存凍結乾燥微生物の作成本数を大幅に削減するこ
とができ、また、無駄な植え継ぎによる微生物の変異の
危険を防止できる。さらに、CO2 /O2 の比を経時的
に測定することにより、当該保存微生物の死滅時期を予
想することが容易となる。
EFFECTS OF THE INVENTION Whether the freeze-dried microorganisms stored in a sealed state are alive or dead can be directly determined in a short time without opening and breaking the sealed storage container. From this,
The number of freeze-dried microorganisms stored in a sealed manner can be significantly reduced, and the risk of microbial mutation due to unnecessary transplantation can be prevented. Further, by measuring the CO 2 / O 2 ratio with time, it becomes easy to predict the dead time of the stored microorganism.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ラマンスペクトル分析を行なうときの、密封保
存容器を収納すべき容器を例示する。
FIG. 1 illustrates a container in which a hermetically-sealed storage container is to be housed when performing Raman spectrum analysis.

【図2】ラマンスペクトル分析を行なうときの、光路に
おくべきフィルターの位置を例示する。
FIG. 2 illustrates the position of a filter to be placed in the optical path when performing Raman spectrum analysis.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石原 勝 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社中央研究所内 (72)発明者 山中 茂 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsu Ishihara 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ajinomoto Co., Inc. Central Research Laboratory (72) Inventor Shigeru Yamanaka 1-Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 1 Central Research Institute of Ajinomoto Co., Inc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 密封保存凍結乾燥微生物をその容器を開
封することなくそのままラマンスペクトル分析に付し、
容器内気体における炭酸ガス対酸素の比に基いて該微生
物の生存性を判定することを特徴とする密封保存凍結乾
燥微生物の非破壊生存判定法。
1. A sealed and freeze-dried microorganism is directly subjected to Raman spectrum analysis without opening the container,
A nondestructive method for determining the survival of a freeze-dried microorganism in a hermetically sealed state, which comprises determining the viability of the microorganism based on the ratio of carbon dioxide gas to oxygen in the gas in the container.
【請求項2】 密封保存容器による乱反射に由来する妨
害光を遮断すべく、光源波長を透過しない材質からな
る、入射光入り口、透過光出口及びラマン散乱光取り出
し口を有する容器に該密封保存容器を収納して、並びに
/或いは、該妨害光のみを遮断する又は検出光波長近辺
のみを透過するフィルターを光路に使用してラマンスペ
クトル分析を行うことを特徴とする請求項1記載の方
法。
2. A container having an incident light inlet, a transmitted light outlet, and a Raman scattered light extraction port, which is made of a material that does not transmit a light source wavelength, in order to block disturbing light caused by irregular reflection by the hermetically-sealed storage container. The method according to claim 1, characterized in that the Raman spectrum analysis is carried out by using a filter for accommodating and / or storing only the interfering light or transmitting only the vicinity of the detection light wavelength in the optical path.
JP28358995A 1995-10-31 1995-10-31 Nondestructive viability evaluation of tightly sealed and freeze-dried microorganism Pending JPH09121889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28358995A JPH09121889A (en) 1995-10-31 1995-10-31 Nondestructive viability evaluation of tightly sealed and freeze-dried microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28358995A JPH09121889A (en) 1995-10-31 1995-10-31 Nondestructive viability evaluation of tightly sealed and freeze-dried microorganism

Publications (1)

Publication Number Publication Date
JPH09121889A true JPH09121889A (en) 1997-05-13

Family

ID=17667471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28358995A Pending JPH09121889A (en) 1995-10-31 1995-10-31 Nondestructive viability evaluation of tightly sealed and freeze-dried microorganism

Country Status (1)

Country Link
JP (1) JPH09121889A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6765668B2 (en) * 2002-01-10 2004-07-20 Chemimage, Inc. Method for detection of pathogenic microorganisms
USRE38863E1 (en) 1995-02-03 2005-11-01 Ruy Tchao Chemotaxis assay procedure
US7403273B2 (en) 2005-02-09 2008-07-22 Chemimage Corporation System and method for the deposition, detection and identification of threat agents using a phase mask
US7538869B2 (en) 2004-06-30 2009-05-26 Chemimage Corporation Multipoint method for identifying hazardous agents
EP1915597A4 (en) * 2005-08-17 2009-12-23 Chemimage Corp Raman spectral analysis of pathogens
US7999928B2 (en) 2006-01-23 2011-08-16 Chemimage Corporation Method and system for combined Raman and LIBS detection
JP2012100548A (en) * 2010-11-08 2012-05-31 Nissin Foods Holdings Co Ltd Method of using standard bacterium
US8253936B2 (en) 2008-08-08 2012-08-28 Chemimage Corporation Raman characterization of transplant tissue
US8395769B2 (en) 2002-01-10 2013-03-12 Chemimage Corporation Method for analysis of pathogenic microorganisms using raman spectroscopic techniques
US8416405B2 (en) 2008-08-08 2013-04-09 Chemimage Corporation Raman chemical imaging of implantable drug delivery devices
US8547540B2 (en) 2005-07-14 2013-10-01 Chemimage Corporation System and method for combined raman and LIBS detection with targeting
US8553210B2 (en) 2007-01-23 2013-10-08 Chemimage Corporation System and method for combined Raman and LIBS detection with targeting
US8687177B2 (en) 2007-01-23 2014-04-01 Chemimage Corporation System and method for combined Raman and LIBS detection
JP2015144607A (en) * 2008-10-31 2015-08-13 ビオメリュー・インコーポレイテッド Method for separation, characterization and/or identification of microorganisms using raman spectroscopy

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38863E1 (en) 1995-02-03 2005-11-01 Ruy Tchao Chemotaxis assay procedure
USRE40747E1 (en) 1995-02-03 2009-06-16 Ruy Tchao Chemotaxis assay procedure
US7256875B2 (en) 2002-01-10 2007-08-14 Chemimage Corporation Method for detection of pathogenic microorganisms
US7262840B2 (en) 2002-01-10 2007-08-28 Chemimage Corporation Method for detection of pathogenic microorganisms
US8395769B2 (en) 2002-01-10 2013-03-12 Chemimage Corporation Method for analysis of pathogenic microorganisms using raman spectroscopic techniques
US6765668B2 (en) * 2002-01-10 2004-07-20 Chemimage, Inc. Method for detection of pathogenic microorganisms
US7538869B2 (en) 2004-06-30 2009-05-26 Chemimage Corporation Multipoint method for identifying hazardous agents
US8094294B2 (en) 2004-06-30 2012-01-10 Chemimage Corporation Multipoint method for identifying hazardous agents
US7471387B1 (en) 2005-02-09 2008-12-30 Treado Patrick J System and method for the electrostatic detection and identification of threat agents
US7480054B2 (en) 2005-02-09 2009-01-20 Chemimage Corporation System and method for the deposition, imaging, detection and identification of threat agents
US7561264B2 (en) 2005-02-09 2009-07-14 Chemimage Corporation System and method for the coincident deposition, detection and identification of threat agents
US7480033B2 (en) 2005-02-09 2009-01-20 Chem Lmage Corporation System and method for the deposition, detection and identification of threat agents using a fiber array spectral translator
US7403273B2 (en) 2005-02-09 2008-07-22 Chemimage Corporation System and method for the deposition, detection and identification of threat agents using a phase mask
US7495752B2 (en) 2005-02-09 2009-02-24 Chemimage Corporation System and method for the deposition, detection and identification of threat agents
US8547540B2 (en) 2005-07-14 2013-10-01 Chemimage Corporation System and method for combined raman and LIBS detection with targeting
EP1915597A4 (en) * 2005-08-17 2009-12-23 Chemimage Corp Raman spectral analysis of pathogens
US7999928B2 (en) 2006-01-23 2011-08-16 Chemimage Corporation Method and system for combined Raman and LIBS detection
US8687177B2 (en) 2007-01-23 2014-04-01 Chemimage Corporation System and method for combined Raman and LIBS detection
US8553210B2 (en) 2007-01-23 2013-10-08 Chemimage Corporation System and method for combined Raman and LIBS detection with targeting
US8416405B2 (en) 2008-08-08 2013-04-09 Chemimage Corporation Raman chemical imaging of implantable drug delivery devices
US8253936B2 (en) 2008-08-08 2012-08-28 Chemimage Corporation Raman characterization of transplant tissue
JP2015144607A (en) * 2008-10-31 2015-08-13 ビオメリュー・インコーポレイテッド Method for separation, characterization and/or identification of microorganisms using raman spectroscopy
JP2012100548A (en) * 2010-11-08 2012-05-31 Nissin Foods Holdings Co Ltd Method of using standard bacterium

Similar Documents

Publication Publication Date Title
JPH09121889A (en) Nondestructive viability evaluation of tightly sealed and freeze-dried microorganism
JP4921368B2 (en) A device that performs optical measurements on blood culture bottles
US20100129857A1 (en) Methods for the isolation and identification of microorganisms
US11236328B2 (en) Euglobulin-based method for determining the biological activity of defibrotide
CA2092372C (en) Methods and apparatus for detecting microorganisms in blood culture vials
Tammelin An electrometric method for the determination of cholinesterase activity
FR2763691A1 (en) IMPROVED PROCESS OF IMMUNOLOGICAL ANALYSIS BY FLUORESCENCE POLARIZATION
EP3650551B1 (en) Method for isolating and analysing microorganisms contained in a sample
EP0099309A2 (en) Laser nephelometer for the detection of antigenes and antibodies
JPH09127001A (en) Nondestructive inspection method for sealed material
WINDHAM et al. Effect of Wheat Moisture Content on Hardness Scores Determined by Near-Infrared
Shingles et al. Measurement of carbonic anhydrase activity using a sensitive fluorometric assay
Drennen et al. Pharmaceutical applications of near-infrared spectrometry
UNRUH et al. Elimination of Interfering Fluorescence
Chubchenko et al. Features of determining the isotope composition of carbon in gaseous, liquid, and solid media
Cruces-Blanco et al. Spectrofluorimetric determination of methyl paraben in pharmaceutical preparations by means of its dansyl chloride derivative
USH1563H (en) Chemical agent monitor for immunoassay detection
Hossner et al. Comparison of immunochemical (enzyme-linked immunosorbent assay) and immunohistochemical methods for the detection of central nervous system tissue in meat products
Clifton et al. Neutralization of the bacteriophage
Kolev et al. Biosensor-based serological assay for diagnosing Helicobacter pylori infection
EP0641437B1 (en) Detection of malignant and pre-malignant conditions
JPH10174599A (en) Quantitative method for histamine and its apparatus
SU1515108A1 (en) Method of determining water content in hemoglobin samples
Draviam et al. Vapor pressure and freezing point osmolality measurements applied to a volatile screen
CN117554535B (en) Detection method and kit for detecting oxalic acid in human urine by liquid chromatography