[go: up one dir, main page]

JPH09120842A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JPH09120842A
JPH09120842A JP7279226A JP27922695A JPH09120842A JP H09120842 A JPH09120842 A JP H09120842A JP 7279226 A JP7279226 A JP 7279226A JP 27922695 A JP27922695 A JP 27922695A JP H09120842 A JPH09120842 A JP H09120842A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
positive electrode
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7279226A
Other languages
Japanese (ja)
Inventor
Shigeki Murayama
茂樹 村山
Fuminari Itou
文就 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7279226A priority Critical patent/JPH09120842A/en
Publication of JPH09120842A publication Critical patent/JPH09120842A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery of lithium ions in which eventual internal shortcircuiting influences on adjoining positive and negative electrode by affixing a metal foil to each surface of a heat resistant insulative film, and using either or both of the positive electrode current collector and negative electrode current collector of the battery. SOLUTION: A lithium ion secondary battery is composed of a negative electrode 3 formed by applying an active material 6 to a negative electrode current collector 7 and a positive electrode 2 made in the same manner, which are laminated one over the other while a separator 8 is interposed. The current collector 7 is prepared by affixing a metal foil to both surfaces of a heat resistant insulative film 7a, which should lessen conduction of the heat generated at internal shortcircuiting so as to prevent its influencing upon adjoining positive and negative electrode one after another. An equivalent effect will be obtained if a positive electrode current collector of similar construction to the negative is used or are used both of them which are constructed in such a structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、電気自動
車、UPS(無停電電源装置)、ロードレベリング等に
使用して好適な大容量のリチウムイオン二次電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-capacity lithium ion secondary battery suitable for use in, for example, an electric vehicle, a UPS (Uninterruptible Power Supply), load leveling and the like.

【0002】[0002]

【従来の技術】従来、リチウムイオン二次電池は電気自
動車、UPS、ロードレベリングをはじめ、環境問題に
関連する多くの分野において研究開発が進められ、大容
量、高出力、高電圧、長期保存性に優れたものが要求さ
れている。
2. Description of the Related Art Conventionally, lithium-ion secondary batteries have been researched and developed in many fields related to environmental problems such as electric vehicles, UPS, load leveling, and have large capacity, high output, high voltage, and long-term storability. What is excellent is required.

【0003】このリチウムイオン二次電池は、充電時は
リチウムが正極電極の正極活物質からセパレータ中の電
解液中にリチウムイオンとして溶け出し、負極電極の負
極活物質中に入り込み、放電時はこの負極電極の負極活
物質中に入り込んだリチウムイオンが電解液中に放出さ
れ、この正極電極の正極活物質中に再び戻ることによっ
て充放電動作を行っている。
In this lithium ion secondary battery, during charging, lithium is dissolved out of the positive electrode active material of the positive electrode as lithium ions into the electrolytic solution in the separator and enters the negative electrode active material of the negative electrode, and during discharge, this Lithium ions that have entered the negative electrode active material of the negative electrode are released into the electrolytic solution, and return to the positive electrode active material of the positive electrode to perform the charging / discharging operation.

【0004】従来の小型のリチウムイオン二次電池はエ
ネルギー密度を上げるため、活物質を金属箔の集電体の
表裏両面に塗布し、シート状の正及び負極電極を作成
し、ポリエチレンもしくはポリプロピレンのセパレータ
を介して所定の大きさの電極対を多数順次積層した角型
電池、あるいは長尺の正及び負極電極をポリエチレンも
しくはポリプロピレンのセパレータを介して巻回した円
筒型電池構造のものがほとんどであった。
In order to increase the energy density of a conventional small lithium ion secondary battery, an active material is applied to both the front and back surfaces of a metal foil current collector to form sheet-shaped positive and negative electrodes, and a polyethylene or polypropylene electrode is used. In most cases, this is a prismatic battery in which a large number of electrode pairs of a predetermined size are sequentially laminated with a separator, or a cylindrical battery structure in which long positive and negative electrodes are wound with a polyethylene or polypropylene separator. It was

【0005】[0005]

【発明が解決しようとする課題】ところで、大容量のリ
チウムイオン二次電池を上述小型のリチウムイオン二次
電池と同様に活物質を集電体両面に塗布した正及び負極
電極を順次積層して構成したときには、大容量のため
に、内部短絡を起こすとその箇所が発熱し、隣接する正
及び負極電極間のセパレータが熱溶融し、内部ショート
が拡大する結果、多量の熱を周囲に放出し、多量のガス
が噴出するおそれがあるという問題があった。
A large-capacity lithium-ion secondary battery is formed by sequentially laminating positive and negative electrodes in which an active material is applied on both sides of a current collector in the same manner as the small-sized lithium-ion secondary battery described above. When configured, due to the large capacity, when an internal short circuit occurs, that portion will generate heat, the separator between the adjacent positive and negative electrodes will melt by heat, and the internal short circuit will expand, resulting in the release of a large amount of heat to the surroundings. However, there is a problem that a large amount of gas may be ejected.

【0006】一般に電池の内部ショートの模擬試験とし
て、電池外部から釘を刺し、人為的に正及び負極電極を
ショートさせる、釘刺し試験が行われている。本発明者
は、上述の如き大容量のリチウムイオン二次電池が釘刺
し時に多量のガス噴出に至る過程では、釘刺し部分の抵
抗による発熱が火種となり、隣接する正及び負極電極間
のセパレータが熱溶融し、正及び負極電極間の直接反応
による発熱が生じ、次の隣接電極間のセパレータの熱溶
融という逐次的発熱が起こり、最終的には全電極の反応
による大発熱に至ることを見出した。
[0006] Generally, as a simulation test of an internal short circuit of a battery, a nail puncture test is carried out in which a nail is pierced from outside the battery to artificially short the positive and negative electrodes. The present inventor has found that, in a process in which a large-capacity lithium ion secondary battery as described above reaches a large amount of gas jetting at the time of nail sticking, heat generation due to resistance of the nail sticking portion becomes a fire, and a separator between adjacent positive and negative electrodes is It was found that heat is melted and heat is generated due to a direct reaction between the positive and negative electrodes, and successive heat generation is generated, that is, heat melting of the separator between the adjacent electrodes next to each other, and finally large heat is generated due to reaction of all electrodes. It was

【0007】斯る、不都合を防止するため、負極電極と
正極電極との一対毎にポリイミド等の耐熱性絶縁フィル
ムを挟むことにより、内部ショート時の熱の伝達を小さ
くし、内部ショートの波及することを防止することが考
えられる。
In order to prevent such inconvenience, by sandwiching a heat-resistant insulating film such as polyimide for each pair of the negative electrode and the positive electrode, heat transfer at the time of internal short circuit is reduced and the internal short circuit is propagated. It is possible to prevent this.

【0008】しかし、この場合、負極電極と正極電極と
の一対毎に耐熱性絶縁フィルムを挟むので、この耐熱性
絶縁フィルムを挟んだ所は正極電極と負極電極とが対接
しないこととなり、この耐熱性絶縁フィルムを挟まない
リチウムイオン二次電池と同じ容量を得るためには約2
倍の体積を必要とする不都合があった。
However, in this case, since the heat resistant insulating film is sandwiched between each pair of the negative electrode and the positive electrode, the positive electrode and the negative electrode are not in contact with each other where the heat resistant insulating film is sandwiched. To obtain the same capacity as a lithium-ion secondary battery without sandwiching a heat-resistant insulating film, approximately 2
There was the inconvenience of requiring double the volume.

【0009】本発明は、斯る点に鑑み、大容量のリチウ
ムイオン二次電池の内部ショートによる影響が、隣接す
る正及び負極電極間に波及することを防ぎ、この電池自
体の損傷及び周囲への影響を最小限に抑えると共にこの
電池を比較的に小型とすることを目的とする。
In view of the above, the present invention prevents the influence of an internal short circuit of a large-capacity lithium ion secondary battery from spreading between adjacent positive and negative electrodes, and damages the battery itself and the surrounding environment. It is intended to minimize the influence of the above and to make this battery relatively small.

【0010】[0010]

【課題を解決するための手段】本発明リチウムイオン二
次電池は正極集電体に正極活物質を塗布した正極電極
と、負極集電体に負極活物質を塗布した負極電極とをセ
パレータを介して積層するようにしたリチウムイオン二
次電池において、この正極集電体又は負極集電体の一方
又は両方を耐熱性絶縁フィルムの両面に金属箔を被着し
たものを用いたものである。
The lithium ion secondary battery of the present invention comprises a positive electrode current collector coated with a positive electrode active material and a negative electrode current collector coated with a negative electrode active material via a separator. In the lithium ion secondary battery laminated as above, one or both of the positive electrode current collector and the negative electrode current collector in which a metal foil is coated on both sides of a heat resistant insulating film is used.

【0011】斯る本発明によれば正極集電体又は負極集
電体の一方又は両方を耐熱性絶縁フィルムの両面に金属
箔を被着したものを用いたので、内部ショートが発生し
ても、これによる熱の伝達が、この耐熱性絶縁フィルム
により小さくなると共にこの耐熱性絶縁フィルムはこの
熱では溶けないので隣接する正及び負極電極間へ内部シ
ョートが波及するのを防ぎこの電池自体の損傷及び周囲
への影響を最小限に抑えることができ、またこの耐熱性
絶縁フィルムの厚さによる分だけ、この体積が大きくな
るだけで、比較的小型にできる。
According to the present invention, since one or both of the positive electrode current collector and the negative electrode current collector are coated with metal foil on both sides of the heat resistant insulating film, even if an internal short circuit occurs. , The heat transfer due to this is reduced by this heat resistant insulating film and this heat resistant insulating film is not melted by this heat, so that internal short circuit is prevented from spreading to the adjacent positive and negative electrodes, and the battery itself is damaged. In addition, the influence on the surroundings can be minimized, and the volume can be increased by the thickness of the heat-resistant insulating film to make the size relatively small.

【0012】[0012]

【発明の実施の形態】以下、図1、図2及び図3を参照
して、本発明リチウムイオン二次電池の実施例につき説
明しよう。図3において、10は偏平角型電池ケースを
示し、この偏平角型電池ケース10は例えば厚さ300
μmのステンレススチール板より成り、横方向の長さが
略300mm、縦方向の長さが略115mm、厚さが略
22mmの電池ケース本体10aと、厚さ1.5mmの
ステンレススチール板より成る上蓋10bとより構成す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the lithium ion secondary battery of the present invention will be described below with reference to FIGS. 1, 2 and 3. In FIG. 3, reference numeral 10 denotes a flat rectangular battery case, and the flat rectangular battery case 10 has, for example, a thickness of 300.
A battery case body 10a having a lateral length of approximately 300 mm, a vertical length of approximately 115 mm, and a thickness of approximately 22 mm, and a top cover made of a stainless steel plate having a thickness of 1.5 mm. And 10b.

【0013】この偏平角型電池ケース10内に図2に示
す如くシート状の正極電極2を袋状セパレータ8内に収
納した正極ユニット及びシート状の負極電極3を袋状セ
パレータ8内に収納した負極ユニットを交互に積層した
電極積層体14を収納する如くする。
In the flat rectangular battery case 10, as shown in FIG. 2, the sheet-shaped positive electrode 2 is housed in the bag-shaped separator 8 and the sheet-shaped negative electrode 3 is housed in the bag-shaped separator 8. The electrode laminated body 14 in which the negative electrode units are alternately laminated is housed.

【0014】本例においては、正極電極2は次のように
して作製する。炭酸リチウムと炭酸コバルトとをLi/
Co(モル比)=1になるように混合し、空気中で90
0℃、5時間焼成して正極活物質(LiCoO2 )を合
成した。この正極活物質を自動乳鉢を用いて、粉砕し、
平均粒径15μmのLiCoO2 粉末を得た。
In this example, the positive electrode 2 is manufactured as follows. Li / lithium carbonate and cobalt carbonate
Mix so that Co (molar ratio) = 1 and in air 90
The positive electrode active material (LiCoO 2 ) was synthesized by firing at 0 ° C. for 5 hours. This positive electrode active material is crushed using an automatic mortar,
LiCoO 2 powder having an average particle size of 15 μm was obtained.

【0015】このようにして得られたLiCoO2 粉末
95重量部、炭酸リチウム5重量部を混合して得られた
混合物を91重量部と導電材としてグラファイト6重量
部と、結着材としてフッ化ビニリデン樹脂3重量部の割
合で混合して正極合剤とし、これをN−メチル−2−ピ
ロリドンに分散してスラリー状とし、このスラリー状の
正極合剤を正極集電体5である厚さ20μmの帯状のア
ルミニウム箔の両面にリード部を残して塗布し、乾燥
後、ローラプレス機で圧縮成形し、正極集電体5の両面
に正極活物質(正極合剤)4が塗布された帯状の正極電
極原反を作成する。
91 parts by weight of a mixture obtained by mixing 95 parts by weight of the LiCoO 2 powder thus obtained and 5 parts by weight of lithium carbonate, 6 parts by weight of graphite as a conductive material, and fluorinated as a binder. 3 parts by weight of vinylidene resin are mixed to form a positive electrode mixture, which is dispersed in N-methyl-2-pyrrolidone to form a slurry, and the slurry-like positive electrode mixture is used as the positive electrode current collector 5. A strip of aluminum foil having a thickness of 20 μm, which is coated on both sides with the lead portions left, dried, and compression-molded by a roller press machine, and the positive electrode active material (positive electrode mixture) 4 is coated on both sides of the positive electrode current collector 5. The positive electrode raw material is prepared.

【0016】この帯状の正極電極原反をリード部に連続
した正極活物質4の塗布部の大きさが例えば107mm
×265mmとなる如く型抜きし、この型抜きしたシー
ト状の正極電極2の正極活物質4の塗布部を、厚さ25
μm、大きさ112mm×273mmのポリプロピレン
の微多孔性フィルムを2枚貼り合せた袋状セパレータ8
に収納して正極ユニットとする。この場合、正極電極2
のリード部5aをこのセパレータ8より露出する如くす
る。
The size of the coated portion of the positive electrode active material 4 in which the strip-shaped raw material of the positive electrode electrode is continuous with the lead portion is, for example, 107 mm.
The die-cut sheet-shaped positive electrode 2 was applied with the positive electrode active material 4 to a thickness of 25 mm.
Bag-shaped separator 8 in which two microporous polypropylene films each having a size of 112 μm and a size of 112 mm × 273 mm are bonded together
To be a positive electrode unit. In this case, the positive electrode 2
The lead portion 5a of the above is exposed from the separator 8.

【0017】また、本例においては、この負極電極3を
次のようにして作製する。出発物質に石油ピッチを用
い、これに酸素を官能基を10〜20%導入(いわゆる
酸素架橋)した後、不活性ガス中1000℃で焼成した
ガラス状炭素に近い性質の難黒鉛化炭素材料を得る。
Further, in this example, the negative electrode 3 is manufactured as follows. Petroleum pitch was used as a starting material, and 10 to 20% of oxygen was introduced into this as a functional group (so-called oxygen cross-linking). obtain.

【0018】負極活物質としてのこの炭素材料を90重
量部と、結着材としてポリフッ化ビニリデン10重量部
との割合で混合して負極合剤を作成し、これをN−メチ
ル−2−ピロリドンに分散してスラリー状とし、このス
ラリー状の負極合剤を帯状の負極集電体7の両面にリー
ド部を残して、塗布し、乾燥後、ローラープレス機で圧
縮成形し、負極集電体7の両面に負極活物質(負極合
剤)6が塗布された帯状の負極電極原反を作成する。
90 parts by weight of this carbon material as a negative electrode active material and 10 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture, and this was mixed with N-methyl-2-pyrrolidone. To form a slurry, and the slurry-like negative electrode mixture is applied on both surfaces of the strip-shaped negative electrode current collector 7 leaving the lead portions, dried, and then compression-molded by a roller press machine to form a negative electrode current collector. A strip-shaped negative electrode raw material in which the negative electrode active material (negative electrode mixture) 6 is applied to both surfaces of 7 is prepared.

【0019】本例においては、この負極集電体7とし
て、図1に示す如く、耐熱性絶縁フィルムとしての、厚
さ25μmのポリイミドフィルム7aの両面に夫々厚さ
8μmの銅箔7bを被着したものを使用する。この耐熱
性絶縁フィルム7aとして、ポリイミドフィルムの他に
ポリフェニレンサルファイドフィルム、ポリアミドフィ
ルム等が使用できる。
In this example, as this negative electrode current collector 7, as shown in FIG. 1, a copper foil 7b having a thickness of 8 μm is adhered to both sides of a polyimide film 7a having a thickness of 25 μm as a heat-resistant insulating film. Use what you did. As the heat resistant insulating film 7a, a polyphenylene sulfide film, a polyamide film or the like can be used in addition to the polyimide film.

【0020】斯る、図1に示す如き負極集電体7を作成
するのに、上述の耐熱性絶縁樹脂を高温で溶融し、この
溶融した耐熱性絶縁樹脂を2枚の銅箔7bの間に流し込
みながらプレスをかけて作成する方法と、この耐熱性絶
縁フィルム7aの両面に、ウレタン系樹脂等の接着剤を
使用してこの銅箔7bを貼り合せる方法と、この耐熱性
絶縁フィルム7aの両面に銅を蒸着する方法とがある。
In order to prepare such a negative electrode current collector 7 as shown in FIG. 1, the above heat-resistant insulating resin is melted at a high temperature, and the melted heat-resistant insulating resin is applied between two copper foils 7b. And a method of bonding the copper foil 7b to both surfaces of the heat resistant insulating film 7a by using an adhesive such as urethane resin, and a method of making the heat resistant insulating film 7a. There is a method of depositing copper on both surfaces.

【0021】また、この帯状の負極電極原反を、リード
部に連続した負極活物質6の塗布部の大きさが例えば1
09mm×270mmとなる如く、型抜きし、この型抜
きした負極電極3の負極活物質6の塗布部を厚さ25μ
m、大きさ112mm×273mmのポリプロピレンの
微多孔性フィルムを2枚貼り合せた袋状セパレータ8に
収納して負極ユニットとする。この場合、負極電極3の
リード部7aをこのセパレータ8より露出する如くす
る。
In addition, the strip-shaped negative electrode electrode raw material has a size, for example, of a portion where the negative electrode active material 6 applied to the lead portion has a size of 1
The die was punched out so as to have a size of 09 mm × 270 mm, and the die-pressed portion of the negative electrode 3 coated with the negative electrode active material 6 was 25 μm thick.
m, and the size of 112 mm × 273 mm of polypropylene microporous film is accommodated in the bag-shaped separator 8 which is pasted together to form a negative electrode unit. In this case, the lead portion 7a of the negative electrode 3 is exposed from the separator 8.

【0022】本例においては、図2に示す如く、この袋
状セパレータ8に収納された負極電極3の20枚と袋状
セパレータ8に収納された正極電極2の19枚とを交互
に積層し、外周に粘着テープを巻いて固定し、電極積層
体14を形成する。この場合、正極電極2のリード部5
aが一側となる如くすると共に負極電極3のリード部7
aが他側となる如くする。
In this example, as shown in FIG. 2, 20 sheets of the negative electrode 3 housed in the bag-shaped separator 8 and 19 sheets of the positive electrode 2 housed in the bag-shaped separator 8 were alternately laminated. Then, an adhesive tape is wrapped around the outer periphery and fixed to form the electrode laminate 14. In this case, the lead portion 5 of the positive electrode 2
a is on one side and the lead portion 7 of the negative electrode 3
Let a be the other side.

【0023】また、図3に示す如く、この電極積層体1
4の一側即ち正極電極2のセパレータ8より露出したリ
ード部5aをアルミニウムより成る正極端子11に超音
波溶接して溶着接続する如くする。また、この電極積層
体14の他側即ち負極電極3のセパレータ8より露出し
たリード部7aを銅より成る負極端子12に超音波溶接
により溶着接続する如くする。
Further, as shown in FIG. 3, this electrode laminated body 1
One side of 4, ie, the lead portion 5a exposed from the separator 8 of the positive electrode 2 is ultrasonically welded and connected to the positive electrode terminal 11 made of aluminum. The lead portion 7a exposed from the other side of the electrode laminated body 14, that is, the separator 8 of the negative electrode 3 is welded and connected to the negative electrode terminal 12 made of copper by ultrasonic welding.

【0024】この図3に、示す如き、正極端子11及び
負極端子12が溶着接続された電極積層体14を外周
を、絶縁シート15a,15bで覆い、上蓋10bに、
正極端子11及び負極端子12部でOリング16a及び
17a、絶縁リング16b及び17bを介してボルト1
6c及び17cで締めて固定し、その後、電池ケース本
体10aに挿入し、その後この上蓋10bを、この電池
ケース本体10aにレーザ溶接により溶着し密封固定す
る。
As shown in FIG. 3, the outer periphery of the electrode laminate 14 to which the positive electrode terminal 11 and the negative electrode terminal 12 are welded and connected is covered with insulating sheets 15a and 15b.
At the positive electrode terminal 11 and the negative electrode terminal 12, the bolts 1 are inserted through O-rings 16a and 17a and insulating rings 16b and 17b.
It is fastened and fixed by 6c and 17c, then inserted into the battery case body 10a, and then the upper lid 10b is welded to the battery case body 10a by laser welding and hermetically fixed.

【0025】この場合、偏平角型電池ケース10内にプ
ロピレンカーボネート、ジエチルカーボネートの混合溶
媒にLiPF6 を1モル/lの割合で溶解した有機電解
液を注入する。
In this case, an organic electrolyte solution in which LiPF 6 is dissolved in a mixed solvent of propylene carbonate and diethyl carbonate at a ratio of 1 mol / l is injected into the flat rectangular battery case 10.

【0026】また、この上蓋10bに、この密閉型の偏
平角型電池ケース10の内圧が所定値より高くなったと
きに、この内部の気体を抜く安全弁13を設ける如くす
る。
The upper lid 10b is provided with a safety valve 13 for venting the gas inside when the internal pressure of the closed flat rectangular battery case 10 becomes higher than a predetermined value.

【0027】斯る、本例によるリチウムイオン二次電池
によれば、容量が20Ahの大容量のリチウムイオン二
次電池を得ることができる。
According to the lithium ion secondary battery of this example, a large capacity lithium ion secondary battery having a capacity of 20 Ah can be obtained.

【0028】本例によれば、負極集電体7を耐熱性絶縁
フィルム7aの両面に銅箔7bを被着したものを用いた
ので、内部ショートが発生しても、これによる熱の伝達
が、この耐熱性絶縁フィルム7aにより小さくなると共
に、この熱では、この耐熱性絶縁フィルム7aは溶けな
いので、隣接する正及び負極電極間へ内部ショートが波
及するのを防止でき、この電池自体の損傷及び周囲への
影響を最小限に抑えることができる。
According to this example, since the negative electrode current collector 7 has the heat-resistant insulating film 7a and the copper foils 7b adhered on both sides thereof, even if an internal short circuit occurs, the heat transfer due to this occurs. The heat-resistant insulating film 7a becomes smaller, and the heat-resistant insulating film 7a is not melted by this heat, so that it is possible to prevent an internal short circuit from spreading between adjacent positive and negative electrodes, and damage the battery itself. Also, the influence on the surroundings can be minimized.

【0029】因みに、本例によるリチウムイオン二次電
池につき、次刺し試験を行ったところ、釘を刺した孔か
ら煙が立ちのぼる程度であり、内部ショートの規模の拡
大は認められなかった。
Incidentally, when the lithium-ion secondary battery according to this example was subjected to the next puncture test, only smoke was emitted from the holes pierced by the nails, and no enlargement of the internal short circuit was observed.

【0030】然しながら、比較例(従来例)として上述
実施例の負極電極3の負極集電体7を、厚さ10μmの
銅箔だけで構成し、その他は上述実施例と同様に構成し
たリチウムイオン二次電池につき、釘刺し試験をしたと
ころ、ガスの噴出があった。
However, as a comparative example (conventional example), the negative electrode current collector 7 of the negative electrode 3 of the above-mentioned embodiment was composed of only a copper foil having a thickness of 10 μm, and the others were the same as those of the above-mentioned embodiment. When a nail penetration test was performed on the secondary battery, gas was ejected.

【0031】また本例によれば、リチウムイオン二次電
池の体積は、従来に比較し、負極集電体7の厚さが厚く
なった分だけ、体積が大きくなるだけであり、比較的小
型にできる利益がある。
Further, according to the present example, the lithium ion secondary battery has a relatively small volume as compared with the conventional one, because the volume of the negative electrode current collector 7 increases as the thickness of the negative electrode current collector 7 increases. There is a profit that can be made.

【0032】尚、上述実施例では負極集電体7として耐
熱性絶縁フィルム7aの両面に銅箔7bを被着したもの
を用いた例につき述べたが、この代わりに正極集電体5
として耐熱性絶縁フィルムの両面にアルミニウム箔を被
着したものを用いても良いし、またこの両方を使用する
ようにしても良く、この場合も上述と同様の作用効果が
得られることは容易に理解できよう。
In the above embodiment, the negative electrode current collector 7 is a heat-resistant insulating film 7a coated with copper foils 7b on both sides, but the positive electrode current collector 5 is used instead.
As the heat-resistant insulating film may be coated with aluminum foil on both sides, or both may be used, and in this case also, it is easy to obtain the same effect as the above. You can understand.

【0033】また上述実施例においては、本発明を偏平
角型のリチウムイオン二次電池に適用した例につき述べ
たが、本発明は円筒型のリチウムイオン二次電池にも適
用できることは勿論である。
Further, in the above-mentioned embodiments, the example in which the present invention is applied to the flat type lithium ion secondary battery has been described, but it goes without saying that the present invention can also be applied to the cylindrical lithium ion secondary battery. .

【0034】また、本発明は上述実施例に限らず、本発
明の要旨を逸脱することなく、その他種々の構成が採り
得ることは勿論である。
The present invention is not limited to the above-mentioned embodiments, and it goes without saying that various other configurations can be adopted without departing from the gist of the present invention.

【0035】[0035]

【発明の効果】本発明によれば正極集電体又は負極集電
体の一方又は両方を耐熱性絶縁フィルムの両面に金属箔
を被着したものを用いたので、内部ショートが発生して
も、これによる熱の伝達が、この耐熱性絶縁フィルムに
より小さくなると共にこの耐熱性絶縁フィルムは、この
熱では溶けないので、隣接する正及び負極電極間へ内部
ショートが波及するのを防止でき、この電池自体の損傷
及び周囲への影響を最小限に抑えることができ、またこ
の耐熱性絶縁フィルムによる厚さの分だけ、このリチウ
ムイオン二次電池の体積が大きくなるだけで比較的小型
にできる。
According to the present invention, one or both of the positive electrode current collector and the negative electrode current collector having the heat-resistant insulating film coated with the metal foil are used. Therefore, even if an internal short circuit occurs. Since the heat transfer due to this is reduced by the heat resistant insulating film and the heat resistant insulating film is not melted by this heat, it is possible to prevent the internal short circuit from spreading to the adjacent positive and negative electrodes. The damage to the battery itself and the influence on the surroundings can be minimized, and the volume of the lithium ion secondary battery is increased by the thickness of the heat resistant insulating film, so that the lithium ion secondary battery can be made relatively small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明リチウムイオン二次電池の一実施例の要
部を示す拡大断面図である。
FIG. 1 is an enlarged cross-sectional view showing a main part of an embodiment of a lithium ion secondary battery of the present invention.

【図2】本発明の要部の例を示す拡大断面図である。FIG. 2 is an enlarged sectional view showing an example of a main part of the present invention.

【図3】リチウムイオン二次電池の例を示す分解斜視図
である。
FIG. 3 is an exploded perspective view showing an example of a lithium ion secondary battery.

【符号の説明】[Explanation of symbols]

2 正極電極 3 負極電極 4 正極活物質 5 正極集電体 6 負極活物質 7 負極集電体 7a 耐熱性絶縁フィルム 7b 銅箔 8 袋状セパレータ 10 偏平角型電池ケース 11 正極端子 12 負極端子 13 安全弁 14 電極積層体 2 Positive electrode 3 Negative electrode 4 Positive electrode active material 5 Positive electrode current collector 6 Negative electrode active material 7 Negative electrode current collector 7a Heat resistant insulating film 7b Copper foil 8 Bag separator 10 Flat rectangular battery case 11 Positive electrode terminal 12 Negative electrode terminal 13 Safety valve 14 electrode stack

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体に正極活物質を塗布した正極
電極と、負極集電体に負極活物質を塗布した負極電極と
をセパレータを介して積層するようにしたリチウムイオ
ン二次電池において、 前記正極集電体又は負極集電体の一方又は両方を耐熱性
絶縁フィルムの両面に金属箔を被着したものを用いたこ
とを特徴とするリチウムイオン二次電池。
1. A lithium ion secondary battery in which a positive electrode having a positive electrode current collector coated with a positive electrode active material and a negative electrode having a negative electrode current collector coated with a negative electrode active material are laminated via a separator. A lithium ion secondary battery, wherein one or both of the positive electrode current collector and the negative electrode current collector is a heat-resistant insulating film coated with a metal foil.
【請求項2】 請求項1記載のリチウムイオン二次電池
において、 前記耐熱性絶縁性フィルムはポリイミドより成ることを
特徴とするリチウムイオン二次電池。
2. The lithium-ion secondary battery according to claim 1, wherein the heat-resistant insulating film is made of polyimide.
【請求項3】 請求項1記載のリチウムイオン二次電池
において、 前記正極集電体又は負極集電体の一方又は両方は耐熱性
絶縁樹脂を高温で溶融し、それを2枚の金属箔の間に流
し込みながらプレスをかけて作成したものであることを
特徴とするリチウムイオン二次電池。
3. The lithium-ion secondary battery according to claim 1, wherein one or both of the positive electrode current collector and the negative electrode current collector melt a heat-resistant insulating resin at a high temperature, and use it to form two metal foils. A lithium ion secondary battery, which is produced by pressing while pouring it in between.
JP7279226A 1995-10-26 1995-10-26 Lithium ion secondary battery Pending JPH09120842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7279226A JPH09120842A (en) 1995-10-26 1995-10-26 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7279226A JPH09120842A (en) 1995-10-26 1995-10-26 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH09120842A true JPH09120842A (en) 1997-05-06

Family

ID=17608195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7279226A Pending JPH09120842A (en) 1995-10-26 1995-10-26 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH09120842A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100443A (en) * 1998-09-25 2000-04-07 Mitsubishi Chemicals Corp Electrode base material film for secondary battery and secondary battery
WO2000042669A1 (en) * 1999-01-14 2000-07-20 Fujitsu Limited Lithium secondary cell
JP2001307760A (en) * 2000-04-18 2001-11-02 Matsushita Electric Ind Co Ltd Prismatic battery and method of manufacturing the same
JP2004253146A (en) * 2002-12-27 2004-09-09 Matsushita Electric Ind Co Ltd Electrochemical element
JP2004253351A (en) * 2002-12-27 2004-09-09 Matsushita Electric Ind Co Ltd Manufacturing method of electrochemical element
JP2005019311A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd Electrochemical element
JP2009038004A (en) * 2007-07-11 2009-02-19 Nissan Motor Co Ltd Laminated battery
WO2009157263A1 (en) * 2008-06-23 2009-12-30 シャープ株式会社 Lithium ion secondary battery
JP2012155974A (en) * 2011-01-25 2012-08-16 Sharp Corp Nonaqueous secondary battery
WO2013111256A1 (en) * 2012-01-23 2013-08-01 日立ビークルエナジー株式会社 Secondary battery
US8734986B2 (en) 2007-07-11 2014-05-27 Nissan Motor Co., Ltd. Laminate type battery
JP2016012414A (en) * 2014-06-27 2016-01-21 Necエナジーデバイス株式会社 Method for inspecting secondary battery
JP2018113242A (en) * 2017-01-12 2018-07-19 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector, electrode sheet of the same, battery, and use of the same
JP2022531039A (en) * 2020-03-30 2022-07-06 寧徳新能源科技有限公司 Composite current collectors, electrode sheets, electrochemical devices and electronic devices
US11539050B2 (en) 2017-01-12 2022-12-27 Contemporary Amperex Technology Co., Limited Current collector, electrode plate and battery containing the same, and application thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100443A (en) * 1998-09-25 2000-04-07 Mitsubishi Chemicals Corp Electrode base material film for secondary battery and secondary battery
WO2000042669A1 (en) * 1999-01-14 2000-07-20 Fujitsu Limited Lithium secondary cell
JP2001307760A (en) * 2000-04-18 2001-11-02 Matsushita Electric Ind Co Ltd Prismatic battery and method of manufacturing the same
JP2004253146A (en) * 2002-12-27 2004-09-09 Matsushita Electric Ind Co Ltd Electrochemical element
JP2004253351A (en) * 2002-12-27 2004-09-09 Matsushita Electric Ind Co Ltd Manufacturing method of electrochemical element
US7547489B2 (en) 2002-12-27 2009-06-16 Panasonic Corporation Electrochemical device
JP4601921B2 (en) * 2003-06-27 2010-12-22 パナソニック株式会社 Electrochemical element
JP2005019311A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd Electrochemical element
US8734986B2 (en) 2007-07-11 2014-05-27 Nissan Motor Co., Ltd. Laminate type battery
JP2009038004A (en) * 2007-07-11 2009-02-19 Nissan Motor Co Ltd Laminated battery
WO2009157263A1 (en) * 2008-06-23 2009-12-30 シャープ株式会社 Lithium ion secondary battery
JPWO2009157263A1 (en) * 2008-06-23 2011-12-08 シャープ株式会社 Lithium ion secondary battery
JP5371979B2 (en) * 2008-06-23 2013-12-18 シャープ株式会社 Lithium ion secondary battery
JP2012155974A (en) * 2011-01-25 2012-08-16 Sharp Corp Nonaqueous secondary battery
WO2013111256A1 (en) * 2012-01-23 2013-08-01 日立ビークルエナジー株式会社 Secondary battery
JP5336024B1 (en) * 2012-01-23 2013-11-06 日立ビークルエナジー株式会社 Secondary battery
JP2016012414A (en) * 2014-06-27 2016-01-21 Necエナジーデバイス株式会社 Method for inspecting secondary battery
JP2018113242A (en) * 2017-01-12 2018-07-19 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector, electrode sheet of the same, battery, and use of the same
US11539050B2 (en) 2017-01-12 2022-12-27 Contemporary Amperex Technology Co., Limited Current collector, electrode plate and battery containing the same, and application thereof
JP2022531039A (en) * 2020-03-30 2022-07-06 寧徳新能源科技有限公司 Composite current collectors, electrode sheets, electrochemical devices and electronic devices

Similar Documents

Publication Publication Date Title
US8119277B2 (en) Stack type battery
JP3584583B2 (en) Stacked non-aqueous electrolyte secondary battery
JP3998736B2 (en) Flat battery module
KR20120012400A (en) Rectangular rechargeable battery
US20110076544A1 (en) Stack type battery
JPH09120842A (en) Lithium ion secondary battery
JP2000030742A (en) Lithium-ion secondary battery element
CN102856577A (en) Nonaqueous electrolyte secondary battery
CN114788077B (en) Electrochemical cell and electrochemical cell module
KR100914108B1 (en) Electrode assembly and secondary battery having same
JP2002056835A (en) Sealed secondary battery
JPH07272761A (en) Nonaqueous electrolytic secondary battery
JPH0982305A (en) Secondary battery and manufacture thereof
JP2002110137A (en) Sealed battery
JPH10261386A (en) Battery case and battery
JPH11154534A (en) Lithium ion secondary battery element
JPH11250873A (en) Nonaqueous electrolyte secondary battery
JP4513148B2 (en) Battery and manufacturing method thereof
JPH08148184A (en) Nonaqueous electrolyte secondary battery
JPH10125291A (en) Battery structure
JPH07326336A (en) Secondary battery
JPH09147830A (en) Battery and its electrode structure
JP2000090897A5 (en)
JPH09115552A (en) Lithium ion secondary battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery