[go: up one dir, main page]

JPH09115554A - Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery - Google Patents

Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery

Info

Publication number
JPH09115554A
JPH09115554A JP7298945A JP29894595A JPH09115554A JP H09115554 A JPH09115554 A JP H09115554A JP 7298945 A JP7298945 A JP 7298945A JP 29894595 A JP29894595 A JP 29894595A JP H09115554 A JPH09115554 A JP H09115554A
Authority
JP
Japan
Prior art keywords
internal resistance
storage battery
voltage
acid battery
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7298945A
Other languages
Japanese (ja)
Inventor
Masashi Iwata
政司 岩田
Isamu Kurisawa
栗澤  勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP7298945A priority Critical patent/JPH09115554A/en
Publication of JPH09115554A publication Critical patent/JPH09115554A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3647Constructional arrangements for determining the ability of a battery to perform a critical function, e.g. cranking

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and accurately estimate its residual service life in a short time by judging a degraded condition of a storage battery from a discharge voltage variation in the storage battery and a voltage variation found from the product of internal resistance and an electric current. SOLUTION: First, internal resistance of a storage battery is detected, and next, the storage battery is discharged for a short time with a prescribed current intensity. At this time, a variation from pre-discharge voltage of discharge voltage when a prescribed time passes after discharge is started and a voltage variation by subtracting a voltage drop quantity by internal resistance from this variation are found, and the degradation of the storage battery is judged from a value of this voltage variation. The residual service life of the storage battery is estimated from the correlation (in J3 , a voltage variation is less than a judging point, and in J2 , a voltage variation is not less than a judging point) between previously found internal resistance and the residual service life of the storage battery in this degraded condition. Therefore, detection of a degraded condition of the storage battery and estimation of the residual service life can be accurately and easily performed in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、陰極吸収式シール
形鉛蓄電池を所定電流で短時間放電させることにより、
陰極吸収式シール形鉛蓄電池の残存寿命を推定する方法
に関するものである。
TECHNICAL FIELD The present invention relates to a cathode absorption type sealed lead acid battery, which is discharged at a predetermined current for a short time,
The present invention relates to a method for estimating the remaining life of a cathode absorption sealed lead-acid battery.

【0002】[0002]

【従来の技術】従来より、陰極吸収式シール形鉛蓄電池
の残存寿命を推定する方法として、容量試験を実施する
方法が一般的であった。これは、鉛蓄電池をいったん放
電状態にし、再び充電状態に復帰させるものであるか
ら、長時間かかるという欠点がある。そこで、この欠点
を解決し、短時間で簡単に劣化状態を検知する方法とし
て、鉛蓄電池の内部抵抗と電池容量との相関関係から残
容量を検出する方法が提案されている。
2. Description of the Related Art Conventionally, as a method for estimating the remaining life of a cathode absorption sealed lead-acid battery, a method of carrying out a capacity test has been generally used. This is a disadvantage that it takes a long time because the lead storage battery is once discharged and then returned to the charged state. Therefore, as a method of solving this drawback and simply detecting the deterioration state in a short time, a method of detecting the remaining capacity from the correlation between the internal resistance of the lead storage battery and the battery capacity has been proposed.

【0003】この方法は、鉛蓄電池の内部抵抗が、電池
容量と相関関係があることを利用したものである。陰極
吸収式シール形鉛蓄電池は劣化の進行とともに内部抵抗
が増加し、また放電電圧が垂下して終止電圧に達するま
での時間が短くなって、電池容量が低下していく。
This method takes advantage of the fact that the internal resistance of a lead storage battery correlates with the battery capacity. The internal resistance of the cathode absorption sealed lead-acid battery increases as the deterioration progresses, and the time until the discharge voltage droops to reach the final voltage is shortened, and the battery capacity decreases.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の方法では、まず残容量を検知した後、容量と使用期間
の関係から残寿命を推定するものであり、使用期間中の
容量が寿命末期になって低下するような場合、寿命末期
とならないと残寿命が少ないことがわからず、鉛蓄電池
の交換時期に交換用電池が用意できていないことや、ま
た、内部抵抗と残寿命との相関関係を、どのような劣化
状態であってもつねに同一のものを利用するため、精度
の良い残寿命推定ができないという問題点があった。
However, in these methods, first, the remaining capacity is detected, and then the remaining life is estimated from the relationship between the capacity and the usage period, and the capacity during the usage period becomes the end of life. If the lead battery is at the end of its life, it will not be known that the remaining life will be short. However, since the same one is always used regardless of the deterioration state, there is a problem that the remaining life cannot be accurately estimated.

【0005】[0005]

【課題を解決するための手段】本発明は、上述のような
背景の下になされたものであり、蓄電池を所定電流で放
電させたときの、放電開始後所定時間経過時の放電電圧
の放電前電圧からの変化量と、内部抵抗と所定電流の積
との差の電圧変化量の値から、蓄電池の劣化状態を判定
し、この劣化状態における、蓄電池の内部抵抗と残存寿
命との関係から、蓄電池の残存寿命を推定することによ
って、前述した問題点を解決し、精度の良い陰極吸収式
シール形鉛蓄電池の劣化状態の検出および残寿命の推定
を、簡易的に短時間で行えるようにした、陰極吸収式シ
ール形鉛蓄電池の残存寿命推定方法を提供することを目
的とする。
The present invention has been made under the background described above, and discharges a discharge voltage when a predetermined time has elapsed after the start of discharge when a storage battery is discharged at a predetermined current. From the change amount from the previous voltage and the value of the voltage change amount of the difference between the internal resistance and the product of the predetermined current, determine the deterioration state of the storage battery, and in this deterioration state, from the relationship between the internal resistance of the storage battery and the remaining life. By estimating the remaining life of the storage battery, the above-mentioned problems can be solved, and the accurate detection of the deterioration state and estimation of the remaining life of the cathode absorption sealed lead-acid storage battery can be performed easily in a short time. Another object of the present invention is to provide a method for estimating the remaining life of a cathode absorption type sealed lead-acid battery.

【0006】[0006]

【発明の実施の形態】本発明の陰極吸収式シール形鉛蓄
電池の残存寿命推定方法において、放電開始後所定時間
経過時の放電電圧の放電前電圧からの変化量と、内部抵
抗と所定電流の積との差、即ち、放電前電圧からの変化
量から内部抵抗による電圧降下分を差し引いた電圧変化
量の値は、この陰極吸収式シール形鉛蓄電池の、電解液
の拡散の容易さを示すものであり、電解液が減少した
り、エレメント群の圧迫力が劣ったりしたとき等、多孔
体である活物質への電解液の拡散が容易におこなえない
場合において、著しく大きくなる。この拡散の容易さの
違いは、定電流放電させたときに、放電終期における放
電電圧の垂下度合の違いになってよりはっきりと現れ、
拡散が容易におこなえない場合には、放電電圧の垂下度
合がより大きくなって、終止電圧に達するまでの時間が
短くなり、電池容量が低下する。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for estimating the remaining life of a cathode absorption type sealed lead-acid battery of the present invention, the change amount of the discharge voltage from the pre-discharge voltage at a predetermined time after the start of discharge, the internal resistance and the predetermined current The difference with the product, that is, the value of the amount of voltage change obtained by subtracting the voltage drop due to internal resistance from the amount of change from the voltage before discharge, indicates the ease of diffusion of the electrolytic solution in this cathode absorption sealed lead-acid battery. However, when the electrolytic solution cannot be easily diffused into the active material that is a porous body, such as when the electrolytic solution is reduced or the pressing force of the element group is poor, it becomes significantly large. This difference in the ease of diffusion becomes more apparent when the constant current discharge is performed, due to the difference in the drooping degree of the discharge voltage at the end of discharge.
If the diffusion cannot be performed easily, the drooping degree of the discharge voltage becomes larger, the time until the final voltage is reached becomes shorter, and the battery capacity decreases.

【0007】また、内部抵抗は、過充電により正極板が
腐食すると、集電体である格子のやせおよび折損により
電気伝導性が低下して、劣化の進行とともに増加する
が、電解液の減少によって、活物質が充填された極板と
電解液が保持されたセパレータの接触面積が低下するこ
とでも増加する。この内部抵抗の増加と残寿命には、相
関関係があることが知られており、前者の場合、寿命の
原因となる構成部品は正極板であり、後者の場合、電解
液である。通常、前者の場合より後者の場合のような劣
化が認められる蓄電池のほうが、使用環境が悪いことが
多く、残存寿命は期待寿命から推定されるより短くなる
可能性が高い。
When the positive electrode plate is corroded due to overcharge, the internal resistance increases with the progress of deterioration due to a decrease in the electrical conductivity due to the thinning and breakage of the grid as the current collector, but due to the decrease in the electrolytic solution. It also increases when the contact area between the electrode plate filled with the active material and the separator holding the electrolytic solution is reduced. It is known that there is a correlation between the increase in the internal resistance and the remaining life. In the former case, the component that causes the life is the positive electrode plate, and in the latter case, the electrolytic solution. In general, the storage battery in which the deterioration as in the latter case is recognized is more bad in the usage environment than the former case, and the remaining life is more likely to be shorter than that estimated from the expected life.

【0008】このようなことから、本発明による陰極吸
収式シール形鉛蓄電池の残存寿命推定方法では、電解液
の拡散の容易さから、あらかじめ陰極吸収式シール形鉛
蓄電池の劣化状態が、電解液の減少によるものなのか、
正極板の腐食によるものなのかを判定し、内部抵抗と残
寿命との相関関係を、つねに同一のものを利用するので
はなく、この劣化状態での相関関係を利用するので、よ
り精度の良い残寿命推定が可能となる。
From the above, in the method for estimating the remaining life of the cathode absorption type seal lead acid battery according to the present invention, the deterioration state of the cathode absorption type seal lead acid battery is previously determined from the ease of diffusion of the electrolyte solution. Is it due to the decrease of
It is more accurate because the correlation between the internal resistance and the remaining life is determined by determining whether it is caused by the corrosion of the positive electrode plate and not by using the same correlation. The remaining life can be estimated.

【0009】[0009]

【実施例】以下、図面を参照しながら本発明を更に詳細
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings.

【0010】図1は、陰極吸収式シール形鉛蓄電池を定
電流放電したときの、放電電圧の特性の一例を示すもの
である。図1において、1は、新品の陰極吸収式シール
形鉛蓄電池の放電特性であり、2は、電解液が減少して
劣化した陰極吸収式シール形鉛蓄電池の放電特性であ
る。また3は、正極板が腐食して劣化した陰極吸収式シ
ール形鉛蓄電池の放電特性である。放電特性2は、放電
特性3に比べ、電解液の減少により、活物質への電解液
中の硫酸イオンの拡散が容易におこなえないことによっ
て、放電終期における放電電圧の垂下度合いがより大き
くなっており、終止電圧に達するまでの時間が短くなっ
て、電池容量がより低下している。
FIG. 1 shows an example of discharge voltage characteristics when a cathode absorption type sealed lead-acid battery is discharged at a constant current. In FIG. 1, 1 is the discharge characteristic of a new cathode absorption type sealed lead acid battery, and 2 is the discharge characteristic of a cathode absorption type sealed lead acid battery that has deteriorated due to a decrease in the electrolyte. Further, 3 is the discharge characteristic of the cathode absorption type seal lead acid battery in which the positive electrode plate is corroded and deteriorated. The discharge characteristic 2 is different from the discharge characteristic 3 in that due to the decrease in the electrolytic solution, the diffusion of the sulfate ions in the electrolytic solution into the active material cannot be easily performed, and thus the drooping degree of the discharge voltage at the final stage of the discharge becomes larger. Therefore, the time required to reach the final voltage is shortened, and the battery capacity is further reduced.

【0011】図2は、図1で示した陰極吸収式シール形
鉛蓄電池(1,2,3)を所定電流(I=0.15C
A)で短時間放電したときの、放電開始後所定時間経過
時(T=5sec)の放電電圧の放電前電圧からの変化
量の一例を示すものである。ここで陰極吸収式シール形
鉛蓄電池は何れの劣化状態のものも完全充電状態であ
る。R1 は、新品の陰極吸収式シール形鉛蓄電池の内部
抵抗であり、R2 は、電解液が減少して劣化した陰極吸
収式シール形鉛蓄電池の内部抵抗である。内部抵抗R2
は、活物質が充填された極板と電解液が保持されたセパ
レータの接触面積が低下することで、内部抵抗R1 より
も大きくなっている。また、R3 は、正極板が腐食して
劣化した陰極吸収式シール形鉛蓄電池の内部抵抗であ
る。この例では、集電体である格子のやせおよび折損に
よって大きくなった内部抵抗R3 が、内部抵抗R2 より
も大きくなっている。
FIG. 2 shows the cathode absorption type sealed lead-acid battery (1, 2, 3) shown in FIG. 1 at a predetermined current (I = 0.15C).
It is an example of the amount of change in the discharge voltage from the pre-discharge voltage when a predetermined time has elapsed (T = 5 sec) after the start of discharge when the discharge is performed for a short time in A). Here, the cathode absorption type sealed lead-acid battery is in a fully charged state in any deteriorated state. R 1 is the internal resistance of a new cathode absorption type sealed lead acid battery, and R 2 is the internal resistance of the cathode absorption type sealed lead acid battery that has deteriorated due to a decrease in the electrolytic solution. Internal resistance R 2
Is larger than the internal resistance R 1 because the contact area between the electrode plate filled with the active material and the separator holding the electrolytic solution is reduced. Further, R 3 is an internal resistance of the cathode absorption type seal lead acid battery in which the positive electrode plate is corroded and deteriorated. In this example, the internal resistance R 3 increased by the thinning and breakage of the current collector grid is larger than the internal resistance R 2 .

【0012】図2において、Δ(IR1 )は、所定電流
Iと内部抵抗R1 の積であり、電圧変化量であって、Δ
1 は、新品の陰極吸収式シール形鉛蓄電池の時点Tに
おける、放電開始後に放電電圧が電圧変化量Δ(I
1 )変化してからの電圧変化量である。また、Δ(I
2 )は、所定電流Iと内部抵抗R2 の積であり、電圧
変化量であって、ΔV2 は、電解液が減少して劣化した
陰極吸収式シール形鉛蓄電池の時点Tにおける、放電開
始後に放電電圧が電圧変化量Δ(IR2 )変化してから
の電圧変化量である。さらに、Δ(IR3 )は、所定電
流Iと内部抵抗R3の積であり、電圧変化量であって、
ΔV3 は、正極板が腐食して劣化した陰極吸収式シール
形鉛蓄電池の時点Tにおける、放電開始後に放電電圧が
電圧変化量Δ(IR3 )変化してからの電圧変化量であ
る。
In FIG. 2, Δ (IR 1 ) is the product of the predetermined current I and the internal resistance R 1 , and is the voltage change amount,
V 1 is a change amount Δ (I of the discharge voltage after the start of discharge at the time T of the new cathode absorption type sealed lead-acid battery.
R 1 ) The amount of change in voltage after the change. Also, Δ (I
R 2 ) is the product of the predetermined current I and the internal resistance R 2 , and is the amount of voltage change, and ΔV 2 is the discharge at the time T of the cathodic absorption sealed lead-acid battery in which the electrolyte solution has deteriorated and deteriorated. It is the voltage change amount after the discharge voltage changes by the voltage change amount Δ (IR 2 ) after the start. Further, Δ (IR 3 ) is the product of the predetermined current I and the internal resistance R 3 , and is the voltage change amount,
ΔV 3 is the voltage change amount after the discharge voltage changes by the voltage change amount Δ (IR 3 ) after the start of discharge at the time T of the cathode absorption type seal lead acid battery in which the positive electrode plate is corroded and deteriorated.

【0013】電圧変化量ΔV3 は、電圧変化量ΔV1
ほとんど変わらず、活物質への電解液中の硫酸イオンの
拡散は容易におこなわれており、放電特性3の放電終期
における放電電圧の垂下度合いも、放電特性1とほとん
ど同じになっている。しかしながら、電圧変化量ΔV2
は、電解液の減少により、活物質への電解液中の硫酸イ
オンの拡散が容易におこなわれていないことによって、
電圧変化量ΔV1 よりも大きくなっている。
The voltage change amount ΔV 3 is almost the same as the voltage change amount ΔV 1, and the sulfate ions in the electrolytic solution are easily diffused into the active material. The drooping degree is almost the same as the discharge characteristic 1. However, the amount of voltage change ΔV 2
Is due to the fact that due to the decrease of the electrolyte solution, the diffusion of sulfate ions in the electrolyte solution into the active material is not easily performed,
It is larger than the voltage change amount ΔV 1 .

【0014】図3はセパレータの減液率と電圧変化量Δ
Vの関係を示した図であり、陰極吸収式シール形鉛蓄電
池の劣化状態の判定手段を説明するための図である。図
3において、ΔVは、陰極吸収式シール形鉛蓄電池を所
定電流Iで放電させたときの、時点Tにおける放電電圧
の放電前電圧からの変化量と、内部抵抗と所定電流Iの
積との差であり、電圧変化量である。ここでセパレータ
の減液率は、減液した液量を新品の陰極吸収式シール形
鉛蓄電池のセパレータの電解液保持量に対する割合で表
現した。セパレータの減液率がおよそ10vol %をこえ
たところから、電解液の拡散が容易におこなえなくな
り、電圧変化量ΔVが大きくなっている。セパレータの
減液率が10vol %をこえた点を判定点として定め、そ
のときの電圧変化量ΔVを40mVとする。
FIG. 3 shows the liquid reduction rate of the separator and the voltage change amount Δ.
It is a figure showing the relation of V, and is a figure for explaining the judgment means of the deterioration state of the cathode absorption type seal lead acid battery. In FIG. 3, ΔV is the product of the internal resistance and the predetermined current I and the amount of change in the discharge voltage from the pre-discharge voltage at time T when the cathode absorption sealed lead-acid battery is discharged at the predetermined current I. The difference is the amount of voltage change. Here, the liquid reduction rate of the separator is expressed by the ratio of the reduced liquid amount to the electrolytic solution holding amount of the separator of the new cathode absorption type sealed lead acid battery. When the liquid reduction rate of the separator exceeds about 10 vol%, the electrolytic solution cannot be easily diffused and the voltage change amount ΔV becomes large. A point where the liquid reduction rate of the separator exceeds 10 vol% is set as a determination point, and the voltage change amount ΔV at that time is set to 40 mV.

【0015】電圧変化量ΔVが40mV以上の場合に
は、電解液の減少によって電解液の拡散が容易におこな
えない状態である。電圧変化量ΔVが40mV未満の場
合には、電解液の拡散は容易におこなえており、そのよ
うな陰極吸収式シール形鉛蓄電池で内部抵抗の増加が認
められた場合、この陰極吸収式シール形鉛蓄電池は、正
極板の腐食によって劣化している。
When the voltage change amount ΔV is 40 mV or more, the electrolytic solution cannot be easily diffused due to the decrease of the electrolytic solution. When the amount of voltage change ΔV is less than 40 mV, the electrolyte is easily diffused. If such an increase in internal resistance is observed in such a cathode absorption type sealed lead storage battery, this cathode absorption type Lead acid batteries have deteriorated due to corrosion of the positive electrode plate.

【0016】図4は、陰極吸収式密閉形鉛蓄電池の電解
液の拡散が容易であるものと、そうでないものの内部抵
抗と電池容量との相関関係の一例を示したものである。
図4において、K3 は、電圧変化量ΔVが判定点未満で
あった場合の、内部抵抗と電池容量との相関関係であ
り、K2 は、電圧変化量ΔVが判定点以上であった場合
の、内部抵抗と電池容量との相関関係である。相関関係
2 は、放電終期における放電電圧の垂下度合がより大
きいことにより、相関関係K3 よりも電池容量低下率が
大きい。ここで電池容量は定格容量を100とした割合
で表現し、内部抵抗は初期値を100とした割合で表現
した。
FIG. 4 shows an example of the correlation between the internal resistance and the battery capacity of the cathode absorption type sealed lead-acid battery in which the diffusion of the electrolytic solution is easy and the case where it is not.
In FIG. 4, K 3 is a correlation between the internal resistance and the battery capacity when the voltage change amount ΔV is less than the determination point, and K 2 is when the voltage change amount ΔV is not less than the determination point. Is the correlation between the internal resistance and the battery capacity. The correlation K 2 has a greater rate of decrease in battery capacity than the correlation K 3 because the drooping degree of the discharge voltage at the end of discharge is larger. Here, the battery capacity is expressed as a ratio with the rated capacity as 100, and the internal resistance is expressed as a ratio with the initial value as 100.

【0017】図5は、図1で示した陰極吸収式シール形
鉛蓄電池の使用期間と電池容量および内部抵抗の推移の
一例を示すものである。図5において、Y2 は電解液が
減少して劣化した陰極吸収式シール形鉛蓄電池の容量推
移を示すものであり、Z2 はこの陰極吸収式シール形鉛
蓄電池の内部抵抗推移を示すものである。Y3 は正極板
が腐食して劣化した陰極吸収式シール形鉛蓄電池の容量
推移を示すものであり、Z3 はこの陰極吸収式シール形
鉛蓄電池の内部抵抗推移を示すものである。従来は、容
量試験や、前記相関関係K2 もしくはK3 より求めた電
池容量をこの容量推移Y2 もしくはY3 に照らし合わせ
ることによって、劣化状態を判定してきた。
FIG. 5 shows an example of the use period of the cathode absorption type sealed lead-acid battery shown in FIG. 1 and changes in battery capacity and internal resistance. In FIG. 5, Y 2 shows the capacity transition of the cathode absorption type sealed lead-acid battery which deteriorated due to the decrease of the electrolytic solution, and Z 2 shows the internal resistance transition of this cathode absorption type sealed lead-acid battery. is there. Y 3 shows the capacity transition of the cathode absorption type sealed lead acid battery in which the positive electrode plate has corroded and deteriorated, and Z 3 shows the internal resistance transition of this cathode absorption type sealed lead acid battery. Conventionally, the deterioration state has been determined by comparing the battery capacity obtained from the capacity test or the correlation K 2 or K 3 with the capacity transition Y 2 or Y 3 .

【0018】図5において、Aは劣化初期の時点であ
る。時点Aではまだ劣化はほとんどおこっていない。ま
た、Bは劣化中期の時点であって、時点Bでは電池容量
の低下はまだ認められないが、劣化は使用期間に応じて
確実に進行している。しかしながら従来の劣化判定方法
では時点Aおよび時点Bでは明らかに残存寿命が異なる
にもかかわらず、電池容量を測定もしくは推定し陰極吸
収式シール形鉛蓄電池の劣化状態を判定しているので、
電池容量の低下がほとんど認められない、時点Bの陰極
吸収式シール形鉛蓄電池は時点Aの陰極吸収式シール形
鉛蓄電池と同じ劣化状態とみなされることが多かった。
In FIG. 5, A is a point in the initial stage of deterioration. At time point A, almost no deterioration has occurred yet. Further, B is at the time of the middle stage of deterioration, and at time B, the decrease of the battery capacity is not yet recognized, but the deterioration surely progresses according to the usage period. However, in the conventional deterioration determination method, the deterioration state of the cathode absorption type sealed lead-acid battery is determined by measuring or estimating the battery capacity, although the remaining life is obviously different at the time points A and B.
The cathode absorption type seal lead acid battery of the time point B in which almost no decrease in battery capacity was observed was often regarded as the same deteriorated state as the cathode absorption type seal lead acid battery of the time point A.

【0019】また図5においてb2 は電解液が減少して
劣化した陰極吸収式シール形鉛蓄電池の電池容量の低下
が認められてから寿命に至るまでの期間を示すものであ
り、この場合、寿命の現因となっている構成部品は電解
液である。b3 は正極板が腐食して劣化した陰極吸収式
シール形鉛蓄電池の電池容量の低下が認められてから寿
命に至るまでの期間を示すものである。この場合、寿命
の現因となっている構成部品は正極板である。
Further, in FIG. 5, b 2 shows the period from when the decrease in the battery capacity of the cathode absorption type lead-acid storage battery, which is deteriorated due to the decrease in the electrolyte solution, to the end of its life. The component that contributes to life is the electrolyte. b 3 indicates the period from the time when the decrease in the battery capacity of the cathode absorption type seal lead acid battery in which the positive electrode plate is corroded and deteriorated is recognized to the end of its life. In this case, the component that contributes to the life is the positive plate.

【0020】技術的に見て、正極板を寿命要因としない
ことは困難であるが、電解液は通常の使用環境において
は、寿命要因とはならないよう設計されてあるのが普通
である。従って電解液が寿命要因となって陰極吸収式シ
ール形鉛蓄電池が寿命に至った場合、きわめて高温の乾
燥したところで使用されていたり、あるいは適正充電電
圧よりきわめて高い充電電圧で充電されていたりと、陰
極吸収式シール形鉛蓄電池の劣化を促進するような環境
で使用されていたことが多く、このようなことから期間
2 は期間b3 よりも短くなって、陰極吸収式シール形
鉛蓄電池の残寿命は短くなる。
From a technical point of view, it is difficult not to make the positive electrode plate a life factor, but the electrolyte is usually designed so as not to become a life factor in a normal use environment. Therefore, when the electrolyte is a factor of life and the cathode absorption type lead-acid battery reaches the end of its life, it is being used in an extremely hot and dry place, or it is being charged at a charging voltage much higher than the proper charging voltage. It was often used in an environment that promotes deterioration of the cathode absorption type sealed lead acid battery, and for this reason, the period b 2 is shorter than the period b 3 and the cathode absorption type sealed lead acid battery The remaining life is shortened.

【0021】図6は、陰極吸収式シール形鉛蓄電池の正
極板が寿命要因となっているものと、電解液が寿命要因
となっているものの内部抵抗と残寿命との相関関係の一
例を示したものである。図6において、J3 は、電圧変
化量ΔVが判定点未満であり、正極板の腐食が寿命要因
となった場合の内部抵抗と残寿命との相関関係であり、
2 は、電圧変化量ΔVが判定点以上であり、電解液の
減少が寿命要因となった場合の、内部抵抗と残寿命との
相関関係である。
FIG. 6 shows an example of the correlation between the internal resistance and the remaining life of the cathode absorption type sealed lead-acid battery, in which the positive electrode plate is the life factor and the electrolyte is the life factor. It is a thing. In FIG. 6, J 3 is a correlation between the internal resistance and the remaining life when the voltage change amount ΔV is less than the determination point and the corrosion of the positive electrode plate is a life factor,
J 2 is the correlation between the internal resistance and the remaining life when the voltage change amount ΔV is equal to or higher than the determination point and the decrease of the electrolyte is a life factor.

【0022】このように内部抵抗と残寿命との相関関係
を劣化した構成部品に応じて利用すれば、より精度の良
い残寿命の予測が可能である。また、相関関係J2 ある
いはJ3 を利用して内部抵抗の増加割合から残寿命を推
定すれば、図5における時点Bの陰極吸収式シール形鉛
蓄電池のような場合でも内部抵抗の増加によって、劣化
中期の状態を検知するので、従来の劣化判定方法のよう
に時点Aの劣化状態と混同するような問題も解決でき
る。
As described above, if the correlation between the internal resistance and the remaining life is utilized depending on the deteriorated component, the remaining life can be predicted with higher accuracy. Further, if the residual life is estimated from the increase rate of the internal resistance by using the correlation J 2 or J 3 , the internal resistance increases due to the increase of the internal resistance even in the case of the cathode absorption type sealed lead acid battery at the time point B in FIG. Since the state in the middle stage of deterioration is detected, it is possible to solve the problem that is confused with the deterioration state at time A as in the conventional deterioration determination method.

【0023】[0023]

【発明の効果】以上のように、本発明による陰極吸収式
シール形鉛蓄電池の劣化状態検出方法によれば、陰極吸
収式シール形鉛蓄電池を所定電流で放電させたときの、
放電開始後所定時間経過時の放電電圧の放電前電圧から
の変化量と、内部抵抗と所定電流の積との差から、劣化
状態をあらかじめ判定し、該検出手段にて求めておいた
劣化状態における、内部抵抗と残寿命との関係から、残
寿命を推定するので、寿命末期とならなければ残寿命が
少ないことがわからず、交換用電池を用意できていない
ことや、異なる寿命要因での推定が精度良くおこなえな
いといった問題点を解決し、精度の良い陰極吸収式シー
ル形密閉形鉛蓄電池の劣化状態の検出および残寿命の推
定を、簡易的にかつ短時間で行うことが可能となるの
で、その工業的な価値は極めて大きい。
As described above, according to the method for detecting the deterioration state of the cathode absorption type sealed lead acid battery according to the present invention, when the cathode absorption type sealed lead acid battery is discharged at a predetermined current,
Deterioration state determined in advance by determining the deterioration state from the difference between the change amount of the discharge voltage from the pre-discharge voltage after the lapse of a predetermined time after the start of discharge and the product of the internal resistance and the predetermined current, and obtained by the detection means. Since the remaining life is estimated from the relationship between the internal resistance and the remaining life, the remaining life will not be known until the end of the life, and it is not possible to prepare a replacement battery or due to different life factors. It is possible to solve the problem that the estimation cannot be performed accurately, and to accurately and accurately detect the deterioration state and estimate the remaining life of the cathode absorption type sealed lead acid battery in a short time. Therefore, its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】陰極吸収式シール形鉛蓄電池を定電流放電した
ときの放電電圧の特性を比較した図
FIG. 1 is a diagram comparing discharge voltage characteristics when a cathode absorption type sealed lead acid battery is discharged at constant current.

【図2】図1で示した陰極吸収式シール形鉛蓄電池を所
定電流で短時間放電したときの、放電開始後所定時間経
過時の放電電圧の放電前電圧からの変化量を比較した図
FIG. 2 is a diagram comparing the amount of change in the discharge voltage from the pre-discharge voltage after a lapse of a predetermined time after the start of discharge when the cathode absorption sealed lead-acid battery shown in FIG. 1 is discharged at a predetermined current for a short time.

【図3】セパレータの減液量と電圧変化量ΔVの関係を
示した図
FIG. 3 is a diagram showing a relationship between a liquid reduction amount of a separator and a voltage change amount ΔV.

【図4】内部抵抗と電池容量との相関関係を比較した図FIG. 4 is a diagram comparing the correlation between internal resistance and battery capacity.

【図5】使用期間と電池容量および内部抵抗の推移を比
較した図
[FIG. 5] A diagram comparing changes in battery capacity and internal resistance with a period of use.

【図6】内部抵抗と残寿命との相関関係を比較した図FIG. 6 is a diagram comparing the correlation between internal resistance and remaining life.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 まず蓄電池の内部抵抗を検出し、次に、
前記蓄電池に所定電流で短時間放電させたときの、放電
開始後所定時間経過時の放電電圧の放電前電圧からの変
化量と、前記内部抵抗と前記所定電流の積との差の電圧
変化量を求め、この電圧変化量の値から前記蓄電池の劣
化状態を判定し、前記劣化状態における、あらかじめ求
めておいた内部抵抗と蓄電池の残存寿命との相関関係か
ら、蓄電池の残存寿命を推定することを特徴とする陰極
吸収式シール形鉛蓄電池の残存寿命推定方法。
1. First, the internal resistance of the storage battery is detected, and then
When the storage battery is discharged at a predetermined current for a short time, the amount of change in the discharge voltage from the pre-discharge voltage at a predetermined time after the start of discharge, and the amount of voltage change of the difference between the internal resistance and the product of the predetermined current. Then, the deterioration state of the storage battery is determined from the value of the voltage change amount, and the remaining life of the storage battery is estimated from the correlation between the internal resistance and the remaining life of the storage battery, which are obtained in advance in the deterioration state. Method of estimating the remaining life of a cathode absorption sealed lead-acid battery characterized by.
JP7298945A 1995-10-23 1995-10-23 Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery Pending JPH09115554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7298945A JPH09115554A (en) 1995-10-23 1995-10-23 Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7298945A JPH09115554A (en) 1995-10-23 1995-10-23 Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH09115554A true JPH09115554A (en) 1997-05-02

Family

ID=17866223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7298945A Pending JPH09115554A (en) 1995-10-23 1995-10-23 Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH09115554A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065705A3 (en) * 1999-04-23 2001-02-08 Qualcomm Inc System and method for accurately determining remaining battery life
JP2002334725A (en) * 2001-05-07 2002-11-22 Furukawa Battery Co Ltd:The Method for monitoring condition of lead-acid battery
US6920404B2 (en) 2000-09-28 2005-07-19 Japan Storage Battery Co., Ltd. Method of detecting residual capacity of secondary battery
JP2008076295A (en) * 2006-09-22 2008-04-03 Omron Corp Battery life prediction system, battery life prediction method, communication terminal device, battery life prediction device, data transmission program, battery life prediction program, and computer-readable recording medium storing the program
WO2010079745A1 (en) * 2009-01-07 2010-07-15 新神戸電機株式会社 System for control of wind power electricity generation accumulator and method of control thereof
US8180315B2 (en) 2006-03-28 2012-05-15 Kyocera Corporation Mobile terminal and functional operation control method of the same
JP2013141379A (en) * 2012-01-06 2013-07-18 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply device
US20130268223A1 (en) * 2008-08-07 2013-10-10 Research In Motion Limited Systems and methods for monitoring deterioration of a rechargeable battery
JP2014085323A (en) * 2012-10-26 2014-05-12 Toyota Motor Corp Secondary battery inspection method
CN103884984A (en) * 2012-12-19 2014-06-25 北京创智信科科技有限公司 Method for generating storage battery fault information
WO2016135850A1 (en) * 2015-02-24 2016-09-01 三菱電機株式会社 Servo system and method of estimating service life of battery
WO2024029501A1 (en) * 2022-08-01 2024-02-08 マクセル株式会社 Secondary battery diagnostic method, secondary battery diagnostic program, and secondary battery diagnostic device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065705A3 (en) * 1999-04-23 2001-02-08 Qualcomm Inc System and method for accurately determining remaining battery life
US6920404B2 (en) 2000-09-28 2005-07-19 Japan Storage Battery Co., Ltd. Method of detecting residual capacity of secondary battery
JP2002334725A (en) * 2001-05-07 2002-11-22 Furukawa Battery Co Ltd:The Method for monitoring condition of lead-acid battery
US8180315B2 (en) 2006-03-28 2012-05-15 Kyocera Corporation Mobile terminal and functional operation control method of the same
JP2008076295A (en) * 2006-09-22 2008-04-03 Omron Corp Battery life prediction system, battery life prediction method, communication terminal device, battery life prediction device, data transmission program, battery life prediction program, and computer-readable recording medium storing the program
US20130268223A1 (en) * 2008-08-07 2013-10-10 Research In Motion Limited Systems and methods for monitoring deterioration of a rechargeable battery
US9267994B2 (en) * 2008-08-07 2016-02-23 Blackberry Limited Systems and methods for monitoring deterioration of a rechargeable battery
WO2010079745A1 (en) * 2009-01-07 2010-07-15 新神戸電機株式会社 System for control of wind power electricity generation accumulator and method of control thereof
EP2386754A4 (en) * 2009-01-07 2014-02-26 Shin Kobe Electric Machinery WIND POWER GENERATION ACCUMULATOR CONTROL SYSTEM AND CORRESPONDING CONTROL METHOD
US9124135B2 (en) 2009-01-07 2015-09-01 Shin-Kobe Electric Machinery Co., Ltd. System for control of wind power generation storage battery and method of control thereof
JP2010159661A (en) * 2009-01-07 2010-07-22 Shin Kobe Electric Mach Co Ltd Storage battery control system for wind power generation and method for controlling the same
JP2013141379A (en) * 2012-01-06 2013-07-18 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply device
JP2014085323A (en) * 2012-10-26 2014-05-12 Toyota Motor Corp Secondary battery inspection method
CN103884984A (en) * 2012-12-19 2014-06-25 北京创智信科科技有限公司 Method for generating storage battery fault information
WO2016135850A1 (en) * 2015-02-24 2016-09-01 三菱電機株式会社 Servo system and method of estimating service life of battery
WO2024029501A1 (en) * 2022-08-01 2024-02-08 マクセル株式会社 Secondary battery diagnostic method, secondary battery diagnostic program, and secondary battery diagnostic device

Similar Documents

Publication Publication Date Title
US6920404B2 (en) Method of detecting residual capacity of secondary battery
US5864237A (en) Battery condition detection method
US8589097B2 (en) Method for diagnosing the state of health of a battery
US6850038B2 (en) Method of estimating state of charge and open circuit voltage of battery, and method and device for computing degradation degree of battery
US6300763B1 (en) Method of calculating dynamic state-of-charge within a battery
EP2728368B1 (en) Condition estimation device and method for battery
US20010035738A1 (en) Method for determining the state of charge of lead-acid rechargeable batteries
US7507497B2 (en) Method and apparatus for judging degradation of storage battery
US20110215761A1 (en) Method for determining the state of charge of a battery in charging or discharging phase
JPH09115554A (en) Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery
CN112964994B (en) Method and device for measuring maximum current of battery
JPH08222279A (en) Degraded condition detecting method of sealed lead-acid battery
JP2007103351A (en) Storage battery degradation determination method and apparatus
CN113075558B (en) Battery SOC estimation method, device and system
JPH07183050A (en) Lead storage battery life judgment method
US7538517B2 (en) Method for detecting battery stratification
JP3678045B2 (en) Battery charging method
US20230333173A1 (en) Battery monitoring apparatus
CN116930786A (en) Battery dynamic abnormality detection method and device, storage medium and electronic equipment
JPH0821434B2 (en) Method for detecting deterioration of sealed lead-acid battery
JPH0855642A (en) Deterioration state detecting method for lead-acid battery
KR20230077409A (en) Method of estimating a state of battery and control device for the same
JP2000133322A (en) Rechargeable battery charge / discharge system
JPH04250376A (en) Estimation of remaining capacity of closed type lead storage battery
JPH04215083A (en) Method for deciding remaining life of lead-acid battery